summaryrefslogtreecommitdiff
path: root/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/InstCombine/InstCombineMulDivRem.cpp')
-rw-r--r--lib/Transforms/InstCombine/InstCombineMulDivRem.cpp1229
1 files changed, 513 insertions, 716 deletions
diff --git a/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
index 541dde6c47d2..63761d427235 100644
--- a/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
+++ b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
@@ -33,6 +33,7 @@
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
+#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
@@ -94,115 +95,52 @@ static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC,
return MadeChange ? V : nullptr;
}
-/// True if the multiply can not be expressed in an int this size.
-static bool MultiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
- bool IsSigned) {
- bool Overflow;
- if (IsSigned)
- Product = C1.smul_ov(C2, Overflow);
- else
- Product = C1.umul_ov(C2, Overflow);
-
- return Overflow;
-}
-
-/// \brief True if C2 is a multiple of C1. Quotient contains C2/C1.
-static bool IsMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
- bool IsSigned) {
- assert(C1.getBitWidth() == C2.getBitWidth() &&
- "Inconsistent width of constants!");
-
- // Bail if we will divide by zero.
- if (C2.isMinValue())
- return false;
-
- // Bail if we would divide INT_MIN by -1.
- if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue())
- return false;
-
- APInt Remainder(C1.getBitWidth(), /*Val=*/0ULL, IsSigned);
- if (IsSigned)
- APInt::sdivrem(C1, C2, Quotient, Remainder);
- else
- APInt::udivrem(C1, C2, Quotient, Remainder);
-
- return Remainder.isMinValue();
-}
-
-/// \brief A helper routine of InstCombiner::visitMul().
+/// A helper routine of InstCombiner::visitMul().
///
-/// If C is a vector of known powers of 2, then this function returns
-/// a new vector obtained from C replacing each element with its logBase2.
+/// If C is a scalar/vector of known powers of 2, then this function returns
+/// a new scalar/vector obtained from logBase2 of C.
/// Return a null pointer otherwise.
-static Constant *getLogBase2Vector(ConstantDataVector *CV) {
+static Constant *getLogBase2(Type *Ty, Constant *C) {
const APInt *IVal;
- SmallVector<Constant *, 4> Elts;
+ if (match(C, m_APInt(IVal)) && IVal->isPowerOf2())
+ return ConstantInt::get(Ty, IVal->logBase2());
+
+ if (!Ty->isVectorTy())
+ return nullptr;
- for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
- Constant *Elt = CV->getElementAsConstant(I);
+ SmallVector<Constant *, 4> Elts;
+ for (unsigned I = 0, E = Ty->getVectorNumElements(); I != E; ++I) {
+ Constant *Elt = C->getAggregateElement(I);
+ if (!Elt)
+ return nullptr;
+ if (isa<UndefValue>(Elt)) {
+ Elts.push_back(UndefValue::get(Ty->getScalarType()));
+ continue;
+ }
if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
return nullptr;
- Elts.push_back(ConstantInt::get(Elt->getType(), IVal->logBase2()));
+ Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2()));
}
return ConstantVector::get(Elts);
}
-/// \brief Return true if we can prove that:
-/// (mul LHS, RHS) === (mul nsw LHS, RHS)
-bool InstCombiner::willNotOverflowSignedMul(const Value *LHS,
- const Value *RHS,
- const Instruction &CxtI) const {
- // Multiplying n * m significant bits yields a result of n + m significant
- // bits. If the total number of significant bits does not exceed the
- // result bit width (minus 1), there is no overflow.
- // This means if we have enough leading sign bits in the operands
- // we can guarantee that the result does not overflow.
- // Ref: "Hacker's Delight" by Henry Warren
- unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
-
- // Note that underestimating the number of sign bits gives a more
- // conservative answer.
- unsigned SignBits =
- ComputeNumSignBits(LHS, 0, &CxtI) + ComputeNumSignBits(RHS, 0, &CxtI);
-
- // First handle the easy case: if we have enough sign bits there's
- // definitely no overflow.
- if (SignBits > BitWidth + 1)
- return true;
-
- // There are two ambiguous cases where there can be no overflow:
- // SignBits == BitWidth + 1 and
- // SignBits == BitWidth
- // The second case is difficult to check, therefore we only handle the
- // first case.
- if (SignBits == BitWidth + 1) {
- // It overflows only when both arguments are negative and the true
- // product is exactly the minimum negative number.
- // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
- // For simplicity we just check if at least one side is not negative.
- KnownBits LHSKnown = computeKnownBits(LHS, /*Depth=*/0, &CxtI);
- KnownBits RHSKnown = computeKnownBits(RHS, /*Depth=*/0, &CxtI);
- if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
- return true;
- }
- return false;
-}
-
Instruction *InstCombiner::visitMul(BinaryOperator &I) {
- bool Changed = SimplifyAssociativeOrCommutative(I);
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- if (Value *V = SimplifyVectorOp(I))
+ if (Value *V = SimplifyMulInst(I.getOperand(0), I.getOperand(1),
+ SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
- if (Value *V = SimplifyMulInst(Op0, Op1, SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
+ if (SimplifyAssociativeOrCommutative(I))
+ return &I;
+
+ if (Instruction *X = foldShuffledBinop(I))
+ return X;
if (Value *V = SimplifyUsingDistributiveLaws(I))
return replaceInstUsesWith(I, V);
// X * -1 == 0 - X
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (match(Op1, m_AllOnes())) {
BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
if (I.hasNoSignedWrap())
@@ -231,16 +169,8 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
}
if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
- Constant *NewCst = nullptr;
- if (match(C1, m_APInt(IVal)) && IVal->isPowerOf2())
- // Replace X*(2^C) with X << C, where C is either a scalar or a splat.
- NewCst = ConstantInt::get(NewOp->getType(), IVal->logBase2());
- else if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(C1))
- // Replace X*(2^C) with X << C, where C is a vector of known
- // constant powers of 2.
- NewCst = getLogBase2Vector(CV);
-
- if (NewCst) {
+ // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
+ if (Constant *NewCst = getLogBase2(NewOp->getType(), C1)) {
unsigned Width = NewCst->getType()->getPrimitiveSizeInBits();
BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
@@ -282,34 +212,37 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
}
}
+ if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
+ return FoldedMul;
+
// Simplify mul instructions with a constant RHS.
if (isa<Constant>(Op1)) {
- if (Instruction *FoldedMul = foldOpWithConstantIntoOperand(I))
- return FoldedMul;
-
// Canonicalize (X+C1)*CI -> X*CI+C1*CI.
- {
- Value *X;
- Constant *C1;
- if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
- Value *Mul = Builder.CreateMul(C1, Op1);
- // Only go forward with the transform if C1*CI simplifies to a tidier
- // constant.
