diff options
Diffstat (limited to 'lib/Transforms/IPO/CalledValuePropagation.cpp')
-rw-r--r-- | lib/Transforms/IPO/CalledValuePropagation.cpp | 423 |
1 files changed, 423 insertions, 0 deletions
diff --git a/lib/Transforms/IPO/CalledValuePropagation.cpp b/lib/Transforms/IPO/CalledValuePropagation.cpp new file mode 100644 index 000000000000..c5f6336aa2be --- /dev/null +++ b/lib/Transforms/IPO/CalledValuePropagation.cpp @@ -0,0 +1,423 @@ +//===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements a transformation that attaches !callees metadata to +// indirect call sites. For a given call site, the metadata, if present, +// indicates the set of functions the call site could possibly target at +// run-time. This metadata is added to indirect call sites when the set of +// possible targets can be determined by analysis and is known to be small. The +// analysis driving the transformation is similar to constant propagation and +// makes uses of the generic sparse propagation solver. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/IPO/CalledValuePropagation.h" +#include "llvm/Analysis/SparsePropagation.h" +#include "llvm/Analysis/ValueLatticeUtils.h" +#include "llvm/IR/InstVisitor.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/Transforms/IPO.h" +using namespace llvm; + +#define DEBUG_TYPE "called-value-propagation" + +/// The maximum number of functions to track per lattice value. Once the number +/// of functions a call site can possibly target exceeds this threshold, it's +/// lattice value becomes overdefined. The number of possible lattice values is +/// bounded by Ch(F, M), where F is the number of functions in the module and M +/// is MaxFunctionsPerValue. As such, this value should be kept very small. We +/// likely can't do anything useful for call sites with a large number of +/// possible targets, anyway. +static cl::opt<unsigned> MaxFunctionsPerValue( + "cvp-max-functions-per-value", cl::Hidden, cl::init(4), + cl::desc("The maximum number of functions to track per lattice value")); + +namespace { +/// To enable interprocedural analysis, we assign LLVM values to the following +/// groups. The register group represents SSA registers, the return group +/// represents the return values of functions, and the memory group represents +/// in-memory values. An LLVM Value can technically be in more than one group. +/// It's necessary to distinguish these groups so we can, for example, track a +/// global variable separately from the value stored at its location. +enum class IPOGrouping { Register, Return, Memory }; + +/// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings. +using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>; + +/// The lattice value type used by our custom lattice function. It holds the +/// lattice state, and a set of functions. +class CVPLatticeVal { +public: + /// The states of the lattice values. Only the FunctionSet state is + /// interesting. It indicates the set of functions to which an LLVM value may + /// refer. + enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked }; + + /// Comparator for sorting the functions set. We want to keep the order + /// deterministic for testing, etc. + struct Compare { + bool operator()(const Function *LHS, const Function *RHS) const { + return LHS->getName() < RHS->getName(); + } + }; + + CVPLatticeVal() : LatticeState(Undefined) {} + CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {} + CVPLatticeVal(std::set<Function *, Compare> &&Functions) + : LatticeState(FunctionSet), Functions(Functions) {} + + /// Get a reference to the functions held by this lattice value. The number + /// of functions will be zero for states other than FunctionSet. + const std::set<Function *, Compare> &getFunctions() const { + return Functions; + } + + /// Returns true if the lattice value is in the FunctionSet state. + bool isFunctionSet() const { return LatticeState == FunctionSet; } + + bool operator==(const CVPLatticeVal &RHS) const { + return LatticeState == RHS.LatticeState && Functions == RHS.Functions; + } + + bool operator!=(const CVPLatticeVal &RHS) const { + return LatticeState != RHS.LatticeState || Functions != RHS.Functions; + } + +private: + /// Holds the state this lattice value is in. + CVPLatticeStateTy LatticeState; + + /// Holds functions indicating the possible targets of call sites. This set + /// is empty for lattice values in the undefined, overdefined, and untracked + /// states. The maximum size of the set is controlled by + /// MaxFunctionsPerValue. Since most LLVM values are expected to be in + /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be + /// small and efficiently copyable. + std::set<Function *, Compare> Functions; +}; + +/// The custom lattice function used by the generic sparse propagation solver. +/// It handles merging lattice values and computing new lattice values for +/// constants, arguments, values returned from trackable functions, and values +/// located in trackable global variables. It also computes the lattice values +/// that change as a result of executing instructions. +class CVPLatticeFunc + : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> { +public: + CVPLatticeFunc() + : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined), + CVPLatticeVal(CVPLatticeVal::Overdefined), + CVPLatticeVal(CVPLatticeVal::Untracked)) {} + + /// Compute and return a CVPLatticeVal for the given CVPLatticeKey. + CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override { + switch (Key.getInt()) { + case IPOGrouping::Register: + if (isa<Instruction>(Key.getPointer())) { + return getUndefVal(); + } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) { + if (canTrackArgumentsInterprocedurally(A->getParent())) + return getUndefVal(); + } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) { + return computeConstant(C); + } + return getOverdefinedVal(); + case IPOGrouping::Memory: + case IPOGrouping::Return: + if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) { + if (canTrackGlobalVariableInterprocedurally(GV)) + return computeConstant(GV->getInitializer()); + } else if (auto *F = cast<Function>(Key.getPointer())) + if (canTrackReturnsInterprocedurally(F)) + return getUndefVal(); + } + return getOverdefinedVal(); + } + + /// Merge the two given lattice values. The interesting cases are merging two + /// FunctionSet values and a FunctionSet value with an Undefined value. For + /// these cases, we simply union the function sets. If the size of the union + /// is greater than the maximum functions we track, the merged value is + /// overdefined. + CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override { + if (X == getOverdefinedVal() || Y == getOverdefinedVal()) + return getOverdefinedVal(); + if (X == getUndefVal() && Y == getUndefVal()) + return getUndefVal(); + std::set<Function *, CVPLatticeVal::Compare> Union; + std::set_union(X.getFunctions().begin(), X.getFunctions().end(), + Y.getFunctions().begin(), Y.getFunctions().end(), + std::inserter(Union, Union.begin()), + CVPLatticeVal::Compare{}); + if (Union.size() > MaxFunctionsPerValue) + return getOverdefinedVal(); + return CVPLatticeVal(std::move(Union)); + } + + /// Compute the lattice values that change as a result of executing the given + /// instruction. The changed values are stored in \p ChangedValues. We handle + /// just a few kinds of instructions since we're only propagating values that + /// can be called. + void ComputeInstructionState( + Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, + SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override { + switch (I.getOpcode()) { + case Instruction::Call: + return visitCallSite(cast<CallInst>(&I), ChangedValues, SS); + case Instruction::Invoke: + return visitCallSite(cast<InvokeInst>(&I), ChangedValues, SS); + case Instruction::Load: + return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS); + case Instruction::Ret: + return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS); + case Instruction::Select: + return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS); + case Instruction::Store: + return visitStore(*cast<StoreInst>(&I), ChangedValues, SS); + default: + return visitInst(I, ChangedValues, SS); + } + } + + /// Print the given CVPLatticeVal to the specified stream. + void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override { + if (LV == getUndefVal()) + OS << "Undefined "; + else if (LV == getOverdefinedVal()) + OS << "Overdefined"; + else if (LV == getUntrackedVal()) + OS << "Untracked "; + else + OS << "FunctionSet"; + } + + /// Print the given CVPLatticeKey to the specified stream. + void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override { + if (Key.getInt() == IPOGrouping::Register) + OS << "<reg> "; + else if (Key.getInt() == IPOGrouping::Memory) + OS << "<mem> "; + else if (Key.getInt() == IPOGrouping::Return) + OS << "<ret> "; + if (isa<Function>(Key.getPointer())) + OS << Key.getPointer()->getName(); + else + OS << *Key.getPointer(); + } + + /// We collect a set of indirect calls when visiting call sites. This method + /// returns a reference to that set. + SmallPtrSetImpl<Instruction *> &getIndirectCalls() { return IndirectCalls; } + +private: + /// Holds the indirect calls we encounter during the analysis. We will attach + /// metadata to these calls after the analysis indicating the functions the + /// calls can possibly target. + SmallPtrSet<Instruction *, 32> IndirectCalls; + + /// Compute a new lattice value for the given constant. The constant, after + /// stripping any pointer casts, should be a Function. We ignore null + /// pointers as an optimization, since calling these values is undefined + /// behavior. + CVPLatticeVal computeConstant(Constant *C) { + if (isa<ConstantPointerNull>(C)) + return CVPLatticeVal(CVPLatticeVal::FunctionSet); + if (auto *F = dyn_cast<Function>(C->stripPointerCasts())) + return CVPLatticeVal({F}); + return getOverdefinedVal(); + } + + /// Handle return instructions. The function's return state is the merge of + /// the returned value state and the function's return state. + void visitReturn(ReturnInst &I, + DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, + SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { + Function *F = I.getParent()->getParent(); + if (F->getReturnType()->isVoidTy()) + return; + auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register); + auto RetF = CVPLatticeKey(F, IPOGrouping::Return); + ChangedValues[RetF] = + MergeValues(SS.getValueState(RegI), SS.getValueState(RetF)); + } + + /// Handle call sites. The state of a called function's formal arguments is + /// the merge of the argument state with the call sites corresponding actual + /// argument state. The call site state is the merge of the call site state + /// with the returned value state of the called function. + void visitCallSite(CallSite CS, + DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, + SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { + Function *F = CS.getCalledFunction(); + Instruction *I = CS.getInstruction(); + auto RegI = CVPLatticeKey(I, IPOGrouping::Register); + + // If this is an indirect call, save it so we can quickly revisit it when + // attaching metadata. + if (!F) + IndirectCalls.insert(I); + + // If we can't track the function's return values, there's nothing to