summaryrefslogtreecommitdiff
path: root/lib/Target/RISCV/RISCVISelLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/RISCV/RISCVISelLowering.cpp')
-rw-r--r--lib/Target/RISCV/RISCVISelLowering.cpp892
1 files changed, 892 insertions, 0 deletions
diff --git a/lib/Target/RISCV/RISCVISelLowering.cpp b/lib/Target/RISCV/RISCVISelLowering.cpp
new file mode 100644
index 000000000000..7d32954936be
--- /dev/null
+++ b/lib/Target/RISCV/RISCVISelLowering.cpp
@@ -0,0 +1,892 @@
+//===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that RISCV uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#include "RISCVISelLowering.h"
+#include "RISCV.h"
+#include "RISCVRegisterInfo.h"
+#include "RISCVSubtarget.h"
+#include "RISCVTargetMachine.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/DiagnosticPrinter.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "riscv-lower"
+
+RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
+ const RISCVSubtarget &STI)
+ : TargetLowering(TM), Subtarget(STI) {
+
+ MVT XLenVT = Subtarget.getXLenVT();
+
+ // Set up the register classes.
+ addRegisterClass(XLenVT, &RISCV::GPRRegClass);
+
+ // Compute derived properties from the register classes.
+ computeRegisterProperties(STI.getRegisterInfo());
+
+ setStackPointerRegisterToSaveRestore(RISCV::X2);
+
+ for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
+ setLoadExtAction(N, XLenVT, MVT::i1, Promote);
+
+ // TODO: add all necessary setOperationAction calls.
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
+
+ setOperationAction(ISD::BR_JT, MVT::Other, Expand);
+ setOperationAction(ISD::BR_CC, XLenVT, Expand);
+ setOperationAction(ISD::SELECT, XLenVT, Custom);
+ setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
+
+ setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
+ setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
+
+ for (auto VT : {MVT::i1, MVT::i8, MVT::i16})
+ setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
+
+ setOperationAction(ISD::ADDC, XLenVT, Expand);
+ setOperationAction(ISD::ADDE, XLenVT, Expand);
+ setOperationAction(ISD::SUBC, XLenVT, Expand);
+ setOperationAction(ISD::SUBE, XLenVT, Expand);
+
+ setOperationAction(ISD::SREM, XLenVT, Expand);
+ setOperationAction(ISD::SDIVREM, XLenVT, Expand);
+ setOperationAction(ISD::SDIV, XLenVT, Expand);
+ setOperationAction(ISD::UREM, XLenVT, Expand);
+ setOperationAction(ISD::UDIVREM, XLenVT, Expand);
+ setOperationAction(ISD::UDIV, XLenVT, Expand);
+
+ setOperationAction(ISD::MUL, XLenVT, Expand);
+ setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
+ setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
+ setOperationAction(ISD::MULHS, XLenVT, Expand);
+ setOperationAction(ISD::MULHU, XLenVT, Expand);
+
+ setOperationAction(ISD::SHL_PARTS, XLenVT, Expand);
+ setOperationAction(ISD::SRL_PARTS, XLenVT, Expand);
+ setOperationAction(ISD::SRA_PARTS, XLenVT, Expand);
+
+ setOperationAction(ISD::ROTL, XLenVT, Expand);
+ setOperationAction(ISD::ROTR, XLenVT, Expand);
+ setOperationAction(ISD::BSWAP, XLenVT, Expand);
+ setOperationAction(ISD::CTTZ, XLenVT, Expand);
+ setOperationAction(ISD::CTLZ, XLenVT, Expand);
+ setOperationAction(ISD::CTPOP, XLenVT, Expand);
+
+ setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
+ setOperationAction(ISD::BlockAddress, XLenVT, Custom);
+
+ setBooleanContents(ZeroOrOneBooleanContent);
+
+ // Function alignments (log2).
+ setMinFunctionAlignment(3);
+ setPrefFunctionAlignment(3);
+
+ // Effectively disable jump table generation.
+ setMinimumJumpTableEntries(INT_MAX);
+}
+
+// Changes the condition code and swaps operands if necessary, so the SetCC
+// operation matches one of the comparisons supported directly in the RISC-V
+// ISA.