- if (!match(Mul, m_Mul(m_Value(), m_Value())))
- return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul);
- }
+ Value *X;
+ Constant *C1;
+ if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
+ Value *Mul = Builder.CreateMul(C1, Op1);
+ // Only go forward with the transform if C1*CI simplifies to a tidier
+ // constant.
+ if (!match(Mul, m_Mul(m_Value(), m_Value())))
+ return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul);
}
}
- if (Value *Op0v = dyn_castNegVal(Op0)) { // -X * -Y = X*Y
- if (Value *Op1v = dyn_castNegVal(Op1)) {
- BinaryOperator *BO = BinaryOperator::CreateMul(Op0v, Op1v);
- if (I.hasNoSignedWrap() &&
- match(Op0, m_NSWSub(m_Value(), m_Value())) &&
- match(Op1, m_NSWSub(m_Value(), m_Value())))
- BO->setHasNoSignedWrap();
- return BO;
- }
+ // -X * C --> X * -C
+ Value *X, *Y;
+ Constant *Op1C;
+ if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
+ return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
+
+ // -X * -Y --> X * Y
+ if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
+ auto *NewMul = BinaryOperator::CreateMul(X, Y);
+ if (I.hasNoSignedWrap() &&
+ cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
+ cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
+ NewMul->setHasNoSignedWrap();
+ return NewMul;
}
// (X / Y) * Y = X - (X % Y)
@@ -371,28 +304,24 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
}
}
- // If one of the operands of the multiply is a cast from a boolean value, then
- // we know the bool is either zero or one, so this is a 'masking' multiply.
- // X * Y (where Y is 0 or 1) -> X & (0-Y)
- if (!I.getType()->isVectorTy()) {
- // -2 is "-1 << 1" so it is all bits set except the low one.
- APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
-
- Value *BoolCast = nullptr, *OtherOp = nullptr;
- if (MaskedValueIsZero(Op0, Negative2, 0, &I)) {
- BoolCast = Op0;
- OtherOp = Op1;
- } else if (MaskedValueIsZero(Op1, Negative2, 0, &I)) {
- BoolCast = Op1;
- OtherOp = Op0;
- }
-
- if (BoolCast) {
- Value *V = Builder.CreateSub(Constant::getNullValue(I.getType()),
- BoolCast);
- return BinaryOperator::CreateAnd(V, OtherOp);
- }
- }
+ // (bool X) * Y --> X ? Y : 0
+ // Y * (bool X) --> X ? Y : 0
+ if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
+ return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0));
+ if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
+ return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0));
+
+ // (lshr X, 31) * Y --> (ashr X, 31) & Y
+ // Y * (lshr X, 31) --> (ashr X, 31) & Y
+ // TODO: We are not checking one-use because the elimination of the multiply
+ // is better for analysis?
+ // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be
+ // more similar to what we're doing above.
+ const APInt *C;
+ if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
+ return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1);
+ if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
+ return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0);
// Check for (mul (sext x), y), see if we can merge this into an
// integer mul followed by a sext.
@@ -466,6 +395,7 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
}
}
+ bool Changed = false;
if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) {
Changed = true;
I.setHasNoSignedWrap(true);
@@ -479,286 +409,103 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
return Changed ? &I : nullptr;
}
-/// Detect pattern log2(Y * 0.5) with corresponding fast math flags.
-static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) {
- if (!Op->hasOneUse())
- return;
-
- IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op);
- if (!II)
- return;
- if (II->getIntrinsicID() != Intrinsic::log2 || !II->isFast())
- return;
- Log2 = II;
-
- Value *OpLog2Of = II->getArgOperand(0);
- if (!OpLog2Of->hasOneUse())
- return;
-
- Instruction *I = dyn_cast<Instruction>(OpLog2Of);
- if (!I)
- return;
-
- if (I->getOpcode() != Instruction::FMul || !I->isFast())
- return;
-
- if (match(I->getOperand(0), m_SpecificFP(0.5)))
- Y = I->getOperand(1);
- else if (match(I->getOperand(1), m_SpecificFP(0.5)))
- Y = I->getOperand(0);
-}
-
-static bool isFiniteNonZeroFp(Constant *C) {
- if (C->getType()->isVectorTy()) {
- for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E;
- ++I) {
- ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(C->getAggregateElement(I));
- if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
- return false;
- }
- return true;
- }
-
- return isa<ConstantFP>(C) &&
- cast<ConstantFP>(C)->getValueAPF().isFiniteNonZero();
-}
-
-static bool isNormalFp(Constant *C) {
- if (C->getType()->isVectorTy()) {
- for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E;
- ++I) {
- ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(C->getAggregateElement(I));
- if (!CFP || !CFP->getValueAPF().isNormal())
- return false;
- }
- return true;
- }
-
- return isa<ConstantFP>(C) && cast<ConstantFP>(C)->getValueAPF().isNormal();
-}
-
-/// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns
-/// true iff the given value is FMul or FDiv with one and only one operand
-/// being a normal constant (i.e. not Zero/NaN/Infinity).
-static bool isFMulOrFDivWithConstant(Value *V) {
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I || (I->getOpcode() != Instruction::FMul &&
- I->getOpcode() != Instruction::FDiv))
- return false;
-
- Constant *C0 = dyn_cast<Constant>(I->getOperand(0));
- Constant *C1 = dyn_cast<Constant>(I->getOperand(1));
-
- if (C0 && C1)
- return false;
-
- return (C0 && isFiniteNonZeroFp(C0)) || (C1 && isFiniteNonZeroFp(C1));
-}
+Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
+ if (Value *V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1),
+ I.getFastMathFlags(),
+ SQ.getWithInstruction(&I)))
+ return replaceInstUsesWith(I, V);
-/// foldFMulConst() is a helper routine of InstCombiner::visitFMul().
-/// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand
-/// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true).
-/// This function is to simplify "FMulOrDiv * C" and returns the
-/// resulting expression. Note that this function could return NULL in
-/// case the constants cannot be folded into a normal floating-point.
-Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, Constant *C,
- Instruction *InsertBefore) {
- assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid");
-
- Value *Opnd0 = FMulOrDiv->getOperand(0);
- Value *Opnd1 = FMulOrDiv->getOperand(1);
-
- Constant *C0 = dyn_cast<Constant>(Opnd0);
- Constant *C1 = dyn_cast<Constant>(Opnd1);
-
- BinaryOperator *R = nullptr;
-
- // (X * C0) * C => X * (C0*C)
- if (FMulOrDiv->getOpcode() == Instruction::FMul) {
- Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C);
- if (isNormalFp(F))
- R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F);
- } else {
- if (C0) {
- // (C0 / X) * C => (C0 * C) / X
- if (FMulOrDiv->hasOneUse()) {
- // It would otherwise introduce another div.
