diff options
Diffstat (limited to 'lib/Tooling/ASTDiff/ASTDiff.cpp')
| -rw-r--r-- | lib/Tooling/ASTDiff/ASTDiff.cpp | 1021 | 
1 files changed, 1021 insertions, 0 deletions
diff --git a/lib/Tooling/ASTDiff/ASTDiff.cpp b/lib/Tooling/ASTDiff/ASTDiff.cpp new file mode 100644 index 000000000000..6da0de7edf9a --- /dev/null +++ b/lib/Tooling/ASTDiff/ASTDiff.cpp @@ -0,0 +1,1021 @@ +//===- ASTDiff.cpp - AST differencing implementation-----------*- C++ -*- -===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains definitons for the AST differencing interface. +// +//===----------------------------------------------------------------------===// + +#include "clang/Tooling/ASTDiff/ASTDiff.h" + +#include "clang/AST/RecursiveASTVisitor.h" +#include "clang/Lex/Lexer.h" +#include "llvm/ADT/PriorityQueue.h" + +#include <limits> +#include <memory> +#include <unordered_set> + +using namespace llvm; +using namespace clang; + +namespace clang { +namespace diff { + +namespace { +/// Maps nodes of the left tree to ones on the right, and vice versa. +class Mapping { +public: +  Mapping() = default; +  Mapping(Mapping &&Other) = default; +  Mapping &operator=(Mapping &&Other) = default; + +  Mapping(size_t Size) { +    SrcToDst = llvm::make_unique<NodeId[]>(Size); +    DstToSrc = llvm::make_unique<NodeId[]>(Size); +  } + +  void link(NodeId Src, NodeId Dst) { +    SrcToDst[Src] = Dst, DstToSrc[Dst] = Src; +  } + +  NodeId getDst(NodeId Src) const { return SrcToDst[Src]; } +  NodeId getSrc(NodeId Dst) const { return DstToSrc[Dst]; } +  bool hasSrc(NodeId Src) const { return getDst(Src).isValid(); } +  bool hasDst(NodeId Dst) const { return getSrc(Dst).isValid(); } + +private: +  std::unique_ptr<NodeId[]> SrcToDst, DstToSrc; +}; +} // end anonymous namespace + +class ASTDiff::Impl { +public: +  SyntaxTree::Impl &T1, &T2; +  Mapping TheMapping; + +  Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2, +       const ComparisonOptions &Options); + +  /// Matches nodes one-by-one based on their similarity. +  void computeMapping(); + +  // Compute Change for each node based on similarity. +  void computeChangeKinds(Mapping &M); + +  NodeId getMapped(const std::unique_ptr<SyntaxTree::Impl> &Tree, +                   NodeId Id) const { +    if (&*Tree == &T1) +      return TheMapping.getDst(Id); +    assert(&*Tree == &T2 && "Invalid tree."); +    return TheMapping.getSrc(Id); +  } + +private: +  // Returns true if the two subtrees are identical. +  bool identical(NodeId Id1, NodeId Id2) const; + +  // Returns false if the nodes must not be mached. +  bool isMatchingPossible(NodeId Id1, NodeId Id2) const; + +  // Returns true if the nodes' parents are matched. +  bool haveSameParents(const Mapping &M, NodeId Id1, NodeId Id2) const; + +  // Uses an optimal albeit slow algorithm to compute a mapping between two +  // subtrees, but only if both have fewer nodes than MaxSize. +  void addOptimalMapping(Mapping &M, NodeId Id1, NodeId Id2) const; + +  // Computes the ratio of common descendants between the two nodes. +  // Descendants are only considered to be equal when they are mapped in M. +  double getJaccardSimilarity(const Mapping &M, NodeId Id1, NodeId Id2) const; + +  // Returns the node that has the highest degree of similarity. +  NodeId findCandidate(const Mapping &M, NodeId Id1) const; + +  // Returns a mapping of identical subtrees. +  Mapping matchTopDown() const; + +  // Tries to match any yet unmapped nodes, in a bottom-up fashion. +  void matchBottomUp(Mapping &M) const; + +  const ComparisonOptions &Options; + +  friend class ZhangShashaMatcher; +}; + +/// Represents the AST of a TranslationUnit. +class SyntaxTree::Impl { +public: +  Impl(SyntaxTree *Parent, ASTContext &AST); +  /// Constructs a tree from an AST node. +  Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST); +  Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST); +  template <class T> +  Impl(SyntaxTree *Parent, +       typename std::enable_if<std::is_base_of<Stmt, T>::value, T>::type *Node, +       ASTContext &AST) +      : Impl(Parent, dyn_cast<Stmt>(Node), AST) {} +  template <class T> +  Impl(SyntaxTree *Parent, +       typename std::enable_if<std::is_base_of<Decl, T>::value, T>::type *Node, +       ASTContext &AST) +      : Impl(Parent, dyn_cast<Decl>(Node), AST) {} + +  SyntaxTree *Parent; +  ASTContext &AST; +  PrintingPolicy TypePP; +  /// Nodes in preorder. +  std::vector<Node> Nodes; +  std::vector<NodeId> Leaves; +  // Maps preorder indices to postorder ones. +  std::vector<int> PostorderIds; +  std::vector<NodeId> NodesBfs; + +  int getSize() const { return Nodes.size(); } +  NodeId getRootId() const { return 0; } +  PreorderIterator begin() const { return getRootId(); } +  PreorderIterator end() const { return getSize(); } + +  const Node &getNode(NodeId Id) const { return Nodes[Id]; } +  Node &getMutableNode(NodeId Id) { return Nodes[Id]; } +  bool isValidNodeId(NodeId Id) const { return Id >= 0 && Id < getSize(); } +  void addNode(Node &N) { Nodes.push_back(N); } +  int getNumberOfDescendants(NodeId Id) const; +  bool isInSubtree(NodeId Id, NodeId SubtreeRoot) const; +  int findPositionInParent(NodeId Id, bool Shifted = false) const; + +  std::string getRelativeName(const NamedDecl *ND, +                              const DeclContext *Context) const; +  std::string getRelativeName(const NamedDecl *ND) const; + +  std::string getNodeValue(NodeId Id) const; +  std::string getNodeValue(const Node &Node) const; +  std::string getDeclValue(const Decl *D) const; +  std::string getStmtValue(const Stmt *S) const; + +private: +  void initTree(); +  void setLeftMostDescendants(); +}; + +static bool isSpecializedNodeExcluded(const Decl *D) { return D->isImplicit(); } +static bool isSpecializedNodeExcluded(const Stmt *S) { return false; } +static bool isSpecializedNodeExcluded(CXXCtorInitializer *I) { +  return !I->isWritten(); +} + +template <class T> +static bool isNodeExcluded(const SourceManager &SrcMgr, T *N) { +  if (!N) +    return true; +  SourceLocation SLoc = N->getSourceRange().getBegin(); +  if (SLoc.isValid()) { +    // Ignore everything from other files. +    if (!SrcMgr.isInMainFile(SLoc)) +      return true; +    // Ignore macros. +    if (SLoc != SrcMgr.getSpellingLoc(SLoc)) +      return true; +  } +  return isSpecializedNodeExcluded(N); +} + +namespace { +// Sets Height, Parent and Children for each node. +struct PreorderVisitor : public RecursiveASTVisitor<PreorderVisitor> { +  int Id = 0, Depth = 0; +  NodeId Parent; +  SyntaxTree::Impl &Tree; + +  PreorderVisitor(SyntaxTree::Impl &Tree) : Tree(Tree) {} + +  template <class T> std::tuple<NodeId, NodeId> PreTraverse(T *ASTNode) { +    NodeId MyId = Id; +    Tree.Nodes.emplace_back(); +    Node &N = Tree.getMutableNode(MyId); +    N.Parent = Parent; +    N.Depth = Depth; +    N.ASTNode = DynTypedNode::create(*ASTNode); +    assert(!N.ASTNode.getNodeKind().isNone() && +           "Expected nodes to have a valid kind."); +    if (Parent.isValid()) { +      Node &P = Tree.getMutableNode(Parent); +      P.Children.push_back(MyId); +    } +    Parent = MyId; +    ++Id; +    ++Depth; +    return std::make_tuple(MyId, Tree.getNode(MyId).Parent); +  } +  void PostTraverse(std::tuple<NodeId, NodeId> State) { +    NodeId MyId, PreviousParent; +    std::tie(MyId, PreviousParent) = State; +    assert(MyId.isValid() && "Expecting to only traverse valid nodes."); +    Parent = PreviousParent; +    --Depth; +    Node &N = Tree.getMutableNode(MyId); +    N.RightMostDescendant = Id - 1; +    assert(N.RightMostDescendant >= 0 && +           N.RightMostDescendant < Tree.getSize() && +           "Rightmost descendant must be a valid tree node."); +    if (N.isLeaf()) +      Tree.Leaves.push_back(MyId); +    N.Height = 1; +    for (NodeId Child : N.Children) +      N.Height = std::max(N.Height, 1 + Tree.getNode(Child).Height); +  } +  bool TraverseDecl(Decl *D) { +    if (isNodeExcluded(Tree.AST.getSourceManager(), D)) +      return true; +    auto SavedState = PreTraverse(D); +    RecursiveASTVisitor<PreorderVisitor>::TraverseDecl(D); +    PostTraverse(SavedState); +    return true; +  } +  bool TraverseStmt(Stmt *S) { +    if (S) +      S = S->IgnoreImplicit(); +    if (isNodeExcluded(Tree.AST.getSourceManager(), S)) +      return true; +    auto SavedState = PreTraverse(S); +    RecursiveASTVisitor<PreorderVisitor>::TraverseStmt(S); +    PostTraverse(SavedState); +    return true; +  } +  bool TraverseType(QualType T) { return true; } +  bool TraverseConstructorInitializer(CXXCtorInitializer *Init) { +    if (isNodeExcluded(Tree.AST.getSourceManager(), Init)) +      return