diff options
Diffstat (limited to 'lib/ReaderWriter/MachO/LayoutPass.cpp')
-rw-r--r-- | lib/ReaderWriter/MachO/LayoutPass.cpp | 482 |
1 files changed, 482 insertions, 0 deletions
diff --git a/lib/ReaderWriter/MachO/LayoutPass.cpp b/lib/ReaderWriter/MachO/LayoutPass.cpp new file mode 100644 index 000000000000..2d096e4c1a6a --- /dev/null +++ b/lib/ReaderWriter/MachO/LayoutPass.cpp @@ -0,0 +1,482 @@ +//===-- ReaderWriter/MachO/LayoutPass.cpp - Layout atoms ------------------===// +// +// The LLVM Linker +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#include "LayoutPass.h" +#include "lld/Core/Instrumentation.h" +#include "lld/Core/Parallel.h" +#include "lld/Core/PassManager.h" +#include "lld/ReaderWriter/MachOLinkingContext.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/Twine.h" +#include "llvm/Support/Debug.h" +#include <algorithm> +#include <set> + +using namespace lld; + +#define DEBUG_TYPE "LayoutPass" + +namespace lld { +namespace mach_o { + +static bool compareAtoms(const LayoutPass::SortKey &, + const LayoutPass::SortKey &, + LayoutPass::SortOverride customSorter); + +#ifndef NDEBUG +// Return "reason (leftval, rightval)" +static std::string formatReason(StringRef reason, int leftVal, int rightVal) { + return (Twine(reason) + " (" + Twine(leftVal) + ", " + Twine(rightVal) + ")") + .str(); +} + +// Less-than relationship of two atoms must be transitive, which is, if a < b +// and b < c, a < c must be true. This function checks the transitivity by +// checking the sort results. +static void checkTransitivity(std::vector<LayoutPass::SortKey> &vec, + LayoutPass::SortOverride customSorter) { + for (auto i = vec.begin(), e = vec.end(); (i + 1) != e; ++i) { + for (auto j = i + 1; j != e; ++j) { + assert(compareAtoms(*i, *j, customSorter)); + assert(!compareAtoms(*j, *i, customSorter)); + } + } +} + +// Helper functions to check follow-on graph. +typedef llvm::DenseMap<const DefinedAtom *, const DefinedAtom *> AtomToAtomT; + +static std::string atomToDebugString(const Atom *atom) { + const DefinedAtom *definedAtom = dyn_cast<DefinedAtom>(atom); + std::string str; + llvm::raw_string_ostream s(str); + if (definedAtom->name().empty()) + s << "<anonymous " << definedAtom << ">"; + else + s << definedAtom->name(); + s << " in "; + if (definedAtom->customSectionName().empty()) + s << "<anonymous>"; + else + s << definedAtom->customSectionName(); + s.flush(); + return str; +} + +static void showCycleDetectedError(const Registry ®istry, + AtomToAtomT &followOnNexts, + const DefinedAtom *atom) { + const DefinedAtom *start = atom; + llvm::dbgs() << "There's a cycle in a follow-on chain!\n"; + do { + llvm::dbgs() << " " << atomToDebugString(atom) << "\n"; + for (const Reference *ref : *atom) { + StringRef kindValStr; + if (!registry.referenceKindToString(ref->kindNamespace(), ref->kindArch(), + ref->kindValue(), kindValStr)) { + kindValStr = "<unknown>"; + } + llvm::dbgs() << " " << kindValStr + << ": " << atomToDebugString(ref->target()) << "\n"; + } + atom = followOnNexts[atom]; + } while (atom != start); + llvm::report_fatal_error("Cycle detected"); +} + +/// Exit if there's a cycle in a followon chain reachable from the +/// given root atom. Uses the tortoise and hare algorithm to detect a +/// cycle. +static void checkNoCycleInFollowonChain(const Registry ®istry, + AtomToAtomT &followOnNexts, + const DefinedAtom *root) { + const DefinedAtom *tortoise = root; + const DefinedAtom *hare = followOnNexts[root]; + while (true) { + if (!tortoise || !hare) + return; + if (tortoise == hare) + showCycleDetectedError(registry, followOnNexts, tortoise); + tortoise = followOnNexts[tortoise]; + hare = followOnNexts[followOnNexts[hare]]; + } +} + +static void checkReachabilityFromRoot(AtomToAtomT &followOnRoots, + const DefinedAtom *atom) { + if (!atom) return; + auto i = followOnRoots.find(atom); + if (i == followOnRoots.end()) { + llvm_unreachable(((Twine("Atom <") + atomToDebugString(atom) + + "> has no follow-on root!")) + .str() + .c_str()); + } + const DefinedAtom *ap = i->second; + while (true) { + const DefinedAtom *next = followOnRoots[ap]; + if (!next) { + llvm_unreachable((Twine("Atom <" + atomToDebugString(atom) + + "> is not reachable from its root!")) + .str() + .c_str()); + } + if (next == ap) + return; + ap = next; + } +} + +static void printDefinedAtoms(const MutableFile::DefinedAtomRange &atomRange) { + for (const DefinedAtom *atom : atomRange) { + llvm::dbgs() << " file=" << atom->file().path() + << ", name=" << atom->name() + << ", size=" << atom->size() + << ", type=" << atom->contentType() + << ", ordinal=" << atom->ordinal() + << "\n"; + } +} + +/// Verify that the followon chain is sane. Should not be called in +/// release binary. +void LayoutPass::checkFollowonChain(MutableFile::DefinedAtomRange &range) { + ScopedTask task(getDefaultDomain(), "LayoutPass::checkFollowonChain"); + + // Verify that there's no cycle in follow-on chain. + std::set<const DefinedAtom *> roots; + for (const auto &ai : _followOnRoots) + roots.insert(ai.second); + for (const DefinedAtom *root : roots) + checkNoCycleInFollowonChain(_registry, _followOnNexts, root); + + // Verify that all the atoms in followOnNexts have references to + // their roots. + for (const auto &ai : _followOnNexts) { + checkReachabilityFromRoot(_followOnRoots, ai.first); + checkReachabilityFromRoot(_followOnRoots, ai.second); + } +} +#endif // #ifndef NDEBUG + +/// The function compares atoms by sorting atoms in the following order +/// a) Sorts atoms by their ordinal overrides (layout-after/ingroup) +/// b) Sorts atoms by their permissions +/// c) Sorts atoms by their content +/// d) Sorts atoms by custom sorter +/// e) Sorts atoms on how they appear using File Ordinality +/// f) Sorts atoms on how they appear within the File +static bool compareAtomsSub(const LayoutPass::SortKey &lc, + const LayoutPass::SortKey &rc, + LayoutPass::SortOverride customSorter, + std::string &reason) { + const DefinedAtom *left = lc._atom; + const DefinedAtom *right = rc._atom; + if (left == right) { + reason = "same"; + return false; + } + + // Find the root of the chain if it is a part of a follow-on chain. + const DefinedAtom *leftRoot = lc._root; + const DefinedAtom *rightRoot = rc._root; + + // Sort atoms by their ordinal overrides only if they fall in the same + // chain. + if (leftRoot == rightRoot) { + DEBUG(reason = formatReason("override", lc._override, rc._override)); + return lc._override < rc._override; + } + + // Sort same permissions together. + DefinedAtom::ContentPermissions leftPerms = leftRoot->permissions(); + DefinedAtom::ContentPermissions rightPerms = rightRoot->permissions(); + + if (leftPerms != rightPerms) { + DEBUG(reason = + formatReason("contentPerms", (int)leftPerms, (int)rightPerms)); + return leftPerms < rightPerms; + } + + // Sort same content types together. + DefinedAtom::ContentType leftType = leftRoot->contentType(); + DefinedAtom::ContentType rightType = rightRoot->contentType(); + + if (leftType != rightType) { + DEBUG(reason = formatReason("contentType", (int)leftType, (int)rightType)); + return leftType < rightType; + } + + // Use custom sorter if supplied. + if (customSorter) { + bool leftBeforeRight; + if (customSorter(leftRoot, rightRoot, leftBeforeRight)) + return leftBeforeRight; + } + + // Sort by .o order. + const File *leftFile = &leftRoot->file(); + const File *rightFile = &rightRoot->file(); + + if (leftFile != rightFile) { + DEBUG(reason = formatReason(".o order", (int)leftFile->ordinal(), + (int)rightFile->ordinal())); + return leftFile->ordinal() < rightFile->ordinal(); + } + + // Sort by atom order with .o file. + uint64_t leftOrdinal = leftRoot->ordinal(); + uint64_t rightOrdinal = rightRoot->ordinal(); + + if (leftOrdinal != rightOrdinal) { + DEBUG(reason = formatReason("ordinal", (int)leftRoot->ordinal(), + (int)rightRoot->ordinal())); + return leftOrdinal < rightOrdinal; + } + + llvm::errs() << "Unordered: <" << left->name() << "> <" + << right->name() << ">\n"; + llvm_unreachable("Atoms with Same Ordinal!"); +} + +static bool compareAtoms(const LayoutPass::SortKey &lc, + const LayoutPass::SortKey &rc, + LayoutPass::SortOverride customSorter) { + std::string reason; + bool result = compareAtomsSub(lc, rc, customSorter, reason); + DEBUG({ + StringRef comp = result ? "<" : ">="; + llvm::dbgs() << "Layout: '" << lc._atom->name() << "' " << comp << " '" + << rc._atom->name() << "' (" << reason << ")\n"; + }); + return result; +} + +LayoutPass::LayoutPass(const Registry ®istry, SortOverride sorter) + : _registry(registry), _customSorter(sorter) {} + +// Returns