- Constant *F = ConstantExpr::getFMul(C0, C);
- if (isNormalFp(F))
- R = BinaryOperator::CreateFDiv(F, Opnd1);
- }
- } else {
- // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal
- Constant *F = ConstantExpr::getFDiv(C, C1);
- if (isNormalFp(F)) {
- R = BinaryOperator::CreateFMul(Opnd0, F);
- } else {
- // (X / C1) * C => X / (C1/C)
- Constant *F = ConstantExpr::getFDiv(C1, C);
- if (isNormalFp(F))
- R = BinaryOperator::CreateFDiv(Opnd0, F);
- }
- }
- }
+ if (SimplifyAssociativeOrCommutative(I))
+ return &I;
- if (R) {
- R->setFast(true);
- InsertNewInstWith(R, *InsertBefore);
- }
+ if (Instruction *X = foldShuffledBinop(I))
+ return X;
- return R;
-}
+ if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
+ return FoldedMul;
-Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
- bool Changed = SimplifyAssociativeOrCommutative(I);
+ // X * -1.0 --> -X
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ if (match(Op1, m_SpecificFP(-1.0)))
+ return BinaryOperator::CreateFNegFMF(Op0, &I);
- if (Value *V = SimplifyVectorOp(I))
- return replaceInstUsesWith(I, V);
+ // -X * -Y --> X * Y
+ Value *X, *Y;
+ if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
+ return BinaryOperator::CreateFMulFMF(X, Y, &I);
- if (isa<Constant>(Op0))
- std::swap(Op0, Op1);
+ // -X * C --> X * -C
+ Constant *C;
+ if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
+ return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
- if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
+ // Sink negation: -X * Y --> -(X * Y)
+ if (match(Op0, m_OneUse(m_FNeg(m_Value(X)))))
+ return BinaryOperator::CreateFNegFMF(Builder.CreateFMulFMF(X, Op1, &I), &I);
- bool AllowReassociate = I.isFast();
+ // Sink negation: Y * -X --> -(X * Y)
+ if (match(Op1, m_OneUse(m_FNeg(m_Value(X)))))
+ return BinaryOperator::CreateFNegFMF(Builder.CreateFMulFMF(X, Op0, &I), &I);
- // Simplify mul instructions with a constant RHS.
- if (isa<Constant>(Op1)) {
- if (Instruction *FoldedMul = foldOpWithConstantIntoOperand(I))
- return FoldedMul;
-
- // (fmul X, -1.0) --> (fsub -0.0, X)
- if (match(Op1, m_SpecificFP(-1.0))) {
- Constant *NegZero = ConstantFP::getNegativeZero(Op1->getType());
- Instruction *RI = BinaryOperator::CreateFSub(NegZero, Op0);
- RI->copyFastMathFlags(&I);
- return RI;
- }
-
- Constant *C = cast<Constant>(Op1);
- if (AllowReassociate && isFiniteNonZeroFp(C)) {
- // Let MDC denote an expression in one of these forms:
- // X * C, C/X, X/C, where C is a constant.
- //
- // Try to simplify "MDC * Constant"
- if (isFMulOrFDivWithConstant(Op0))
- if (Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I))
- return replaceInstUsesWith(I, V);
-
- // (MDC +/- C1) * C => (MDC * C) +/- (C1 * C)
- Instruction *FAddSub = dyn_cast<Instruction>(Op0);
- if (FAddSub &&
- (FAddSub->getOpcode() == Instruction::FAdd ||
- FAddSub->getOpcode() == Instruction::FSub)) {
- Value *Opnd0 = FAddSub->getOperand(0);
- Value *Opnd1 = FAddSub->getOperand(1);
- Constant *C0 = dyn_cast<Constant>(Opnd0);
- Constant *C1 = dyn_cast<Constant>(Opnd1);
- bool Swap = false;
- if (C0) {
- std::swap(C0, C1);
- std::swap(Opnd0, Opnd1);
- Swap = true;
- }
+ // fabs(X) * fabs(X) -> X * X
+ if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::fabs>(m_Value(X))))
+ return BinaryOperator::CreateFMulFMF(X, X, &I);
- if (C1 && isFiniteNonZeroFp(C1) && isFMulOrFDivWithConstant(Opnd0)) {
- Value *M1 = ConstantExpr::getFMul(C1, C);
- Value *M0 = isNormalFp(cast<Constant>(M1)) ?
- foldFMulConst(cast<Instruction>(Opnd0), C, &I) :
- nullptr;
- if (M0 && M1) {
- if (Swap && FAddSub->getOpcode() == Instruction::FSub)
- std::swap(M0, M1);
-
- Instruction *RI = (FAddSub->getOpcode() == Instruction::FAdd)
- ? BinaryOperator::CreateFAdd(M0, M1)
- : BinaryOperator::CreateFSub(M0, M1);
- RI->copyFastMathFlags(&I);
- return RI;
- }
- }
- }
- }
- }
+ // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
+ if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
+ return replaceInstUsesWith(I, V);
- if (Op0 == Op1) {
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) {
- // sqrt(X) * sqrt(X) -> X
- if (AllowReassociate && II->getIntrinsicID() == Intrinsic::sqrt)
- return replaceInstUsesWith(I, II->getOperand(0));
-
- // fabs(X) * fabs(X) -> X * X
- if (II->getIntrinsicID() == Intrinsic::fabs) {
- Instruction *FMulVal = BinaryOperator::CreateFMul(II->getOperand(0),
- II->getOperand(0),
- I.getName());
- FMulVal->copyFastMathFlags(&I);
- return FMulVal;
+ if (I.hasAllowReassoc()) {
+ // Reassociate constant RHS with another constant to form constant
+ // expression.
+ if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
+ Constant *C1;
+ if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
+ // (C1 / X) * C --> (C * C1) / X
+ Constant *CC1 = ConstantExpr::getFMul(C, C1);
+ if (CC1->isNormalFP())
+ return BinaryOperator::CreateFDivFMF(CC1, X, &I);
}
- }
- }
-
- // Under unsafe algebra do:
- // X * log2(0.5*Y) = X*log2(Y) - X
- if (AllowReassociate) {
- Value *OpX = nullptr;
- Value *OpY = nullptr;
- IntrinsicInst *Log2;
- detectLog2OfHalf(Op0, OpY, Log2);
- if (OpY) {
- OpX = Op1;
- } else {
- detectLog2OfHalf(Op1, OpY, Log2);
- if (OpY) {
- OpX = Op0;
+ if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
+ // (X / C1) * C --> X * (C / C1)
+ Constant *CDivC1 = ConstantExpr::getFDiv(C, C1);
+ if (CDivC1->isNormalFP())
+ return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
+
+ // If the constant was a denormal, try reassociating differently.
