summaryrefslogtreecommitdiff
path: root/lib/Transforms/InstCombine/InstructionCombining.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/InstCombine/InstructionCombining.cpp')
-rw-r--r--lib/Transforms/InstCombine/InstructionCombining.cpp611
1 files changed, 318 insertions, 293 deletions
diff --git a/lib/Transforms/InstCombine/InstructionCombining.cpp b/lib/Transforms/InstCombine/InstructionCombining.cpp
index b332e75c7feb..12fcc8752ea9 100644
--- a/lib/Transforms/InstCombine/InstructionCombining.cpp
+++ b/lib/Transforms/InstCombine/InstructionCombining.cpp
@@ -34,6 +34,8 @@
//===----------------------------------------------------------------------===//
#include "InstCombineInternal.h"
+#include "llvm-c/Initialization.h"
+#include "llvm-c/Transforms/InstCombine.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
@@ -55,6 +57,7 @@
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetFolder.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
@@ -72,6 +75,7 @@
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
@@ -93,8 +97,6 @@
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
@@ -144,12 +146,20 @@ Value *InstCombiner::EmitGEPOffset(User *GEP) {
/// We don't want to convert from a legal to an illegal type or from a smaller
/// to a larger illegal type. A width of '1' is always treated as a legal type
/// because i1 is a fundamental type in IR, and there are many specialized
-/// optimizations for i1 types.
+/// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
+/// legal to convert to, in order to open up more combining opportunities.
+/// NOTE: this treats i8, i16 and i32 specially, due to them being so common
+/// from frontend languages.
bool InstCombiner::shouldChangeType(unsigned FromWidth,
unsigned ToWidth) const {
bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
+ // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
+ // shrink types, to prevent infinite loops.
+ if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
+ return true;
+
// If this is a legal integer from type, and the result would be an illegal
// type, don't do the transformation.
if (FromLegal && !ToLegal)
@@ -396,28 +406,23 @@ bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
// Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
// if C1 and C2 are constants.
+ Value *A, *B;
+ Constant *C1, *C2;
if (Op0 && Op1 &&
Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
- isa<Constant>(Op0->getOperand(1)) &&
- isa<Constant>(Op1->getOperand(1)) &&
- Op0->hasOneUse() && Op1->hasOneUse()) {
- Value *A = Op0->getOperand(0);
- Constant *C1 = cast<Constant>(Op0->getOperand(1));
- Value *B = Op1->getOperand(0);
- Constant *C2 = cast<Constant>(Op1->getOperand(1));
-
- Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
- BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
- if (isa<FPMathOperator>(New)) {
+ match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
+ match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
+ BinaryOperator *NewBO = BinaryOperator::Create(Opcode, A, B);
+ if (isa<FPMathOperator>(NewBO)) {
FastMathFlags Flags = I.getFastMathFlags();
Flags &= Op0->getFastMathFlags();
Flags &= Op1->getFastMathFlags();
- New->setFastMathFlags(Flags);
+ NewBO->setFastMathFlags(Flags);
}
- InsertNewInstWith(New, I);
- New->takeName(Op1);
- I.setOperand(0, New);
- I.setOperand(1, Folded);
+ InsertNewInstWith(NewBO, I);
+ NewBO->takeName(Op1);
+ I.setOperand(0, NewBO);
+ I.setOperand(1, ConstantExpr::get(Opcode, C1, C2));
// Conservatively clear the optional flags, since they may not be
// preserved by the reassociation.
ClearSubclassDataAfterReassociation(I);
@@ -434,72 +439,38 @@ bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
/// Return whether "X LOp (Y ROp Z)" is always equal to
/// "(X LOp Y) ROp (X LOp Z)".
-static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
+static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
Instruction::BinaryOps ROp) {
- switch (LOp) {
- default:
- return false;
+ // X & (Y | Z) <--> (X & Y) | (X & Z)
+ // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
+ if (LOp == Instruction::And)
+ return ROp == Instruction::Or || ROp == Instruction::Xor;
- case Instruction::And:
- // And distributes over Or and Xor.
- switch (ROp) {
- default:
- return false;
- case Instruction::Or:
- case Instruction::Xor:
- return true;
- }
+ // X | (Y & Z) <--> (X | Y) & (X | Z)
+ if (LOp == Instruction::Or)
+ return ROp == Instruction::And;
- case Instruction::Mul:
- // Multiplication distributes over addition and subtraction.
- switch (ROp) {
- default:
- return false;
- case Instruction::Add:
- case Instruction::Sub:
- return true;
- }
+ // X * (Y + Z) <--> (X * Y) + (X * Z)
+ // X * (Y - Z) <--> (X * Y) - (X * Z)
+ if (LOp == Instruction::Mul)
+ return ROp == Instruction::Add || ROp == Instruction::Sub;
- case Instruction::Or:
- // Or distributes over And.