+static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
+ switch (CC) {
+ default:
+ break;
+ case ISD::SETGT:
+ case ISD::SETLE:
+ case ISD::SETUGT:
+ case ISD::SETULE:
+ CC = ISD::getSetCCSwappedOperands(CC);
+ std::swap(LHS, RHS);
+ break;
+ }
+}
+
+// Return the RISC-V branch opcode that matches the given DAG integer
+// condition code. The CondCode must be one of those supported by the RISC-V
+// ISA (see normaliseSetCC).
+static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
+ switch (CC) {
+ default:
+ llvm_unreachable("Unsupported CondCode");
+ case ISD::SETEQ:
+ return RISCV::BEQ;
+ case ISD::SETNE:
+ return RISCV::BNE;
+ case ISD::SETLT:
+ return RISCV::BLT;
+ case ISD::SETGE:
+ return RISCV::BGE;
+ case ISD::SETULT:
+ return RISCV::BLTU;
+ case ISD::SETUGE:
+ return RISCV::BGEU;
+ }
+}
+
+SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
+ SelectionDAG &DAG) const {
+ switch (Op.getOpcode()) {
+ default:
+ report_fatal_error("unimplemented operand");
+ case ISD::GlobalAddress:
+ return lowerGlobalAddress(Op, DAG);
+ case ISD::BlockAddress:
+ return lowerBlockAddress(Op, DAG);
+ case ISD::SELECT:
+ return lowerSELECT(Op, DAG);
+ }
+}
+
+SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ EVT Ty = Op.getValueType();
+ GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
+ const GlobalValue *GV = N->getGlobal();
+ int64_t Offset = N->getOffset();
+
+ if (isPositionIndependent() || Subtarget.is64Bit())
+ report_fatal_error("Unable to lowerGlobalAddress");
+
+ SDValue GAHi =
+ DAG.getTargetGlobalAddress(GV, DL, Ty, Offset, RISCVII::MO_HI);
+ SDValue GALo =
+ DAG.getTargetGlobalAddress(GV, DL, Ty, Offset, RISCVII::MO_LO);
+ SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, GAHi), 0);
+ SDValue MNLo =
+ SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, GALo), 0);
+ return MNLo;
+}
+
+SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ EVT Ty = Op.getValueType();
+ BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
+ const BlockAddress *BA = N->getBlockAddress();
+ int64_t Offset = N->getOffset();
+
+ if (isPositionIndependent() || Subtarget.is64Bit())
+ report_fatal_error("Unable to lowerBlockAddress");
+
+ SDValue BAHi = DAG.getTargetBlockAddress(BA, Ty, Offset, RISCVII::MO_HI);
+ SDValue BALo = DAG.getTargetBlockAddress(BA, Ty, Offset, RISCVII::MO_LO);
+ SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, BAHi), 0);
+ SDValue MNLo =
+ SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, BALo), 0);
+ return MNLo;
+}
+
+SDValue RISCVTargetLowering::lowerExternalSymbol(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ EVT Ty = Op.getValueType();
+ ExternalSymbolSDNode *N = cast<ExternalSymbolSDNode>(Op);
+ const char *Sym = N->getSymbol();
+
+ // TODO: should also handle gp-relative loads.