the atom immediately followed by the given atom in the followon +// chain. +const DefinedAtom *LayoutPass::findAtomFollowedBy( + const DefinedAtom *targetAtom) { + // Start from the beginning of the chain and follow the chain until + // we find the targetChain. + const DefinedAtom *atom = _followOnRoots[targetAtom]; + while (true) { + const DefinedAtom *prevAtom = atom; + AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(atom); + // The target atom must be in the chain of its root. + assert(targetFollowOnAtomsIter != _followOnNexts.end()); + atom = targetFollowOnAtomsIter->second; + if (atom == targetAtom) + return prevAtom; + } +} + +// Check if all the atoms followed by the given target atom are of size zero. +// When this method is called, an atom being added is not of size zero and +// will be added to the head of the followon chain. All the atoms between the +// atom and the targetAtom (specified by layout-after) need to be of size zero +// in this case. Otherwise the desired layout is impossible. +bool LayoutPass::checkAllPrevAtomsZeroSize(const DefinedAtom *targetAtom) { + const DefinedAtom *atom = _followOnRoots[targetAtom]; + while (true) { + if (atom == targetAtom) + return true; + if (atom->size() != 0) + // TODO: print warning that an impossible layout is being desired by the + // user. + return false; + AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(atom); + // The target atom must be in the chain of its root. + assert(targetFollowOnAtomsIter != _followOnNexts.end()); + atom = targetFollowOnAtomsIter->second; + } +} + +// Set the root of all atoms in targetAtom's chain to the given root. +void LayoutPass::setChainRoot(const DefinedAtom *targetAtom, + const DefinedAtom *root) { + // Walk through the followon chain and override each node's root. + while (true) { + _followOnRoots[targetAtom] = root; + AtomToAtomT::iterator targetFollowOnAtomsIter = + _followOnNexts.find(targetAtom); + if (targetFollowOnAtomsIter == _followOnNexts.end()) + return; + targetAtom = targetFollowOnAtomsIter->second; + } +} + +/// This pass builds the followon tables described by two DenseMaps +/// followOnRoots and followonNexts. +/// The followOnRoots map contains a mapping of a DefinedAtom to its root +/// The followOnNexts map contains a mapping of what DefinedAtom follows the +/// current Atom +/// The algorithm follows a very simple approach +/// a) If the atom is first seen, then make that as the root atom +/// b) The targetAtom which this Atom contains, has the root thats set to the +/// root of the current atom +/// c) If the targetAtom is part of a different tree and the root of the +/// targetAtom is itself, Chain all the atoms that are contained in the tree +/// to the current Tree +/// d) If the targetAtom is part of a different chain and the root of the +/// targetAtom until the targetAtom has all atoms of size 0, then chain the +/// targetAtoms and its tree to the current chain +void LayoutPass::buildFollowOnTable(MutableFile::DefinedAtomRange &range) { + ScopedTask task(getDefaultDomain(), "LayoutPass::buildFollowOnTable"); + // Set the initial size of the followon and the followonNext hash to the + // number of atoms that we have. + _followOnRoots.resize(range.size()); + _followOnNexts.resize(range.size()); + for (const DefinedAtom *ai : range) { + for (const Reference *r : *ai) { + if (r->kindNamespace() != lld::Reference::KindNamespace::all || + r->kindValue() != lld::Reference::kindLayoutAfter) + continue; + const DefinedAtom *targetAtom = dyn_cast<DefinedAtom>(r->target()); + _followOnNexts[ai] = targetAtom; + + // If we find a followon for the first time, let's make that atom as the + // root atom. + if (_followOnRoots.count(ai) == 0) + _followOnRoots[ai] = ai; + + auto iter = _followOnRoots.find(targetAtom); + if (iter == _followOnRoots.end()) { + // If the targetAtom is not a root of any chain, let's make the root of + // the targetAtom to the root of the current chain. + + // The expression m[i] = m[j] where m is a DenseMap and i != j is not + // safe. m[j] returns a reference, which would be invalidated when a + // rehashing occurs. If rehashing occurs to make room for m[i], m[j] + // becomes invalid, and that invalid reference would be used as the RHS + // value of the