- switch (ROp) {
- default:
- return false;
- case Instruction::And:
- return true;
- }
- }
+ return false;
}
/// Return whether "(X LOp Y) ROp Z" is always equal to
/// "(X ROp Z) LOp (Y ROp Z)".
-static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
+static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
Instruction::BinaryOps ROp) {
if (Instruction::isCommutative(ROp))
- return LeftDistributesOverRight(ROp, LOp);
+ return leftDistributesOverRight(ROp, LOp);
+
+ // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
+ return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
- switch (LOp) {
- default:
- return false;
- // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
- // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
- // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- switch (ROp) {
- default:
- return false;
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- return true;
- }
- }
// TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
// but this requires knowing that the addition does not overflow and other
// such subtleties.
- return false;
}
/// This function returns identity value for given opcode, which can be used to
@@ -511,37 +482,27 @@ static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
}
-/// This function factors binary ops which can be combined using distributive
-/// laws. This function tries to transform 'Op' based TopLevelOpcode to enable
-/// factorization e.g for ADD(SHL(X , 2), MUL(X, 5)), When this function called
-/// with TopLevelOpcode == Instruction::Add and Op = SHL(X, 2), transforms
-/// SHL(X, 2) to MUL(X, 4) i.e. returns Instruction::Mul with LHS set to 'X' and
-/// RHS to 4.
+/// This function predicates factorization using distributive laws. By default,
+/// it just returns the 'Op' inputs. But for special-cases like
+/// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
+/// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
+/// allow more factorization opportunities.
static Instruction::BinaryOps
-getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode,
- BinaryOperator *Op, Value *&LHS, Value *&RHS) {
+getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
+ Value *&LHS, Value *&RHS) {
assert(Op && "Expected a binary operator");
-
LHS = Op->getOperand(0);
RHS = Op->getOperand(1);
-
- switch (TopLevelOpcode) {
- default:
- return Op->getOpcode();
-
- case Instruction::Add:
- case Instruction::Sub:
- if (Op->getOpcode() == Instruction::Shl) {
- if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) {
- // The multiplier is really 1 << CST.
- RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST);
- return Instruction::Mul;
- }
+ if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
+ Constant *C;
+ if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
+ // X << C --> X * (1 << C)
+ RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
+ return Instruction::Mul;
}
- return Op->getOpcode();
+ // TODO: We can add other conversions e.g. shr => div etc.
}
-
- // TODO: We can add other conversions e.g. shr => div etc.
+ return Op->getOpcode();
}
/// This tries to simplify binary operations by factorizing out common terms
@@ -560,7 +521,7 @@ Value *InstCombiner::tryFactorization(BinaryOperator &I,
bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
// Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
- if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
+ if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
// Does the instruction have the form "(A op' B) op (A op' D)" or, in the
// commutative case, "(A op' B) op (C op' A)"?
if (A == C || (InnerCommutative && A == D)) {
@@ -579,7 +540,7 @@ Value *InstCombiner::tryFactorization(BinaryOperator &I,
}
// Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
- if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
+ if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
// Does the instruction have the form "(A op' B) op (C op' B)" or, in the
// commutative case, "(A op' B) op (B op' D)"?
if (B == D || (InnerCommutative && B == C)) {
@@ -664,21 +625,19 @@ Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
// term.
if (Op0)
if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
- if (Value *V =
- tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
+ if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
return V;
// The instruction has the form "(B) op (C op' D)". Try to factorize common
// term.
if (Op1)
if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
- if (Value *V =
- tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
+ if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
return V;
}
// Expansion.
- if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
+ if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
// The instruction has the form "(A op' B) op C". See if expanding it out
// to "(A op C) op' (B op C)" results in simplifications.
Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
@@ -715,7 +674,7 @@ Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
}
}
- if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
+ if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
// The instruction has the form "A op (B op' C)". See if expanding it out
// to "(A op B) op' (A op C)" results in simplifications.
Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
@@ -817,23 +776,6 @@ Value *InstCombiner::dyn_castNegVal(Value *V) const {
return nullptr;
}
-/// Given a 'fsub' instruction, return the RHS of the instruction if the LHS is
-/// a constant negative zero (which is the 'negate' form).
-Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
- if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
- return BinaryOperator::getFNegArgument(V);
-
- // Constants can be considered to be negated values if they can be folded.
- if (ConstantFP *C = dyn_cast<ConstantFP>(V))
- return ConstantExpr::getFNeg(C);
-
- if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
- if (C->getType()->getElementType()->isFloatingPointTy())
- return ConstantExpr::getFNeg(C);
-
- return nullptr;
-}
-
static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
InstCombiner::BuilderTy &Builder) {
if (auto *Cast = dyn_cast<CastInst>(&I))
@@ -1081,8 +1023,9 @@ Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) {
return replaceInstUsesWith(I, NewPN);
}
-Instruction *InstCombiner::foldOpWithConstantIntoOperand(BinaryOperator &I) {
- assert(isa<Constant>(I.getOperand(1)) && "Unexpected operand type");
+Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
+ if (!isa<Constant>(I.getOperand(1)))
+ return nullptr;
if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
@@ -1107,7 +1050,7 @@ Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
// Start with the index over the outer type. Note that the type size
// might be zero (even if the offset isn't zero) if the indexed type
// is something like [0 x {int, int}]
- Type *IntPtrTy = DL.getIntPtrType(PtrTy);
+ Type *IndexTy = DL.getIndexType(PtrTy);
int64_t FirstIdx = 0;
if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
FirstIdx = Offset/TySize;
@@ -1122,7 +1065,7 @@ Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
}
- NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
+ NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx));
// Index into the types. If we fail, set OrigBase to null.