+
+ if (isPositionIndependent() || Subtarget.is64Bit())
+ report_fatal_error("Unable to lowerExternalSymbol");
+
+ SDValue GAHi = DAG.getTargetExternalSymbol(Sym, Ty, RISCVII::MO_HI);
+ SDValue GALo = DAG.getTargetExternalSymbol(Sym, Ty, RISCVII::MO_LO);
+ SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, GAHi), 0);
+ SDValue MNLo =
+ SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, GALo), 0);
+ return MNLo;
+}
+
+SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
+ SDValue CondV = Op.getOperand(0);
+ SDValue TrueV = Op.getOperand(1);
+ SDValue FalseV = Op.getOperand(2);
+ SDLoc DL(Op);
+ MVT XLenVT = Subtarget.getXLenVT();
+
+ // If the result type is XLenVT and CondV is the output of a SETCC node
+ // which also operated on XLenVT inputs, then merge the SETCC node into the
+ // lowered RISCVISD::SELECT_CC to take advantage of the integer
+ // compare+branch instructions. i.e.:
+ // (select (setcc lhs, rhs, cc), truev, falsev)
+ // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
+ if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
+ CondV.getOperand(0).getSimpleValueType() == XLenVT) {
+ SDValue LHS = CondV.getOperand(0);
+ SDValue RHS = CondV.getOperand(1);
+ auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
+ ISD::CondCode CCVal = CC->get();
+
+ normaliseSetCC(LHS, RHS, CCVal);
+
+ SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT);
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
+ SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
+ return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
+ }
+
+ // Otherwise:
+ // (select condv, truev, falsev)
+ // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
+ SDValue Zero = DAG.getConstant(0, DL, XLenVT);
+ SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT);
+
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
+ SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
+
+ return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
+}
+
+MachineBasicBlock *
+RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
+ MachineBasicBlock *BB) const {
+ const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
+ DebugLoc DL = MI.getDebugLoc();
+
+ assert(MI.getOpcode() == RISCV::Select_GPR_Using_CC_GPR &&
+ "Unexpected instr type to insert");
+
+ // To "insert" a SELECT instruction, we actually have to insert the triangle
+ // control-flow pattern. The incoming instruction knows the destination vreg
+ // to set, the condition code register to branch on, the true/false values to
+ // select between, and the condcode to use to select the appropriate branch.
+ //
+ // We produce the following control flow:
+ // HeadMBB
+ // | \
+ // | IfFalseMBB
+ // | /
+ // TailMBB
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator I = ++BB->getIterator();
+
+ MachineBasicBlock *HeadMBB = BB;
+ MachineFunction *F = BB->getParent();
+ MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
+
+ F->insert(I, IfFalseMBB);
+ F->insert(I, TailMBB);
+ // Move all remaining instructions to TailMBB.
+ TailMBB->splice(TailMBB->begin(), HeadMBB,
+ std::next(MachineBasicBlock::iterator(MI)), HeadMBB->end());
+ // Update machine-CFG edges by transferring all successors of the current
+ // block to the new block which will contain the Phi node for the select.
+ TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
+ // Set the successors for HeadMBB.
+ HeadMBB->addSuccessor(IfFalseMBB);
+ HeadMBB->addSuccessor(TailMBB);
+
+ // Insert appropriate branch.
+ unsigned LHS = MI.getOperand(1).getReg();
+ unsigned RHS = MI.getOperand(2).getReg();
+ auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
+ unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
+
+ BuildMI(HeadMBB, DL, TII.get(Opcode))
+ .addReg(LHS)
+ .addReg(RHS)
+ .addMBB(TailMBB);
+
+ // IfFalseMBB just falls through to TailMBB.
+ IfFalseMBB->addSuccessor(TailMBB);
+
+ // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
+ BuildMI(*TailMBB, TailMBB->begin(), DL, TII.get(RISCV::PHI),
+ MI.getOperand(0).getReg())
+ .addReg(MI.getOperand(4).getReg())
+ .addMBB(HeadMBB)
+ .addReg(MI.getOperand(5).getReg())
+ .addMBB(IfFalseMBB);
+
+ MI.eraseFromParent(); // The pseudo instruction is gone now.
+ return TailMBB;
+}
+
+// Calling Convention Implementation.
+// The expectations for frontend ABI lowering vary from target to target.
+// Ideally, an LLVM frontend would be able to avoid worrying about many ABI
+// details, but this is a longer term goal. For now, we simply try to keep the
+// role of the frontend as simple and well-defined as possible. The rules can
+// be summarised as:
+// * Never split up large scalar arguments. We handle them here.
+// * If a hardfloat calling convention is being used, and the struct may be
+// passed in a pair of registers (fp+fp, int+fp), and both registers are
+// available, then pass as two separate arguments. If either the GPRs or FPRs
+// are exhausted, then pass according to the rule below.
+// * If a struct could never be passed in registers or directly in a stack
+// slot (as it is larger than 2*XLEN and the floating point rules don't
+// apply), then pass it using a pointer with the byval attribute.