+ // (X / C1) * C --> X / (C1 / C)
+ Constant *C1DivC = ConstantExpr::getFDiv(C1, C);
+ if (Op0->hasOneUse() && C1DivC->isNormalFP())
+ return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
}
- }
- // if pattern detected emit alternate sequence
- if (OpX && OpY) {
- BuilderTy::FastMathFlagGuard Guard(Builder);
- Builder.setFastMathFlags(Log2->getFastMathFlags());
- Log2->setArgOperand(0, OpY);
- Value *FMulVal = Builder.CreateFMul(OpX, Log2);
- Value *FSub = Builder.CreateFSub(FMulVal, OpX);
- FSub->takeName(&I);
- return replaceInstUsesWith(I, FSub);
- }
- }
- // Handle symmetric situation in a 2-iteration loop
- Value *Opnd0 = Op0;
- Value *Opnd1 = Op1;
- for (int i = 0; i < 2; i++) {
- bool IgnoreZeroSign = I.hasNoSignedZeros();
- if (BinaryOperator::isFNeg(Opnd0, IgnoreZeroSign)) {
- BuilderTy::FastMathFlagGuard Guard(Builder);
- Builder.setFastMathFlags(I.getFastMathFlags());
-
- Value *N0 = dyn_castFNegVal(Opnd0, IgnoreZeroSign);
- Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign);
-
- // -X * -Y => X*Y
- if (N1) {
- Value *FMul = Builder.CreateFMul(N0, N1);
- FMul->takeName(&I);
- return replaceInstUsesWith(I, FMul);
+ // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
+ // canonicalized to 'fadd X, C'. Distributing the multiply may allow
+ // further folds and (X * C) + C2 is 'fma'.
+ if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
+ // (X + C1) * C --> (X * C) + (C * C1)
+ Constant *CC1 = ConstantExpr::getFMul(C, C1);
+ Value *XC = Builder.CreateFMulFMF(X, C, &I);
+ return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
}
-
- if (Opnd0->hasOneUse()) {
- // -X * Y => -(X*Y) (Promote negation as high as possible)
- Value *T = Builder.CreateFMul(N0, Opnd1);
- Value *Neg = Builder.CreateFNeg(T);
- Neg->takeName(&I);
- return replaceInstUsesWith(I, Neg);
+ if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
+ // (C1 - X) * C --> (C * C1) - (X * C)
+ Constant *CC1 = ConstantExpr::getFMul(C, C1);
+ Value *XC = Builder.CreateFMulFMF(X, C, &I);
+ return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
}
}
- // Handle specials cases for FMul with selects feeding the operation
- if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
- return replaceInstUsesWith(I, V);
+ // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
+ // nnan disallows the possibility of returning a number if both operands are
+ // negative (in that case, we should return NaN).
+ if (I.hasNoNaNs() &&
+ match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) &&
+ match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
+ Value *XY = Builder.CreateFMulFMF(X, Y, &I);
+ Value *Sqrt = Builder.CreateIntrinsic(Intrinsic::sqrt, { XY }, &I);
+ return replaceInstUsesWith(I, Sqrt);
+ }
// (X*Y) * X => (X*X) * Y where Y != X
// The purpose is two-fold:
@@ -767,34 +514,40 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
// latency of the instruction Y is amortized by the expression of X*X,
// and therefore Y is in a "less critical" position compared to what it
// was before the transformation.
- if (AllowReassociate) {
- Value *Opnd0_0, *Opnd0_1;
- if (Opnd0->hasOneUse() &&
- match(Opnd0, m_FMul(m_Value(Opnd0_0), m_Value(Opnd0_1)))) {
- Value *Y = nullptr;
- if (Opnd0_0 == Opnd1 && Opnd0_1 != Opnd1)
- Y = Opnd0_1;
- else if (Opnd0_1 == Opnd1 && Opnd0_0 != Opnd1)
- Y = Opnd0_0;
-
- if (Y) {
- BuilderTy::FastMathFlagGuard Guard(Builder);
- Builder.setFastMathFlags(I.getFastMathFlags());
- Value *T = Builder.CreateFMul(Opnd1, Opnd1);
- Value *R = Builder.CreateFMul(T, Y);
- R->takeName(&I);
- return replaceInstUsesWith(I, R);
- }
- }
+ if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
+ Op1 != Y) {
+ Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
+ return BinaryOperator::CreateFMulFMF(XX, Y, &I);
+ }
+ if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
+ Op0 != Y) {
+ Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
+ return BinaryOperator::CreateFMulFMF(XX, Y, &I);
}
+ }
- if (!isa<Constant>(Op1))
- std::swap(Opnd0, Opnd1);
- else
- break;
+ // log2(X * 0.5) * Y = log2(X) * Y - Y
+ if (I.isFast()) {
+ IntrinsicInst *Log2 = nullptr;
+ if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
+ m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
+ Log2 = cast<IntrinsicInst>(Op0);
+ Y = Op1;
+ }
+ if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
+ m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
+ Log2 = cast<IntrinsicInst>(Op1);
+ Y = Op0;
+ }
+ if (Log2) {
+ Log2->setArgOperand(0, X);
+ Log2->copyFastMathFlags(&I);
+ Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
+ return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
+ }
}
- return Changed ? &I : nullptr;
+ return nullptr;
}
/// Fold a divide or remainder with a select instruction divisor when one of the
@@ -835,9 +588,9 @@ bool InstCombiner::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
Type *CondTy = SelectCond->getType();
while (BBI != BBFront) {
--BBI;
- // If we found a call to a function, we can't assume it will return, so
+ // If we found an instruction that we can't assume will return, so
// information from below it cannot be propagated above it.
- if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
+ if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
break;
// Replace uses of the select or its condition with the known values.
@@ -867,12 +620,44 @@ bool InstCombiner::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
return true;
}
+/// True if the multiply can not be expressed in an int this size.
+static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
+ bool IsSigned) {
+ bool Overflow;
+ Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
+ return Overflow;
+}
+
+/// True if C1 is a multiple of C2. Quotient contains C1/C2.
+static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
+ bool IsSigned) {
+ assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
+
+ // Bail if we will divide by zero.
+ if (C2.isNullValue())
+ return false;
+
+ // Bail if we would divide INT_MIN by -1.
+ if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue())
+ return false;
+
+ APInt Remainder(C1.getBitWidth(), /*Val=*/0ULL, IsSigned);
+ if (IsSigned)
+ APInt::sdivrem(C1, C2, Quotient, Remainder);
+ else
+ APInt::udivrem(C1, C2, Quotient, Remainder);
+
+ return Remainder.isMinValue();
+}
+
/// This function implements the transforms common to both integer division
/// instructions (udiv and sdiv). It is called by the visitors to those integer
/// division instructions.
