diff options
Diffstat (limited to 'lib/CodeGen/PHIElimination.cpp')
-rw-r--r-- | lib/CodeGen/PHIElimination.cpp | 431 |
1 files changed, 431 insertions, 0 deletions
diff --git a/lib/CodeGen/PHIElimination.cpp b/lib/CodeGen/PHIElimination.cpp new file mode 100644 index 000000000000..c5c76fc79467 --- /dev/null +++ b/lib/CodeGen/PHIElimination.cpp @@ -0,0 +1,431 @@ +//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass eliminates machine instruction PHI nodes by inserting copy +// instructions. This destroys SSA information, but is the desired input for +// some register allocators. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "phielim" +#include "llvm/BasicBlock.h" +#include "llvm/Instructions.h" +#include "llvm/CodeGen/LiveVariables.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Support/Compiler.h" +#include <algorithm> +#include <map> +using namespace llvm; + +STATISTIC(NumAtomic, "Number of atomic phis lowered"); + +namespace { + class VISIBILITY_HIDDEN PNE : public MachineFunctionPass { + MachineRegisterInfo *MRI; // Machine register information + + public: + static char ID; // Pass identification, replacement for typeid + PNE() : MachineFunctionPass(&ID) {} + + virtual bool runOnMachineFunction(MachineFunction &Fn); + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.addPreserved<LiveVariables>(); + AU.addPreservedID(MachineLoopInfoID); + AU.addPreservedID(MachineDominatorsID); + MachineFunctionPass::getAnalysisUsage(AU); + } + + private: + /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions + /// in predecessor basic blocks. + /// + bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); + void LowerAtomicPHINode(MachineBasicBlock &MBB, + MachineBasicBlock::iterator AfterPHIsIt); + + /// analyzePHINodes - Gather information about the PHI nodes in + /// here. In particular, we want to map the number of uses of a virtual + /// register which is used in a PHI node. We map that to the BB the + /// vreg is coming from. This is used later to determine when the vreg + /// is killed in the BB. + /// + void analyzePHINodes(const MachineFunction& Fn); + + // FindCopyInsertPoint - Find a safe place in MBB to insert a copy from + // SrcReg. This needs to be after any def or uses of SrcReg, but before + // any subsequent point where control flow might jump out of the basic + // block. + MachineBasicBlock::iterator FindCopyInsertPoint(MachineBasicBlock &MBB, + unsigned SrcReg); + + // SkipPHIsAndLabels - Copies need to be inserted after phi nodes and + // also after any exception handling labels: in landing pads execution + // starts at the label, so any copies placed before it won't be executed! + MachineBasicBlock::iterator SkipPHIsAndLabels(MachineBasicBlock &MBB, + MachineBasicBlock::iterator I) { + // Rather than assuming that EH labels come before other kinds of labels, + // just skip all labels. + while (I != MBB.end() && + (I->getOpcode() == TargetInstrInfo::PHI || I->isLabel())) + ++I; + return I; + } + + typedef std::pair<const MachineBasicBlock*, unsigned> BBVRegPair; + typedef std::map<BBVRegPair, unsigned> VRegPHIUse; + + VRegPHIUse VRegPHIUseCount; + + // Defs of PHI sources which are implicit_def. + SmallPtrSet<MachineInstr*, 4> ImpDefs; + }; +} + +char PNE::ID = 0; +static RegisterPass<PNE> +X("phi-node-elimination", "Eliminate PHI nodes for register allocation"); + +const PassInfo *const llvm::PHIEliminationID = &X; + +bool PNE::runOnMachineFunction(MachineFunction &Fn) { + MRI = &Fn.getRegInfo(); + + analyzePHINodes(Fn); + + bool Changed = false; + + // Eliminate PHI instructions by inserting copies into predecessor blocks. + for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) + Changed |= EliminatePHINodes(Fn, *I); + + // Remove dead IMPLICIT_DEF instructions. + for (SmallPtrSet<MachineInstr*,4>::iterator I = ImpDefs.begin(), + E = ImpDefs.end(); I != E; ++I) { + MachineInstr *DefMI = *I; + unsigned DefReg = DefMI->getOperand(0).getReg(); + if (MRI->use_empty(DefReg)) + DefMI->eraseFromParent(); + } + + ImpDefs.clear(); + VRegPHIUseCount.clear(); + return Changed; +} + + +/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in +/// predecessor basic blocks. +/// +bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) { + if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI) + return false; // Quick exit for basic blocks without PHIs. + + // Get an iterator to the first instruction after the last PHI node (this may + // also be the end of the basic block). + MachineBasicBlock::iterator AfterPHIsIt = SkipPHIsAndLabels(MBB, MBB.begin()); + + while (MBB.front().getOpcode() == TargetInstrInfo::PHI) + LowerAtomicPHINode(MBB, AfterPHIsIt); + + return true; +} + +/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node +/// are implicit_def's. +static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi, + const MachineRegisterInfo *MRI) { + for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) { + unsigned SrcReg = MPhi->getOperand(i).getReg(); + const MachineInstr *DefMI = MRI->getVRegDef(SrcReg); + if (!DefMI || DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF) + return false; + } + return true; +} + +// FindCopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg. +// This