+// * If a struct is less than 2*XLEN, then coerce to either a two-element
+// word-sized array or a 2*XLEN scalar (depending on alignment).
+// * The frontend can determine whether a struct is returned by reference or
+// not based on its size and fields. If it will be returned by reference, the
+// frontend must modify the prototype so a pointer with the sret annotation is
+// passed as the first argument. This is not necessary for large scalar
+// returns.
+// * Struct return values and varargs should be coerced to structs containing
+// register-size fields in the same situations they would be for fixed
+// arguments.
+
+static const MCPhysReg ArgGPRs[] = {
+ RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
+ RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
+};
+
+// Pass a 2*XLEN argument that has been split into two XLEN values through
+// registers or the stack as necessary.
+static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
+ ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
+ MVT ValVT2, MVT LocVT2,
+ ISD::ArgFlagsTy ArgFlags2) {
+ unsigned XLenInBytes = XLen / 8;
+ if (unsigned Reg = State.AllocateReg(ArgGPRs)) {
+ // At least one half can be passed via register.
+ State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
+ VA1.getLocVT(), CCValAssign::Full));
+ } else {
+ // Both halves must be passed on the stack, with proper alignment.
+ unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign());
+ State.addLoc(
+ CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
+ State.AllocateStack(XLenInBytes, StackAlign),
+ VA1.getLocVT(), CCValAssign::Full));
+ State.addLoc(CCValAssign::getMem(
+ ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
+ CCValAssign::Full));
+ return false;
+ }
+
+ if (unsigned Reg = State.AllocateReg(ArgGPRs)) {
+ // The second half can also be passed via register.
+ State.addLoc(
+ CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
+ } else {
+ // The second half is passed via the stack, without additional alignment.
+ State.addLoc(CCValAssign::getMem(
+ ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
+ CCValAssign::Full));
+ }
+
+ return false;
+}
+
+// Implements the RISC-V calling convention. Returns true upon failure.
+static bool CC_RISCV(const DataLayout &DL, unsigned ValNo, MVT ValVT, MVT LocVT,
+ CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
+ CCState &State, bool IsFixed, bool IsRet) {
+ unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
+ assert(XLen == 32 || XLen == 64);
+ MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
+ assert(ValVT == XLenVT && "Unexpected ValVT");
+ assert(LocVT == XLenVT && "Unexpected LocVT");
+ assert(IsFixed && "Vararg support not yet implemented");
+
+ // Any return value split in to more than two values can't be returned
+ // directly.
+ if (IsRet && ValNo > 1)
+ return true;
+
+ SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
+ SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
+ State.getPendingArgFlags();
+
+ assert(PendingLocs.size() == PendingArgFlags.size() &&
+ "PendingLocs and PendingArgFlags out of sync");
+
+ // Split arguments might be passed indirectly, so keep track of the pending
+ // values.
+ if (ArgFlags.isSplit() || !PendingLocs.empty()) {
+ LocVT = XLenVT;
+ LocInfo = CCValAssign::Indirect;
+ PendingLocs.push_back(
+ CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
+ PendingArgFlags.push_back(ArgFlags);
+ if (!ArgFlags.isSplitEnd()) {
+ return false;
+ }
+ }
+
+ // If the split argument only had two elements, it should be passed directly
+ // in registers or on the stack.
+ if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
+ assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
+ // Apply the normal calling convention rules to the first half of the
+ // split argument.
+ CCValAssign VA = PendingLocs[0];
+ ISD::ArgFlagsTy AF = PendingArgFlags[0];
+ PendingLocs.clear();
+ PendingArgFlags.clear();
+ return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
+ ArgFlags);
+ }
+
+ // Allocate to a register if possible, or else a stack slot.
+ unsigned Reg = State.AllocateReg(ArgGPRs);
+ unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8);
+
+ // If we reach this point and PendingLocs is non-empty, we must be at the
+ // end of a split argument that must be passed indirectly.