true; +    auto SavedState = PreTraverse(Init); +    RecursiveASTVisitor<PreorderVisitor>::TraverseConstructorInitializer(Init); +    PostTraverse(SavedState); +    return true; +  } +}; +} // end anonymous namespace + +SyntaxTree::Impl::Impl(SyntaxTree *Parent, ASTContext &AST) +    : Parent(Parent), AST(AST), TypePP(AST.getLangOpts()) { +  TypePP.AnonymousTagLocations = false; +} + +SyntaxTree::Impl::Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST) +    : Impl(Parent, AST) { +  PreorderVisitor PreorderWalker(*this); +  PreorderWalker.TraverseDecl(N); +  initTree(); +} + +SyntaxTree::Impl::Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST) +    : Impl(Parent, AST) { +  PreorderVisitor PreorderWalker(*this); +  PreorderWalker.TraverseStmt(N); +  initTree(); +} + +static std::vector<NodeId> getSubtreePostorder(const SyntaxTree::Impl &Tree, +                                               NodeId Root) { +  std::vector<NodeId> Postorder; +  std::function<void(NodeId)> Traverse = [&](NodeId Id) { +    const Node &N = Tree.getNode(Id); +    for (NodeId Child : N.Children) +      Traverse(Child); +    Postorder.push_back(Id); +  }; +  Traverse(Root); +  return Postorder; +} + +static std::vector<NodeId> getSubtreeBfs(const SyntaxTree::Impl &Tree, +                                         NodeId Root) { +  std::vector<NodeId> Ids; +  size_t Expanded = 0; +  Ids.push_back(Root); +  while (Expanded < Ids.size()) +    for (NodeId Child : Tree.getNode(Ids[Expanded++]).Children) +      Ids.push_back(Child); +  return Ids; +} + +void SyntaxTree::Impl::initTree() { +  setLeftMostDescendants(); +  int PostorderId = 0; +  PostorderIds.resize(getSize()); +  std::function<void(NodeId)> PostorderTraverse = [&](NodeId Id) { +    for (NodeId Child : getNode(Id).Children) +      PostorderTraverse(Child); +    PostorderIds[Id] = PostorderId; +    ++PostorderId; +  }; +  PostorderTraverse(getRootId()); +  NodesBfs = getSubtreeBfs(*this, getRootId()); +} + +void SyntaxTree::Impl::setLeftMostDescendants() { +  for (NodeId Leaf : Leaves) { +    getMutableNode(Leaf).LeftMostDescendant = Leaf; +    NodeId Parent, Cur = Leaf; +    while ((Parent = getNode(Cur).Parent).isValid() && +           getNode(Parent).Children[0] == Cur) { +      Cur = Parent; +      getMutableNode(Cur).LeftMostDescendant = Leaf; +    } +  } +} + +int SyntaxTree::Impl::getNumberOfDescendants(NodeId Id) const { +  return getNode(Id).RightMostDescendant - Id + 1; +} + +bool SyntaxTree::Impl::isInSubtree(NodeId Id, NodeId SubtreeRoot) const { +  return Id >= SubtreeRoot && Id <= getNode(SubtreeRoot).RightMostDescendant; +} + +int SyntaxTree::Impl::findPositionInParent(NodeId Id, bool Shifted) const { +  NodeId Parent = getNode(Id).Parent; +  if (Parent.isInvalid()) +    return 0; +  const auto &Siblings = getNode(Parent).Children; +  int Position = 0; +  for (size_t I = 0, E = Siblings.size(); I < E; ++I) { +    if (Shifted) +      Position += getNode(Siblings[I]).Shift; +    if (Siblings[I] == Id) { +      Position += I; +      return Position; +    } +  } +  llvm_unreachable("Node not found in parent's children."); +} + +// Returns the qualified name of ND. If it is subordinate to Context, +// then the prefix of the latter is removed from the returned value. +std::string +SyntaxTree::Impl::getRelativeName(const NamedDecl *ND, +                                  const DeclContext *Context) const { +  std::string Val = ND->getQualifiedNameAsString(); +  std::string ContextPrefix; +  if (!Context) +    return Val; +  if (auto *Namespace = dyn_cast<NamespaceDecl>(Context)) +    ContextPrefix = Namespace->getQualifiedNameAsString(); +  else if (auto *Record = dyn_cast<RecordDecl>(Context)) +    ContextPrefix = Record->getQualifiedNameAsString(); +  else if (AST.getLangOpts().CPlusPlus11) +    if (auto *Tag = dyn_cast<TagDecl>(Context)) +      ContextPrefix = Tag->getQualifiedNameAsString(); +  // Strip the qualifier, if Val refers to somthing in the current scope. +  // But leave one leading ':' in place, so that we know that this is a +  // relative path. +  if (!ContextPrefix.empty() && StringRef(Val).startswith(ContextPrefix)) +    Val = Val.substr(ContextPrefix.size() + 1); +  return Val; +} + +std::string SyntaxTree::Impl::getRelativeName(const NamedDecl *ND) const { +  return