do. + if (!F || !canTrackReturnsInterprocedurally(F)) { + ChangedValues[RegI] = getOverdefinedVal(); + return; + } + + // Inform the solver that the called function is executable, and perform + // the merges for the arguments and return value. + SS.MarkBlockExecutable(&F->front()); + auto RetF = CVPLatticeKey(F, IPOGrouping::Return); + for (Argument &A : F->args()) { + auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register); + auto RegActual = + CVPLatticeKey(CS.getArgument(A.getArgNo()), IPOGrouping::Register); + ChangedValues[RegFormal] = + MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual)); + } + ChangedValues[RegI] = + MergeValues(SS.getValueState(RegI), SS.getValueState(RetF)); + } + + /// Handle select instructions. The select instruction state is the merge the + /// true and false value states. + void visitSelect(SelectInst &I, + DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, + SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { + auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); + auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register); + auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register); + ChangedValues[RegI] = + MergeValues(SS.getValueState(RegT), SS.getValueState(RegF)); + } + + /// Handle load instructions. If the pointer operand of the load is a global + /// variable, we attempt to track the value. The loaded value state is the + /// merge of the loaded value state with the global variable state. + void visitLoad(LoadInst &I, + DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, + SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { + auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); + if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) { + auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory); + ChangedValues[RegI] = + MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV)); + } else { + ChangedValues[RegI] = getOverdefinedVal(); + } + } + + /// Handle store instructions. If the pointer operand of the store is a + /// global variable, we attempt to track the value. The global variable state + /// is the merge of the stored value state with the global variable state. + void visitStore(StoreInst &I, + DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, + SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { + auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand()); + if (!GV) + return; + auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register); + auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory); + ChangedValues[MemGV] = + MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV)); + } + + /// Handle all other instructions. All other instructions are marked + /// overdefined. + void visitInst(Instruction &I, + DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, + SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { + auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); + ChangedValues[RegI] = getOverdefinedVal(); + } +}; +} // namespace + +namespace llvm { +/// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver +/// must translate between LatticeKeys and LLVM Values when adding Values to +/// its work list and inspecting the state of control-flow related values. +template <> struct LatticeKeyInfo<CVPLatticeKey> { + static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) { + return Key.getPointer(); + } + static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) { + return CVPLatticeKey(V, IPOGrouping::Register); + } +}; +} // namespace llvm + +static bool runCVP(Module &M) { + // Our custom lattice function and generic sparse propagation solver. + CVPLatticeFunc Lattice; + SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice); + + // For each function in the module, if we can't track its arguments, let the + // generic solver assume it is executable. + for (Function &F : M) + if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F)) + Solver.MarkBlockExecutable(&F.front()); + + // Solver our custom lattice. In doing so, we will also build a set of + // indirect call sites. + Solver.Solve(); + + // Attach metadata to the indirect call sites that were collected indicating + // the set of functions they can possibly target. + bool Changed = false; + MDBuilder MDB(M.getContext()); + for (Instruction *C : Lattice.getIndirectCalls()) { + CallSite CS(C); + auto RegI = CVPLatticeKey(CS.getCalledValue(), IPOGrouping::Register); + CVPLatticeVal LV = Solver.getExistingValueState(RegI); + if (!LV.isFunctionSet() || LV.getFunctions().empty()) + continue; + MDNode *Callees = MDB.createCallees(SmallVector<Function *, 4>( + LV.getFunctions().begin(), LV.getFunctions().end())); + C->setMetadata(LLVMContext::MD_callees, Callees); + Changed = true; + } + + return Changed; +} + +PreservedAnalyses CalledValuePropagationPass::run(Module &M, + ModuleAnalysisManager &) { + runCVP(M); + return PreservedAnalyses::all(); +} + +namespace { +class CalledValuePropagationLegacyPass : public ModulePass { +public: + static char ID; + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesAll(); + } + + CalledValuePropagationLegacyPass() : ModulePass(ID) { + initializeCalledValuePropagationLegacyPassPass( + *PassRegistry::getPassRegistry()); + } + + bool runOnModule(Module &M) override { + if (skipModule(M)) + return false; + return runCVP(M); + } +}; +} // namespace + +char CalledValuePropagationLegacyPass::ID = 0; +INITIALIZE_PASS(CalledValuePropagationLegacyPass, "called-value-propagation", + "Called Value Propagation", false, false) + +ModulePass *llvm::createCalledValuePropagationPass() { + return new CalledValuePropagationLegacyPass(); +} |