+ if (!PendingLocs.empty()) {
+ assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
+ assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
+
+ for (auto &It : PendingLocs) {
+ if (Reg)
+ It.convertToReg(Reg);
+ else
+ It.convertToMem(StackOffset);
+ State.addLoc(It);
+ }
+ PendingLocs.clear();
+ PendingArgFlags.clear();
+ return false;
+ }
+
+ assert(LocVT == XLenVT && "Expected an XLenVT at this stage");
+
+ if (Reg) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ } else {
+ State.addLoc(
+ CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
+ }
+ return false;
+}
+
+void RISCVTargetLowering::analyzeInputArgs(
+ MachineFunction &MF, CCState &CCInfo,
+ const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
+ unsigned NumArgs = Ins.size();
+
+ for (unsigned i = 0; i != NumArgs; ++i) {
+ MVT ArgVT = Ins[i].VT;
+ ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
+
+ if (CC_RISCV(MF.getDataLayout(), i, ArgVT, ArgVT, CCValAssign::Full,
+ ArgFlags, CCInfo, /*IsRet=*/true, IsRet)) {
+ DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
+ << EVT(ArgVT).getEVTString() << '\n');
+ llvm_unreachable(nullptr);
+ }
+ }
+}
+
+void RISCVTargetLowering::analyzeOutputArgs(
+ MachineFunction &MF, CCState &CCInfo,
+ const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet) const {
+ unsigned NumArgs = Outs.size();
+
+ for (unsigned i = 0; i != NumArgs; i++) {
+ MVT ArgVT = Outs[i].VT;
+ ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
+
+ if (CC_RISCV(MF.getDataLayout(), i, ArgVT, ArgVT, CCValAssign::Full,
+ ArgFlags, CCInfo, Outs[i].IsFixed, IsRet)) {
+ DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
+ << EVT(ArgVT).getEVTString() << "\n");
+ llvm_unreachable(nullptr);
+ }
+ }
+}
+
+// The caller is responsible for loading the full value if the argument is
+// passed with CCValAssign::Indirect.
+static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
+ const CCValAssign &VA, const SDLoc &DL) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineRegisterInfo &RegInfo = MF.getRegInfo();
+ EVT LocVT = VA.getLocVT();
+ SDValue Val;
+
+ unsigned VReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
+ RegInfo.addLiveIn(VA.getLocReg(), VReg);
+ Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
+
+ switch (VA.getLocInfo()) {
+ default:
+ llvm_unreachable("Unexpected CCValAssign::LocInfo");
+ case CCValAssign::Full:
+ case CCValAssign::Indirect:
+ return Val;
+ }
+}
+
+// The caller is responsible for loading the full value if the argument is
+// passed with CCValAssign::Indirect.
+static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
+ const CCValAssign &VA, const SDLoc &DL) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ EVT LocVT = VA.getLocVT();
+ EVT ValVT = VA.getValVT();
+ EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
+ int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
+ VA.getLocMemOffset(), /*Immutable=*/true);
+ SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+ SDValue Val;
+
+ ISD::LoadExtType ExtType;
+ switch (VA.getLocInfo()) {
+ default:
+ llvm_unreachable("Unexpected CCValAssign::LocInfo");
+ case CCValAssign::Full:
+ case CCValAssign::Indirect:
+ ExtType = ISD::NON_EXTLOAD;
+ break;
+ }
+ Val = DAG.getExtLoad(
+ ExtType, DL, LocVT, Chain, FIN,
+ MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
+ return Val;
+}
+
+// Transform physical registers into virtual registers.
+SDValue RISCVTargetLowering::LowerFormalArguments(
+ SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
+ SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
+
+ switch (CallConv) {
+ default:
+ report_fatal_error("Unsupported calling convention");
+ case CallingConv::C:
+ case CallingConv::Fast:
+ break;
+ }
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ MVT XLenVT = Subtarget.getXLenVT();
+ EVT PtrVT = getPointerTy(DAG.getDataLayout());
+
+ if (IsVarArg)
+ report_fatal_error("VarArg not supported");
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
+ analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
+
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ assert(VA.getLocVT() == XLenVT && "Unhandled argument type");
+ SDValue ArgValue;
+ if (VA.isRegLoc())
+ ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL);
+ else
+ ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
+
+ if (VA.getLocInfo() == CCValAssign::Indirect) {
+ // If the original argument was split and passed by reference (e.g. i128
+ // on RV32), we need to load all parts of it here (using the same
+ // address).
+ InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
+ MachinePointerInfo()));
+ unsigned ArgIndex = Ins[i].OrigArgIndex;
+ assert(Ins[i].PartOffset == 0);
+ while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
+ CCValAssign &PartVA = ArgLocs[i + 1];
+ unsigned PartOffset = Ins[i + 1].PartOffset;
+ SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
+ DAG.getIntPtrConstant(PartOffset, DL));
+ InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
+ MachinePointerInfo()));
+ ++i;
+ }
+ continue;
+ }
+ InVals.push_back(ArgValue);
+ }
+ return Chain;
+}
+
+// Lower a call to a callseq_start + CALL + callseq_end chain, and add input
+// and output parameter nodes.
+SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ SDLoc &DL = CLI.DL;
+ SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
+ SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
+ SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
+ SDValue Chain = CLI.Chain;
+ SDValue Callee = CLI.Callee;
+ CLI.IsTailCall = false;
+ CallingConv::ID CallConv = CLI.CallConv;
+ bool IsVarArg = CLI.IsVarArg;
+ EVT PtrVT = getPointerTy(DAG.getDataLayout());
+ MVT XLenVT = Subtarget.getXLenVT();
+
+ if (IsVarArg) {
+ report_fatal_error("LowerCall with varargs not implemented");
+ }
+
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ // Analyze the operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
+ analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false);
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = ArgCCInfo.getNextStackOffset();
+
+ // Create local copies for byval args
+ SmallVector<SDValue, 8> ByValArgs;
+ for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+ if (!Flags.isByVal())
+ continue;
+
+ SDValue Arg = OutVals[i];
+ unsigned Size = Flags.getByValSize();
+ unsigned Align = Flags.getByValAlign();
+
+ int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false);
+ SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
+ SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
+
+ Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align,
+ /*IsVolatile=*/false,
+ /*AlwaysInline=*/false,
+ /*isTailCall=*/false, MachinePointerInfo(),
+ MachinePointerInfo());
+ ByValArgs.push_back(FIPtr);
+ }
+
+ Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
+
+ // Copy argument values to their designated locations.
+ SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
+ SmallVector<SDValue, 8> MemOpChains;
+ SDValue StackPtr;
+ for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ SDValue ArgValue = OutVals[i];
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+
+ // Promote the value if needed.
+ // For now, only handle fully promoted and indirect arguments.
+ switch (VA.getLocInfo()) {
+ case CCValAssign::Full:
+ break;
+ case CCValAssign::Indirect: {
+ // Store the argument in a stack slot and pass its address.
+ SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
+ int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
+ MemOpChains.push_back(
+ DAG.getStore(Chain, DL, ArgValue, SpillSlot,
+ MachinePointerInfo::getFixedStack(MF, FI)));
+ // If the original argument was split (e.g. i128), we need
+ // to store all parts of it here (and pass just one address).
+ unsigned ArgIndex = Outs[i].OrigArgIndex;
+ assert(Outs[i].PartOffset == 0);
+ while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
+ SDValue PartValue = OutVals[i + 1];
+ unsigned PartOffset = Outs[i + 1].PartOffset;
+ SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
+ DAG.getIntPtrConstant(PartOffset, DL));
+ MemOpChains.push_back(
+ DAG.getStore(Chain, DL, PartValue, Address,
+ MachinePointerInfo::getFixedStack(MF, FI)));
+ ++i;
+ }
+ ArgValue = SpillSlot;
+ break;
+ }
+ default:
+ llvm_unreachable("Unknown loc info!");
+ }
+
+ // Use local copy if it is a byval arg.
+ if (Flags.isByVal())
+ ArgValue = ByValArgs[j++];
+
+ if (VA.isRegLoc()) {
+ // Queue up the argument copies and emit them at the end.
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
+ } else {
+ assert(VA.isMemLoc() && "Argument not register or memory");
+
+ // Work out the address of the stack slot.
