diff options
Diffstat (limited to 'lib/CodeGen/VirtRegMap.h')
-rw-r--r-- | lib/CodeGen/VirtRegMap.h | 495 |
1 files changed, 495 insertions, 0 deletions
diff --git a/lib/CodeGen/VirtRegMap.h b/lib/CodeGen/VirtRegMap.h new file mode 100644 index 000000000000..507557d24c08 --- /dev/null +++ b/lib/CodeGen/VirtRegMap.h @@ -0,0 +1,495 @@ +//===-- llvm/CodeGen/VirtRegMap.h - Virtual Register Map -*- C++ -*--------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements a virtual register map. This maps virtual registers to +// physical registers and virtual registers to stack slots. It is created and +// updated by a register allocator and then used by a machine code rewriter that +// adds spill code and rewrites virtual into physical register references. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_CODEGEN_VIRTREGMAP_H +#define LLVM_CODEGEN_VIRTREGMAP_H + +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/IndexedMap.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Support/Streams.h" +#include <map> + +namespace llvm { + class LiveIntervals; + class MachineInstr; + class MachineFunction; + class TargetInstrInfo; + class TargetRegisterInfo; + + class VirtRegMap : public MachineFunctionPass { + public: + enum { + NO_PHYS_REG = 0, + NO_STACK_SLOT = (1L << 30)-1, + MAX_STACK_SLOT = (1L << 18)-1 + }; + + enum ModRef { isRef = 1, isMod = 2, isModRef = 3 }; + typedef std::multimap<MachineInstr*, + std::pair<unsigned, ModRef> > MI2VirtMapTy; + + private: + const TargetInstrInfo *TII; + const TargetRegisterInfo *TRI; + MachineFunction *MF; + + DenseMap<const TargetRegisterClass*, BitVector> allocatableRCRegs; + + /// Virt2PhysMap - This is a virtual to physical register + /// mapping. Each virtual register is required to have an entry in + /// it; even spilled virtual registers (the register mapped to a + /// spilled register is the temporary used to load it from the + /// stack). + IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysMap; + + /// Virt2StackSlotMap - This is virtual register to stack slot + /// mapping. Each spilled virtual register has an entry in it + /// which corresponds to the stack slot this register is spilled + /// at. + IndexedMap<int, VirtReg2IndexFunctor> Virt2StackSlotMap; + + /// Virt2ReMatIdMap - This is virtual register to rematerialization id + /// mapping. Each spilled virtual register that should be remat'd has an + /// entry in it which corresponds to the remat id. + IndexedMap<int, VirtReg2IndexFunctor> Virt2ReMatIdMap; + + /// Virt2SplitMap - This is virtual register to splitted virtual register + /// mapping. + IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2SplitMap; + + /// Virt2SplitKillMap - This is splitted virtual register to its last use + /// (kill) index mapping. + IndexedMap<unsigned> Virt2SplitKillMap; + + /// ReMatMap - This is virtual register to re-materialized instruction + /// mapping. Each virtual register whose definition is going to be + /// re-materialized has an entry in it. + IndexedMap<MachineInstr*, VirtReg2IndexFunctor> ReMatMap; + + /// MI2VirtMap - This is MachineInstr to virtual register + /// mapping. In the case of memory spill code being folded into + /// instructions, we need to know which virtual register was + /// read/written by this instruction. + MI2VirtMapTy MI2VirtMap; + + /// SpillPt2VirtMap - This records the virtual registers which should + /// be spilled right after the MachineInstr due to live interval + /// splitting. + std::map<MachineInstr*, std::vector<std::pair<unsigned,bool> > > + SpillPt2VirtMap; + + /// RestorePt2VirtMap - This records the virtual registers which should + /// be restored right before the MachineInstr due to live interval + /// splitting. + std::map<MachineInstr*, std::vector<unsigned> > RestorePt2VirtMap; + + /// EmergencySpillMap - This records the physical registers that should + /// be spilled / restored around the MachineInstr since the register + /// allocator has run out of registers. + std::map<MachineInstr*, std::vector<unsigned> > EmergencySpillMap; + + /// EmergencySpillSlots - This records emergency spill slots used to + /// spill physical registers when the register allocator runs out of + /// registers. Ideally only one stack slot is used per function per + /// register class. + std::map<const TargetRegisterClass*, int> EmergencySpillSlots; + + /// ReMatId - Instead of assigning a stack slot to a to