diff options
Diffstat (limited to 'lib/Target/RISCV/RISCVISelLowering.cpp')
| -rw-r--r-- | lib/Target/RISCV/RISCVISelLowering.cpp | 892 |
1 files changed, 892 insertions, 0 deletions
diff --git a/lib/Target/RISCV/RISCVISelLowering.cpp b/lib/Target/RISCV/RISCVISelLowering.cpp new file mode 100644 index 000000000000..7d32954936be --- /dev/null +++ b/lib/Target/RISCV/RISCVISelLowering.cpp @@ -0,0 +1,892 @@ +//===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the interfaces that RISCV uses to lower LLVM code into a +// selection DAG. +// +//===----------------------------------------------------------------------===// + +#include "RISCVISelLowering.h" +#include "RISCV.h" +#include "RISCVRegisterInfo.h" +#include "RISCVSubtarget.h" +#include "RISCVTargetMachine.h" +#include "llvm/CodeGen/CallingConvLower.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/SelectionDAGISel.h" +#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/IR/DiagnosticInfo.h" +#include "llvm/IR/DiagnosticPrinter.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" + +using namespace llvm; + +#define DEBUG_TYPE "riscv-lower" + +RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, + const RISCVSubtarget &STI) + : TargetLowering(TM), Subtarget(STI) { + + MVT XLenVT = Subtarget.getXLenVT(); + + // Set up the register classes. + addRegisterClass(XLenVT, &RISCV::GPRRegClass); + + // Compute derived properties from the register classes. + computeRegisterProperties(STI.getRegisterInfo()); + + setStackPointerRegisterToSaveRestore(RISCV::X2); + + for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) + setLoadExtAction(N, XLenVT, MVT::i1, Promote); + + // TODO: add all necessary setOperationAction calls. + setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); + + setOperationAction(ISD::BR_JT, MVT::Other, Expand); + setOperationAction(ISD::BR_CC, XLenVT, Expand); + setOperationAction(ISD::SELECT, XLenVT, Custom); + setOperationAction(ISD::SELECT_CC, XLenVT, Expand); + + setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); + setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); + + for (auto VT : {MVT::i1, MVT::i8, MVT::i16}) + setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); + + setOperationAction(ISD::ADDC, XLenVT, Expand); + setOperationAction(ISD::ADDE, XLenVT, Expand); + setOperationAction(ISD::SUBC, XLenVT, Expand); + setOperationAction(ISD::SUBE, XLenVT, Expand); + + setOperationAction(ISD::SREM, XLenVT, Expand); + setOperationAction(ISD::SDIVREM, XLenVT, Expand); + setOperationAction(ISD::SDIV, XLenVT, Expand); + setOperationAction(ISD::UREM, XLenVT, Expand); + setOperationAction(ISD::UDIVREM, XLenVT, Expand); + setOperationAction(ISD::UDIV, XLenVT, Expand); + + setOperationAction(ISD::MUL, XLenVT, Expand); + setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); + setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); + setOperationAction(ISD::MULHS, XLenVT, Expand); + setOperationAction(ISD::MULHU, XLenVT, Expand); + + setOperationAction(ISD::SHL_PARTS, XLenVT, Expand); + setOperationAction(ISD::SRL_PARTS, XLenVT, Expand); + setOperationAction(ISD::SRA_PARTS, XLenVT, Expand); + + setOperationAction(ISD::ROTL, XLenVT, Expand); + setOperationAction(ISD::ROTR, XLenVT, Expand); + setOperationAction(ISD::BSWAP, XLenVT, Expand); + setOperationAction(ISD::CTTZ, XLenVT, Expand); + setOperationAction(ISD::CTLZ, XLenVT, Expand); + setOperationAction(ISD::CTPOP, XLenVT, Expand); + + setOperationAction(ISD::GlobalAddress, XLenVT, Custom); + setOperationAction(ISD::BlockAddress, XLenVT, Custom); + + setBooleanContents(ZeroOrOneBooleanContent); + + // Function alignments (log2). + setMinFunctionAlignment(3); + setPrefFunctionAlignment(3); + + // Effectively disable jump table generation. + setMinimumJumpTableEntries(INT_MAX); +} + +// Changes the condition code and swaps operands if necessary, so the SetCC +// operation matches one of the comparisons supported directly in the RISC-V +// ISA. +static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { + switch (CC) { + default: + break; + case ISD::SETGT: + case ISD::SETLE: + case ISD::SETUGT: + case ISD::SETULE: + CC = ISD::getSetCCSwappedOperands(CC); + std::swap(LHS, RHS); + break; + } +} + +// Return the RISC-V branch opcode that matches the given DAG integer +// condition