+ if (!StackPtr.getNode())
+ StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
+ SDValue Address =
+ DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
+ DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
+
+ // Emit the store.
+ MemOpChains.push_back(
+ DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
+ }
+ }
+
+ // Join the stores, which are independent of one another.
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
+
+ SDValue Glue;
+
+ // Build a sequence of copy-to-reg nodes, chained and glued together.
+ for (auto &Reg : RegsToPass) {
+ Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
+ Glue = Chain.getValue(1);
+ }
+
+ if (isa<GlobalAddressSDNode>(Callee)) {
+ Callee = lowerGlobalAddress(Callee, DAG);
+ } else if (isa<ExternalSymbolSDNode>(Callee)) {
+ Callee = lowerExternalSymbol(Callee, DAG);
+ }
+
+ // The first call operand is the chain and the second is the target address.
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+
+ // Add argument registers to the end of the list so that they are
+ // known live into the call.
+ for (auto &Reg : RegsToPass)
+ Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
+
+ // Add a register mask operand representing the call-preserved registers.
+ const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
+ const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
+ assert(Mask && "Missing call preserved mask for calling convention");
+ Ops.push_back(DAG.getRegisterMask(Mask));
+
+ // Glue the call to the argument copies, if any.
+ if (Glue.getNode())
+ Ops.push_back(Glue);
+
+ // Emit the call.
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
+ Glue = Chain.getValue(1);
+
+ // Mark the end of the call, which is glued to the call itself.
+ Chain = DAG.getCALLSEQ_END(Chain,
+ DAG.getConstant(NumBytes, DL, PtrVT, true),
+ DAG.getConstant(0, DL, PtrVT, true),
+ Glue, DL);
+ Glue = Chain.getValue(1);
+
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
+ analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
+
+ // Copy all of the result registers out of their specified physreg.
+ for (auto &VA : RVLocs) {
+ // Copy the value out, gluing the copy to the end of the call sequence.
+ SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
+ VA.getLocVT(), Glue);
+ Chain = RetValue.getValue(1);
+ Glue = RetValue.getValue(2);
+
+ assert(VA.getLocInfo() == CCValAssign::Full && "Unknown loc info!");
+ InVals.push_back(RetValue);
+ }
+
+ return Chain;
+}
+
+bool RISCVTargetLowering::CanLowerReturn(
+ CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
+ for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
+ MVT VT = Outs[i].VT;
+ ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
+ if (CC_RISCV(MF.getDataLayout(), i, VT, VT, CCValAssign::Full, ArgFlags,
+ CCInfo, /*IsFixed=*/true, /*IsRet=*/true))
+ return false;
+ }
+ return true;
+}
+
+SDValue
+RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
+ bool IsVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SDLoc &DL, SelectionDAG &DAG) const {
+ if (IsVarArg) {
+ report_fatal_error("VarArg not supported");
+ }
+
+ // Stores the assignment of the return value to a location.
+ SmallVector<CCValAssign, 16> RVLocs;
+
+ // Info about the registers and stack slot.
+ CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
+
+ analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true);
+
+ SDValue Flag;
+ SmallVector<SDValue, 4> RetOps(1, Chain);
+
+ // Copy the result values into the output registers.
+ for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
+ SDValue Val = OutVals[i];
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+ assert(VA.getLocInfo() == CCValAssign::Full &&
+ "Unexpected CCValAssign::LocInfo");
+
+ Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
+
+ // Guarantee that all emitted copies are stuck together.
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ }
+
+ RetOps[0] = Chain; // Update chain.
+
+ // Add the flag if we have it.
+ if (Flag.getNode()) {
+ RetOps.push_back(Flag);
+ }
+
+ return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
+}
+
+const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch ((RISCVISD::NodeType)Opcode) {
+ case RISCVISD::FIRST_NUMBER:
+ break;
+ case RISCVISD::RET_FLAG:
+ return "RISCVISD::RET_FLAG";
+ case RISCVISD::CALL:
+ return "RISCVISD::CALL";
+ case RISCVISD::SELECT_CC:
+ return "RISCVISD::SELECT_CC";
+ }
+ return nullptr;
+}