while (Offset) {
@@ -1144,7 +1087,7 @@ Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
} else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
assert(EltSize && "Cannot index into a zero-sized array");
- NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
+ NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize));
Offset %= EltSize;
Ty = AT->getElementType();
} else {
@@ -1408,22 +1351,7 @@ Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
} while (true);
}
-/// \brief Creates node of binary operation with the same attributes as the
-/// specified one but with other operands.
-static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS,
- InstCombiner::BuilderTy &B) {
- Value *BO = B.CreateBinOp(Inst.getOpcode(), LHS, RHS);
- // If LHS and RHS are constant, BO won't be a binary operator.
- if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BO))
- NewBO->copyIRFlags(&Inst);
- return BO;
-}
-
-/// \brief Makes transformation of binary operation specific for vector types.
-/// \param Inst Binary operator to transform.
-/// \return Pointer to node that must replace the original binary operator, or
-/// null pointer if no transformation was made.
-Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) {
+Instruction *InstCombiner::foldShuffledBinop(BinaryOperator &Inst) {
if (!Inst.getType()->isVectorTy()) return nullptr;
// It may not be safe to reorder shuffles and things like div, urem, etc.
@@ -1437,58 +1365,71 @@ Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) {
assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth);
assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth);
+ auto createBinOpShuffle = [&](Value *X, Value *Y, Constant *M) {
+ Value *XY = Builder.CreateBinOp(Inst.getOpcode(), X, Y);
+ if (auto *BO = dyn_cast<BinaryOperator>(XY))
+ BO->copyIRFlags(&Inst);
+ return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M);
+ };
+
// If both arguments of the binary operation are shuffles that use the same
- // mask and shuffle within a single vector, move the shuffle after the binop:
- // Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m)
- auto *LShuf = dyn_cast<ShuffleVectorInst>(LHS);
- auto *RShuf = dyn_cast<ShuffleVectorInst>(RHS);
- if (LShuf && RShuf && LShuf->getMask() == RShuf->getMask() &&
- isa<UndefValue>(LShuf->getOperand(1)) &&
- isa<UndefValue>(RShuf->getOperand(1)) &&
- LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType()) {
- Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0),
- RShuf->getOperand(0), Builder);
- return Builder.CreateShuffleVector(
- NewBO, UndefValue::get(NewBO->getType()), LShuf->getMask());
+ // mask and shuffle within a single vector, move the shuffle after the binop.
+ Value *V1, *V2;
+ Constant *Mask;
+ if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))) &&
+ match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(Mask))) &&
+ V1->getType() == V2->getType() &&
+ (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
+ // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
+ return createBinOpShuffle(V1, V2, Mask);
}
- // If one argument is a shuffle within one vector, the other is a constant,
- // try moving the shuffle after the binary operation.
- ShuffleVectorInst *Shuffle = nullptr;
- Constant *C1 = nullptr;
- if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS);
- if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS);
- if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS);
- if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS);
- if (Shuffle && C1 &&
- (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) &&
- isa<UndefValue>(Shuffle->getOperand(1)) &&
- Shuffle->getType() == Shuffle->getOperand(0)->getType()) {
- SmallVector<int, 16> ShMask = Shuffle->getShuffleMask();
- // Find constant C2 that has property:
- // shuffle(C2, ShMask) = C1
- // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>)
- // reorder is not possible.
- SmallVector<Constant*, 16> C2M(VWidth,
- UndefValue::get(C1->getType()->getScalarType()));
+ // If one argument is a shuffle within one vector and the other is a constant,
+ // try moving the shuffle after the binary operation. This canonicalization
+ // intends to move shuffles closer to other shuffles and binops closer to
+ // other binops, so they can be folded. It may also enable demanded elements
+ // transforms.
