diff options
Diffstat (limited to 'lib/Transforms/Scalar/MemCpyOptimizer.cpp')
-rw-r--r-- | lib/Transforms/Scalar/MemCpyOptimizer.cpp | 741 |
1 files changed, 741 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/MemCpyOptimizer.cpp b/lib/Transforms/Scalar/MemCpyOptimizer.cpp new file mode 100644 index 000000000000..5cf05183ec05 --- /dev/null +++ b/lib/Transforms/Scalar/MemCpyOptimizer.cpp @@ -0,0 +1,741 @@ +//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass performs various transformations related to eliminating memcpy +// calls, or transforming sets of stores into memset's. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "memcpyopt" +#include "llvm/Transforms/Scalar.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/Instructions.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/Dominators.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/MemoryDependenceAnalysis.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/Target/TargetData.h" +#include <list> +using namespace llvm; + +STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); +STATISTIC(NumMemSetInfer, "Number of memsets inferred"); + +/// isBytewiseValue - If the specified value can be set by repeating the same +/// byte in memory, return the i8 value that it is represented with. This is +/// true for all i8 values obviously, but is also true for i32 0, i32 -1, +/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated +/// byte store (e.g. i16 0x1234), return null. +static Value *isBytewiseValue(Value *V) { + // All byte-wide stores are splatable, even of arbitrary variables. + if (V->getType() == Type::Int8Ty) return V; + + // Constant float and double values can be handled as integer values if the + // corresponding integer value is "byteable". An important case is 0.0. + if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { + if (CFP->getType() == Type::FloatTy) + V = ConstantExpr::getBitCast(CFP, Type::Int32Ty); + if (CFP->getType() == Type::DoubleTy) + V = ConstantExpr::getBitCast(CFP, Type::Int64Ty); + // Don't handle long double formats, which have strange constraints. + } + + // We can handle constant integers that are power of two in size and a + // multiple of 8 bits. + if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { + unsigned Width = CI->getBitWidth(); + if (isPowerOf2_32(Width) && Width > 8) { + // We can handle this value if the recursive binary decomposition is the + // same at all levels. + APInt Val = CI->getValue(); + APInt Val2; + while (Val.getBitWidth() != 8) { + unsigned NextWidth = Val.getBitWidth()/2; + Val2 = Val.lshr(NextWidth); + Val2.trunc(Val.getBitWidth()/2); + Val.trunc(Val.getBitWidth()/2); + + // If the top/bottom halves aren't the same, reject it. + if (Val != Val2) + return 0; + } + return ConstantInt::get(Val); + } + } + + // Conceptually, we could handle things like: + // %a = zext i8 %X to i16 + // %b = shl i16 %a, 8 + // %c = or i16 %a, %b + // but until there is an example that actually needs this, it doesn't seem + // worth worrying about. + return 0; +} + +static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx, + bool &VariableIdxFound, TargetData &TD) { + // Skip over the first indices. + gep_type_iterator GTI = gep_type_begin(GEP); + for (unsigned i = 1; i != Idx; ++i, ++GTI) + /*skip along*/; + + // Compute the offset implied by the rest of the indices. + int64_t Offset = 0; + for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { + ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); + if (OpC == 0) + return VariableIdxFound = true; + if (OpC->isZero()) continue; // No offset. + + // Handle struct indices, which add their field offset to the pointer. + if (const StructType *STy = dyn_cast<StructType>(*GTI)) { + Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); + continue; + } + + // Otherwise, we have a sequential type like an array or vector. Multiply + // the index by the ElementSize. + uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); + Offset += Size*OpC->getSExtValue(); + } + + return Offset; +} + +/// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a +/// constant offset, and return that constant offset. For example, Ptr1 might +/// be &A[42], and Ptr2 might be &A[40]. In this case offset would be -8. +static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset, + TargetData &TD) { + // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical + // base. After that base, they may have some number of common (and + // potentially variable) indices. After that they handle some constant + // offset, which determines their offset from each other. At this point, we + // handle no other case. + GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1); + GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2); + if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) + return false; + + // Skip any common indices and track the GEP types. + unsigned Idx = 1; + for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) + if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) + break; + + bool VariableIdxFound = false; + int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD); + int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD); + if (VariableIdxFound) return false; + + Offset = Offset2-Offset1; + return true; +} + + +/// MemsetRange - Represents a range of memset'd bytes with the ByteVal value. +/// This allows us to analyze stores like: +/// store 0 -> P+1 +/// store 0 -> P+0 +/// store 0 -> P+3 +/// store 0 -> P+2 +/// which sometimes happens with stores to arrays of structs etc. When we see +/// the first store, we make a range [1, 2). The second store extends the range +/// to [0, 2). The third makes a new range [2, 3). The fourth store joins the +/// two ranges into [0, 3) which is memset'able. +namespace { +struct MemsetRange { + // Start/End - A semi range that describes the span that this range covers. + // The range is closed at the start and open at the end: [Start, End). + int64_t Start, End; + + /// StartPtr - The getelementptr instruction that points to the start of the + /// range. + Value *StartPtr; + + /// Alignment - The known alignment of the first store. + unsigned Alignment; + + /// TheStores - The actual stores that make up this range. + SmallVector<StoreInst*, 16> TheStores; + + bool isProfitableToUseMemset(const TargetData &TD) const; + +}; +} // end anon namespace + +bool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const { + // If we found more than 8 stores to merge or 64 bytes, use memset. + if (TheStores.size() >= 8 || End-Start >= 64) return true; + + // Assume that the code generator is capable of merging pairs of stores + // together if it wants to. + if (TheStores.size() <= 2) return false; + + // If we have fewer than 8 stores, it can still be worthwhile to do this. + // For example, merging 4 i8 stores into an i32 store is useful almost always. + // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the + // memset will be split into 2 32-bit stores anyway) and doing so can + // pessimize the llvm optimizer. + // + // Since we don't have perfect knowledge here, make some assumptions: assume + // the maximum GPR width is the same size as the pointer size and assume that + // this width can be stored. If so, check to see whether we will end up + // actually reducing the number of stores used. + unsigned Bytes = unsigned(End-Start); + unsigned NumPointerStores = Bytes/TD.getPointerSize(); + + // Assume the remaining bytes if any are done a byte at a time. + unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize(); + + // If we will reduce the # stores (according to this heuristic), do the + // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 + // etc. + return TheStores.size() > NumPointerStores+NumByteStores; +} + + +namespace { +class MemsetRanges { + /// Ranges - A sorted list of the memset ranges. We use std::list here + /// because each element is relatively large and expensive to copy. + std::list<MemsetRange> Ranges; + typedef std::list<MemsetRange>::iterator range_iterator; + TargetData &TD; +public: + MemsetRanges(TargetData &td) : TD(td) {} + + typedef std::list<MemsetRange>::const_iterator const_iterator; + const_iterator begin() const { return Ranges.begin(); } + const_iterator end() const { return Ranges.end(); } + bool empty() const { return Ranges.empty(); } + + void addStore(int64_t OffsetFromFirst, StoreInst *SI); +}; + +} // end anon namespace + + +/// addStore - Add a new store to the MemsetRanges data structure. This adds a +/// new range for the specified store at the specified offset, merging into +/// existing ranges as appropriate. +void MemsetRanges::addStore(int64_t