summaryrefslogtreecommitdiff
path: root/lib/CodeGen/StackColoring.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen/StackColoring.cpp')
-rw-r--r--lib/CodeGen/StackColoring.cpp237
1 files changed, 177 insertions, 60 deletions
diff --git a/lib/CodeGen/StackColoring.cpp b/lib/CodeGen/StackColoring.cpp
index acb3676fdd71..6bac39c7ee77 100644
--- a/lib/CodeGen/StackColoring.cpp
+++ b/lib/CodeGen/StackColoring.cpp
@@ -86,10 +86,134 @@ STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
STATISTIC(StackSlotMerged, "Number of stack slot merged.");
STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
+//===----------------------------------------------------------------------===//
+// StackColoring Pass
+//===----------------------------------------------------------------------===//
+//
+// Stack Coloring reduces stack usage by merging stack slots when they
+// can't be used together. For example, consider the following C program:
+//
+// void bar(char *, int);
+// void foo(bool var) {
+// A: {
+// char z[4096];
+// bar(z, 0);
+// }
+//
+// char *p;
+// char x[4096];
+// char y[4096];
+// if (var) {
+// p = x;
+// } else {
+// bar(y, 1);
+// p = y + 1024;
+// }
+// B:
+// bar(p, 2);
+// }
+//
+// Naively-compiled, this program would use 12k of stack space. However, the
+// stack slot corresponding to `z` is always destroyed before either of the
+// stack slots for `x` or `y` are used, and then `x` is only used if `var`
+// is true, while `y` is only used if `var` is false. So in no time are 2
+// of the stack slots used together, and therefore we can merge them,
+// compiling the function using only a single 4k alloca:
+//
+// void foo(bool var) { // equivalent
+// char x[4096];
+// char *p;
+// bar(x, 0);
+// if (var) {
+// p = x;
+// } else {
+// bar(x, 1);
+// p = x + 1024;
+// }
+// bar(p, 2);
+// }
+//
+// This is an important optimization if we want stack space to be under
+// control in large functions, both open-coded ones and ones created by
+// inlining.
//
// Implementation Notes:
// ---------------------
//
+// An important part of the above reasoning is that `z` can't be accessed
+// while the latter 2 calls to `bar` are running. This is justified because
+// `z`'s lifetime is over after we exit from block `A:`, so any further
+// accesses to it would be UB. The way we represent this information
+// in LLVM is by having frontends delimit blocks with `lifetime.start`
+// and `lifetime.end` intrinsics.
+//
+// The effect of these intrinsics seems to be as follows (maybe I should
+// specify this in the reference?):
+//
+// L1) at start, each stack-slot is marked as *out-of-scope*, unless no
+// lifetime intrinsic refers to that stack slot, in which case
+// it is marked as *in-scope*.
+// L2) on a `lifetime.start`, a stack slot is marked as *in-scope* and
+// the stack slot is overwritten with `undef`.
+// L3) on a `lifetime.end`, a stack slot is marked as *out-of-scope*.
+// L4) on function exit, all stack slots are marked as *out-of-scope*.
+// L5) `lifetime.end` is a no-op when called on a slot that is already
+// *out-of-scope*.
+// L6) memory accesses to *out-of-scope* stack slots are UB.
+// L7) when a stack-slot is marked as *out-of-scope*, all pointers to it
+// are invalidated, unless the slot is "degenerate". This is used to
+// justify not marking slots as in-use until the pointer to them is
+// used, but feels a bit hacky in the presence of things like LICM. See
+// the "Degenerate Slots" section for more details.
+//
+// Now, let's ground stack coloring on these rules. We'll define a slot
+// as *in-use* at a (dynamic) point in execution if it either can be
+// written to at that point, or if it has a live and non-undef content
+// at that point.
+//
+// Obviously, slots that are never *in-use* together can be merged, and
+// in our example `foo`, the slots for `x`, `y` and `z` are never
+// in-use together (of course, sometimes slots that *are* in-use together
+// might still be mergable, but we don't care about that here).
+//
+// In this implementation, we successively merge pairs of slots that are
+// not *in-use* together. We could be smarter - for example, we could merge
+// a single large slot with 2 small slots, or we could construct the
+// interference graph and run a "smart" graph coloring algorithm, but with
+// that aside, how do we find out whether a pair of slots might be *in-use*
+// together?
+//
+// From our rules, we see that *out-of-scope* slots are never *in-use*,
+// and from (L7) we see that "non-degenerate" slots remain non-*in-use*
+// until their address is taken. Therefore, we can approximate slot activity
+// using dataflow.