+ Constant *C;
+ if (match(&Inst, m_c_BinOp(
+ m_OneUse(m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))),
+ m_Constant(C))) &&
+ V1->getType() == Inst.getType()) {
+ // Find constant NewC that has property:
+ // shuffle(NewC, ShMask) = C
+ // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
+ // reorder is not possible. A 1-to-1 mapping is not required. Example:
+ // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
+ SmallVector<int, 16> ShMask;
+ ShuffleVectorInst::getShuffleMask(Mask, ShMask);
+ SmallVector<Constant *, 16>
+ NewVecC(VWidth, UndefValue::get(C->getType()->getScalarType()));
bool MayChange = true;
for (unsigned I = 0; I < VWidth; ++I) {
if (ShMask[I] >= 0) {
assert(ShMask[I] < (int)VWidth);
- if (!isa<UndefValue>(C2M[ShMask[I]])) {
+ Constant *CElt = C->getAggregateElement(I);
+ Constant *NewCElt = NewVecC[ShMask[I]];
+ if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt)) {
MayChange = false;
break;
}
- C2M[ShMask[I]] = C1->getAggregateElement(I);
+ NewVecC[ShMask[I]] = CElt;
}
}
if (MayChange) {
- Constant *C2 = ConstantVector::get(C2M);
- Value *NewLHS = isa<Constant>(LHS) ? C2 : Shuffle->getOperand(0);
- Value *NewRHS = isa<Constant>(LHS) ? Shuffle->getOperand(0) : C2;
- Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder);
- return Builder.CreateShuffleVector(NewBO,
- UndefValue::get(Inst.getType()), Shuffle->getMask());
+ Constant *NewC = ConstantVector::get(NewVecC);
+ // It may not be safe to execute a binop on a vector with undef elements
+ // because the entire instruction can be folded to undef or create poison
+ // that did not exist in the original code.
+ bool ConstOp1 = isa<Constant>(Inst.getOperand(1));
+ if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
+ NewC = getSafeVectorConstantForBinop(Inst.getOpcode(), NewC, ConstOp1);
+
+ // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
+ // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
+ Value *NewLHS = isa<Constant>(LHS) ? NewC : V1;
+ Value *NewRHS = isa<Constant>(LHS) ? V1 : NewC;
+ return createBinOpShuffle(NewLHS, NewRHS, Mask);
}
}
@@ -1497,9 +1438,9 @@ Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) {
Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
-
- if (Value *V = SimplifyGEPInst(GEP.getSourceElementType(), Ops,
- SQ.getWithInstruction(&GEP)))
+ Type *GEPType = GEP.getType();
+ Type *GEPEltType = GEP.getSourceElementType();
+ if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
return replaceInstUsesWith(GEP, V);
Value *PtrOp = GEP.getOperand(0);
@@ -1507,8 +1448,11 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// Eliminate unneeded casts for indices, and replace indices which displace
// by multiples of a zero size type with zero.
bool MadeChange = false;
- Type *IntPtrTy =
- DL.getIntPtrType(GEP.getPointerOperandType()->getScalarType());
+
+ // Index width may not be the same width as pointer width.
+ // Data layout chooses the right type based on supported integer types.
+ Type *NewScalarIndexTy =
+ DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
gep_type_iterator GTI = gep_type_begin(GEP);
for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
@@ -1517,10 +1461,11 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
if (GTI.isStruct())
continue;
- // Index type should have the same width as IntPtr
Type *IndexTy = (*I)->getType();
- Type *NewIndexType = IndexTy->isVectorTy() ?
- VectorType::get(IntPtrTy, IndexTy->getVectorNumElements()) : IntPtrTy;
+ Type *NewIndexType =
+ IndexTy->isVectorTy()
+ ? VectorType::get(NewScalarIndexTy, IndexTy->getVectorNumElements())
+ : NewScalarIndexTy;
// If the element type has zero size then any index over it is equivalent
// to an index of zero, so replace it with zero if it is not zero already.
@@ -1543,8 +1488,8 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
return &GEP;
// Check to see if the inputs to the PHI node are getelementptr instructions.
- if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) {
- GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
+ if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
+ auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
if (!Op1)
return nullptr;
@@ -1560,7 +1505,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
int DI = -1;
for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
- GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I);
+ auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
return nullptr;
@@ -1602,7 +1547,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
if (J > 0) {
if (J == 1) {
CurTy = Op1->getSourceElementType();
- } else if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) {
+ } else if (auto *CT = dyn_cast<CompositeType>(CurTy)) {
CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
} else {
CurTy = nullptr;
@@ -1617,7 +1562,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
if (DI != -1 && !PN->hasOneUse())
return nullptr;
- GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone());
+ auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
if (DI == -1) {
// All the GEPs feeding the PHI are identical. Clone one down into our
// BB so that it can be merged with the current GEP.
@@ -1652,15 +1597,64 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// Combine Indices - If the source pointer to this getelementptr instruction
// is a getelementptr instruction, combine the indices of the two
// getelementptr instructions into a single instruction.
- if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
+ if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
return nullptr;
+ // Try to reassociate loop invariant GEP chains to enable LICM.
+ if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
+ Src->hasOneUse()) {
+ if (Loop *L = LI->getLoopFor(GEP.getParent())) {
+ Value *GO1 = GEP.getOperand(1);
+ Value *SO1 = Src->getOperand(1);
+ // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
+ // invariant: this breaks the dependence between GEPs and allows LICM
+ // to hoist the invariant part out of the loop.
+ if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
+ // We have to be careful here.