expression. + // Copy the value to workaround. + const DefinedAtom *tmp = _followOnRoots[ai]; + _followOnRoots[targetAtom] = tmp; + continue; + } + if (iter->second == targetAtom) { + // If the targetAtom is the root of a chain, the chain becomes part of + // the current chain. Rewrite the subchain's root to the current + // chain's root. + setChainRoot(targetAtom, _followOnRoots[ai]); + continue; + } + // The targetAtom is already a part of a chain. If the current atom is + // of size zero, we can insert it in the middle of the chain just + // before the target atom, while not breaking other atom's followon + // relationships. If it's not, we can only insert the current atom at + // the beginning of the chain. All the atoms followed by the target + // atom must be of size zero in that case to satisfy the followon + // relationships. + size_t currentAtomSize = ai->size(); + if (currentAtomSize == 0) { + const DefinedAtom *targetPrevAtom = findAtomFollowedBy(targetAtom); + _followOnNexts[targetPrevAtom] = ai; + const DefinedAtom *tmp = _followOnRoots[targetPrevAtom]; + _followOnRoots[ai] = tmp; + continue; + } + if (!checkAllPrevAtomsZeroSize(targetAtom)) + break; + _followOnNexts[ai] = _followOnRoots[targetAtom]; + setChainRoot(_followOnRoots[targetAtom], _followOnRoots[ai]); + } + } +} + +/// Build an ordinal override map by traversing the followon chain, and +/// assigning ordinals to each atom, if the atoms have their ordinals +/// already assigned skip the atom and move to the next. This is the +/// main map thats used to sort the atoms while comparing two atoms together +void LayoutPass::buildOrdinalOverrideMap(MutableFile::DefinedAtomRange &range) { + ScopedTask task(getDefaultDomain(), "LayoutPass::buildOrdinalOverrideMap"); + uint64_t index = 0; + for (const DefinedAtom *ai : range) { + const DefinedAtom *atom = ai; + if (_ordinalOverrideMap.find(atom) != _ordinalOverrideMap.end()) + continue; + AtomToAtomT::iterator start = _followOnRoots.find(atom); + if (start == _followOnRoots.end()) + continue; + for (const DefinedAtom *nextAtom = start->second; nextAtom != NULL; + nextAtom = _followOnNexts[nextAtom]) { + AtomToOrdinalT::iterator pos = _ordinalOverrideMap.find(nextAtom); + if (pos == _ordinalOverrideMap.end()) + _ordinalOverrideMap[nextAtom] = index++; + } + } +} + +std::vector<LayoutPass::SortKey> +LayoutPass::decorate(MutableFile::DefinedAtomRange &atomRange) const { + std::vector<SortKey> ret; + for (const DefinedAtom *atom : atomRange) { + auto ri = _followOnRoots.find(atom); + auto oi = _ordinalOverrideMap.find(atom); + const DefinedAtom *root = (ri == _followOnRoots.end()) ? atom : ri->second; + uint64_t override = (oi == _ordinalOverrideMap.end()) ? 0 : oi->second; + ret.push_back(SortKey(atom, root, override)); + } + return ret; +} + +void LayoutPass::undecorate(MutableFile::DefinedAtomRange &atomRange, + std::vector<SortKey> &keys) const { + size_t i = 0; + for (SortKey &k : keys) + atomRange[i++] = k._atom; +} + +/// Perform the actual pass +void LayoutPass::perform(std::unique_ptr<MutableFile> &mergedFile) { + // sort the atoms + ScopedTask task(getDefaultDomain(), "LayoutPass"); + MutableFile::DefinedAtomRange atomRange = mergedFile->definedAtoms(); + + // Build follow on tables + buildFollowOnTable(atomRange); + + // Check the structure of followon graph if running in debug mode. + DEBUG(checkFollowonChain(atomRange)); + + // Build override maps + buildOrdinalOverrideMap(atomRange); + + DEBUG({ + llvm::dbgs() << "unsorted atoms:\n"; + printDefinedAtoms(atomRange); + }); + + std::vector<LayoutPass::SortKey> vec = decorate(atomRange); + parallel_sort(vec.begin(), vec.end(), + [&](const LayoutPass::SortKey &l, const LayoutPass::SortKey &r) -> bool { + return compareAtoms(l, r, _customSorter); + }); + DEBUG(checkTransitivity(vec, _customSorter)); + undecorate(atomRange, vec); + + DEBUG({ + llvm::dbgs() << "sorted atoms:\n"; + printDefinedAtoms(atomRange); + }); +} + +void addLayoutPass(PassManager &pm, const MachOLinkingContext &ctx) { + pm.add(llvm::make_unique<LayoutPass>( + ctx.registry(), [&](const DefinedAtom * left, const DefinedAtom * right, + bool & leftBeforeRight) ->bool { + return ctx.customAtomOrderer(left, right, leftBeforeRight); + })); +} + +} // namespace mach_o +} // namespace lld |