code. The CondCode must be one of those supported by the RISC-V +// ISA (see normaliseSetCC). +static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { + switch (CC) { + default: + llvm_unreachable("Unsupported CondCode"); + case ISD::SETEQ: + return RISCV::BEQ; + case ISD::SETNE: + return RISCV::BNE; + case ISD::SETLT: + return RISCV::BLT; + case ISD::SETGE: + return RISCV::BGE; + case ISD::SETULT: + return RISCV::BLTU; + case ISD::SETUGE: + return RISCV::BGEU; + } +} + +SDValue RISCVTargetLowering::LowerOperation(SDValue Op, + SelectionDAG &DAG) const { + switch (Op.getOpcode()) { + default: + report_fatal_error("unimplemented operand"); + case ISD::GlobalAddress: + return lowerGlobalAddress(Op, DAG); + case ISD::BlockAddress: + return lowerBlockAddress(Op, DAG); + case ISD::SELECT: + return lowerSELECT(Op, DAG); + } +} + +SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + EVT Ty = Op.getValueType(); + GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); + const GlobalValue *GV = N->getGlobal(); + int64_t Offset = N->getOffset(); + + if (isPositionIndependent() || Subtarget.is64Bit()) + report_fatal_error("Unable to lowerGlobalAddress"); + + SDValue GAHi = + DAG.getTargetGlobalAddress(GV, DL, Ty, Offset, RISCVII::MO_HI); + SDValue GALo = + DAG.getTargetGlobalAddress(GV, DL, Ty, Offset, RISCVII::MO_LO); + SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, GAHi), 0); + SDValue MNLo = + SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, GALo), 0); + return MNLo; +} + +SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + EVT Ty = Op.getValueType(); + BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); + const BlockAddress *BA = N->getBlockAddress(); + int64_t Offset = N->getOffset(); + + if (isPositionIndependent() || Subtarget.is64Bit()) + report_fatal_error("Unable to lowerBlockAddress"); + + SDValue BAHi = DAG.getTargetBlockAddress(BA, Ty, Offset, RISCVII::MO_HI); + SDValue BALo = DAG.getTargetBlockAddress(BA, Ty, Offset, RISCVII::MO_LO); + SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, BAHi), 0); + SDValue MNLo = + SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, BALo), 0); + return MNLo; +} + +SDValue RISCVTargetLowering::lowerExternalSymbol(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + EVT Ty = Op.getValueType(); + ExternalSymbolSDNode *N = cast<ExternalSymbolSDNode>(Op); + const char *Sym = N->getSymbol(); + + // TODO: should also handle gp-relative loads. + + if (isPositionIndependent() || Subtarget.is64Bit()) + report_fatal_error("Unable to lowerExternalSymbol"); + + SDValue GAHi = DAG.getTargetExternalSymbol(Sym, Ty, RISCVII::MO_HI); + SDValue GALo = DAG.getTargetExternalSymbol(Sym, Ty, RISCVII::MO_LO); + SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, GAHi), 0); + SDValue MNLo = + SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, GALo), 0); + return MNLo; +} + +SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { + SDValue CondV = Op.getOperand(0); + SDValue TrueV = Op.getOperand(1); + SDValue FalseV = Op.getOperand(2); + SDLoc DL(Op); + MVT XLenVT = Subtarget.getXLenVT(); + + // If the result type is XLenVT and CondV is the output of a SETCC node + // which also operated on XLenVT inputs, then merge the SETCC node into the + // lowered RISCVISD::SELECT_CC to take advantage of the integer + // compare+branch instructions. i.e.: + // (select (setcc lhs, rhs, cc), truev, falsev) + // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) + if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && + CondV.getOperand(0).getSimpleValueType() == XLenVT) { + SDValue LHS = CondV.getOperand(0); + SDValue RHS = CondV.getOperand(1); + auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); + ISD::CondCode CCVal = CC->get(); + + normaliseSetCC(LHS, RHS, CCVal); + + SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); + SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); + SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; + return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); + } + + // Otherwise: + // (select condv, truev, falsev) + // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) + SDValue Zero = DAG.getConstant(0, DL, XLenVT); + SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); + + SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); + SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; + + return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops); +} + +MachineBasicBlock * +RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, + MachineBasicBlock *BB) const { + const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); + DebugLoc DL = MI.getDebugLoc(); + + assert(MI.getOpcode() == RISCV::Select_GPR_Using_CC_GPR && + "Unexpected instr type to insert"); + + // To "insert" a SELECT instruction, we actually have to insert the triangle + // control-flow pattern. The incoming instruction knows the destination vreg + // to set, the condition code register to branch on, the true/false values to + // select between, and the condcode to use to select the appropriate branch. + // + // We produce the following control flow: + // HeadMBB + // | \ + // | IfFalseMBB + // | / + // TailMBB + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + MachineFunction::iterator I = ++BB->getIterator(); + + MachineBasicBlock *HeadMBB = BB; + MachineFunction *F = BB->getParent(); + MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); + + F->insert(I, IfFalseMBB); + F->insert(I, TailMBB); + // Move all remaining instructions to TailMBB. + TailMBB->splice(TailMBB->begin(), HeadMBB, + std::next(MachineBasicBlock::iterator(MI)), HeadMBB->end()); + // Update machine-CFG edges by transferring all successors of the current + // block to the new block which will contain the Phi node for the select. + TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); + // Set the successors for HeadMBB. + HeadMBB->addSuccessor(IfFalseMBB); + HeadMBB->addSuccessor(TailMBB); + + // Insert appropriate branch. + unsigned LHS = MI.getOperand(1).getReg(); + unsigned RHS = MI.getOperand(2).getReg(); + auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); + unsigned Opcode = getBranchOpcodeForIntCondCode(CC); + + BuildMI(HeadMBB, DL, TII.get(Opcode)) + .addReg(LHS) + .addReg(RHS) + .addMBB(TailMBB); + + // IfFalseMBB just falls through to TailMBB. + IfFalseMBB->addSuccessor(TailMBB); + + // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] + BuildMI(*TailMBB, TailMBB->begin(), DL, TII.get(RISCV::PHI), + MI.getOperand(0).getReg()) + .addReg(MI.getOperand(4).getReg()) + .addMBB(HeadMBB) + .addReg(MI.getOperand(5).getReg()) + .addMBB(IfFalseMBB); + + MI.eraseFromParent(); // The pseudo instruction is gone now. + return TailMBB; +} + +// Calling Convention Implementation. +// The expectations for frontend ABI lowering vary from target to target. +// Ideally, an LLVM frontend would be able to avoid worrying about many ABI +// details, but this is a longer term goal. For now, we simply try to keep the +// role of the frontend as simple and well-defined as possible. The rules can +// be summarised as: +// * Never split up large scalar arguments. We handle them here. +// * If a hardfloat calling convention is being used, and the struct may be +// passed in a pair of registers (fp+fp, int+fp), and both registers are +// available, then pass as two separate arguments. If either the GPRs or FPRs +// are exhausted, then pass according to the rule below. +// * If a struct could never be passed in registers or directly in a stack +// slot (as it is larger than 2*XLEN and the floating point rules don't +// apply), then pass it using a pointer with the byval attribute. +// * If a struct is less than 2*XLEN, then coerce to either a two-element +// word-sized array or a 2*XLEN scalar (depending on alignment). +// * The frontend can determine whether a struct is returned by reference or +// not based on its size and fields. If it will be returned by reference, the +// frontend must modify the prototype so a pointer with the sret annotation is +// passed as the first argument. This is not necessary for large scalar +// returns. +// * Struct return values and varargs should be coerced to structs containing +// register-size fields in the same situations they would be for fixed +// arguments. + +static const MCPhysReg ArgGPRs[] = { + RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, + RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 +}; + +// Pass a 2*XLEN argument that has been split into two XLEN values through +// registers or the stack as