needs to be after any def or uses of SrcReg, but before any subsequent +// point where control flow might jump out of the basic block. +MachineBasicBlock::iterator PNE::FindCopyInsertPoint(MachineBasicBlock &MBB, + unsigned SrcReg) { + // Handle the trivial case trivially. + if (MBB.empty()) + return MBB.begin(); + + // If this basic block does not contain an invoke, then control flow always + // reaches the end of it, so place the copy there. The logic below works in + // this case too, but is more expensive. + if (!isa<InvokeInst>(MBB.getBasicBlock()->getTerminator())) + return MBB.getFirstTerminator(); + + // Discover any definition/uses in this basic block. + SmallPtrSet<MachineInstr*, 8> DefUsesInMBB; + for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg), + RE = MRI->reg_end(); RI != RE; ++RI) { + MachineInstr *DefUseMI = &*RI; + if (DefUseMI->getParent() == &MBB) + DefUsesInMBB.insert(DefUseMI); + } + + MachineBasicBlock::iterator InsertPoint; + if (DefUsesInMBB.empty()) { + // No def/uses. Insert the copy at the start of the basic block. + InsertPoint = MBB.begin(); + } else if (DefUsesInMBB.size() == 1) { + // Insert the copy immediately after the definition/use. + InsertPoint = *DefUsesInMBB.begin(); + ++InsertPoint; + } else { + // Insert the copy immediately after the last definition/use. + InsertPoint = MBB.end(); + while (!DefUsesInMBB.count(&*--InsertPoint)) {} + ++InsertPoint; + } + + // Make sure the copy goes after any phi nodes however. + return SkipPHIsAndLabels(MBB, InsertPoint); +} + +/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block, +/// under the assuption that it needs to be lowered in a way that supports +/// atomic execution of PHIs. This lowering method is always correct all of the +/// time. +/// +void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB, + MachineBasicBlock::iterator AfterPHIsIt) { + // Unlink the PHI node from the basic block, but don't delete the PHI yet. + MachineInstr *MPhi = MBB.remove(MBB.begin()); + + unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; + unsigned DestReg = MPhi->getOperand(0).getReg(); + bool isDead = MPhi->getOperand(0).isDead(); + + // Create a new register for the incoming PHI arguments. + MachineFunction &MF = *MBB.getParent(); + const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); + unsigned IncomingReg = 0; + + // Insert a register to register copy at the top of the current block (but + // after any remaining phi nodes) which copies the new incoming register + // into the phi node destination. + const TargetInstrInfo *TII = MF.getTarget().getInstrInfo(); + if (isSourceDefinedByImplicitDef(MPhi, MRI)) + // If all sources of a PHI node are implicit_def, just emit an + // implicit_def instead of a copy. + BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), + TII->get(TargetInstrInfo::IMPLICIT_DEF), DestReg); + else { + IncomingReg = MF.getRegInfo().createVirtualRegister(RC); + TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC); + } + + // Update live variable information if there is any. + LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>(); + if (LV) { + MachineInstr *PHICopy = prior(AfterPHIsIt); + + if (IncomingReg) { + // Increment use count of the newly created virtual register. + LV->getVarInfo(IncomingReg).NumUses++; + + // Add information to LiveVariables to know that the incoming value is + // killed. Note that because the value is defined in several places (once + // each for each incoming block), the "def" block and instruction fields + // for the VarInfo is not filled in. + LV->addVirtualRegisterKilled(IncomingReg, PHICopy); + } + + // Since we are going to be deleting the PHI node, if it is the last use of + // any registers, or if the value itself is dead, we need to move this + // information over to the new copy we just inserted. + LV->removeVirtualRegistersKilled(MPhi); + + // If the result is dead, update LV. + if (isDead) { + LV->addVirtualRegisterDead(DestReg, PHICopy); + LV->removeVirtualRegisterDead(DestReg, MPhi); + } + } + + // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. + for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) + --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i + 1).getMBB(), + MPhi->getOperand(i).getReg())]; + + // Now loop over all of the incoming arguments, changing them to copy into the + // IncomingReg register in the corresponding predecessor basic block. + SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; + for (int i = NumSrcs - 1; i >= 0; --i) { + unsigned SrcReg = MPhi->getOperand(i*2+1).getReg(); + assert(TargetRegisterInfo::isVirtualRegister(SrcReg) && + "Machine PHI Operands must all be virtual registers!"); + + // If source is defined by an implicit def, there is no need to insert a + // copy. + MachineInstr *DefMI = MRI->getVRegDef(SrcReg); + if (DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) { + ImpDefs.insert(DefMI); + continue; + } + + // Get the MachineBasicBlock equivalent of the BasicBlock that is the source + // path the PHI. + MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); + + // Check to make sure we haven't already emitted the copy