summaryrefslogtreecommitdiff
path: root/lib/Target/ARM/ARMParallelDSP.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/ARM/ARMParallelDSP.cpp')
-rw-r--r--lib/Target/ARM/ARMParallelDSP.cpp672
1 files changed, 672 insertions, 0 deletions
diff --git a/lib/Target/ARM/ARMParallelDSP.cpp b/lib/Target/ARM/ARMParallelDSP.cpp
new file mode 100644
index 000000000000..9d5478b76c18
--- /dev/null
+++ b/lib/Target/ARM/ARMParallelDSP.cpp
@@ -0,0 +1,672 @@
+//===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// Armv6 introduced instructions to perform 32-bit SIMD operations. The
+/// purpose of this pass is do some IR pattern matching to create ACLE
+/// DSP intrinsics, which map on these 32-bit SIMD operations.
+/// This pass runs only when unaligned accesses is supported/enabled.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/LoopAccessAnalysis.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/NoFolder.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+#include "llvm/Pass.h"
+#include "llvm/PassRegistry.h"
+#include "llvm/PassSupport.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "ARM.h"
+#include "ARMSubtarget.h"
+
+using namespace llvm;
+using namespace PatternMatch;
+
+#define DEBUG_TYPE "arm-parallel-dsp"
+
+STATISTIC(NumSMLAD , "Number of smlad instructions generated");
+
+namespace {
+ struct OpChain;
+ struct BinOpChain;
+ struct Reduction;
+
+ using OpChainList = SmallVector<std::unique_ptr<OpChain>, 8>;
+ using ReductionList = SmallVector<Reduction, 8>;
+ using ValueList = SmallVector<Value*, 8>;
+ using MemInstList = SmallVector<Instruction*, 8>;
+ using PMACPair = std::pair<BinOpChain*,BinOpChain*>;
+ using PMACPairList = SmallVector<PMACPair, 8>;
+ using Instructions = SmallVector<Instruction*,16>;
+ using MemLocList = SmallVector<MemoryLocation, 4>;
+
+ struct OpChain {
+ Instruction *Root;
+ ValueList AllValues;
+ MemInstList VecLd; // List of all load instructions.
+ MemLocList MemLocs; // All memory locations read by this tree.
+ bool ReadOnly = true;
+
+ OpChain(Instruction *I, ValueList &vl) : Root(I), AllValues(vl) { }
+ virtual ~OpChain() = default;
+
+ void SetMemoryLocations() {
+ const auto Size = MemoryLocation::UnknownSize;
+ for (auto *V : AllValues) {
+ if (auto *I = dyn_cast<Instruction>(V)) {
+ if (I->mayWriteToMemory())
+ ReadOnly = false;
+ if (auto *Ld = dyn_cast<LoadInst>(V))
+ MemLocs.push_back(MemoryLocation(Ld->getPointerOperand(), Size));
+ }
+ }
+ }
+
+ unsigned size() const { return AllValues.size(); }
+ };
+
+ // 'BinOpChain' and 'Reduction' are just some bookkeeping data structures.
+ // 'Reduction' contains the phi-node and accumulator statement from where we
+ // start pattern matching, and 'BinOpChain' the multiplication
+ // instructions that are candidates for parallel execution.
+ struct BinOpChain : public OpChain {
+ ValueList LHS; // List of all (narrow) left hand operands.
+ ValueList RHS; // List of all (narrow) right hand operands.
+
+ BinOpChain(Instruction *I, ValueList &lhs, ValueList &rhs) :
+ OpChain(I, lhs), LHS(lhs), RHS(rhs) {
+ for (auto *V : RHS)
+ AllValues.push_back(V);
+ }
+ };
+
+ struct Reduction {
+ PHINode *Phi; // The Phi-node from where we start
+ // pattern matching.
+ Instruction *AccIntAdd; // The accumulating integer add statement,
+ // i.e, the reduction statement.
+
+ OpChainList MACCandidates; // The MAC candidates associated with
+ // this reduction statement.
+ Reduction (PHINode *P, Instruction *Acc) : Phi(P), AccIntAdd(Acc) { };
+ };
+
+ class ARMParallelDSP : public LoopPass {
+ ScalarEvolution *SE;
+ AliasAnalysis *AA;
+ TargetLibraryInfo *TLI;
+ DominatorTree *DT;
+ LoopInfo *LI;
+ Loop *L;
+ const DataLayout *DL;
+ Module *M;
+
+ bool InsertParallelMACs(Reduction &Reduction, PMACPairList &PMACPairs);
+ bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem);
+ PMACPairList CreateParallelMACPairs(OpChainList &Candidates);
+ Instruction *CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1,
+ Instruction *Acc, Instruction *InsertAfter);
+
+ /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate
+ /// Dual performs two signed 16x16-bit multiplications. It adds the
+ /// products to a 32-bit accumulate operand. Optionally, the instruction can
+ /// exchange the halfwords of the second operand before performing the
+ /// arithmetic.
