summaryrefslogtreecommitdiff
path: root/lib/Transforms/IPO/IPConstantPropagation.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/IPO/IPConstantPropagation.cpp')
-rw-r--r--lib/Transforms/IPO/IPConstantPropagation.cpp277
1 files changed, 277 insertions, 0 deletions
diff --git a/lib/Transforms/IPO/IPConstantPropagation.cpp b/lib/Transforms/IPO/IPConstantPropagation.cpp
new file mode 100644
index 000000000000..2dc855824691
--- /dev/null
+++ b/lib/Transforms/IPO/IPConstantPropagation.cpp
@@ -0,0 +1,277 @@
+//===-- IPConstantPropagation.cpp - Propagate constants through calls -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass implements an _extremely_ simple interprocedural constant
+// propagation pass. It could certainly be improved in many different ways,
+// like using a worklist. This pass makes arguments dead, but does not remove
+// them. The existing dead argument elimination pass should be run after this
+// to clean up the mess.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "ipconstprop"
+#include "llvm/Transforms/IPO.h"
+#include "llvm/Constants.h"
+#include "llvm/Instructions.h"
+#include "llvm/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/SmallVector.h"
+using namespace llvm;
+
+STATISTIC(NumArgumentsProped, "Number of args turned into constants");
+STATISTIC(NumReturnValProped, "Number of return values turned into constants");
+
+namespace {
+ /// IPCP - The interprocedural constant propagation pass
+ ///
+ struct VISIBILITY_HIDDEN IPCP : public ModulePass {
+ static char ID; // Pass identification, replacement for typeid
+ IPCP() : ModulePass(&ID) {}
+
+ bool runOnModule(Module &M);
+ private:
+ bool PropagateConstantsIntoArguments(Function &F);
+ bool PropagateConstantReturn(Function &F);
+ };
+}
+
+char IPCP::ID = 0;
+static RegisterPass<IPCP>
+X("ipconstprop", "Interprocedural constant propagation");
+
+ModulePass *llvm::createIPConstantPropagationPass() { return new IPCP(); }
+
+bool IPCP::runOnModule(Module &M) {
+ bool Changed = false;
+ bool LocalChange = true;
+
+ // FIXME: instead of using smart algorithms, we just iterate until we stop
+ // making changes.
+ while (LocalChange) {
+ LocalChange = false;
+ for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
+ if (!I->isDeclaration()) {
+ // Delete any klingons.
+ I->removeDeadConstantUsers();
+ if (I->hasLocalLinkage())
+ LocalChange |= PropagateConstantsIntoArguments(*I);
+ Changed |= PropagateConstantReturn(*I);
+ }
+ Changed |= LocalChange;
+ }
+ return Changed;
+}
+
+/// PropagateConstantsIntoArguments - Look at all uses of the specified
+/// function. If all uses are direct call sites, and all pass a particular
+/// constant in for an argument, propagate that constant in as the argument.
+///
+bool IPCP::PropagateConstantsIntoArguments(Function &F) {
+ if (F.arg_empty() || F.use_empty()) return false; // No arguments? Early exit.
+
+ // For each argument, keep track of its constant value and whether it is a
+ // constant or not. The bool is driven to true when found to be non-constant.
+ SmallVector<std::pair<Constant*, bool>, 16> ArgumentConstants;
+ ArgumentConstants.resize(F.arg_size());
+
+ unsigned NumNonconstant = 0;
+ for (Value::use_iterator UI = F.use_begin(), E = F.use_end(); UI != E; ++UI) {
+ // Used by a non-instruction, or not the callee of a function, do not
+ // transform.
+ if (!isa<CallInst>(*UI) && !isa<InvokeInst>(*UI))
+ return false;
+
+ CallSite CS = CallSite::get(cast<Instruction>(*UI));
+ if (!CS.isCallee(UI))
+ return false;
+
+ // Check out all of the potentially constant arguments. Note that we don't
+ // inspect varargs here.
+ CallSite::arg_iterator AI = CS.arg_begin();
+ Function::arg_iterator Arg = F.arg_begin();
+ for (unsigned i = 0, e = ArgumentConstants.size(); i != e;
+ ++i, ++AI, ++Arg) {
+
+ // If this argument is known non-constant, ignore it.
+ if (ArgumentConstants[i].second)
+ continue;
+
+ Constant *C = dyn_cast<Constant>(*AI);
+ if (C && ArgumentConstants[i].first == 0) {
+ ArgumentConstants[i].first = C; // First constant seen.
+ } else if (C && ArgumentConstants[i].first == C) {
+ // Still the constant value we think it is.
+ } else if (*AI == &*Arg) {
+ // Ignore recursive calls passing argument down.
+ } else {
+ // Argument became non-constant. If all arguments are non-constant now,
+ // give up on this function.
+ if (++NumNonconstant == ArgumentConstants.size())
+ return false;
+ ArgumentConstants[i].second = true;
+ }
+ }
+ }
+
+ // If we got to this point, there is a constant argument!