be rematerialized + /// virtual register, an unique id is being assigned. This keeps track of + /// the highest id used so far. Note, this starts at (1<<18) to avoid + /// conflicts with stack slot numbers. + int ReMatId; + + /// LowSpillSlot, HighSpillSlot - Lowest and highest spill slot indexes. + int LowSpillSlot, HighSpillSlot; + + /// SpillSlotToUsesMap - Records uses for each register spill slot. + SmallVector<SmallPtrSet<MachineInstr*, 4>, 8> SpillSlotToUsesMap; + + /// ImplicitDefed - One bit for each virtual register. If set it indicates + /// the register is implicitly defined. + BitVector ImplicitDefed; + + /// UnusedRegs - A list of physical registers that have not been used. + BitVector UnusedRegs; + + VirtRegMap(const VirtRegMap&); // DO NOT IMPLEMENT + void operator=(const VirtRegMap&); // DO NOT IMPLEMENT + + public: + static char ID; + VirtRegMap() : MachineFunctionPass(&ID), Virt2PhysMap(NO_PHYS_REG), + Virt2StackSlotMap(NO_STACK_SLOT), + Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0), + Virt2SplitKillMap(0), ReMatMap(NULL), + ReMatId(MAX_STACK_SLOT+1), + LowSpillSlot(NO_STACK_SLOT), HighSpillSlot(NO_STACK_SLOT) { } + virtual bool runOnMachineFunction(MachineFunction &MF); + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + MachineFunctionPass::getAnalysisUsage(AU); + } + + void grow(); + + /// @brief returns true if the specified virtual register is + /// mapped to a physical register + bool hasPhys(unsigned virtReg) const { + return getPhys(virtReg) != NO_PHYS_REG; + } + + /// @brief returns the physical register mapped to the specified + /// virtual register + unsigned getPhys(unsigned virtReg) const { + assert(TargetRegisterInfo::isVirtualRegister(virtReg)); + return Virt2PhysMap[virtReg]; + } + + /// @brief creates a mapping for the specified virtual register to + /// the specified physical register + void assignVirt2Phys(unsigned virtReg, unsigned physReg) { + assert(TargetRegisterInfo::isVirtualRegister(virtReg) && + TargetRegisterInfo::isPhysicalRegister(physReg)); + assert(Virt2PhysMap[virtReg] == NO_PHYS_REG && + "attempt to assign physical register to already mapped " + "virtual register"); + Virt2PhysMap[virtReg] = physReg; + } + + /// @brief clears the specified virtual register's, physical + /// register mapping + void clearVirt(unsigned virtReg) { + assert(TargetRegisterInfo::isVirtualRegister(virtReg)); + assert(Virt2PhysMap[virtReg] != NO_PHYS_REG && + "attempt to clear a not assigned virtual register"); + Virt2PhysMap[virtReg] = NO_PHYS_REG; + } + + /// @brief clears all virtual to physical register mappings + void clearAllVirt() { + Virt2PhysMap.clear(); + grow(); + } + + /// @brief records virtReg is a split live interval from SReg. + void setIsSplitFromReg(unsigned virtReg, unsigned SReg) { + Virt2SplitMap[virtReg] = SReg; + } + + /// @brief returns the live interval virtReg is split from. + unsigned getPreSplitReg(unsigned virtReg) { + return Virt2SplitMap[virtReg]; + } + + /// @brief returns true if the specified virtual register is not + /// mapped to a stack slot or rematerialized. + bool isAssignedReg(unsigned virtReg) const { + if (getStackSlot(virtReg) == NO_STACK_SLOT && + getReMatId(virtReg) == NO_STACK_SLOT) + return true; + // Split register can be assigned a physical register as well as a + // stack slot or remat id. + return (Virt2SplitMap[virtReg] && Virt2PhysMap[virtReg] != NO_PHYS_REG); + } + + /// @brief returns the stack slot mapped to the specified virtual + /// register + int getStackSlot(unsigned virtReg) const { + assert(TargetRegisterInfo::isVirtualRegister(virtReg)); + return Virt2StackSlotMap[virtReg]; + } + + /// @brief returns the rematerialization id mapped to the specified virtual + /// register + int getReMatId(unsigned virtReg) const { + assert(TargetRegisterInfo::isVirtualRegister(virtReg)); + return Virt2ReMatIdMap[virtReg]; + } + + /// @brief create a mapping for the specifed virtual register to + /// the next available stack slot + int assignVirt2StackSlot(unsigned virtReg); + /// @brief create a mapping for the specified virtual register to + /// the specified stack slot + void assignVirt2StackSlot(unsigned virtReg, int frameIndex); + + /// @brief assign an unique re-materialization id to the specified + /// virtual register. + int assignVirtReMatId(unsigned virtReg); + /// @brief assign an unique re-materialization id to the specified + /// virtual