for this block. + // This can happen because PHI nodes may have multiple entries for the same + // basic block. + if (!MBBsInsertedInto.insert(&opBlock)) + continue; // If the copy has already been emitted, we're done. + + // Find a safe location to insert the copy, this may be the first terminator + // in the block (or end()). + MachineBasicBlock::iterator InsertPos = FindCopyInsertPoint(opBlock, SrcReg); + + // Insert the copy. + TII->copyRegToReg(opBlock, InsertPos, IncomingReg, SrcReg, RC, RC); + + // Now update live variable information if we have it. Otherwise we're done + if (!LV) continue; + + // We want to be able to insert a kill of the register if this PHI (aka, the + // copy we just inserted) is the last use of the source value. Live + // variable analysis conservatively handles this by saying that the value is + // live until the end of the block the PHI entry lives in. If the value + // really is dead at the PHI copy, there will be no successor blocks which + // have the value live-in. + // + // Check to see if the copy is the last use, and if so, update the live + // variables information so that it knows the copy source instruction kills + // the incoming value. + LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg); + + // Loop over all of the successors of the basic block, checking to see if + // the value is either live in the block, or if it is killed in the block. + // Also check to see if this register is in use by another PHI node which + // has not yet been eliminated. If so, it will be killed at an appropriate + // point later. + + // Is it used by any PHI instructions in this block? + bool ValueIsLive = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0; + + std::vector<MachineBasicBlock*> OpSuccBlocks; + + // Otherwise, scan successors, including the BB the PHI node lives in. + for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(), + E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) { + MachineBasicBlock *SuccMBB = *SI; + + // Is it alive in this successor? + unsigned SuccIdx = SuccMBB->getNumber(); + if (InRegVI.AliveBlocks.test(SuccIdx)) { + ValueIsLive = true; + break; + } + + OpSuccBlocks.push_back(SuccMBB); + } + + // Check to see if this value is live because there is a use in a successor + // that kills it. + if (!ValueIsLive) { + switch (OpSuccBlocks.size()) { + case 1: { + MachineBasicBlock *MBB = OpSuccBlocks[0]; + for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i) + if (InRegVI.Kills[i]->getParent() == MBB) { + ValueIsLive = true; + break; + } + break; + } + case 2: { + MachineBasicBlock *MBB1 = OpSuccBlocks[0], *MBB2 = OpSuccBlocks[1]; + for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i) + if (InRegVI.Kills[i]->getParent() == MBB1 || + InRegVI.Kills[i]->getParent() == MBB2) { + ValueIsLive = true; + break; + } + break; + } + default: + std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end()); + for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i) + if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(), + InRegVI.Kills[i]->getParent())) { + ValueIsLive = true; + break; + } + } + } + + // Okay, if we now know that the value is not live out of the block, we can + // add a kill marker in this block saying that it kills the incoming value! + if (!ValueIsLive) { + // In our final twist, we have to decide which instruction kills the + // register. In most cases this is the copy, however, the first + // terminator instruction at the end of the block may also use the value. + // In this case, we should mark *it* as being the killing block, not the + // copy. + MachineBasicBlock::iterator KillInst = prior(InsertPos); + MachineBasicBlock::iterator Term = opBlock.getFirstTerminator(); + if (Term != opBlock.end()) { + if (Term->readsRegister(SrcReg)) + KillInst = Term; + + // Check that no other terminators use values. +#ifndef NDEBUG + for (MachineBasicBlock::iterator TI = next(Term); TI != opBlock.end(); + ++TI) { + assert(!TI->readsRegister(SrcReg) && + "Terminator instructions cannot use virtual registers unless" + "they are the first terminator in a block!"); + } +#endif + } + + // Finally, mark it killed. + LV->addVirtualRegisterKilled(SrcReg, KillInst); + + // This vreg no longer lives all of the way through opBlock. + unsigned opBlockNum = opBlock.getNumber(); + InRegVI.AliveBlocks.reset(opBlockNum); + } + } + + // Really delete the PHI instruction now! + MF.DeleteMachineInstr(MPhi); + ++NumAtomic; +} + +/// analyzePHINodes - Gather information about the PHI nodes in here. In +/// particular, we want to map the number of uses of a virtual register which is +/// used in a PHI node. We map that to the BB the vreg is coming from. This is +/// used later to determine when the vreg is killed in the BB. +/// +void PNE::analyzePHINodes(const MachineFunction& Fn) { + for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); + I != E; ++I) + for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); + BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) + for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) + ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i + 1).getMBB(), + BBI->getOperand(i).getReg())]; +} |