-/// @brief Common integer divide transforms
+/// Common integer divide transforms
Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ bool IsSigned = I.getOpcode() == Instruction::SDiv;
+ Type *Ty = I.getType();
// The RHS is known non-zero.
if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
@@ -885,94 +670,87 @@ Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
if (simplifyDivRemOfSelectWithZeroOp(I))
return &I;
- if (Instruction *LHS = dyn_cast<Instruction>(Op0)) {
- const APInt *C2;
- if (match(Op1, m_APInt(C2))) {
- Value *X;
- const APInt *C1;
- bool IsSigned = I.getOpcode() == Instruction::SDiv;
-
- // (X / C1) / C2 -> X / (C1*C2)
- if ((IsSigned && match(LHS, m_SDiv(m_Value(X), m_APInt(C1)))) ||
- (!IsSigned && match(LHS, m_UDiv(m_Value(X), m_APInt(C1))))) {
- APInt Product(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
- if (!MultiplyOverflows(*C1, *C2, Product, IsSigned))
- return BinaryOperator::Create(I.getOpcode(), X,
- ConstantInt::get(I.getType(), Product));
- }
-
- if ((IsSigned && match(LHS, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
- (!IsSigned && match(LHS, m_NUWMul(m_Value(X), m_APInt(C1))))) {
- APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
+ const APInt *C2;
+ if (match(Op1, m_APInt(C2))) {
+ Value *X;
+ const APInt *C1;
+
+ // (X / C1) / C2 -> X / (C1*C2)
+ if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
+ (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
+ APInt Product(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
+ if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
+ return BinaryOperator::Create(I.getOpcode(), X,
+ ConstantInt::get(Ty, Product));
+ }
- // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
- if (IsMultiple(*C2, *C1, Quotient, IsSigned)) {
- BinaryOperator *BO = BinaryOperator::Create(
- I.getOpcode(), X, ConstantInt::get(X->getType(), Quotient));
- BO->setIsExact(I.isExact());
- return BO;
- }
+ if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
+ (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
+ APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
- // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
- if (IsMultiple(*C1, *C2, Quotient, IsSigned)) {
- BinaryOperator *BO = BinaryOperator::Create(
- Instruction::Mul, X, ConstantInt::get(X->getType(), Quotient));
- BO->setHasNoUnsignedWrap(
- !IsSigned &&
- cast<OverflowingBinaryOperator>(LHS)->hasNoUnsignedWrap());
- BO->setHasNoSignedWrap(
- cast<OverflowingBinaryOperator>(LHS)->hasNoSignedWrap());
- return BO;
- }
+ // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
+ if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
+ auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
+ ConstantInt::get(Ty, Quotient));
+ NewDiv->setIsExact(I.isExact());
+ return NewDiv;
}
- if ((IsSigned && match(LHS, m_NSWShl(m_Value(X), m_APInt(C1))) &&
- *C1 != C1->getBitWidth() - 1) ||
- (!IsSigned && match(LHS, m_NUWShl(m_Value(X), m_APInt(C1))))) {
- APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
- APInt C1Shifted = APInt::getOneBitSet(
- C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue()));
-
- // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of C1.
- if (IsMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
- BinaryOperator *BO = BinaryOperator::Create(
- I.getOpcode(), X, ConstantInt::get(X->getType(), Quotient));
- BO->setIsExact(I.isExact());
- return BO;
- }
+ // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
+ if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
+ auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
+ ConstantInt::get(Ty, Quotient));
+ auto *OBO = cast<OverflowingBinaryOperator>(Op0);
+ Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
+ Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
+ return Mul;
+ }
+ }
- // (X << C1) / C2 -> X * (C2 >> C1) if C1 is a multiple of C2.
- if (IsMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
- BinaryOperator *BO = BinaryOperator::Create(
- Instruction::Mul, X, ConstantInt::get(X->getType(), Quotient));
- BO->setHasNoUnsignedWrap(
- !IsSigned &&
- cast<OverflowingBinaryOperator>(LHS)->hasNoUnsignedWrap());
- BO->setHasNoSignedWrap(
- cast<OverflowingBinaryOperator>(LHS)->hasNoSignedWrap());
- return BO;
- }
+ if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
+ *C1 != C1->getBitWidth() - 1) ||
+ (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))))) {
+ APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
+ APInt C1Shifted = APInt::getOneBitSet(
+ C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue()));
+
+ // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
+ if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
+ auto *BO = BinaryOperator::Create(I.getOpcode(), X,
+ ConstantInt::get(Ty, Quotient));
+ BO->setIsExact(I.isExact());
+ return BO;
}
- if (!C2->isNullValue()) // avoid X udiv 0
- if (Instruction *FoldedDiv = foldOpWithConstantIntoOperand(I))
- return FoldedDiv;
+ // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
+ if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
+ auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
+ ConstantInt::get(Ty, Quotient));
+ auto *OBO = cast<OverflowingBinaryOperator>(Op0);
+ Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
+ Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
+ return Mul;
+ }
}
+
+ if (!C2->isNullValue()) // avoid X udiv 0
+ if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
+ return FoldedDiv;
}
if (match(Op0, m_One())) {
- assert(!I.getType()->isIntOrIntVectorTy(1) && "i1 divide not removed?");
- if (I.getOpcode() == Instruction::SDiv) {
+ assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
+ if (IsSigned) {
// If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
// result is one, if Op1 is -1 then the result is minus one, otherwise
// it's zero.
Value *Inc = Builder.CreateAdd(Op1, Op0);
- Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(I.getType(), 3));
- return SelectInst::Create(Cmp, Op1, ConstantInt::get(I.getType(), 0));
+ Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
+ return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0));
} else {
// If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
// result is one, otherwise it's zero.
- return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), I.getType());
+ return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
}
}
@@ -981,12 +759,28 @@ Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
return &I;
// (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
- Value *X = nullptr, *Z = nullptr;
- if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
- bool isSigned = I.getOpcode() == Instruction::SDiv;
- if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
- (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
+ Value *X, *Z;
+ if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
+ if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
+ (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
return BinaryOperator::Create(I.getOpcode(), X, Op1);
+
+ // (X << Y) / X -> 1 << Y
+ Value *Y;
+ if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
+ return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
+ if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
+ return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
+
+ // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
+ if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
+ bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
+ bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
+ if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
+ I.setOperand(0, ConstantInt::get(Ty, 1));
+ I.setOperand(1, Y);
+ return &I;
+ }
}
return nullptr;
@@ -1000,7 +794,7 @@ using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1,
const BinaryOperator &I,
InstCombiner &IC);
-/// \brief Used to maintain state for visitUDivOperand().