+ // We have something like:
+ // %src = getelementptr <ty>, <ty>* %base, <ty> %idx
+ // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
+ // If we just swap idx & idx2 then we could inadvertantly
+ // change %src from a vector to a scalar, or vice versa.
+ // Cases:
+ // 1) %base a scalar & idx a scalar & idx2 a vector
+ // => Swapping idx & idx2 turns %src into a vector type.
+ // 2) %base a scalar & idx a vector & idx2 a scalar
+ // => Swapping idx & idx2 turns %src in a scalar type
+ // 3) %base, %idx, and %idx2 are scalars
+ // => %src & %gep are scalars
+ // => swapping idx & idx2 is safe
+ // 4) %base a vector
+ // => %src is a vector
+ // => swapping idx & idx2 is safe.
+ auto *SO0 = Src->getOperand(0);
+ auto *SO0Ty = SO0->getType();
+ if (!isa<VectorType>(GEPType) || // case 3
+ isa<VectorType>(SO0Ty)) { // case 4
+ Src->setOperand(1, GO1);
+ GEP.setOperand(1, SO1);
+ return &GEP;
+ } else {
+ // Case 1 or 2
+ // -- have to recreate %src & %gep
+ // put NewSrc at same location as %src
+ Builder.SetInsertPoint(cast<Instruction>(PtrOp));
+ auto *NewSrc = cast<GetElementPtrInst>(
+ Builder.CreateGEP(SO0, GO1, Src->getName()));
+ NewSrc->setIsInBounds(Src->isInBounds());
+ auto *NewGEP = GetElementPtrInst::Create(nullptr, NewSrc, {SO1});
+ NewGEP->setIsInBounds(GEP.isInBounds());
+ return NewGEP;
+ }
+ }
+ }
+ }
+
// Note that if our source is a gep chain itself then we wait for that
// chain to be resolved before we perform this transformation. This
// avoids us creating a TON of code in some cases.
- if (GEPOperator *SrcGEP =
- dyn_cast<GEPOperator>(Src->getOperand(0)))
+ if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
return nullptr; // Wait until our source is folded to completion.
@@ -1723,9 +1717,8 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
if (GEP.getNumIndices() == 1) {
unsigned AS = GEP.getPointerAddressSpace();
if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
- DL.getPointerSizeInBits(AS)) {
- Type *Ty = GEP.getSourceElementType();
- uint64_t TyAllocSize = DL.getTypeAllocSize(Ty);
+ DL.getIndexSizeInBits(AS)) {
+ uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType);
bool Matched = false;
uint64_t C;
@@ -1752,22 +1745,20 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Operator *Index = cast<Operator>(V);
Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType());
Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1));
- return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType());
+ return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType);
}
// Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
// to (bitcast Y)
Value *Y;
if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
- m_PtrToInt(m_Specific(GEP.getOperand(0)))))) {
- return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y,
- GEP.getType());
- }
+ m_PtrToInt(m_Specific(GEP.getOperand(0))))))
+ return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
}
}
}
// We do not handle pointer-vector geps here.
- if (GEP.getType()->isVectorTy())
+ if (GEPType->isVectorTy())
return nullptr;
// Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
@@ -1776,7 +1767,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
if (StrippedPtr != PtrOp) {
bool HasZeroPointerIndex = false;
- if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
+ if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
HasZeroPointerIndex = C->isZero();
// Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
@@ -1787,8 +1778,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
//
// This occurs when the program declares an array extern like "int X[];"
if (HasZeroPointerIndex) {
- if (ArrayType *CATy =
- dyn_cast<ArrayType>(GEP.getSourceElementType())) {
+ if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
// GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
// -> GEP i8* X, ...
@@ -1804,11 +1794,10 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// ->
// %0 = GEP i8 addrspace(1)* X, ...
// addrspacecast i8 addrspace(1)* %0 to i8*
- return new AddrSpaceCastInst(Builder.Insert(Res), GEP.getType());
+ return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
}
- if (ArrayType *XATy =
- dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
+ if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrTy->getElementType())) {
// GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
if (CATy->getElementType() == XATy->getElementType()) {
// -> GEP [10 x i8]* X, i32 0, ...
@@ -1836,7 +1825,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
nullptr, StrippedPtr, Idx, GEP.getName())
: Builder.CreateGEP(nullptr, StrippedPtr, Idx,
GEP.getName());
- return new AddrSpaceCastInst(NewGEP, GEP.getType());
+ return new AddrSpaceCastInst(NewGEP, GEPType);
}
}
}
@@ -1844,12 +1833,11 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// Transform things like:
// %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
// into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
- Type *SrcElTy = StrippedPtrTy->getElementType();
- Type *ResElTy = GEP.getSourceElementType();
- if (SrcElTy->isArrayTy() &&
- DL.getTypeAllocSize(SrcElTy->getArrayElementType()) ==
- DL.getTypeAllocSize(ResElTy)) {
- Type *IdxType = DL.getIntPtrType(GEP.getType());
+ Type *SrcEltTy = StrippedPtrTy->getElementType();
+ if (SrcEltTy->isArrayTy() &&
+ DL.getTypeAllocSize(SrcEltTy->getArrayElementType()) ==
+ DL.getTypeAllocSize(GEPEltType)) {
+ Type *IdxType = DL.getIndexType(GEPType);
Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
Value *NewGEP =
GEP.isInBounds()
@@ -1858,28 +1846,28 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
: Builder.CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName());
// V and GEP are both pointer types --> BitCast
- return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
- GEP.getType());
+ return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
}
// Transform things like:
// %V = mul i64 %N, 4
// %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
// into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
- if (ResElTy->isSized() && SrcElTy->isSized()) {
+ if (GEPEltType->isSized() && SrcEltTy->isSized()) {
// Check that changing the type amounts to dividing the index by a scale
// factor.
- uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
- uint64_t SrcSize = DL.getTypeAllocSize(SrcElTy);
+ uint64_t ResSize = DL.getTypeAllocSize(GEPEltType);
+ uint64_t SrcSize = DL.getTypeAllocSize(SrcEltTy);
if (ResSize && SrcSize % ResSize == 0) {
Value *Idx = GEP.getOperand(1);
unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
uint64_t Scale = SrcSize / ResSize;
- // Earlier transforms ensure that the index has type IntPtrType, which
- // considerably simplifies the logic by eliminating implicit casts.
- assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
- "Index not cast to pointer width?");
+ // Earlier transforms ensure that the index has the right type
+ // according to Data Layout, which considerably simplifies the
+ // logic by eliminating implicit casts.
+ assert(Idx->getType() == DL.getIndexType(GEPType) &&
+ "Index type does not match the Data Layout preferences");
bool NSW;
if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
@@ -1895,7 +1883,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// The NewGEP must be pointer typed, so must the old one -> BitCast
return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
- GEP.getType());
+ GEPType);
}
}
}
@@ -1904,39 +1892,40 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
// (where tmp = 8*tmp2) into:
// getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
- if (ResElTy->isSized() && SrcElTy->isSized() && SrcElTy->isArrayTy()) {
+ if (GEPEltType->isSized() && SrcEltTy->isSized() &&
+ SrcEltTy->isArrayTy()) {
// Check that changing to the array element type amounts to dividing the
// index by a scale factor.
- uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
+ uint64_t ResSize = DL.getTypeAllocSize(GEPEltType);
uint64_t ArrayEltSize =
- DL.getTypeAllocSize(SrcElTy->getArrayElementType());
+ DL.getTypeAllocSize(SrcEltTy->getArrayElementType());
if (ResSize && ArrayEltSize % ResSize == 0) {
Value *Idx = GEP.getOperand(1);
unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
uint64_t Scale = ArrayEltSize / ResSize;
- // Earlier transforms ensure that the index has type IntPtrType, which
- // considerably simplifies the logic by eliminating implicit casts.
- assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
- "Index not cast to pointer width?");
+ // Earlier transforms ensure that the index has the right type
+ // according to the Data Layout, which considerably simplifies
+ // the logic by eliminating implicit casts.
+ assert(Idx->getType() == DL.getIndexType(GEPType) &&
+ "Index type does not match the Data Layout preferences");
bool NSW;
if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
// Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
// If the multiplication NewIdx * Scale may overflow then the new
// GEP may not be "inbounds".
- Value *Off[2] = {
- Constant::getNullValue(DL.getIntPtrType(GEP.getType())),
- NewIdx};
+ Type *IndTy = DL.getIndexType(GEPType);
+ Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
Value *NewGEP = GEP.isInBounds() && NSW
? Builder.CreateInBoundsGEP(
- SrcElTy, StrippedPtr, Off, GEP.getName())
- : Builder.CreateGEP(SrcElTy, StrippedPtr, Off,
+ SrcEltTy, StrippedPtr, Off, GEP.getName())
+ : Builder.CreateGEP(SrcEltTy, StrippedPtr, Off,
GEP.getName());
// The NewGEP must be pointer typed, so must the old one -> BitCast
return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
- GEP.getType());
+ GEPType);
}
}
}
@@ -1946,34 +1935,53 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// addrspacecast between types is canonicalized as a bitcast, then an
// addrspacecast. To take advantage of the below bitcast + struct GEP, look
// through the addrspacecast.
- if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
+ Value *ASCStrippedPtrOp = PtrOp;
+ if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
// X = bitcast A addrspace(1)* to B addrspace(1)*
// Y = addrspacecast A addrspace(1)* to B addrspace(2)*
// Z = gep Y, <...constant indices...>
// Into an addrspacecasted GEP of the struct.