Start, StoreInst *SI) { + int64_t End = Start+TD.getTypeStoreSize(SI->getOperand(0)->getType()); + + // Do a linear search of the ranges to see if this can be joined and/or to + // find the insertion point in the list. We keep the ranges sorted for + // simplicity here. This is a linear search of a linked list, which is ugly, + // however the number of ranges is limited, so this won't get crazy slow. + range_iterator I = Ranges.begin(), E = Ranges.end(); + + while (I != E && Start > I->End) + ++I; + + // We now know that I == E, in which case we didn't find anything to merge + // with, or that Start <= I->End. If End < I->Start or I == E, then we need + // to insert a new range. Handle this now. + if (I == E || End < I->Start) { + MemsetRange &R = *Ranges.insert(I, MemsetRange()); + R.Start = Start; + R.End = End; + R.StartPtr = SI->getPointerOperand(); + R.Alignment = SI->getAlignment(); + R.TheStores.push_back(SI); + return; + } + + // This store overlaps with I, add it. + I->TheStores.push_back(SI); + + // At this point, we may have an interval that completely contains our store. + // If so, just add it to the interval and return. + if (I->Start <= Start && I->End >= End) + return; + + // Now we know that Start <= I->End and End >= I->Start so the range overlaps + // but is not entirely contained within the range. + + // See if the range extends the start of the range. In this case, it couldn't + // possibly cause it to join the prior range, because otherwise we would have + // stopped on *it*. + if (Start < I->Start) { + I->Start = Start; + I->StartPtr = SI->getPointerOperand(); + } + + // Now we know that Start <= I->End and Start >= I->Start (so the startpoint + // is in or right at the end of I), and that End >= I->Start. Extend I out to + // End. + if (End > I->End) { + I->End = End; + range_iterator NextI = I; + while (++NextI != E && End >= NextI->Start) { + // Merge the range in. + I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); + if (NextI->End > I->End) + I->End = NextI->End; + Ranges.erase(NextI); + NextI = I; + } + } +} + +//===----------------------------------------------------------------------===// +// MemCpyOpt Pass +//===----------------------------------------------------------------------===// + +namespace { + + class VISIBILITY_HIDDEN MemCpyOpt : public FunctionPass { + bool runOnFunction(Function &F); + public: + static char ID; // Pass identification, replacement for typeid + MemCpyOpt() : FunctionPass(&ID) {} + + private: + // This transformation requires dominator postdominator info + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); + AU.addRequired<DominatorTree>(); + AU.addRequired<MemoryDependenceAnalysis>(); + AU.addRequired<AliasAnalysis>(); + AU.addRequired<TargetData>(); + AU.addPreserved<AliasAnalysis>(); + AU.addPreserved<MemoryDependenceAnalysis>(); + AU.addPreserved<TargetData>(); + } + + // Helper fuctions + bool processStore(StoreInst *SI, BasicBlock::iterator& BBI); + bool processMemCpy(MemCpyInst* M); + bool performCallSlotOptzn(MemCpyInst* cpy, CallInst* C); + bool iterateOnFunction(Function &F); + }; + + char MemCpyOpt::ID = 0; +} + +// createMemCpyOptPass - The public interface to this file... +FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); } + +static RegisterPass<MemCpyOpt> X("memcpyopt", + "MemCpy Optimization"); + + + +/// processStore - When GVN is scanning forward over instructions, we look for +/// some other patterns to fold away. In particular, this looks for stores to +/// neighboring locations of memory. If it sees enough consequtive ones +/// (currently 4) it attempts to merge them together into a memcpy/memset. +bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator& BBI) { + if (SI->isVolatile()) return false; + + // There are two cases that are interesting for this code to handle: memcpy + // and memset. Right now we only handle memset. + + // Ensure that the value being stored is something that can be memset'able a + // byte at a time like "0" or "-1" or any width, as well as things like + // 0xA0A0A0A0 and 0.0. + Value *ByteVal = isBytewiseValue(SI->getOperand(0)); + if (!ByteVal) + return false; + + TargetData &TD = getAnalysis<TargetData>(); + AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); + + // Okay, so we now have a single store that can be splatable. Scan to find + // all subsequent stores of the same value to offset from the same pointer. + // Join these together into ranges, so we can decide whether contiguous blocks + // are stored. + MemsetRanges Ranges(TD); + + Value *StartPtr = SI->getPointerOperand(); + + BasicBlock::iterator BI = SI; + for (++BI; !isa<TerminatorInst>(BI); ++BI) { + if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) { + // If the call is readnone, ignore it, otherwise bail out. We don't even + // allow readonly here because we don't want something like: + // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). + if (AA.getModRefBehavior(CallSite::get(BI)) == + AliasAnalysis::DoesNotAccessMemory) + continue; + + // TODO: If this is a memset, try to join it in. + + break; + } else if (isa<VAArgInst>(BI) || isa<LoadInst>(BI)) + break; + + // If this is a non-store instruction it is fine, ignore it. + StoreInst *NextStore = dyn_cast<StoreInst>(BI); + if (NextStore == 0) continue; + + // If this is a store, see if we can merge it in. + if (NextStore->isVolatile()) break; + + // Check to see if this stored value is of the same byte-splattable value. + if (ByteVal != isBytewiseValue(NextStore->getOperand(0))) + break; + + // Check to see if this store is to a constant offset from the start ptr. + int64_t Offset; + if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, TD)) + break; + + Ranges.addStore(Offset, NextStore); + } + + // If we have no ranges, then we just had a single store with nothing that + // could be merged in. This is a very common case of course. + if (Ranges.empty()) + return false; + + // If we had at least one store that could be merged in, add the starting + // store as well. We try to avoid this unless there is at least something + // interesting as a small compile-time optimization. + Ranges.addStore(0, SI); + + + Function *MemSetF = 0; + + // Now that we have full information about ranges, loop over the ranges and + // emit memset's for anything big enough to be worthwhile. + bool MadeChange = false; + for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end(); + I != E; ++I) { + const MemsetRange &Range = *I; + + if (Range.TheStores.size() == 1) continue; + + // If it is profitable to lower this range to memset, do so now. + if (!Range.isProfitableToUseMemset(TD)) + continue; + + // Otherwise, we do want to transform this! Create a new memset. We put + // the memset right before the first instruction that isn't part of this + // memset block. This ensure that the memset is dominated by any addressing + // instruction needed by the start of the block. + BasicBlock::iterator InsertPt = BI; + + if (MemSetF == 0) { + const Type *Tys[] = {Type::Int64Ty}; + MemSetF = Intrinsic::getDeclaration(SI->getParent()->getParent() + ->getParent(), Intrinsic::memset, + Tys, 1); + } + + // Get the starting pointer of the block. + StartPtr = Range.StartPtr; + + // Cast the start ptr to be i8* as memset requires. + const Type *i8Ptr = PointerType::getUnqual(Type::Int8Ty); + if (StartPtr->getType() != i8Ptr) + StartPtr = new BitCastInst(StartPtr, i8Ptr, StartPtr->getNameStart(), + InsertPt); + + Value *Ops[] = { + StartPtr, ByteVal, // Start, value + ConstantInt::get(Type::Int64Ty, Range.End-Range.Start), // size + ConstantInt::get(Type::Int32Ty, Range.Alignment) // align + }; + Value *C = CallInst::Create(MemSetF, Ops, Ops+4, "", InsertPt); + DEBUG(cerr << "Replace stores:\n"; + for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i) + cerr << *Range.TheStores[i]; + cerr << "With: " << *C); C=C; + + // Don't invalidate the iterator + BBI = BI; + + // Zap all the stores. + for (SmallVector<StoreInst*, 16>::const_iterator SI = Range.TheStores.begin(), + SE = Range.TheStores.end(); SI != SE; ++SI) + (*SI)->eraseFromParent(); + ++NumMemSetInfer; + MadeChange = true; + } + + return MadeChange; +} + + +/// performCallSlotOptzn - takes a memcpy and a call that it depends on, +/// and checks for the possibility of a call slot optimization by having +/// the call write its result directly into the destination of the memcpy. +bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) { + // The general transformation to keep in mind is + // + // call @func(..., src, ...) + // memcpy(dest, src, ...) + // + // -> + // + // memcpy(dest, src, ...) + // call @func(..., dest, ...) + // + // Since moving the