+ assert(NumNonconstant != ArgumentConstants.size());
+ bool MadeChange = false;
+ Function::arg_iterator AI = F.arg_begin();
+ for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++AI) {
+ // Do we have a constant argument?
+ if (ArgumentConstants[i].second || AI->use_empty())
+ continue;
+
+ Value *V = ArgumentConstants[i].first;
+ if (V == 0) V = UndefValue::get(AI->getType());
+ AI->replaceAllUsesWith(V);
+ ++NumArgumentsProped;
+ MadeChange = true;
+ }
+ return MadeChange;
+}
+
+
+// Check to see if this function returns one or more constants. If so, replace
+// all callers that use those return values with the constant value. This will
+// leave in the actual return values and instructions, but deadargelim will
+// clean that up.
+//
+// Additionally if a function always returns one of its arguments directly,
+// callers will be updated to use the value they pass in directly instead of
+// using the return value.
+bool IPCP::PropagateConstantReturn(Function &F) {
+ if (F.getReturnType() == Type::VoidTy)
+ return false; // No return value.
+
+ // If this function could be overridden later in the link stage, we can't
+ // propagate information about its results into callers.
+ if (F.mayBeOverridden())
+ return false;
+
+ // Check to see if this function returns a constant.
+ SmallVector<Value *,4> RetVals;
+ const StructType *STy = dyn_cast<StructType>(F.getReturnType());
+ if (STy)
+ for (unsigned i = 0, e = STy->getNumElements(); i < e; ++i)
+ RetVals.push_back(UndefValue::get(STy->getElementType(i)));
+ else
+ RetVals.push_back(UndefValue::get(F.getReturnType()));
+
+ unsigned NumNonConstant = 0;
+ for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+ if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
+ for (unsigned i = 0, e = RetVals.size(); i != e; ++i) {
+ // Already found conflicting return values?
+ Value *RV = RetVals[i];
+ if (!RV)
+ continue;
+
+ // Find the returned value
+ Value *V;
+ if (!STy)
+ V = RI->getOperand(i);
+ else
+ V = FindInsertedValue(RI->getOperand(0), i);
+
+ if (V) {
+ // Ignore undefs, we can change them into anything
+ if (isa<UndefValue>(V))
+ continue;
+
+ // Try to see if all the rets return the same constant or argument.
+ if (isa<Constant>(V) || isa<Argument>(V)) {
+ if (isa<UndefValue>(RV)) {
+ // No value found yet? Try the current one.
+ RetVals[i] = V;
+ continue;
+ }
+ // Returning the same value? Good.
+ if (RV == V)
+ continue;
+ }
+ }
+ // Different or no known return value? Don't propagate this return
+ // value.
+ RetVals[i] = 0;
+ // All values non constant? Stop looking.
+ if (++NumNonConstant == RetVals.size())
+ return false;
+ }
+ }
+
+ // If we got here, the function returns at least one constant value. Loop
+ // over all users, replacing any uses of the return value with the returned
+ // constant.
+ bool MadeChange = false;
+ for (Value::use_iterator UI = F.use_begin(), E = F.use_end(); UI != E; ++UI) {
+ CallSite CS = CallSite::get(*UI);
+ Instruction* Call = CS.getInstruction();
+
+ // Not a call instruction or a call instruction that's not calling F
+ // directly?
+ if (!Call || !CS.isCallee(UI))
+ continue;
+
+ // Call result not used?
+ if (Call->use_empty())
+ continue;
+
+ MadeChange = true;
+
+ if (STy == 0) {
+ Value* New = RetVals[0];
+ if (Argument *A = dyn_cast<Argument>(New))
+ // Was an argument returned? Then find the corresponding argument in
+ // the call instruction and use that.
+ New = CS.getArgument(A->getArgNo());
+ Call->replaceAllUsesWith(New);
+ continue;
+ }
+
+ for (Value::use_iterator I = Call->use_begin(), E = Call->use_end();
+ I != E;) {
+ Instruction *Ins = dyn_cast<Instruction>(*I);
+
+ // Increment now, so we can remove the use
+ ++I;
+
+ // Not an instruction? Ignore
+ if (!Ins)
+ continue;
+
+ // Find the index of the retval to replace with
+ int index = -1;
+ if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Ins))
+ if (EV->hasIndices())
+ index = *EV->idx_begin();
+
+ // If this use uses a specific return value, and we have a replacement,
+ // replace it.
+ if (index != -1) {
+ Value *New = RetVals[index];
+ if (New) {
+ if (Argument *A = dyn_cast<Argument>(New))
+ // Was an argument returned? Then find the corresponding argument in
+ // the call instruction and use that.
+ New = CS.getArgument(A->getArgNo());
+ Ins->replaceAllUsesWith(New);
+ Ins->eraseFromParent();
+ }
+ }
+ }
+ }
+
+ if (MadeChange) ++NumReturnValProped;
+ return MadeChange;
+}