register. + void assignVirtReMatId(unsigned virtReg, int id); + + /// @brief returns true if the specified virtual register is being + /// re-materialized. + bool isReMaterialized(unsigned virtReg) const { + return ReMatMap[virtReg] != NULL; + } + + /// @brief returns the original machine instruction being re-issued + /// to re-materialize the specified virtual register. + MachineInstr *getReMaterializedMI(unsigned virtReg) const { + return ReMatMap[virtReg]; + } + + /// @brief records the specified virtual register will be + /// re-materialized and the original instruction which will be re-issed + /// for this purpose. If parameter all is true, then all uses of the + /// registers are rematerialized and it's safe to delete the definition. + void setVirtIsReMaterialized(unsigned virtReg, MachineInstr *def) { + ReMatMap[virtReg] = def; + } + + /// @brief record the last use (kill) of a split virtual register. + void addKillPoint(unsigned virtReg, unsigned index) { + Virt2SplitKillMap[virtReg] = index; + } + + unsigned getKillPoint(unsigned virtReg) const { + return Virt2SplitKillMap[virtReg]; + } + + /// @brief remove the last use (kill) of a split virtual register. + void removeKillPoint(unsigned virtReg) { + Virt2SplitKillMap[virtReg] = 0; + } + + /// @brief returns true if the specified MachineInstr is a spill point. + bool isSpillPt(MachineInstr *Pt) const { + return SpillPt2VirtMap.find(Pt) != SpillPt2VirtMap.end(); + } + + /// @brief returns the virtual registers that should be spilled due to + /// splitting right after the specified MachineInstr. + std::vector<std::pair<unsigned,bool> > &getSpillPtSpills(MachineInstr *Pt) { + return SpillPt2VirtMap[Pt]; + } + + /// @brief records the specified MachineInstr as a spill point for virtReg. + void addSpillPoint(unsigned virtReg, bool isKill, MachineInstr *Pt) { + std::map<MachineInstr*, std::vector<std::pair<unsigned,bool> > >::iterator + I = SpillPt2VirtMap.find(Pt); + if (I != SpillPt2VirtMap.end()) + I->second.push_back(std::make_pair(virtReg, isKill)); + else { + std::vector<std::pair<unsigned,bool> > Virts; + Virts.push_back(std::make_pair(virtReg, isKill)); + SpillPt2VirtMap.insert(std::make_pair(Pt, Virts)); + } + } + + /// @brief - transfer spill point information from one instruction to + /// another. + void transferSpillPts(MachineInstr *Old, MachineInstr *New) { + std::map<MachineInstr*, std::vector<std::pair<unsigned,bool> > >::iterator + I = SpillPt2VirtMap.find(Old); + if (I == SpillPt2VirtMap.end()) + return; + while (!I->second.empty()) { + unsigned virtReg = I->second.back().first; + bool isKill = I->second.back().second; + I->second.pop_back(); + addSpillPoint(virtReg, isKill, New); + } + SpillPt2VirtMap.erase(I); + } + + /// @brief returns true if the specified MachineInstr is a restore point. + bool isRestorePt(MachineInstr *Pt) const { + return RestorePt2VirtMap.find(Pt) != RestorePt2VirtMap.end(); + } + + /// @brief returns the virtual registers that should be restoreed due to + /// splitting right after the specified MachineInstr. + std::vector<unsigned> &getRestorePtRestores(MachineInstr *Pt) { + return RestorePt2VirtMap[Pt]; + } + + /// @brief records the specified MachineInstr as a restore point for virtReg. + void addRestorePoint(unsigned virtReg, MachineInstr *Pt) { + std::map<MachineInstr*, std::vector<unsigned> >::iterator I = + RestorePt2VirtMap.find(Pt); + if (I != RestorePt2VirtMap.end()) + I->second.push_back(virtReg); + else { + std::vector<unsigned> Virts; + Virts.push_back(virtReg); + RestorePt2VirtMap.insert(std::make_pair(Pt, Virts)); + } + } + + /// @brief - transfer restore point information from one instruction to + /// another. + void transferRestorePts(MachineInstr *Old, MachineInstr *New) { + std::map<MachineInstr*, std::vector<unsigned> >::iterator I = + RestorePt2VirtMap.find(Old); + if (I == RestorePt2VirtMap.end()) + return; + while (!I->second.empty()) { + unsigned virtReg = I->second.back(); + I->second.pop_back(); + addRestorePoint(virtReg, New); + } + RestorePt2VirtMap.erase(I); + } + + /// @brief records that the specified physical register must be spilled + /// around the specified machine instr. + void addEmergencySpill(unsigned PhysReg, MachineInstr *MI) { + if (EmergencySpillMap.find(MI) != EmergencySpillMap.end()) + EmergencySpillMap[MI].push_back(PhysReg); + else { + std::vector<unsigned> PhysRegs; + PhysRegs.push_back(PhysReg); + EmergencySpillMap.insert(std::make_pair(MI, PhysRegs)); + } + } + + /// @brief returns true if one or more physical registers must be spilled + /// around the specified instruction. + bool hasEmergencySpills(MachineInstr *MI) const { + return EmergencySpillMap.find(MI) != EmergencySpillMap.end(); + } + + /// @brief returns the physical registers to be spilled and restored around + /// the instruction. + std::vector<unsigned> &getEmergencySpills(MachineInstr *MI) { + return EmergencySpillMap[MI]; + } + + /// @brief - transfer emergency spill information from one instruction to + /// another. + void transferEmergencySpills(MachineInstr *Old, MachineInstr *New) { + std::map<MachineInstr*,std::vector<unsigned> >::iterator I = + EmergencySpillMap.find(Old); + if (I == EmergencySpillMap.end()) + return; + while (!I->second.empty()) { + unsigned virtReg = I->second.back(); + I->second.pop_back(); + addEmergencySpill(virtReg, New); + } + EmergencySpillMap.erase(I); + } + + /// @brief return or get a emergency spill slot for the register class. + int getEmergencySpillSlot(const TargetRegisterClass *RC); + + /// @brief Return lowest spill slot index. + int getLowSpillSlot() const { + return LowSpillSlot; + } + + /// @brief Return highest spill slot index. + int getHighSpillSlot() const { + return HighSpillSlot; + } + + /// @brief Records a spill slot use. + void addSpillSlotUse(int FrameIndex, MachineInstr *MI); + + /// @brief Returns true if spill slot has been used. + bool isSpillSlotUsed(int FrameIndex) const { + assert(FrameIndex >= 0 && "Spill slot index should not be negative!"); + return !SpillSlotToUsesMap[FrameIndex-LowSpillSlot].empty(); + } + + /// @brief Mark the specified register as being implicitly defined. + void setIsImplicitlyDefined(unsigned VirtReg) { + ImplicitDefed.set(VirtReg-TargetRegisterInfo::FirstVirtualRegister); + } + + /// @brief Returns true if the virtual register is implicitly defined. + bool isImplicitlyDefined(unsigned VirtReg) const { + return ImplicitDefed[VirtReg-TargetRegisterInfo::FirstVirtualRegister]; + } + + /// @brief Updates information about the specified virtual register's value + /// folded into newMI machine instruction. + void virtFolded(unsigned VirtReg, MachineInstr *OldMI, MachineInstr *NewMI, + ModRef MRInfo); + + /// @brief Updates information about the specified virtual register's value + /// folded into the specified machine instruction. + void virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo); + + /// @brief returns the virtual registers' values folded in memory + /// operands of this instruction + std::pair<MI2VirtMapTy::const_iterator, MI2VirtMapTy::const_iterator> + getFoldedVirts(MachineInstr* MI) const { + return MI2VirtMap.equal_range(MI); + } + + /// RemoveMachineInstrFromMaps - MI is being erased, remove it from the + /// the folded instruction map and spill point map. + void RemoveMachineInstrFromMaps(MachineInstr *MI); + + /// FindUnusedRegisters - Gather a list of allocatable registers that + /// have not been allocated to any virtual register. + bool FindUnusedRegisters(const TargetRegisterInfo *TRI, + LiveIntervals* LIs); + + /// HasUnusedRegisters - Return true if there are any allocatable registers + /// that have not been allocated to any virtual register. + bool HasUnusedRegisters() const { + return !UnusedRegs.none(); + } + + /// setRegisterUsed - Remember the physical register is now used. + void setRegisterUsed(unsigned Reg) { + UnusedRegs.reset(Reg); + } + + /// isRegisterUnused - Return true if the physical register has not been + /// used. + bool isRegisterUnused(unsigned Reg) const { + return UnusedRegs[Reg]; + } + + /// getFirstUnusedRegister - Return the first physical register that has not + /// been used. + unsigned getFirstUnusedRegister(const TargetRegisterClass *RC) { + int Reg = UnusedRegs.find_first(); + while (Reg != -1) { + if (allocatableRCRegs[RC][Reg]) + return (unsigned)Reg; + Reg = UnusedRegs.find_next(Reg); + } + return 0; + } + + void print(std::ostream &OS, const Module* M = 0) const; + void print(std::ostream *OS) const { if (OS) print(*OS); } + void dump() const; + }; + + inline std::ostream *operator<<(std::ostream *OS, const VirtRegMap &VRM) { + VRM.print(OS); + return OS; + } + inline std::ostream &operator<<(std::ostream &OS, const VirtRegMap &VRM) { + VRM.print(OS); + return OS; + } +} // End llvm namespace + +#endif |