getRelativeName(ND, ND->getDeclContext()); +} + +static const DeclContext *getEnclosingDeclContext(ASTContext &AST, +                                                  const Stmt *S) { +  while (S) { +    const auto &Parents = AST.getParents(*S); +    if (Parents.empty()) +      return nullptr; +    const auto &P = Parents[0]; +    if (const auto *D = P.get<Decl>()) +      return D->getDeclContext(); +    S = P.get<Stmt>(); +  } +  return nullptr; +} + +static std::string getInitializerValue(const CXXCtorInitializer *Init, +                                       const PrintingPolicy &TypePP) { +  if (Init->isAnyMemberInitializer()) +    return Init->getAnyMember()->getName(); +  if (Init->isBaseInitializer()) +    return QualType(Init->getBaseClass(), 0).getAsString(TypePP); +  if (Init->isDelegatingInitializer()) +    return Init->getTypeSourceInfo()->getType().getAsString(TypePP); +  llvm_unreachable("Unknown initializer type"); +} + +std::string SyntaxTree::Impl::getNodeValue(NodeId Id) const { +  return getNodeValue(getNode(Id)); +} + +std::string SyntaxTree::Impl::getNodeValue(const Node &N) const { +  const DynTypedNode &DTN = N.ASTNode; +  if (auto *S = DTN.get<Stmt>()) +    return getStmtValue(S); +  if (auto *D = DTN.get<Decl>()) +    return getDeclValue(D); +  if (auto *Init = DTN.get<CXXCtorInitializer>()) +    return getInitializerValue(Init, TypePP); +  llvm_unreachable("Fatal: unhandled AST node.\n"); +} + +std::string SyntaxTree::Impl::getDeclValue(const Decl *D) const { +  std::string Value; +  if (auto *V = dyn_cast<ValueDecl>(D)) +    return getRelativeName(V) + "(" + V->getType().getAsString(TypePP) + ")"; +  if (auto *N = dyn_cast<NamedDecl>(D)) +    Value += getRelativeName(N) + ";"; +  if (auto *T = dyn_cast<TypedefNameDecl>(D)) +    return Value + T->getUnderlyingType().getAsString(TypePP) + ";"; +  if (auto *T = dyn_cast<TypeDecl>(D)) +    if (T->getTypeForDecl()) +      Value += +          T->getTypeForDecl()->getCanonicalTypeInternal().getAsString(TypePP) + +          ";"; +  if (auto *U = dyn_cast<UsingDirectiveDecl>(D)) +    return U->getNominatedNamespace()->getName(); +  if (auto *A = dyn_cast<AccessSpecDecl>(D)) { +    CharSourceRange Range(A->getSourceRange(), false); +    return Lexer::getSourceText(Range, AST.getSourceManager(), +                                AST.getLangOpts()); +  } +  return Value; +} + +std::string SyntaxTree::Impl::getStmtValue(const Stmt *S) const { +  if (auto *U = dyn_cast<UnaryOperator>(S)) +    return UnaryOperator::getOpcodeStr(U->getOpcode()); +  if (auto *B = dyn_cast<BinaryOperator>(S)) +    return B->getOpcodeStr(); +  if (auto *M = dyn_cast<MemberExpr>(S)) +    return getRelativeName(M->getMemberDecl()); +  if (auto *I = dyn_cast<IntegerLiteral>(S)) { +    SmallString<256> Str; +    I->getValue().toString(Str, /*Radix=*/10, /*Signed=*/false); +    return Str.str(); +  } +  if (auto *F = dyn_cast<FloatingLiteral>(S)) { +    SmallString<256> Str; +    F->getValue().toString(Str); +    return Str.str(); +  } +  if (auto *D = dyn_cast<DeclRefExpr>(S)) +    return getRelativeName(D->getDecl(), getEnclosingDeclContext(AST, S)); +  if (auto *String = dyn_cast<StringLiteral>(S)) +    return String->getString(); +  if (auto *B = dyn_cast<CXXBoolLiteralExpr>(S)) +    return B->getValue() ? "true" : "false"; +  return ""; +} + +/// Identifies a node in a subtree by its postorder offset, starting at 1. +struct SNodeId { +  int Id = 0; + +  explicit SNodeId(int Id) : Id(Id) {} +  explicit SNodeId() = default; + +  operator int() const { return Id; } +  SNodeId &operator++() { return ++Id, *this; } +  SNodeId &operator--() { return --Id, *this; } +  SNodeId operator+(int Other) const { return SNodeId(Id + Other); } +}; + +class Subtree { +private: +  /// The parent tree. +  const SyntaxTree::Impl &Tree; +  /// Maps SNodeIds to original ids. +  std::vector<NodeId> RootIds; +  /// Maps subtree nodes to their leftmost descendants wtihin the subtree. +  std::vector<SNodeId> LeftMostDescendants; + +public: +  std::vector<SNodeId> KeyRoots; + +  Subtree(const SyntaxTree::Impl &Tree, NodeId SubtreeRoot) : Tree(Tree) { +    RootIds = getSubtreePostorder(Tree, SubtreeRoot); +    int NumLeaves = setLeftMostDescendants(); +    computeKeyRoots(NumLeaves); +  } +  int getSize() const { return RootIds.size(); } +  NodeId