necessary. +static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, + ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, + MVT ValVT2, MVT LocVT2, + ISD::ArgFlagsTy ArgFlags2) { + unsigned XLenInBytes = XLen / 8; + if (unsigned Reg = State.AllocateReg(ArgGPRs)) { + // At least one half can be passed via register. + State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, + VA1.getLocVT(), CCValAssign::Full)); + } else { + // Both halves must be passed on the stack, with proper alignment. + unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign()); + State.addLoc( + CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), + State.AllocateStack(XLenInBytes, StackAlign), + VA1.getLocVT(), CCValAssign::Full)); + State.addLoc(CCValAssign::getMem( + ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2, + CCValAssign::Full)); + return false; + } + + if (unsigned Reg = State.AllocateReg(ArgGPRs)) { + // The second half can also be passed via register. + State.addLoc( + CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); + } else { + // The second half is passed via the stack, without additional alignment. + State.addLoc(CCValAssign::getMem( + ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2, + CCValAssign::Full)); + } + + return false; +} + +// Implements the RISC-V calling convention. Returns true upon failure. +static bool CC_RISCV(const DataLayout &DL, unsigned ValNo, MVT ValVT, MVT LocVT, + CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, + CCState &State, bool IsFixed, bool IsRet) { + unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); + assert(XLen == 32 || XLen == 64); + MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; + assert(ValVT == XLenVT && "Unexpected ValVT"); + assert(LocVT == XLenVT && "Unexpected LocVT"); + assert(IsFixed && "Vararg support not yet implemented"); + + // Any return value split in to more than two values can't be returned + // directly. + if (IsRet && ValNo > 1) + return true; + + SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); + SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = + State.getPendingArgFlags(); + + assert(PendingLocs.size() == PendingArgFlags.size() && + "PendingLocs and PendingArgFlags out of sync"); + + // Split arguments might be passed indirectly, so keep track of the pending + // values. + if (ArgFlags.isSplit() || !PendingLocs.empty()) { + LocVT = XLenVT; + LocInfo = CCValAssign::Indirect; + PendingLocs.push_back( + CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); + PendingArgFlags.push_back(ArgFlags); + if (!ArgFlags.isSplitEnd()) { + return false; + } + } + + // If the split argument only had two elements, it should be passed directly + // in registers or on the stack. + if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { + assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); + // Apply the normal calling convention rules to the first half of the + // split argument. + CCValAssign VA = PendingLocs[0]; + ISD::ArgFlagsTy AF = PendingArgFlags[0]; + PendingLocs.clear(); + PendingArgFlags.clear(); + return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, + ArgFlags); + } + + // Allocate to a register if possible, or else a stack slot. + unsigned Reg = State.AllocateReg(ArgGPRs); + unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8); + + // If we reach this point and PendingLocs is non-empty, we must be at the + // end of a split argument that must be passed indirectly. + if (!PendingLocs.empty()) { + assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); + assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); + + for (auto &It : PendingLocs) { + if (Reg) + It.convertToReg(Reg); + else + It.convertToMem(StackOffset); + State.addLoc(It); + } + PendingLocs.clear(); + PendingArgFlags.clear(); + return false; + } + + assert(LocVT == XLenVT && "Expected an XLenVT at this stage"); + + if (Reg) { + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + } else { + State.addLoc( + CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); + } + return false; +} + +void RISCVTargetLowering::analyzeInputArgs( + MachineFunction &MF, CCState &CCInfo, + const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { + unsigned NumArgs = Ins.size(); + + for (unsigned i = 0; i != NumArgs; ++i) { + MVT ArgVT = Ins[i].VT; + ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; + + if (CC_RISCV(MF.getDataLayout(), i, ArgVT, ArgVT, CCValAssign::Full, + ArgFlags, CCInfo, /*IsRet=*/true, IsRet)) { + DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " + << EVT(ArgVT).getEVTString() << '\n'); + llvm_unreachable(nullptr); + } + } +} + +void RISCVTargetLowering::analyzeOutputArgs( + MachineFunction &MF, CCState &CCInfo, + const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet) const { + unsigned NumArgs = Outs.size(); + + for (unsigned i = 0; i != NumArgs; i++) { + MVT ArgVT = Outs[i].VT; + ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; + + if (CC_RISCV(MF.getDataLayout(), i, ArgVT, ArgVT, CCValAssign::Full, + ArgFlags, CCInfo, Outs[i].IsFixed, IsRet)) { + DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " + << EVT(ArgVT).getEVTString() << "\n"); + llvm_unreachable(nullptr); + } + } +} + +// The caller is responsible for loading the full value if the argument is +// passed with CCValAssign::Indirect. +static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, + const CCValAssign &VA, const SDLoc &DL) { + MachineFunction &MF = DAG.getMachineFunction(); + MachineRegisterInfo &RegInfo = MF.getRegInfo(); + EVT LocVT = VA.getLocVT(); + SDValue Val; + + unsigned VReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); + RegInfo.addLiveIn(VA.getLocReg(), VReg); + Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); + + switch (VA.getLocInfo()) { + default: + llvm_unreachable("Unexpected CCValAssign::LocInfo"); + case CCValAssign::Full: + case CCValAssign::Indirect: + return Val; + } +} + +// The caller is responsible for loading the full value if the argument is +// passed with CCValAssign::Indirect. +static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, + const CCValAssign &VA, const SDLoc &DL) { + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo &MFI = MF.getFrameInfo(); + EVT LocVT = VA.getLocVT(); + EVT ValVT = VA.getValVT(); + EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); + int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, + VA.getLocMemOffset(), /*Immutable=*/true); + SDValue FIN = DAG.getFrameIndex(FI, PtrVT); + SDValue Val; + + ISD::LoadExtType ExtType; + switch (VA.getLocInfo()) { + default: + llvm_unreachable("Unexpected CCValAssign::LocInfo"); + case CCValAssign::Full: + case CCValAssign::Indirect: + ExtType = ISD::NON_EXTLOAD; + break; + } + Val = DAG.getExtLoad( + ExtType, DL, LocVT, Chain, FIN, + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); + return Val; +} + +// Transform physical registers into virtual registers. +SDValue RISCVTargetLowering::LowerFormalArguments( + SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, + SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { + + switch (CallConv) { + default: + report_fatal_error("Unsupported calling convention"); + case CallingConv::C: + case CallingConv::Fast: + break; + } + + MachineFunction &MF = DAG.getMachineFunction(); + MVT XLenVT = Subtarget.getXLenVT(); + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + + if (IsVarArg) + report_fatal_error("VarArg not supported"); + + // Assign locations to all of the incoming arguments. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); + analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); + + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + assert(VA.getLocVT() == XLenVT && "Unhandled argument type"); + SDValue ArgValue; + if (VA.isRegLoc()) + ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL); + else + ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); + + if (VA.getLocInfo() == CCValAssign::Indirect) { + // If the original argument was split and passed by reference (e.g. i128 + // on RV32), we need to load all parts of it here (using the same + // address). + InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, + MachinePointerInfo())); + unsigned ArgIndex = Ins[i].OrigArgIndex; + assert(Ins[i].PartOffset == 0); + while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { + CCValAssign &PartVA = ArgLocs[i + 1]; + unsigned PartOffset = Ins[i + 1].PartOffset; + SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, + DAG.getIntPtrConstant(PartOffset, DL)); + InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, + MachinePointerInfo())); + ++i; + } + continue; + } + InVals.push_back(ArgValue); + } + return