memcpy is technically awkward, we additionally check that + // src only holds uninitialized values at the moment of the call, meaning that + // the memcpy can be discarded rather than moved. + + // Deliberately get the source and destination with bitcasts stripped away, + // because we'll need to do type comparisons based on the underlying type. + Value* cpyDest = cpy->getDest(); + Value* cpySrc = cpy->getSource(); + CallSite CS = CallSite::get(C); + + // We need to be able to reason about the size of the memcpy, so we require + // that it be a constant. + ConstantInt* cpyLength = dyn_cast<ConstantInt>(cpy->getLength()); + if (!cpyLength) + return false; + + // Require that src be an alloca. This simplifies the reasoning considerably. + AllocaInst* srcAlloca = dyn_cast<AllocaInst>(cpySrc); + if (!srcAlloca) + return false; + + // Check that all of src is copied to dest. + TargetData& TD = getAnalysis<TargetData>(); + + ConstantInt* srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); + if (!srcArraySize) + return false; + + uint64_t srcSize = TD.getTypeAllocSize(srcAlloca->getAllocatedType()) * + srcArraySize->getZExtValue(); + + if (cpyLength->getZExtValue() < srcSize) + return false; + + // Check that accessing the first srcSize bytes of dest will not cause a + // trap. Otherwise the transform is invalid since it might cause a trap + // to occur earlier than it otherwise would. + if (AllocaInst* A = dyn_cast<AllocaInst>(cpyDest)) { + // The destination is an alloca. Check it is larger than srcSize. + ConstantInt* destArraySize = dyn_cast<ConstantInt>(A->getArraySize()); + if (!destArraySize) + return false; + + uint64_t destSize = TD.getTypeAllocSize(A->getAllocatedType()) * + destArraySize->getZExtValue(); + + if (destSize < srcSize) + return false; + } else if (Argument* A = dyn_cast<Argument>(cpyDest)) { + // If the destination is an sret parameter then only accesses that are + // outside of the returned struct type can trap. + if (!A->hasStructRetAttr()) + return false; + + const Type* StructTy = cast<PointerType>(A->getType())->getElementType(); + uint64_t destSize = TD.getTypeAllocSize(StructTy); + + if (destSize < srcSize) + return false; + } else { + return false; + } + + // Check that src is not accessed except via the call and the memcpy. This + // guarantees that it holds only undefined values when passed in (so the final + // memcpy can be dropped), that it is not read or written between the call and + // the memcpy, and that writing beyond the end of it is undefined. + SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(), + srcAlloca->use_end()); + while (!srcUseList.empty()) { + User* UI = srcUseList.back(); + srcUseList.pop_back(); + + if (isa<BitCastInst>(UI)) { + for (User::use_iterator I = UI->use_begin(), E = UI->use_end(); + I != E; ++I) + srcUseList.push_back(*I); + } else if (GetElementPtrInst* G = dyn_cast<GetElementPtrInst>(UI)) { + if (G->hasAllZeroIndices()) + for (User::use_iterator I = UI->use_begin(), E = UI->use_end(); + I != E; ++I) + srcUseList.push_back(*I); + else + return false; + } else if (UI != C && UI != cpy) { + return false; + } + } + + // Since we're changing the parameter to the callsite, we need to make sure + // that what would be the new parameter dominates the callsite. + DominatorTree& DT = getAnalysis<DominatorTree>(); + if (Instruction* cpyDestInst = dyn_cast<Instruction>(cpyDest)) + if (!DT.dominates(cpyDestInst, C)) + return false; + + // In addition to knowing that the call does not access src in some + // unexpected manner, for example via a global, which we deduce from + // the use analysis, we also need to know that it does not sneakily + // access dest. We rely on AA to figure this out for us. + AliasAnalysis& AA = getAnalysis<AliasAnalysis>(); + if (AA.getModRefInfo(C, cpy->getRawDest(), srcSize) != + AliasAnalysis::NoModRef) + return false; + + // All the checks have passed, so do the transformation. + bool changedArgument = false; + for (unsigned i = 0; i < CS.arg_size(); ++i) + if (CS.getArgument(i)->stripPointerCasts() == cpySrc) { + if (cpySrc->getType() != cpyDest->getType()) + cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), + cpyDest->getName(), C); + changedArgument = true; + if (CS.getArgument(i)->getType() != cpyDest->getType()) + CS.setArgument(i, CastInst::CreatePointerCast(cpyDest, + CS.getArgument(i)->getType(), cpyDest->getName(), C)); + else + CS.setArgument(i, cpyDest); + } + + if (!changedArgument) + return false; + + // Drop any cached information about the call, because we may have changed + // its dependence information by changing its parameter. + MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>(); + MD.removeInstruction(C); + + // Remove the memcpy + MD.removeInstruction(cpy); + cpy->eraseFromParent(); + NumMemCpyInstr++; + + return true; +} + +/// processMemCpy - perform simplication of memcpy's. If we have memcpy A which +/// copies X to Y, and memcpy B which copies Y to Z, then we can rewrite B to be +/// a memcpy from X to Z (or potentially a memmove, depending on circumstances). +/// This allows later passes to remove the first memcpy altogether. +bool MemCpyOpt::processMemCpy(MemCpyInst* M) { + MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>(); + + // The are two possible optimizations we can do for memcpy: + // a) memcpy-memcpy xform which exposes redundance for DSE + // b) call-memcpy xform for return slot optimization + MemDepResult dep = MD.getDependency(M); + if (!dep.isClobber()) + return false; + if (!isa<MemCpyInst>(dep.getInst())) { + if (CallInst* C = dyn_cast<CallInst>(dep.getInst())) + return performCallSlotOptzn(M, C); + return false; + } + + MemCpyInst* MDep = cast<MemCpyInst>(dep.getInst()); + + // We can only transforms memcpy's where the dest of one is the source of the + // other + if (M->getSource() != MDep->getDest()) + return false; + + // Second, the length of the memcpy's must be the same, or the preceeding one + // must be larger than the following one. + ConstantInt* C1 = dyn_cast<ConstantInt>(MDep->getLength()); + ConstantInt* C2 = dyn_cast<ConstantInt>(M->getLength()); + if (!C1 || !C2) + return false; + + uint64_t DepSize = C1->getValue().getZExtValue(); + uint64_t CpySize = C2->getValue().getZExtValue(); + + if (DepSize < CpySize) + return false; + + // Finally, we have to make sure that the dest of the second does not + // alias the source of the first + AliasAnalysis& AA = getAnalysis<AliasAnalysis>(); + if (AA.alias(M->getRawDest(), CpySize, MDep->getRawSource(), DepSize) != + AliasAnalysis::NoAlias) + return false; + else if (AA.alias(M->getRawDest(), CpySize, M->getRawSource(), CpySize) != + AliasAnalysis::NoAlias) + return false; + else if (AA.alias(MDep->getRawDest(), DepSize, MDep->getRawSource(), DepSize) + != AliasAnalysis::NoAlias) + return false; + + // If all checks passed, then we can transform these memcpy's + const Type *Tys[1]; + Tys[0] = M->getLength()->getType(); + Function* MemCpyFun = Intrinsic::getDeclaration( + M->getParent()->getParent()->getParent(), + M->getIntrinsicID(), Tys, 1); + + Value *Args[4] = { + M->getRawDest(), MDep->getRawSource(), M->getLength(), M->getAlignmentCst() + }; + + CallInst* C = CallInst::Create(MemCpyFun, Args, Args+4, "", M); + + + // If C and M don't interfere, then this is a valid transformation. If they + // did, this would mean that the two sources overlap, which would be bad. + if (MD.getDependency(C) == dep) { + MD.removeInstruction(M); + M->eraseFromParent(); + NumMemCpyInstr++; + return true; + } + + // Otherwise, there was no point in doing this, so we remove the call we + // inserted and act like nothing happened. + MD.removeInstruction(C); + C->eraseFromParent(); + return false; +} + +// MemCpyOpt::runOnFunction - This is the main transformation entry point for a +// function. +// +bool MemCpyOpt::runOnFunction(Function& F) { + + bool changed = false; + bool shouldContinue = true; + + while (shouldContinue) { + shouldContinue = iterateOnFunction(F); + changed |= shouldContinue; + } + + return changed; +} + + +// MemCpyOpt::iterateOnFunction - Executes one iteration of GVN +bool MemCpyOpt::iterateOnFunction(Function &F) { + bool changed_function = false; + + // Walk all instruction in the function + for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) { + for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); + BI != BE;) { + // Avoid invalidating the iterator + Instruction* I = BI++; + + if (StoreInst *SI = dyn_cast<StoreInst>(I)) + changed_function |= processStore(SI, BI); + else if (MemCpyInst* M = dyn_cast<MemCpyInst>(I)) { + changed_function |= processMemCpy(M); + } + } + } + + return changed_function; +} |