getIdInRoot(SNodeId Id) const { +    assert(Id > 0 && Id <= getSize() && "Invalid subtree node index."); +    return RootIds[Id - 1]; +  } +  const Node &getNode(SNodeId Id) const { +    return Tree.getNode(getIdInRoot(Id)); +  } +  SNodeId getLeftMostDescendant(SNodeId Id) const { +    assert(Id > 0 && Id <= getSize() && "Invalid subtree node index."); +    return LeftMostDescendants[Id - 1]; +  } +  /// Returns the postorder index of the leftmost descendant in the subtree. +  NodeId getPostorderOffset() const { +    return Tree.PostorderIds[getIdInRoot(SNodeId(1))]; +  } +  std::string getNodeValue(SNodeId Id) const { +    return Tree.getNodeValue(getIdInRoot(Id)); +  } + +private: +  /// Returns the number of leafs in the subtree. +  int setLeftMostDescendants() { +    int NumLeaves = 0; +    LeftMostDescendants.resize(getSize()); +    for (int I = 0; I < getSize(); ++I) { +      SNodeId SI(I + 1); +      const Node &N = getNode(SI); +      NumLeaves += N.isLeaf(); +      assert(I == Tree.PostorderIds[getIdInRoot(SI)] - getPostorderOffset() && +             "Postorder traversal in subtree should correspond to traversal in " +             "the root tree by a constant offset."); +      LeftMostDescendants[I] = SNodeId(Tree.PostorderIds[N.LeftMostDescendant] - +                                       getPostorderOffset()); +    } +    return NumLeaves; +  } +  void computeKeyRoots(int Leaves) { +    KeyRoots.resize(Leaves); +    std::unordered_set<int> Visited; +    int K = Leaves - 1; +    for (SNodeId I(getSize()); I > 0; --I) { +      SNodeId LeftDesc = getLeftMostDescendant(I); +      if (Visited.count(LeftDesc)) +        continue; +      assert(K >= 0 && "K should be non-negative"); +      KeyRoots[K] = I; +      Visited.insert(LeftDesc); +      --K; +    } +  } +}; + +/// Implementation of Zhang and Shasha's Algorithm for tree edit distance. +/// Computes an optimal mapping between two trees using only insertion, +/// deletion and update as edit actions (similar to the Levenshtein distance). +class ZhangShashaMatcher { +  const ASTDiff::Impl &DiffImpl; +  Subtree S1; +  Subtree S2; +  std::unique_ptr<std::unique_ptr<double[]>[]> TreeDist, ForestDist; + +public: +  ZhangShashaMatcher(const ASTDiff::Impl &DiffImpl, const SyntaxTree::Impl &T1, +                     const SyntaxTree::Impl &T2, NodeId Id1, NodeId Id2) +      : DiffImpl(DiffImpl), S1(T1, Id1), S2(T2, Id2) { +    TreeDist = llvm::make_unique<std::unique_ptr<double[]>[]>( +        size_t(S1.getSize()) + 1); +    ForestDist = llvm::make_unique<std::unique_ptr<double[]>[]>( +        size_t(S1.getSize()) + 1); +    for (int I = 0, E = S1.getSize() + 1; I < E; ++I) { +      TreeDist[I] = llvm::make_unique<double[]>(size_t(S2.getSize()) + 1); +      ForestDist[I] = llvm::make_unique<double[]>(size_t(S2.getSize()) + 1); +    } +  } + +  std::vector<std::pair<NodeId, NodeId>> getMatchingNodes() { +    std::vector<std::pair<NodeId, NodeId>> Matches; +    std::vector<std::pair<SNodeId, SNodeId>> TreePairs; + +    computeTreeDist(); + +    bool RootNodePair = true; + +    TreePairs.emplace_back(SNodeId(S1.getSize()), SNodeId(S2.getSize())); + +    while (!TreePairs.empty()) { +      SNodeId LastRow, LastCol, FirstRow, FirstCol, Row, Col; +      std::tie(LastRow, LastCol) = TreePairs.back(); +      TreePairs.pop_back(); + +      if (!RootNodePair) { +        computeForestDist(LastRow, LastCol); +      } + +      RootNodePair = false; + +      FirstRow = S1.getLeftMostDescendant(LastRow); +      FirstCol = S2.getLeftMostDescendant(LastCol); + +      Row = LastRow; +      Col = LastCol; + +      while (Row > FirstRow || Col > FirstCol) { +        if (Row > FirstRow && +            ForestDist[Row - 1][Col] + 1 == ForestDist[Row][Col]) { +          --Row; +        } else if (Col > FirstCol && +                   ForestDist[Row][Col - 1] + 1 == ForestDist[Row][Col]) { +          --Col; +        } else { +          SNodeId LMD1 = S1.getLeftMostDescendant(Row); +          SNodeId LMD2 = S2.getLeftMostDescendant(Col); +          if (LMD1 == S1.getLeftMostDescendant(LastRow) && +              LMD2 == S2.getLeftMostDescendant(LastCol)) { +            NodeId Id1 = S1.getIdInRoot(Row); +            NodeId Id2 = S2.getIdInRoot(Col); +            assert(DiffImpl.isMatchingPossible(Id1, Id2) && +                   "These nodes must not be matched."); +            Matches.emplace_back(Id1, Id2); +            --Row; +            --Col; +          } else { +            TreePairs.emplace_back(Row, Col); +            Row = LMD1; +            Col = LMD2; +          } +        } +      } +    } +    return Matches; +  } + +private: +  /// We use a simple cost model for edit actions, which seems good enough. +  /// Simple cost model for edit actions. This seems to make the matching +  /// algorithm perform reasonably well. +  /// The values range between 0 and 1, or infinity if this edit action should +  /// always be avoided. +  static constexpr double DeletionCost = 1; +  static constexpr double InsertionCost = 1; + +  double getUpdateCost(SNodeId Id1, SNodeId Id2) { +    if (!DiffImpl.isMatchingPossible(S1.getIdInRoot(Id1), S2.getIdInRoot(Id2))) +      return std::numeric_limits<double>::max(); +    return S1.getNodeValue(Id1) != S2.getNodeValue(Id2); +  } + +  void computeTreeDist() { +    for (SNodeId Id1 : S1.KeyRoots) +      for (SNodeId Id2 : S2.KeyRoots) +        computeForestDist(Id1, Id2); +  } + +  void computeForestDist(SNodeId Id1, SNodeId Id2) { +    assert(Id1 > 0 && Id2 > 0 && "Expecting offsets greater than 0."); +    SNodeId LMD1 = S1.getLeftMostDescendant(Id1); +    SNodeId LMD2 = S2.getLeftMostDescendant(Id2); + +    ForestDist[LMD1][LMD2] = 0; +    for (SNodeId D1 = LMD1 + 1; D1 <= Id1; ++D1) { +      ForestDist[D1][LMD2] = ForestDist[D1 - 1][LMD2] + DeletionCost; +      for (SNodeId D2 = LMD2 + 1; D2 <= Id2; ++D2) { +        ForestDist[LMD1][D2] = ForestDist[LMD1][D2 - 1] + InsertionCost; +        SNodeId DLMD1 = S1.getLeftMostDescendant(D1); +        SNodeId DLMD2 = S2.getLeftMostDescendant(D2); +        if (DLMD1 == LMD1 && DLMD2 == LMD2) { +          double UpdateCost = getUpdateCost(D1, D2); +          ForestDist[D1][D2] = +              std::min({ForestDist[D1 - 1][D2] + DeletionCost, +                        ForestDist[D1][D2 - 1] + InsertionCost, +                        ForestDist[D1 - 1][D2 - 1] + UpdateCost}); +          TreeDist[D1][D2] = ForestDist[D1][D2]; +        } else { +          ForestDist[D1][D2] = +              std::min({ForestDist[D1 - 1][D2] + DeletionCost, +                        ForestDist[D1][D2 - 1] + InsertionCost, +                        ForestDist[DLMD1][DLMD2] + TreeDist[D1][D2]}); +        } +      } +    } +  } +}; + +ast_type_traits::ASTNodeKind Node::getType() const { +  return ASTNode.getNodeKind(); +} + +StringRef Node::getTypeLabel() const { return getType().asStringRef(); } + +llvm::Optional<std::string> Node::getQualifiedIdentifier() const { +  if (auto *ND = ASTNode.get<NamedDecl>()) { +    if (ND->getDeclName().isIdentifier()) +      return ND->getQualifiedNameAsString(); +  } +  return llvm::None; +} + +llvm::Optional<StringRef> Node::getIdentifier() const { +  if (auto *ND = ASTNode.get<NamedDecl>()) { +    if (ND->getDeclName().isIdentifier()) +      return ND->getName(); +  } +  return llvm::None; +} + +namespace { +// Compares nodes by their depth. +struct HeightLess { +  const SyntaxTree::Impl &Tree; +  HeightLess(const SyntaxTree::Impl &Tree) : Tree(Tree) {} +  bool operator()(NodeId Id1, NodeId Id2) const { +    return Tree.getNode(Id1).Height < Tree.getNode(Id2).Height; +  } +}; +} // end anonymous namespace + +namespace { +// Priority queue for nodes, sorted descendingly by their height. +class PriorityList { +  const SyntaxTree::Impl &Tree; +  HeightLess Cmp; +  std::vector<NodeId> Container; +  PriorityQueue<NodeId, std::vector<NodeId>, HeightLess> List; + +public: +  PriorityList(const SyntaxTree::Impl &Tree) +      : Tree(Tree), Cmp(Tree), List(Cmp, Container) {} + +  void push(NodeId id) { List.push(id); } + +  std::vector<NodeId> pop() { +    int Max = peekMax(); +    std::vector<NodeId> Result; +    if (Max == 0) +      return Result; +    while (peekMax() == Max) { +      Result.push_back(List.top()); +      List.pop(); +    } +    // TODO this is here to get a stable output, not a good heuristic +    std::sort(Result.begin(), Result.end()); +    return Result; +  } +  int peekMax() const { +    if (List.empty()) +      return 0; +    return Tree.getNode(List.top()).Height; +  } +  void open(NodeId Id) { +    for (NodeId Child : Tree.getNode(Id).Children) +      push(Child); +  } +}; +} // end anonymous namespace + +bool ASTDiff::Impl::identical(NodeId Id1, NodeId Id2) const { +  const Node &N1 = T1.getNode(Id1); +  const Node &N2 = T2.getNode(Id2); +  if (N1.Children.size() != N2.Children.size() || +      !isMatchingPossible(Id1, Id2) || +      T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) +    return false; +  for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id) +    if (!identical(N1.Children[Id], N2.Children[Id])) +      return false; +  return true; +} + +bool ASTDiff::Impl::isMatchingPossible(NodeId Id1, NodeId Id2) const { +  return Options.isMatchingAllowed(T1.getNode(Id1), T2.getNode(Id2)); +} + +bool ASTDiff::Impl::haveSameParents(const Mapping &M, NodeId Id1, +                                    NodeId Id2) const { +  NodeId P1 = T1.getNode(Id1).Parent; +  NodeId P2 = T2.getNode(Id2).Parent; +  return (P1.isInvalid() && P2.isInvalid()) || +         (P1.isValid() && P2.isValid() && M.getDst(P1) == P2); +} + +void ASTDiff::Impl::addOptimalMapping(Mapping &M, NodeId Id1, +                                      NodeId Id2) const { +  if (std::max(T1.getNumberOfDescendants(Id1), T2.getNumberOfDescendants(Id2)) > +      Options.MaxSize) +    return; +  ZhangShashaMatcher Matcher(*this, T1, T2, Id1, Id2); +  std::vector<std::pair<NodeId, NodeId>> R = Matcher.getMatchingNodes(); +  for (const auto Tuple : R) { +    NodeId Src = Tuple.first; +    NodeId Dst = Tuple.second; +    if (!M.hasSrc(Src) && !M.hasDst(Dst)) +      M.link(Src, Dst); +  } +} + +double ASTDiff::Impl::getJaccardSimilarity(const Mapping &M, NodeId Id1, +                                           NodeId Id2) const { +  int CommonDescendants = 0; +  const Node &N1 = T1.getNode(Id1); +  // Count the common descendants, excluding the subtree root. +  for (NodeId Src = Id1 + 1; Src <= N1.RightMostDescendant; ++Src) { +    NodeId Dst = M.getDst(Src); +    CommonDescendants += int(Dst.isValid() && T2.isInSubtree(Dst, Id2)); +  } +  // We need to subtract 1 to get the number of descendants excluding the root. +  double Denominator = T1.getNumberOfDescendants(Id1) - 1 + +                       T2.getNumberOfDescendants(Id2) - 1 - CommonDescendants; +  // CommonDescendants is less than the size of one subtree. +  assert(Denominator >= 0 && "Expected non-negative denominator."); +  if (Denominator == 0) +    return 0; +  return CommonDescendants / Denominator; +} + +NodeId ASTDiff::Impl::findCandidate(const Mapping &M, NodeId Id1) const { +  NodeId Candidate; +  double HighestSimilarity = 0.0; +  for (NodeId Id2 : T2) { +    if (!isMatchingPossible(Id1, Id2)) +      continue; +    if (M.hasDst(Id2)) +      continue; +    double Similarity = getJaccardSimilarity(M, Id1, Id2); +    if (Similarity >= Options.MinSimilarity && Similarity > HighestSimilarity) { +      HighestSimilarity = Similarity; +      Candidate = Id2; +    } +  } +  return Candidate; +} + +void ASTDiff::Impl::matchBottomUp(Mapping &M) const { +  std::vector<NodeId> Postorder = getSubtreePostorder(T1, T1.getRootId()); +  for (NodeId Id1 : Postorder) { +    if (Id1 == T1.getRootId() && !M.hasSrc(T1.getRootId()) && +        !M.hasDst(T2.getRootId())) { +      if (isMatchingPossible(T1.getRootId(), T2.getRootId())) { +        M.link(T1.getRootId(), T2.getRootId()); +        addOptimalMapping(M, T1.getRootId(), T2.getRootId()); +      } +      break; +    } +    bool Matched = M.hasSrc(Id1); +    const Node &N1 = T1.getNode(Id1); +    bool MatchedChildren = +        std::any_of(N1.Children.begin(), N1.Children.end(), +                    [&](NodeId Child) { return M.hasSrc(Child); }); +    if (Matched || !MatchedChildren) +      continue; +    NodeId Id2 = findCandidate(M, Id1); +    if (Id2.isValid()) { +      M.link(Id1, Id2); +      addOptimalMapping(M, Id1, Id2); +    } +  } +} + +Mapping ASTDiff::Impl::matchTopDown() const { +  PriorityList L1(T1); +  PriorityList L2(T2); + +  Mapping M(T1.getSize() + T2.getSize()); + +  L1.push(T1.getRootId()); +  L2.push(T2.getRootId()); + +  int Max1, Max2; +  while (std::min(Max1 = L1.peekMax(), Max2 = L2.peekMax()) > +         Options.MinHeight) { +    if (Max1 > Max2) { +      for (NodeId Id : L1.pop()) +        L1.open(Id); +      continue; +    } +    if (Max2 > Max1) { +      for (NodeId Id : L2.pop()) +        L2.open(Id); +      