+/// Used to maintain state for visitUDivOperand().
struct UDivFoldAction {
/// Informs visitUDiv() how to fold this operand. This can be zero if this
/// action joins two actions together.
@@ -1028,23 +822,15 @@ struct UDivFoldAction {
// X udiv 2^C -> X >> C
static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
const BinaryOperator &I, InstCombiner &IC) {
- const APInt &C = cast<Constant>(Op1)->getUniqueInteger();
- BinaryOperator *LShr = BinaryOperator::CreateLShr(
- Op0, ConstantInt::get(Op0->getType(), C.logBase2()));
+ Constant *C1 = getLogBase2(Op0->getType(), cast<Constant>(Op1));
+ if (!C1)
+ llvm_unreachable("Failed to constant fold udiv -> logbase2");
+ BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1);
if (I.isExact())
LShr->setIsExact();
return LShr;
}
-// X udiv C, where C >= signbit
-static Instruction *foldUDivNegCst(Value *Op0, Value *Op1,
- const BinaryOperator &I, InstCombiner &IC) {
- Value *ICI = IC.Builder.CreateICmpULT(Op0, cast<ConstantInt>(Op1));
-
- return SelectInst::Create(ICI, Constant::getNullValue(I.getType()),
- ConstantInt::get(I.getType(), 1));
-}
-
// X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
// X udiv (zext (C1 << N)), where C1 is "1<<C2" --> X >> (N+C2)
static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
@@ -1053,12 +839,14 @@ static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
if (!match(Op1, m_ZExt(m_Value(ShiftLeft))))
ShiftLeft = Op1;
- const APInt *CI;
+ Constant *CI;
Value *N;
- if (!match(ShiftLeft, m_Shl(m_APInt(CI), m_Value(N))))
+ if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N))))
llvm_unreachable("match should never fail here!");
- if (*CI != 1)
- N = IC.Builder.CreateAdd(N, ConstantInt::get(N->getType(), CI->logBase2()));
+ Constant *Log2Base = getLogBase2(N->getType(), CI);
+ if (!Log2Base)
+ llvm_unreachable("getLogBase2 should never fail here!");
+ N = IC.Builder.CreateAdd(N, Log2Base);
if (Op1 != ShiftLeft)
N = IC.Builder.CreateZExt(N, Op1->getType());
BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
@@ -1067,7 +855,7 @@ static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
return LShr;
}
-// \brief Recursively visits the possible right hand operands of a udiv
+// Recursively visits the possible right hand operands of a udiv
// instruction, seeing through select instructions, to determine if we can
// replace the udiv with something simpler. If we find that an operand is not
// able to simplify the udiv, we abort the entire transformation.
@@ -1081,13 +869,6 @@ static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
return Actions.size();
}
- if (ConstantInt *C = dyn_cast<ConstantInt>(Op1))
- // X udiv C, where C >= signbit
- if (C->getValue().isNegative()) {
- Actions.push_back(UDivFoldAction(foldUDivNegCst, C));
- return Actions.size();
- }
-
// X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
@@ -1148,40 +929,65 @@ static Instruction *narrowUDivURem(BinaryOperator &I,
}
Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- if (Value *V = SimplifyVectorOp(I))
+ if (Value *V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1),
+ SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
- if (Value *V = SimplifyUDivInst(Op0, Op1, SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
+ if (Instruction *X = foldShuffledBinop(I))
+ return X;
// Handle the integer div common cases
if (Instruction *Common = commonIDivTransforms(I))
return Common;
- // (x lshr C1) udiv C2 --> x udiv (C2 << C1)
- {
- Value *X;
- const APInt *C1, *C2;
- if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) &&
- match(Op1, m_APInt(C2))) {
- bool Overflow;
- APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
- if (!Overflow) {
- bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
- BinaryOperator *BO = BinaryOperator::CreateUDiv(
- X, ConstantInt::get(X->getType(), C2ShlC1));
- if (IsExact)
- BO->setIsExact();
- return BO;
- }
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ Value *X;
+ const APInt *C1, *C2;
+ if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
+ // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
+ bool Overflow;
+ APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
+ if (!Overflow) {
+ bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
+ BinaryOperator *BO = BinaryOperator::CreateUDiv(
+ X, ConstantInt::get(X->getType(), C2ShlC1));
+ if (IsExact)
+ BO->setIsExact();
+ return BO;
}
}
+ // Op0 / C where C is large (negative) --> zext (Op0 >= C)
+ // TODO: Could use isKnownNegative() to handle non-constant values.
+ Type *Ty = I.getType();
+ if (match(Op1, m_Negative())) {
+ Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
+ return CastInst::CreateZExtOrBitCast(Cmp, Ty);
+ }
+ // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
+ if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
+ Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
+ return CastInst::CreateZExtOrBitCast(Cmp, Ty);
+ }
+
if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
return NarrowDiv;
+ // If the udiv operands are non-overflowing multiplies with a common operand,
+ // then eliminate the common factor:
+ // (A * B) / (A * X) --> B / X (and commuted variants)
+ // TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
+ // TODO: If -reassociation handled this generally, we could remove this.
+ Value *A, *B;
+ if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
+ if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
+ match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
+ return BinaryOperator::CreateUDiv(B, X);
+ if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
+ match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
+ return BinaryOperator::CreateUDiv(A, X);
+ }
+
// (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
SmallVector<UDivFoldAction, 6> UDivActions;
if (visitUDivOperand(Op0, Op1, I, UDivActions))
@@ -1217,24 +1023,27 @@ Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
}
Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- if (Value *V = SimplifyVectorOp(I))
+ if (Value *V = SimplifySDivInst(I.getOperand(0), I.getOperand(1),
+ SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
- if (Value *V = SimplifySDivInst(Op0, Op1, SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
+ if (Instruction *X = foldShuffledBinop(I))
+ return X;
// Handle the integer div common cases
if (Instruction *Common = commonIDivTransforms(I))
return Common;
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ Value *X;
+ // sdiv Op0, -1 --> -Op0
+ // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
+ if (match(Op1, m_AllOnes()) ||
+ (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
+ return BinaryOperator::CreateNeg(Op0);
+
const APInt *Op1C;
if (match(Op1, m_APInt(Op1C))) {
- // sdiv X, -1 == -X
- if (Op1C->isAllOnesValue())
- return BinaryOperator::CreateNeg(Op0);
-
// sdiv exact X, C --> ashr exact X, log2(C)
if (I.isExact() && Op1C->isNonNegative() && Op1C->isPowerOf2()) {
Value *ShAmt = ConstantInt::get(Op1->getType(), Op1C->exactLogBase2());
@@ -1298,166 +1107,148 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
return nullptr;
}
-/// CvtFDivConstToReciprocal tries to convert X/C into X*1/C if C not a special
-/// FP value and:
-/// 1) 1/C is exact, or
-/// 2) reciprocal is allowed.