+//
+// A subtle point: naively, we might try to figure out which pairs of
+// stack-slots interfere by propagating `S in-use` through the CFG for every
+// stack-slot `S`, and having `S` and `T` interfere if there is a CFG point in
+// which they are both *in-use*.
+//
+// That is sound, but overly conservative in some cases: in our (artificial)
+// example `foo`, either `x` or `y` might be in use at the label `B:`, but
+// as `x` is only in use if we came in from the `var` edge and `y` only
+// if we came from the `!var` edge, they still can't be in use together.
+// See PR32488 for an important real-life case.
+//
+// If we wanted to find all points of interference precisely, we could
+// propagate `S in-use` and `S&T in-use` predicates through the CFG. That
+// would be precise, but requires propagating `O(n^2)` dataflow facts.
+//
+// However, we aren't interested in the *set* of points of interference
+// between 2 stack slots, only *whether* there *is* such a point. So we
+// can rely on a little trick: for `S` and `T` to be in-use together,
+// one of them needs to become in-use while the other is in-use (or
+// they might both become in use simultaneously). We can check this
+// by also keeping track of the points at which a stack slot might *start*
+// being in-use.
+//
+// Exact first use:
+// ----------------
+//
// Consider the following motivating example:
//
// int foo() {
@@ -158,6 +282,9 @@ STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
// lifetime, we can additionally overlap b1 and b5, giving us a 3*1024
// byte stack (better).
//
+// Degenerate Slots:
+// -----------------
+//
// Relying entirely on first-use of stack slots is problematic,
// however, due to the fact that optimizations can sometimes migrate
// uses of a variable outside of its lifetime start/end region. Here
@@ -237,10 +364,6 @@ STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
// for "b" then it will appear that 'b' has a degenerate lifetime.
//
-//===----------------------------------------------------------------------===//
-// StackColoring Pass
-//===----------------------------------------------------------------------===//
-
namespace {
/// StackColoring - A machine pass for merging disjoint stack allocations,
/// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
@@ -271,8 +394,11 @@ class StackColoring : public MachineFunctionPass {
/// Maps basic blocks to a serial number.
SmallVector<const MachineBasicBlock*, 8> BasicBlockNumbering;
- /// Maps liveness intervals for each slot.
+ /// Maps slots to their use interval. Outside of this interval, slots
+ /// values are either dead or `undef` and they will not be written to.
SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
+ /// Maps slots to the points where they can become in-use.
+ SmallVector<SmallVector<SlotIndex, 4>, 16> LiveStarts;
/// VNInfo is used for the construction of LiveIntervals.
VNInfo::Allocator VNInfoAllocator;
/// SlotIndex analysis object.
@@ -672,15 +798,22 @@ void StackColoring::calculateLocalLiveness()
void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
SmallVector<SlotIndex, 16> Starts;
- SmallVector<SlotIndex, 16> Finishes;
+ SmallVector<bool, 16> DefinitelyInUse;
// For each block, find which slots are active within this block
// and update the live intervals.
for (const MachineBasicBlock &MBB : *MF) {
Starts.clear();
Starts.resize(NumSlots);
- Finishes.clear();
- Finishes.resize(NumSlots);
+ DefinitelyInUse.clear();
+ DefinitelyInUse.resize(NumSlots);
+
+ // Start the interval of the slots that we previously found to be 'in-use'.
+ BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
+ for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
+ pos = MBBLiveness.LiveIn.find_next(pos)) {
+ Starts[pos] = Indexes->getMBBStartIdx(&MBB);
+ }
// Create the interval for the basic blocks containing lifetime begin/end.
for (const MachineInstr &MI : MBB) {
@@ -692,66 +825,35 @@ void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
for (auto Slot : slots) {
if (IsStart) {
- if (!Starts[Slot].isValid() || Starts[Slot] > ThisIndex)
+ // If a slot is already definitely in use, we don't have to emit
+ // a new start marker because there is already a pre-existing
+ // one.
+ if (!DefinitelyInUse[Slot]) {
+ LiveStarts[Slot].push_back(ThisIndex);
+ DefinitelyInUse[Slot] = true;
+ }
+ if (!Starts[Slot].isValid())
Starts[Slot] = ThisIndex;
} else {
- if (!Finishes[Slot].isValid() || Finishes[Slot] < ThisIndex)
- Finishes[Slot] = ThisIndex;
+ if (Starts[Slot].isValid()) {
+ VNInfo *VNI = Intervals[Slot]->getValNumInfo(0);
+ Intervals[Slot]->addSegment(
+ LiveInterval::Segment(Starts[Slot], ThisIndex, VNI));
+ Starts[Slot] = SlotIndex(); // Invalidate the start index
+ DefinitelyInUse[Slot] = false;
+ }
}
}
}
- // Create the interval of the blocks that we previously found to be 'alive'.
- BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
- for (unsigned pos : MBBLiveness.LiveIn.set_bits()) {
- Starts[pos] = Indexes->getMBBStartIdx(&MBB);
- }
- for (unsigned pos : MBBLiveness.LiveOut.set_bits()) {
- Finishes[pos] = Indexes->getMBBEndIdx(&MBB);
- }
-
+ // Finish up started segments
for (unsigned i = 0; i < NumSlots; ++i) {
- //
- // When LifetimeStartOnFirstUse is turned on, data flow analysis
- // is forward (from starts to ends), not bidirectional. A
- // consequence of this is that we can wind up in situations
- // where Starts[i] is invalid but Finishes[i] is valid and vice
- // versa. Example:
- //
- // LIFETIME_START x
- // if (...) {
- // <use of x>
- // throw ...;
- // }
- // LIFETIME_END x
- // return 2;
- //
- //
- // Here the slot for "x" will not be live into the block
- // containing the "return 2" (since lifetimes start with first
- // use, not at the dominating LIFETIME_START marker).
- //
- if (Starts[i].isValid() && !Finishes[i].isValid()) {
- Finishes[i] = Indexes->getMBBEndIdx(&MBB);
- }
if (!Starts[i].isValid())
continue;
- assert(Starts[i] && Finishes[i] && "Invalid interval");
- VNInfo *ValNum = Intervals[i]->getValNumInfo(0);
- SlotIndex S = Starts[i];
- SlotIndex F = Finishes[i];
- if (S < F) {
- // We have a single consecutive region.
- Intervals[i]->addSegment(LiveInterval::Segment(S, F, ValNum));
- } else {
- // We have two non-consecutive regions. This happens when
- // LIFETIME_START appears after the LIFETIME_END marker.
- SlotIndex NewStart = Indexes->getMBBStartIdx(&MBB);
- SlotIndex NewFin = Indexes->getMBBEndIdx(&MBB);
- Intervals[i]->addSegment(LiveInterval::Segment(NewStart, F, ValNum));
- Intervals[i]->addSegment(LiveInterval::Segment(S, NewFin, ValNum));
- }
+ SlotIndex EndIdx = Indexes->getMBBEndIdx(&MBB);
+ VNInfo *VNI = Intervals[i]->getValNumInfo(0);
+ Intervals[i]->addSegment(LiveInterval::Segment(Starts[i], EndIdx, VNI));
}
}
}
@@ -981,6 +1083,7 @@ bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
BasicBlockNumbering.clear();
Markers.clear();
Intervals.clear();
+ LiveStarts.clear();
VNInfoAllocator.Reset();
unsigned NumSlots = MFI->getObjectIndexEnd();
@@ -992,6 +1095,7 @@ bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
SmallVector<int, 8> SortedSlots;
SortedSlots.reserve(NumSlots);
Intervals.reserve(NumSlots);
+ LiveStarts.resize(NumSlots);
unsigned NumMarkers = collectMarkers(NumSlots);
@@ -1063,6 +1167,9 @@ bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
});
+ for (auto &s : LiveStarts)
+ std::sort(s.begin(), s.end());
+
bool Changed = true;
while (Changed) {
Changed = false;
@@ -1078,12 +1185,22 @@ bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
int SecondSlot = SortedSlots[J];
LiveInterval *First = &*Intervals[FirstSlot];
LiveInterval *Second = &*Intervals[SecondSlot];
+ auto &FirstS = LiveStarts[FirstSlot];
+ auto &SecondS = LiveStarts[SecondSlot];
assert (!First->empty() && !Second->empty() && "Found an empty range");
- // Merge disjoint slots.
- if (!First->overlaps(*Second)) {
+ // Merge disjoint slots. This is a little bit tricky - see the
+ // Implementation Notes section for an explanation.
+ if (!First->isLiveAtIndexes(SecondS) &&
+ !Second->isLiveAtIndexes(FirstS)) {
Changed = true;
First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
+
+ int OldSize = FirstS.size();
+ FirstS.append(SecondS.begin(), SecondS.end());
+ auto Mid = FirstS.begin() + OldSize;
+ std::inplace_merge(FirstS.begin(), Mid, FirstS.end());
+
SlotRemap[SecondSlot] = FirstSlot;
SortedSlots[J] = -1;
DEBUG(dbgs()<<"Merging #"<<FirstSlot<<" and slots #"<<