+ bool MatchSMLAD(Function &F);
+
+ public:
+ static char ID;
+
+ ARMParallelDSP() : LoopPass(ID) { }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ LoopPass::getAnalysisUsage(AU);
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<ScalarEvolutionWrapperPass>();
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ AU.addRequired<LoopInfoWrapperPass>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<TargetPassConfig>();
+ AU.addPreserved<LoopInfoWrapperPass>();
+ AU.setPreservesCFG();
+ }
+
+ bool runOnLoop(Loop *TheLoop, LPPassManager &) override {
+ L = TheLoop;
+ SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
+ AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
+ TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
+ DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ auto &TPC = getAnalysis<TargetPassConfig>();
+
+ BasicBlock *Header = TheLoop->getHeader();
+ if (!Header)
+ return false;
+
+ // TODO: We assume the loop header and latch to be the same block.
+ // This is not a fundamental restriction, but lifting this would just
+ // require more work to do the transformation and then patch up the CFG.
+ if (Header != TheLoop->getLoopLatch()) {
+ LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not "
+ "running pass ARMParallelDSP\n");
+ return false;
+ }
+
+ Function &F = *Header->getParent();
+ M = F.getParent();
+ DL = &M->getDataLayout();
+
+ auto &TM = TPC.getTM<TargetMachine>();
+ auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
+
+ if (!ST->allowsUnalignedMem()) {
+ LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not "
+ "running pass ARMParallelDSP\n");
+ return false;
+ }
+
+ if (!ST->hasDSP()) {
+ LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass "
+ "ARMParallelDSP\n");
+ return false;
+ }
+
+ LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI);
+ bool Changes = false;
+
+ LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n\n");
+ Changes = MatchSMLAD(F);
+ return Changes;
+ }
+ };
+}
+
+// MaxBitwidth: the maximum supported bitwidth of the elements in the DSP
+// instructions, which is set to 16. So here we should collect all i8 and i16
+// narrow operations.
+// TODO: we currently only collect i16, and will support i8 later, so that's
+// why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth.
+template<unsigned MaxBitWidth>
+static bool IsNarrowSequence(Value *V, ValueList &VL) {
+ LLVM_DEBUG(dbgs() << "Is narrow sequence? "; V->dump());
+ ConstantInt *CInt;
+
+ if (match(V, m_ConstantInt(CInt))) {
+ // TODO: if a constant is used, it needs to fit within the bit width.
+ return false;
+ }
+
+ auto *I = dyn_cast<Instruction>(V);
+ if (!I)
+ return false;
+
+ Value *Val, *LHS, *RHS;
+ if (match(V, m_Trunc(m_Value(Val)))) {
+ if (cast<TruncInst>(I)->getDestTy()->getIntegerBitWidth() == MaxBitWidth)
+ return IsNarrowSequence<MaxBitWidth>(Val, VL);
+ } else if (match(V, m_Add(m_Value(LHS), m_Value(RHS)))) {
+ // TODO: we need to implement sadd16/sadd8 for this, which enables to
+ // also do the rewrite for smlad8.ll, but it is unsupported for now.
+ LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump());
+ return false;
+ } else if (match(V, m_ZExtOrSExt(m_Value(Val)))) {
+ if (cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) {
+ LLVM_DEBUG(dbgs() << "No, wrong SrcTy size: " <<
+ cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() << "\n");
+ return false;
+ }
+
+ if (match(Val, m_Load(m_Value()))) {
+ LLVM_DEBUG(dbgs() << "Yes, found narrow Load:\t"; Val->dump());
+ VL.push_back(Val);
+ VL.push_back(I);
+ return true;
+ }
+ }
+ LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump());
+ return false;
+}
+
+// Element-by-element comparison of Value lists returning true if they are
+// instructions with the same opcode or constants with the same value.