continue; +    } +    std::vector<NodeId> H1, H2; +    H1 = L1.pop(); +    H2 = L2.pop(); +    for (NodeId Id1 : H1) { +      for (NodeId Id2 : H2) { +        if (identical(Id1, Id2) && !M.hasSrc(Id1) && !M.hasDst(Id2)) { +          for (int I = 0, E = T1.getNumberOfDescendants(Id1); I < E; ++I) +            M.link(Id1 + I, Id2 + I); +        } +      } +    } +    for (NodeId Id1 : H1) { +      if (!M.hasSrc(Id1)) +        L1.open(Id1); +    } +    for (NodeId Id2 : H2) { +      if (!M.hasDst(Id2)) +        L2.open(Id2); +    } +  } +  return M; +} + +ASTDiff::Impl::Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2, +                    const ComparisonOptions &Options) +    : T1(T1), T2(T2), Options(Options) { +  computeMapping(); +  computeChangeKinds(TheMapping); +} + +void ASTDiff::Impl::computeMapping() { +  TheMapping = matchTopDown(); +  if (Options.StopAfterTopDown) +    return; +  matchBottomUp(TheMapping); +} + +void ASTDiff::Impl::computeChangeKinds(Mapping &M) { +  for (NodeId Id1 : T1) { +    if (!M.hasSrc(Id1)) { +      T1.getMutableNode(Id1).Change = Delete; +      T1.getMutableNode(Id1).Shift -= 1; +    } +  } +  for (NodeId Id2 : T2) { +    if (!M.hasDst(Id2)) { +      T2.getMutableNode(Id2).Change = Insert; +      T2.getMutableNode(Id2).Shift -= 1; +    } +  } +  for (NodeId Id1 : T1.NodesBfs) { +    NodeId Id2 = M.getDst(Id1); +    if (Id2.isInvalid()) +      continue; +    if (!haveSameParents(M, Id1, Id2) || +        T1.findPositionInParent(Id1, true) != +            T2.findPositionInParent(Id2, true)) { +      T1.getMutableNode(Id1).Shift -= 1; +      T2.getMutableNode(Id2).Shift -= 1; +    } +  } +  for (NodeId Id2 : T2.NodesBfs) { +    NodeId Id1 = M.getSrc(Id2); +    if (Id1.isInvalid()) +      continue; +    Node &N1 = T1.getMutableNode(Id1); +    Node &N2 = T2.getMutableNode(Id2); +    if (Id1.isInvalid()) +      continue; +    if (!haveSameParents(M, Id1, Id2) || +        T1.findPositionInParent(Id1, true) != +            T2.findPositionInParent(Id2, true)) { +      N1.Change = N2.Change = Move; +    } +    if (T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) { +      N1.Change = N2.Change = (N1.Change == Move ? UpdateMove : Update); +    } +  } +} + +ASTDiff::ASTDiff(SyntaxTree &T1, SyntaxTree &T2, +                 const ComparisonOptions &Options) +    : DiffImpl(llvm::make_unique<Impl>(*T1.TreeImpl, *T2.TreeImpl, Options)) {} + +ASTDiff::~ASTDiff() = default; + +NodeId ASTDiff::getMapped(const SyntaxTree &SourceTree, NodeId Id) const { +  return DiffImpl->getMapped(SourceTree.TreeImpl, Id); +} + +SyntaxTree::SyntaxTree(ASTContext &AST) +    : TreeImpl(llvm::make_unique<SyntaxTree::Impl>( +          this, AST.getTranslationUnitDecl(), AST)) {} + +SyntaxTree::~SyntaxTree() = default; + +const ASTContext &SyntaxTree::getASTContext() const { return TreeImpl->AST; } + +const Node &SyntaxTree::getNode(NodeId Id) const { +  return TreeImpl->getNode(Id); +} + +int SyntaxTree::getSize() const { return TreeImpl->getSize(); } +NodeId SyntaxTree::getRootId() const { return TreeImpl->getRootId(); } +SyntaxTree::PreorderIterator SyntaxTree::begin() const { +  return TreeImpl->begin(); +} +SyntaxTree::PreorderIterator SyntaxTree::end() const { return TreeImpl->end(); } + +int SyntaxTree::findPositionInParent(NodeId Id) const { +  return TreeImpl->findPositionInParent(Id); +} + +std::pair<unsigned, unsigned> +SyntaxTree::getSourceRangeOffsets(const Node &N) const { +  const SourceManager &SrcMgr = TreeImpl->AST.getSourceManager(); +  SourceRange Range = N.ASTNode.getSourceRange(); +  SourceLocation BeginLoc = Range.getBegin(); +  SourceLocation EndLoc = Lexer::getLocForEndOfToken( +      Range.getEnd(), /*Offset=*/0, SrcMgr, TreeImpl->AST.getLangOpts()); +  if (auto *ThisExpr = N.ASTNode.get<CXXThisExpr>()) { +    if (ThisExpr->isImplicit()) +      EndLoc = BeginLoc; +  } +  unsigned Begin = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(BeginLoc)); +  unsigned End = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(EndLoc)); +  return {Begin, End}; +} + +std::string SyntaxTree::getNodeValue(NodeId Id) const { +  return TreeImpl->getNodeValue(Id); +} + +std::string SyntaxTree::getNodeValue(const Node &N) const { +  return TreeImpl->getNodeValue(N); +} + +} // end namespace diff +} // end namespace clang  | 