- if (BitCastInst *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
- PtrOp = BC;
+ if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
+ ASCStrippedPtrOp = BC;
}
- /// See if we can simplify:
- /// X = bitcast A* to B*
- /// Y = gep X, <...constant indices...>
- /// into a gep of the original struct. This is important for SROA and alias
- /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
- if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
- Value *Operand = BCI->getOperand(0);
- PointerType *OpType = cast<PointerType>(Operand->getType());
- unsigned OffsetBits = DL.getPointerTypeSizeInBits(GEP.getType());
- APInt Offset(OffsetBits, 0);
- if (!isa<BitCastInst>(Operand) &&
- GEP.accumulateConstantOffset(DL, Offset)) {
+ if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
+ Value *SrcOp = BCI->getOperand(0);
+ PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
+ Type *SrcEltType = SrcType->getElementType();
+
+ // GEP directly using the source operand if this GEP is accessing an element
+ // of a bitcasted pointer to vector or array of the same dimensions:
+ // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
+ // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
+ auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy) {
+ return ArrTy->getArrayElementType() == VecTy->getVectorElementType() &&
+ ArrTy->getArrayNumElements() == VecTy->getVectorNumElements();
+ };
+ if (GEP.getNumOperands() == 3 &&
+ ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() &&
+ areMatchingArrayAndVecTypes(GEPEltType, SrcEltType)) ||
+ (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() &&
+ areMatchingArrayAndVecTypes(SrcEltType, GEPEltType)))) {
+ GEP.setOperand(0, SrcOp);
+ GEP.setSourceElementType(SrcEltType);
+ return &GEP;
+ }
+ // See if we can simplify:
+ // X = bitcast A* to B*
+ // Y = gep X, <...constant indices...>
+ // into a gep of the original struct. This is important for SROA and alias
+ // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
+ unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
+ APInt Offset(OffsetBits, 0);
+ if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) {
// If this GEP instruction doesn't move the pointer, just replace the GEP
// with a bitcast of the real input to the dest type.
if (!Offset) {
// If the bitcast is of an allocation, and the allocation will be
// converted to match the type of the cast, don't touch this.
- if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, &TLI)) {
+ if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) {
// See if the bitcast simplifies, if so, don't nuke this GEP yet.
if (Instruction *I = visitBitCast(*BCI)) {
if (I != BCI) {
@@ -1985,43 +1993,43 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
}
}
- if (Operand->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
- return new AddrSpaceCastInst(Operand, GEP.getType());
- return new BitCastInst(Operand, GEP.getType());
+ if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
+ return new AddrSpaceCastInst(SrcOp, GEPType);
+ return new BitCastInst(SrcOp, GEPType);
}
// Otherwise, if the offset is non-zero, we need to find out if there is a
// field at Offset in 'A's type. If so, we can pull the cast through the
// GEP.
SmallVector<Value*, 8> NewIndices;
- if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
+ if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
Value *NGEP =
GEP.isInBounds()
- ? Builder.CreateInBoundsGEP(nullptr, Operand, NewIndices)
- : Builder.CreateGEP(nullptr, Operand, NewIndices);
+ ? Builder.CreateInBoundsGEP(nullptr, SrcOp, NewIndices)
+ : Builder.CreateGEP(nullptr, SrcOp, NewIndices);
- if (NGEP->getType() == GEP.getType())
+ if (NGEP->getType() == GEPType)
return replaceInstUsesWith(GEP, NGEP);
NGEP->takeName(&GEP);
if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
- return new AddrSpaceCastInst(NGEP, GEP.getType());
- return new BitCastInst(NGEP, GEP.getType());
+ return new AddrSpaceCastInst(NGEP, GEPType);
+ return new BitCastInst(NGEP, GEPType);
}
}
}
if (!GEP.isInBounds()) {
- unsigned PtrWidth =
- DL.getPointerSizeInBits(PtrOp->getType()->getPointerAddressSpace());
- APInt BasePtrOffset(PtrWidth, 0);
+ unsigned IdxWidth =
+ DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
+ APInt BasePtrOffset(IdxWidth, 0);
Value *UnderlyingPtrOp =
PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
BasePtrOffset);
if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
BasePtrOffset.isNonNegative()) {
- APInt AllocSize(PtrWidth, DL.getTypeAllocSize(AI->getAllocatedType()));
+ APInt AllocSize(IdxWidth, DL.getTypeAllocSize(AI->getAllocatedType()));
if (BasePtrOffset.ule(AllocSize)) {
return GetElementPtrInst::CreateInBounds(
PtrOp, makeArrayRef(Ops).slice(1), GEP.getName());
@@ -2198,7 +2206,7 @@ Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
return nullptr;
}
-/// \brief Move the call to free before a NULL test.
+/// Move the call to free before a NULL test.
///
/// Check if this free is accessed after its argument has been test
/// against NULL (property 0).