-/// If the conversion was successful, the simplified expression "X * 1/C" is
-/// returned; otherwise, nullptr is returned.
-static Instruction *CvtFDivConstToReciprocal(Value *Dividend, Constant *Divisor,
- bool AllowReciprocal) {
- if (!isa<ConstantFP>(Divisor)) // TODO: handle vectors.
+/// Remove negation and try to convert division into multiplication.
+static Instruction *foldFDivConstantDivisor(BinaryOperator &I) {
+ Constant *C;
+ if (!match(I.getOperand(1), m_Constant(C)))
return nullptr;
- const APFloat &FpVal = cast<ConstantFP>(Divisor)->getValueAPF();
- APFloat Reciprocal(FpVal.getSemantics());
- bool Cvt = FpVal.getExactInverse(&Reciprocal);
+ // -X / C --> X / -C
+ Value *X;
+ if (match(I.getOperand(0), m_FNeg(m_Value(X))))
+ return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
- if (!Cvt && AllowReciprocal && FpVal.isFiniteNonZero()) {
- Reciprocal = APFloat(FpVal.getSemantics(), 1.0f);
- (void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven);
- Cvt = !Reciprocal.isDenormal();
- }
+ // If the constant divisor has an exact inverse, this is always safe. If not,
+ // then we can still create a reciprocal if fast-math-flags allow it and the
+ // constant is a regular number (not zero, infinite, or denormal).
+ if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
+ return nullptr;
- if (!Cvt)
+ // Disallow denormal constants because we don't know what would happen
+ // on all targets.
+ // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
+ // denorms are flushed?
+ auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C);
+ if (!RecipC->isNormalFP())
return nullptr;
- ConstantFP *R;
- R = ConstantFP::get(Dividend->getType()->getContext(), Reciprocal);
- return BinaryOperator::CreateFMul(Dividend, R);
+ // X / C --> X * (1 / C)
+ return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
}
-Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+/// Remove negation and try to reassociate constant math.
+static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
+ Constant *C;
+ if (!match(I.getOperand(0), m_Constant(C)))
+ return nullptr;
- if (Value *V = SimplifyVectorOp(I))
- return replaceInstUsesWith(I, V);
+ // C / -X --> -C / X
+ Value *X;
+ if (match(I.getOperand(1), m_FNeg(m_Value(X))))
+ return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
+
+ if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
+ return nullptr;
+
+ // Try to reassociate C / X expressions where X includes another constant.
+ Constant *C2, *NewC = nullptr;
+ if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
+ // C / (X * C2) --> (C / C2) / X
+ NewC = ConstantExpr::getFDiv(C, C2);
+ } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
+ // C / (X / C2) --> (C * C2) / X
+ NewC = ConstantExpr::getFMul(C, C2);
+ }
+ // Disallow denormal constants because we don't know what would happen
+ // on all targets.
+ // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
+ // denorms are flushed?
+ if (!NewC || !NewC->isNormalFP())
+ return nullptr;
+
+ return BinaryOperator::CreateFDivFMF(NewC, X, &I);
+}
- if (Value *V = SimplifyFDivInst(Op0, Op1, I.getFastMathFlags(),
+Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
+ if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1),
+ I.getFastMathFlags(),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
+ if (Instruction *X = foldShuffledBinop(I))
+ return X;
+
+ if (Instruction *R = foldFDivConstantDivisor(I))
+ return R;
+
+ if (Instruction *R = foldFDivConstantDividend(I))
+ return R;
+
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (isa<Constant>(Op0))
if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
if (Instruction *R = FoldOpIntoSelect(I, SI))
return R;
- bool AllowReassociate = I.isFast();
- bool AllowReciprocal = I.hasAllowReciprocal();
-
- if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
+ if (isa<Constant>(Op1))
if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
if (Instruction *R = FoldOpIntoSelect(I, SI))
return R;
- if (AllowReassociate) {
- Constant *C1 = nullptr;
- Constant *C2 = Op1C;
- Value *X;
- Instruction *Res = nullptr;
-
- if (match(Op0, m_FMul(m_Value(X), m_Constant(C1)))) {
- // (X*C1)/C2 => X * (C1/C2)
- //
- Constant *C = ConstantExpr::getFDiv(C1, C2);
- if (isNormalFp(C))
- Res = BinaryOperator::CreateFMul(X, C);
- } else if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
- // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed]
- Constant *C = ConstantExpr::getFMul(C1, C2);
- if (isNormalFp(C)) {
- Res = CvtFDivConstToReciprocal(X, C, AllowReciprocal);
- if (!Res)
- Res = BinaryOperator::CreateFDiv(X, C);
- }
- }
-
- if (Res) {
- Res->setFastMathFlags(I.getFastMathFlags());
- return Res;
- }
+ if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
+ Value *X, *Y;
+ if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
+ (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
+ // (X / Y) / Z => X / (Y * Z)
+ Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
+ return BinaryOperator::CreateFDivFMF(X, YZ, &I);
}
-
- // X / C => X * 1/C
- if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal)) {
- T->copyFastMathFlags(&I);
- return T;
+ if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
+ (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
+ // Z / (X / Y) => (Y * Z) / X
+ Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
+ return BinaryOperator::CreateFDivFMF(YZ, X, &I);
}
-
- return nullptr;
}
- if (AllowReassociate && isa<Constant>(Op0)) {
- Constant *C1 = cast<Constant>(Op0), *C2;
- Constant *Fold = nullptr;
+ if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
+ // sin(X) / cos(X) -> tan(X)
+ // cos(X) / sin(X) -> 1/tan(X) (cotangent)
Value *X;
- bool CreateDiv = true;
-
- // C1 / (X*C2) => (C1/C2) / X
- if (match(Op1, m_FMul(m_Value(X), m_Constant(C2))))
- Fold = ConstantExpr::getFDiv(C1, C2);
- else if (match(Op1, m_FDiv(m_Value(X), m_Constant(C2)))) {
- // C1 / (X/C2) => (C1*C2) / X
- Fold = ConstantExpr::getFMul(C1, C2);
- } else if (match(Op1, m_FDiv(m_Constant(C2), m_Value(X)))) {
- // C1 / (C2/X) => (C1/C2) * X
- Fold = ConstantExpr::getFDiv(C1, C2);
- CreateDiv = false;
- }
-
- if (Fold && isNormalFp(Fold)) {
- Instruction *R = CreateDiv ? BinaryOperator::CreateFDiv(Fold, X)
- : BinaryOperator::CreateFMul(X, Fold);
- R->setFastMathFlags(I.getFastMathFlags());
- return R;
+ bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