+static bool AreSymmetrical(const ValueList &VL0,
+ const ValueList &VL1) {
+ if (VL0.size() != VL1.size()) {
+ LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: "
+ << VL0.size() << " != " << VL1.size() << "\n");
+ return false;
+ }
+
+ const unsigned Pairs = VL0.size();
+ LLVM_DEBUG(dbgs() << "Number of operand pairs: " << Pairs << "\n");
+
+ for (unsigned i = 0; i < Pairs; ++i) {
+ const Value *V0 = VL0[i];
+ const Value *V1 = VL1[i];
+ const auto *Inst0 = dyn_cast<Instruction>(V0);
+ const auto *Inst1 = dyn_cast<Instruction>(V1);
+
+ LLVM_DEBUG(dbgs() << "Pair " << i << ":\n";
+ dbgs() << "mul1: "; V0->dump();
+ dbgs() << "mul2: "; V1->dump());
+
+ if (!Inst0 || !Inst1)
+ return false;
+
+ if (Inst0->isSameOperationAs(Inst1)) {
+ LLVM_DEBUG(dbgs() << "OK: same operation found!\n");
+ continue;
+ }
+
+ const APInt *C0, *C1;
+ if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1))
+ return false;
+ }
+
+ LLVM_DEBUG(dbgs() << "OK: found symmetrical operand lists.\n");
+ return true;
+}
+
+template<typename MemInst>
+static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1,
+ MemInstList &VecMem, const DataLayout &DL,
+ ScalarEvolution &SE) {
+ if (!MemOp0->isSimple() || !MemOp1->isSimple()) {
+ LLVM_DEBUG(dbgs() << "No, not touching volatile access\n");
+ return false;
+ }
+ if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) {
+ VecMem.push_back(MemOp0);
+ VecMem.push_back(MemOp1);
+ LLVM_DEBUG(dbgs() << "OK: accesses are consecutive.\n");
+ return true;
+ }
+ LLVM_DEBUG(dbgs() << "No, accesses aren't consecutive.\n");
+ return false;
+}
+
+bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1,
+ MemInstList &VecMem) {
+ if (!Ld0 || !Ld1)
+ return false;
+
+ LLVM_DEBUG(dbgs() << "Are consecutive loads:\n";
+ dbgs() << "Ld0:"; Ld0->dump();
+ dbgs() << "Ld1:"; Ld1->dump();
+ );
+
+ if (!Ld0->hasOneUse() || !Ld1->hasOneUse()) {
+ LLVM_DEBUG(dbgs() << "No, load has more than one use.\n");
+ return false;
+ }
+
+ return AreSequentialAccesses<LoadInst>(Ld0, Ld1, VecMem, *DL, *SE);
+}
+
+PMACPairList
+ARMParallelDSP::CreateParallelMACPairs(OpChainList &Candidates) {
+ const unsigned Elems = Candidates.size();
+ PMACPairList PMACPairs;
+
+ if (Elems < 2)
+ return PMACPairs;
+
+ // TODO: for now we simply try to match consecutive pairs i and i+1.
+ // We can compare all elements, but then we need to compare and evaluate
+ // different solutions.
+ for(unsigned i=0; i<Elems-1; i+=2) {
+ BinOpChain *PMul0 = static_cast<BinOpChain*>(Candidates[i].get());
+ BinOpChain *PMul1 = static_cast<BinOpChain*>(Candidates[i+1].get());
+ const Instruction *Mul0 = PMul0->Root;
+ const Instruction *Mul1 = PMul1->Root;
+
+ if (Mul0 == Mul1)
+ continue;
+
+ LLVM_DEBUG(dbgs() << "\nCheck parallel muls:\n";
+ dbgs() << "- "; Mul0->dump();
+ dbgs() << "- "; Mul1->dump());
+
+ const ValueList &Mul0_LHS = PMul0->LHS;
+ const ValueList &Mul0_RHS = PMul0->RHS;
+ const ValueList &Mul1_LHS = PMul1->LHS;
+ const ValueList &Mul1_RHS = PMul1->RHS;
+
+ if (!AreSymmetrical(Mul0_LHS, Mul1_LHS) ||
+ !AreSymmetrical(Mul0_RHS, Mul1_RHS))
+ continue;
+
+ LLVM_DEBUG(dbgs() << "OK: mul operands list match:\n");
+ // The first elements of each vector should be loads with sexts. If we find
+ // that its two pairs of consecutive loads, then these can be transformed
+ // into two wider loads and the users can be replaced with DSP
+ // intrinsics.