Chain; +} + +// Lower a call to a callseq_start + CALL + callseq_end chain, and add input +// and output parameter nodes. +SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, + SmallVectorImpl<SDValue> &InVals) const { + SelectionDAG &DAG = CLI.DAG; + SDLoc &DL = CLI.DL; + SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; + SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; + SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; + SDValue Chain = CLI.Chain; + SDValue Callee = CLI.Callee; + CLI.IsTailCall = false; + CallingConv::ID CallConv = CLI.CallConv; + bool IsVarArg = CLI.IsVarArg; + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + MVT XLenVT = Subtarget.getXLenVT(); + + if (IsVarArg) { + report_fatal_error("LowerCall with varargs not implemented"); + } + + MachineFunction &MF = DAG.getMachineFunction(); + + // Analyze the operands of the call, assigning locations to each operand. + SmallVector<CCValAssign, 16> ArgLocs; + CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); + analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false); + + // Get a count of how many bytes are to be pushed on the stack. + unsigned NumBytes = ArgCCInfo.getNextStackOffset(); + + // Create local copies for byval args + SmallVector<SDValue, 8> ByValArgs; + for (unsigned i = 0, e = Outs.size(); i != e; ++i) { + ISD::ArgFlagsTy Flags = Outs[i].Flags; + if (!Flags.isByVal()) + continue; + + SDValue Arg = OutVals[i]; + unsigned Size = Flags.getByValSize(); + unsigned Align = Flags.getByValAlign(); + + int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false); + SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); + SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); + + Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align, + /*IsVolatile=*/false, + /*AlwaysInline=*/false, + /*isTailCall=*/false, MachinePointerInfo(), + MachinePointerInfo()); + ByValArgs.push_back(FIPtr); + } + + Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); + + // Copy argument values to their designated locations. + SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; + SmallVector<SDValue, 8> MemOpChains; + SDValue StackPtr; + for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + SDValue ArgValue = OutVals[i]; + ISD::ArgFlagsTy Flags = Outs[i].Flags; + + // Promote the value if needed. + // For now, only handle fully promoted and indirect arguments. + switch (VA.getLocInfo()) { + case CCValAssign::Full: + break; + case CCValAssign::Indirect: { + // Store the argument in a stack slot and pass its address. + SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); + int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); + MemOpChains.push_back( + DAG.getStore(Chain, DL, ArgValue, SpillSlot, + MachinePointerInfo::getFixedStack(MF, FI))); + // If the original argument was split (e.g. i128), we need + // to store all parts of it here (and pass just one address). + unsigned ArgIndex = Outs[i].OrigArgIndex; + assert(Outs[i].PartOffset == 0); + while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { + SDValue PartValue = OutVals[i + 1]; + unsigned PartOffset = Outs[i + 1].PartOffset; + SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, + DAG.getIntPtrConstant(PartOffset, DL)); + MemOpChains.push_back( + DAG.getStore(Chain, DL, PartValue, Address, + MachinePointerInfo::getFixedStack(MF, FI))); + ++i; + } + ArgValue = SpillSlot; + break; + } + default: + llvm_unreachable("Unknown loc info!"); + } + + // Use local copy if it is a byval arg. + if (Flags.isByVal()) + ArgValue = ByValArgs[j++]; + + if (VA.isRegLoc()) { + // Queue up the argument copies and emit them at the end. + RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); + } else { + assert(VA.isMemLoc() && "Argument not register or memory"); + + // Work out the address of the stack slot. + if (!StackPtr.getNode()) + StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); + SDValue Address = + DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, + DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); + + // Emit the store. + MemOpChains.push_back( + DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); + } + } + + // Join the stores, which are independent of one another. + if (!MemOpChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); + + SDValue Glue; + + // Build a sequence of copy-to-reg nodes, chained and glued together. + for (auto &Reg : RegsToPass) { + Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); + Glue = Chain.getValue(1); + } + + if (isa<GlobalAddressSDNode>(Callee)) { + Callee = lowerGlobalAddress(Callee, DAG); + } else if (isa<ExternalSymbolSDNode>(Callee)) { + Callee = lowerExternalSymbol(Callee, DAG); + } + + // The first call operand is the chain and the second is the target address. + SmallVector<SDValue, 8> Ops; + Ops.push_back(Chain); + Ops.push_back(Callee); + + // Add argument registers to the end of the list so that they are + // known live into the call. + for (auto &Reg : RegsToPass) + Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); + + // Add a register mask operand representing the call-preserved registers. + const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); + const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); + assert(Mask && "Missing call preserved mask for calling convention"); + Ops.push_back(DAG.getRegisterMask(Mask)); + + // Glue the call to the argument copies, if any. + if (Glue.getNode()) + Ops.push_back(Glue); + + // Emit the call. + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); + Glue = Chain.getValue(1); + + // Mark the end of the call, which is glued to the call itself. + Chain = DAG.getCALLSEQ_END(Chain, + DAG.getConstant(NumBytes, DL, PtrVT, true), + DAG.getConstant(0, DL, PtrVT, true), + Glue, DL); + Glue = Chain.getValue(1); + + // Assign locations to each value returned by this call. + SmallVector<CCValAssign, 16> RVLocs; + CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); + analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); + + // Copy all of the result registers out of their specified physreg. + for (auto &VA : RVLocs) { + // Copy the value out, gluing the copy to the end of the call sequence. + SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), + VA.getLocVT(), Glue); + Chain = RetValue.getValue(1); + Glue = RetValue.getValue(2); + + assert(VA.getLocInfo() == CCValAssign::Full && "Unknown loc info!"); + InVals.push_back(RetValue); + } + + return Chain; +} + +bool RISCVTargetLowering::CanLowerReturn( + CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); + for (unsigned i = 0, e = Outs.size(); i != e; ++i) { + MVT VT = Outs[i].VT; + ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; + if (CC_RISCV(MF.getDataLayout(), i, VT, VT, CCValAssign::Full, ArgFlags, + CCInfo, /*IsFixed=*/true, /*IsRet=*/true)) + return false; + } + return true; +} + +SDValue +RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, + bool IsVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + const SDLoc &DL, SelectionDAG &DAG) const { + if (IsVarArg) { + report_fatal_error("VarArg not supported"); + } + + // Stores the assignment of the return value to a location. + SmallVector<CCValAssign, 16> RVLocs; + + // Info about the registers and stack slot. + CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, + *DAG.getContext()); + + analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true); + + SDValue Flag; + SmallVector<SDValue, 4> RetOps(1, Chain); + + // Copy the result values into the output registers. + for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { + SDValue Val = OutVals[i]; + CCValAssign &VA = RVLocs[i]; + assert(VA.isRegLoc() && "Can only return in registers!"); + assert(VA.getLocInfo() == CCValAssign::Full && + "Unexpected CCValAssign::LocInfo"); + + Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag); + + // Guarantee that all emitted copies are stuck together. + Flag = Chain.getValue(1); + RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); + } + + RetOps[0] = Chain; // Update chain. + + // Add the flag if we have it. + if (Flag.getNode()) { + RetOps.push_back(Flag); + } + + return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); +} + +const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { + switch ((RISCVISD::NodeType)Opcode) { + case RISCVISD::FIRST_NUMBER: + break; + case RISCVISD::RET_FLAG: + return "RISCVISD::RET_FLAG"; + case RISCVISD::CALL: + return "RISCVISD::CALL"; + case RISCVISD::SELECT_CC: + return "RISCVISD::SELECT_CC"; + } + return nullptr; +} |