+ match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
+ bool IsCot =
+ !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
+ match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
+
+ if ((IsTan || IsCot) && hasUnaryFloatFn(&TLI, I.getType(), LibFunc_tan,
+ LibFunc_tanf, LibFunc_tanl)) {
+ IRBuilder<> B(&I);
+ IRBuilder<>::FastMathFlagGuard FMFGuard(B);
+ B.setFastMathFlags(I.getFastMathFlags());
+ AttributeList Attrs = CallSite(Op0).getCalledFunction()->getAttributes();
+ Value *Res = emitUnaryFloatFnCall(X, TLI.getName(LibFunc_tan), B, Attrs);
+ if (IsCot)
+ Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
+ return replaceInstUsesWith(I, Res);
}
- return nullptr;
}
- if (AllowReassociate) {
- Value *X, *Y;
- Value *NewInst = nullptr;
- Instruction *SimpR = nullptr;
-
- if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) {
- // (X/Y) / Z => X / (Y*Z)
- if (!isa<Constant>(Y) || !isa<Constant>(Op1)) {
- NewInst = Builder.CreateFMul(Y, Op1);
- if (Instruction *RI = dyn_cast<Instruction>(NewInst)) {
- FastMathFlags Flags = I.getFastMathFlags();
- Flags &= cast<Instruction>(Op0)->getFastMathFlags();
- RI->setFastMathFlags(Flags);
- }
- SimpR = BinaryOperator::CreateFDiv(X, NewInst);
- }
- } else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) {
- // Z / (X/Y) => Z*Y / X
- if (!isa<Constant>(Y) || !isa<Constant>(Op0)) {
- NewInst = Builder.CreateFMul(Op0, Y);
- if (Instruction *RI = dyn_cast<Instruction>(NewInst)) {
- FastMathFlags Flags = I.getFastMathFlags();
- Flags &= cast<Instruction>(Op1)->getFastMathFlags();
- RI->setFastMathFlags(Flags);
- }
- SimpR = BinaryOperator::CreateFDiv(NewInst, X);
- }
- }
-
- if (NewInst) {
- if (Instruction *T = dyn_cast<Instruction>(NewInst))
- T->setDebugLoc(I.getDebugLoc());
- SimpR->setFastMathFlags(I.getFastMathFlags());
- return SimpR;
- }
+ // -X / -Y -> X / Y
+ Value *X, *Y;
+ if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) {
+ I.setOperand(0, X);
+ I.setOperand(1, Y);
+ return &I;
}
- Value *LHS;
- Value *RHS;
-
- // -x / -y -> x / y
- if (match(Op0, m_FNeg(m_Value(LHS))) && match(Op1, m_FNeg(m_Value(RHS)))) {
- I.setOperand(0, LHS);
- I.setOperand(1, RHS);
+ // X / (X * Y) --> 1.0 / Y
+ // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
+ // We can ignore the possibility that X is infinity because INF/INF is NaN.
+ if (I.hasNoNaNs() && I.hasAllowReassoc() &&
+ match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
+ I.setOperand(0, ConstantFP::get(I.getType(), 1.0));
+ I.setOperand(1, Y);
return &I;
}
@@ -1467,7 +1258,7 @@ Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
/// This function implements the transforms common to both integer remainder
/// instructions (urem and srem). It is called by the visitors to those integer
/// remainder instructions.
-/// @brief Common integer remainder transforms
+/// Common integer remainder transforms
Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
@@ -1509,13 +1300,12 @@ Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
}
Instruction *InstCombiner::visitURem(BinaryOperator &I) {
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- if (Value *V = SimplifyVectorOp(I))
+ if (Value *V = SimplifyURemInst(I.getOperand(0), I.getOperand(1),
+ SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
- if (Value *V = SimplifyURemInst(Op0, Op1, SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
+ if (Instruction *X = foldShuffledBinop(I))
+ return X;
if (Instruction *common = commonIRemTransforms(I))
return common;
@@ -1524,47 +1314,55 @@ Instruction *InstCombiner::visitURem(BinaryOperator &I) {
return NarrowRem;
// X urem Y -> X and Y-1, where Y is a power of 2,
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ Type *Ty = I.getType();
if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
- Constant *N1 = Constant::getAllOnesValue(I.getType());
+ Constant *N1 = Constant::getAllOnesValue(Ty);
Value *Add = Builder.CreateAdd(Op1, N1);
return BinaryOperator::CreateAnd(Op0, Add);
}
// 1 urem X -> zext(X != 1)
- if (match(Op0, m_One())) {
- Value *Cmp = Builder.CreateICmpNE(Op1, Op0);
- Value *Ext = Builder.CreateZExt(Cmp, I.getType());
- return replaceInstUsesWith(I, Ext);
- }
+ if (match(Op0, m_One()))
+ return CastInst::CreateZExtOrBitCast(Builder.CreateICmpNE(Op1, Op0), Ty);
// X urem C -> X < C ? X : X - C, where C >= signbit.
- const APInt *DivisorC;
- if (match(Op1, m_APInt(DivisorC)) && DivisorC->isNegative()) {
+ if (match(Op1, m_Negative())) {
Value *Cmp = Builder.CreateICmpULT(Op0, Op1);
Value *Sub = Builder.CreateSub(Op0, Op1);
return SelectInst::Create(Cmp, Op0, Sub);
}
+ // If the divisor is a sext of a boolean, then the divisor must be max
+ // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
+ // max unsigned value. In that case, the remainder is 0:
+ // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
+ Value *X;
+ if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
+ Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
+ return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0);
+ }
+
return nullptr;
}
Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- if (Value *V = SimplifyVectorOp(I))
+ if (Value *V = SimplifySRemInst(I.getOperand(0), I.getOperand(1),
+ SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
- if (Value *V = SimplifySRemInst(Op0, Op1, SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
+ if (Instruction *X = foldShuffledBinop(I))
+ return X;
// Handle the integer rem common cases
if (Instruction *Common = commonIRemTransforms(I))
return Common;
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
{
const APInt *Y;
// X % -Y -> X % Y
- if (match(Op1, m_APInt(Y)) && Y->isNegative() && !Y->isMinSignedValue()) {
+ if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue()) {
Worklist.AddValue(I.getOperand(1));
I.setOperand(1, ConstantInt::get(I.getType(), -*Y));
return &I;
@@ -1622,14 +1420,13 @@ Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
}
Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- if (Value *V = SimplifyVectorOp(I))
- return replaceInstUsesWith(I, V);
-
- if (Value *V = SimplifyFRemInst(Op0, Op1, I.getFastMathFlags(),
+ if (Value *V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1),
+ I.getFastMathFlags(),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
+ if (Instruction *X = foldShuffledBinop(I))
+ return X;
+
return nullptr;
}