+ for (unsigned x = 0; x < Mul0_LHS.size(); x += 2) {
+ auto *Ld0 = dyn_cast<LoadInst>(Mul0_LHS[x]);
+ auto *Ld1 = dyn_cast<LoadInst>(Mul1_LHS[x]);
+ auto *Ld2 = dyn_cast<LoadInst>(Mul0_RHS[x]);
+ auto *Ld3 = dyn_cast<LoadInst>(Mul1_RHS[x]);
+
+ LLVM_DEBUG(dbgs() << "Looking at operands " << x << ":\n";
+ dbgs() << "\t mul1: "; Mul0_LHS[x]->dump();
+ dbgs() << "\t mul2: "; Mul1_LHS[x]->dump();
+ dbgs() << "and operands " << x + 2 << ":\n";
+ dbgs() << "\t mul1: "; Mul0_RHS[x]->dump();
+ dbgs() << "\t mul2: "; Mul1_RHS[x]->dump());
+
+ if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd) &&
+ AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
+ LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
+ PMACPairs.push_back(std::make_pair(PMul0, PMul1));
+ }
+ }
+ }
+ return PMACPairs;
+}
+
+bool ARMParallelDSP::InsertParallelMACs(Reduction &Reduction,
+ PMACPairList &PMACPairs) {
+ Instruction *Acc = Reduction.Phi;
+ Instruction *InsertAfter = Reduction.AccIntAdd;
+
+ for (auto &Pair : PMACPairs) {
+ LLVM_DEBUG(dbgs() << "Found parallel MACs!!\n";
+ dbgs() << "- "; Pair.first->Root->dump();
+ dbgs() << "- "; Pair.second->Root->dump());
+ auto *VecLd0 = cast<LoadInst>(Pair.first->VecLd[0]);
+ auto *VecLd1 = cast<LoadInst>(Pair.second->VecLd[0]);
+ Acc = CreateSMLADCall(VecLd0, VecLd1, Acc, InsertAfter);
+ InsertAfter = Acc;
+ }
+
+ if (Acc != Reduction.Phi) {
+ LLVM_DEBUG(dbgs() << "Replace Accumulate: "; Acc->dump());
+ Reduction.AccIntAdd->replaceAllUsesWith(Acc);
+ return true;
+ }
+ return false;
+}
+
+static void MatchReductions(Function &F, Loop *TheLoop, BasicBlock *Header,
+ ReductionList &Reductions) {
+ RecurrenceDescriptor RecDesc;
+ const bool HasFnNoNaNAttr =
+ F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
+ const BasicBlock *Latch = TheLoop->getLoopLatch();
+
+ // We need a preheader as getIncomingValueForBlock assumes there is one.
+ if (!TheLoop->getLoopPreheader()) {
+ LLVM_DEBUG(dbgs() << "No preheader found, bailing out\n");
+ return;
+ }
+
+ for (PHINode &Phi : Header->phis()) {
+ const auto *Ty = Phi.getType();
+ if (!Ty->isIntegerTy(32))
+ continue;
+
+ const bool IsReduction =
+ RecurrenceDescriptor::AddReductionVar(&Phi,
+ RecurrenceDescriptor::RK_IntegerAdd,
+ TheLoop, HasFnNoNaNAttr, RecDesc);
+ if (!IsReduction)
+ continue;
+
+ Instruction *Acc = dyn_cast<Instruction>(Phi.getIncomingValueForBlock(Latch));
+ if (!Acc)
+ continue;
+
+ Reductions.push_back(Reduction(&Phi, Acc));
+ }
+
+ LLVM_DEBUG(
+ dbgs() << "\nAccumulating integer additions (reductions) found:\n";
+ for (auto &R : Reductions) {
+ dbgs() << "- "; R.Phi->dump();
+ dbgs() << "-> "; R.AccIntAdd->dump();
+ }
+ );
+}
+
+static void AddMACCandidate(OpChainList &Candidates,
+ const Instruction *Acc,
+ Value *MulOp0, Value *MulOp1, int MulOpNum) {
+ Instruction *Mul = dyn_cast<Instruction>(Acc->getOperand(MulOpNum));
+ LLVM_DEBUG(dbgs() << "OK, found acc mul:\t"; Mul->dump());
+ ValueList LHS;
+ ValueList RHS;
+ if (IsNarrowSequence<16>(MulOp0, LHS) &&
+ IsNarrowSequence<16>(MulOp1, RHS)) {
+ LLVM_DEBUG(dbgs() << "OK, found narrow mul: "; Mul->dump());
+ Candidates.push_back(make_unique<BinOpChain>(Mul, LHS, RHS));
+ }
+}
+
+static void MatchParallelMACSequences(Reduction &R,
+ OpChainList &Candidates) {
+ const Instruction *Acc = R.AccIntAdd;
+ Value *A, *MulOp0, *MulOp1;
+ LLVM_DEBUG(dbgs() << "\n- Analysing:\t"; Acc->dump());
+
+ // Pattern 1: the accumulator is the RHS of the mul.