@@ -2562,6 +2570,7 @@ static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
case EHPersonality::MSVC_Win64SEH:
case EHPersonality::MSVC_CXX:
case EHPersonality::CoreCLR:
+ case EHPersonality::Wasm_CXX:
return TypeInfo->isNullValue();
}
llvm_unreachable("invalid enum");
@@ -2889,6 +2898,7 @@ Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
/// block.
static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
assert(I->hasOneUse() && "Invariants didn't hold!");
+ BasicBlock *SrcBlock = I->getParent();
// Cannot move control-flow-involving, volatile loads, vaarg, etc.
if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
@@ -2918,10 +2928,20 @@ static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
if (Scan->mayWriteToMemory())
return false;
}
-
BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
I->moveBefore(&*InsertPos);
++NumSunkInst;
+
+ // Also sink all related debug uses from the source basic block. Otherwise we
+ // get debug use before the def.
+ SmallVector<DbgInfoIntrinsic *, 1> DbgUsers;
+ findDbgUsers(DbgUsers, I);
+ for (auto *DII : DbgUsers) {
+ if (DII->getParent() == SrcBlock) {
+ DII->moveBefore(&*InsertPos);
+ LLVM_DEBUG(dbgs() << "SINK: " << *DII << '\n');
+ }
+ }
return true;
}
@@ -2932,7 +2952,7 @@ bool InstCombiner::run() {
// Check to see if we can DCE the instruction.
if (isInstructionTriviallyDead(I, &TLI)) {
- DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
+ LLVM_DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
eraseInstFromFunction(*I);
++NumDeadInst;
MadeIRChange = true;
@@ -2946,7 +2966,8 @@ bool InstCombiner::run() {
if (!I->use_empty() &&
(I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
- DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
+ LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
+ << '\n');
// Add operands to the worklist.
replaceInstUsesWith(*I, C);
@@ -2965,8 +2986,8 @@ bool InstCombiner::run() {
KnownBits Known = computeKnownBits(I, /*Depth*/0, I);
if (Known.isConstant()) {
Constant *C = ConstantInt::get(Ty, Known.getConstant());
- DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C <<
- " from: " << *I << '\n');
+ LLVM_DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C
+ << " from: " << *I << '\n');
// Add operands to the worklist.
replaceInstUsesWith(*I, C);
@@ -3005,7 +3026,7 @@ bool InstCombiner::run() {
if (UserIsSuccessor && UserParent->getUniquePredecessor()) {
// Okay, the CFG is simple enough, try to sink this instruction.
if (TryToSinkInstruction(I, UserParent)) {
- DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
+ LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
MadeIRChange = true;
// We'll add uses of the sunk instruction below, but since sinking
// can expose opportunities for it's *operands* add them to the
@@ -3025,15 +3046,15 @@ bool InstCombiner::run() {
#ifndef NDEBUG
std::string OrigI;
#endif
- DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
- DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
+ LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
+ LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
if (Instruction *Result = visit(*I)) {
++NumCombined;
// Should we replace the old instruction with a new one?
if (Result != I) {
- DEBUG(dbgs() << "IC: Old = " << *I << '\n'
- << " New = " << *Result << '\n');
+ LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
+ << " New = " << *Result << '\n');
if (I->getDebugLoc())
Result->setDebugLoc(I->getDebugLoc());
@@ -3060,8 +3081,8 @@ bool InstCombiner::run() {
eraseInstFromFunction(*I);
} else {
- DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
- << " New = " << *I << '\n');
+ LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
+ << " New = " << *I << '\n');
// If the instruction was modified, it's possible that it is now dead.
// if so, remove it.
@@ -3112,7 +3133,7 @@ static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
// DCE instruction if trivially dead.
if (isInstructionTriviallyDead(Inst, TLI)) {
++NumDeadInst;
- DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
+ LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
salvageDebugInfo(*Inst);
Inst->eraseFromParent();
MadeIRChange = true;
@@ -3123,8 +3144,8 @@ static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
if (!Inst->use_empty() &&
(Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
- DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
- << *Inst << '\n');
+ LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst
+ << '\n');
Inst->replaceAllUsesWith(C);
++NumConstProp;
if (isInstructionTriviallyDead(Inst, TLI))
@@ -3146,9 +3167,9 @@ static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
FoldRes = C;
if (FoldRes != C) {
- DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
- << "\n Old = " << *C
- << "\n New = " << *FoldRes << '\n');
+ LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
+ << "\n Old = " << *C
+ << "\n New = " << *FoldRes << '\n');
U = FoldRes;
MadeIRChange = true;
}
@@ -3191,7 +3212,7 @@ static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
return MadeIRChange;
}
-/// \brief Populate the IC worklist from a function, and prune any dead basic
+/// Populate the IC worklist from a function, and prune any dead basic
/// blocks discovered in the process.
///
/// This also does basic constant propagation and other forward fixing to make
@@ -3251,8 +3272,8 @@ static bool combineInstructionsOverFunction(
int Iteration = 0;
while (true) {
++Iteration;
- DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
- << F.getName() << "\n");
+ LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
+ << F.getName() << "\n");
MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
@@ -3348,3 +3369,7 @@ void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) {
return new InstructionCombiningPass(ExpensiveCombines);
}
+
+void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
+ unwrap(PM)->add(createInstructionCombiningPass());
+}