+ while(match(Acc, m_Add(m_Mul(m_Value(MulOp0), m_Value(MulOp1)),
+ m_Value(A)))){
+ AddMACCandidate(Candidates, Acc, MulOp0, MulOp1, 0);
+ Acc = dyn_cast<Instruction>(A);
+ }
+ // Pattern 2: the accumulator is the LHS of the mul.
+ while(match(Acc, m_Add(m_Value(A),
+ m_Mul(m_Value(MulOp0), m_Value(MulOp1))))) {
+ AddMACCandidate(Candidates, Acc, MulOp0, MulOp1, 1);
+ Acc = dyn_cast<Instruction>(A);
+ }
+
+ // The last mul in the chain has a slightly different pattern:
+ // the mul is the first operand
+ if (match(Acc, m_Add(m_Mul(m_Value(MulOp0), m_Value(MulOp1)), m_Value(A))))
+ AddMACCandidate(Candidates, Acc, MulOp0, MulOp1, 0);
+
+ // Because we start at the bottom of the chain, and we work our way up,
+ // the muls are added in reverse program order to the list.
+ std::reverse(Candidates.begin(), Candidates.end());
+}
+
+// Collects all instructions that are not part of the MAC chains, which is the
+// set of instructions that can potentially alias with the MAC operands.
+static void AliasCandidates(BasicBlock *Header, Instructions &Reads,
+ Instructions &Writes) {
+ for (auto &I : *Header) {
+ if (I.mayReadFromMemory())
+ Reads.push_back(&I);
+ if (I.mayWriteToMemory())
+ Writes.push_back(&I);
+ }
+}
+
+// Check whether statements in the basic block that write to memory alias with
+// the memory locations accessed by the MAC-chains.
+// TODO: we need the read statements when we accept more complicated chains.
+static bool AreAliased(AliasAnalysis *AA, Instructions &Reads,
+ Instructions &Writes, OpChainList &MACCandidates) {
+ LLVM_DEBUG(dbgs() << "Alias checks:\n");
+ for (auto &MAC : MACCandidates) {
+ LLVM_DEBUG(dbgs() << "mul: "; MAC->Root->dump());
+
+ // At the moment, we allow only simple chains that only consist of reads,
+ // accumulate their result with an integer add, and thus that don't write
+ // memory, and simply bail if they do.
+ if (!MAC->ReadOnly)
+ return true;
+
+ // Now for all writes in the basic block, check that they don't alias with
+ // the memory locations accessed by our MAC-chain:
+ for (auto *I : Writes) {
+ LLVM_DEBUG(dbgs() << "- "; I->dump());
+ assert(MAC->MemLocs.size() >= 2 && "expecting at least 2 memlocs");
+ for (auto &MemLoc : MAC->MemLocs) {
+ if (isModOrRefSet(intersectModRef(AA->getModRefInfo(I, MemLoc),
+ ModRefInfo::ModRef))) {
+ LLVM_DEBUG(dbgs() << "Yes, aliases found\n");
+ return true;
+ }
+ }
+ }
+ }
+
+ LLVM_DEBUG(dbgs() << "OK: no aliases found!\n");
+ return false;
+}
+
+static bool CheckMACMemory(OpChainList &Candidates) {
+ for (auto &C : Candidates) {
+ // A mul has 2 operands, and a narrow op consist of sext and a load; thus
+ // we expect at least 4 items in this operand value list.
+ if (C->size() < 4) {
+ LLVM_DEBUG(dbgs() << "Operand list too short.\n");
+ return false;
+ }
+ C->SetMemoryLocations();
+ ValueList &LHS = static_cast<BinOpChain*>(C.get())->LHS;
+ ValueList &RHS = static_cast<BinOpChain*>(C.get())->RHS;
+
+ // Use +=2 to skip over the expected extend instructions.
+ for (unsigned i = 0, e = LHS.size(); i < e; i += 2) {
+ if (!isa<LoadInst>(LHS[i]) || !isa<LoadInst>(RHS[i]))
+ return false;
+ }
+ }
+ return true;
+}
+
+// Loop Pass that needs to identify integer add/sub reductions of 16-bit vector
+// multiplications.
+// To use SMLAD:
+// 1) we first need to find integer add reduction PHIs,
+// 2) then from the PHI, look for this pattern:
+//
+// acc0 = phi i32 [0, %entry], [%acc1, %loop.body]
+// ld0 = load i16
+// sext0 = sext i16 %ld0 to i32
+// ld1 = load i16
+// sext1 = sext i16 %ld1 to i32
+// mul0 = mul %sext0, %sext1
+// ld2 = load i16
+// sext2 = sext i16 %ld2 to i32
+// ld3 = load i16
+// sext3 = sext i16 %ld3 to i32
+// mul1 = mul i32 %sext2, %sext3
+// add0 = add i32 %mul0, %acc0
+// acc1 = add i32 %add0, %mul1
+//
+// Which can be selected to:
+//
+// ldr.h r0
+// ldr.h r1
+// smlad r2, r0, r1, r2
+//
+// If constants are used instead of loads, these will need to be hoisted
+// out and into a register.
+//
+// If loop invariants are used instead of loads, these need to be packed
+// before the loop begins.
+//
+bool ARMParallelDSP::MatchSMLAD(Function &F) {
+ BasicBlock *Header = L->getHeader();
+ LLVM_DEBUG(dbgs() << "= Matching SMLAD =\n";
+ dbgs() << "Header block:\n"; Header->dump();
+ dbgs() << "Loop info:\n\n"; L->dump());
+
+ bool Changed = false;
+ ReductionList Reductions;
+ MatchReductions(F, L, Header, Reductions);
+
+ for (auto &R : Reductions) {
+ OpChainList MACCandidates;
+ MatchParallelMACSequences(R, MACCandidates);
+ if (!CheckMACMemory(MACCandidates))
+ continue;
+
+ R.MACCandidates = std::move(MACCandidates);
+
+ LLVM_DEBUG(dbgs() << "MAC candidates:\n";
+ for (auto &M : R.MACCandidates)
+ M->Root->dump();
+ dbgs() << "\n";);
+ }
+
+ // Collect all instructions that may read or write memory. Our alias
+ // analysis checks bail out if any of these instructions aliases with an
+ // instruction from the MAC-chain.
+ Instructions Reads, Writes;
+ AliasCandidates(Header, Reads, Writes);
+
+ for (auto &R : Reductions) {
+ if (AreAliased(AA, Reads, Writes, R.MACCandidates))
+ return false;
+ PMACPairList PMACPairs = CreateParallelMACPairs(R.MACCandidates);
+ Changed |= InsertParallelMACs(R, PMACPairs);
+ }
+
+ LLVM_DEBUG(if (Changed) dbgs() << "Header block:\n"; Header->dump(););
+ return Changed;
+}
+
+static void CreateLoadIns(IRBuilder<NoFolder> &IRB, Instruction *Acc,
+ LoadInst **VecLd) {
+ const Type *AccTy = Acc->getType();
+ const unsigned AddrSpace = (*VecLd)->getPointerAddressSpace();
+
+ Value *VecPtr = IRB.CreateBitCast((*VecLd)->getPointerOperand(),
+ AccTy->getPointerTo(AddrSpace));
+ *VecLd = IRB.CreateAlignedLoad(VecPtr, (*VecLd)->getAlignment());
+}
+
+Instruction *ARMParallelDSP::CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1,
+ Instruction *Acc,
+ Instruction *InsertAfter) {
+ LLVM_DEBUG(dbgs() << "Create SMLAD intrinsic using:\n";
+ dbgs() << "- "; VecLd0->dump();
+ dbgs() << "- "; VecLd1->dump();
+ dbgs() << "- "; Acc->dump());
+
+ IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
+ ++BasicBlock::iterator(InsertAfter));
+
+ // Replace the reduction chain with an intrinsic call
+ CreateLoadIns(Builder, Acc, &VecLd0);
+ CreateLoadIns(Builder, Acc, &VecLd1);
+ Value* Args[] = { VecLd0, VecLd1, Acc };
+ Function *SMLAD = Intrinsic::getDeclaration(M, Intrinsic::arm_smlad);
+ CallInst *Call = Builder.CreateCall(SMLAD, Args);
+ NumSMLAD++;
+ return Call;
+}
+
+Pass *llvm::createARMParallelDSPPass() {
+ return new ARMParallelDSP();
+}
+
+char ARMParallelDSP::ID = 0;
+
+INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp",
+ "Transform loops to use DSP intrinsics", false, false)
+INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp",
+ "Transform loops to use DSP intrinsics", false, false)