diff options
Diffstat (limited to 'lib/Transforms/Scalar/MemCpyOptimizer.cpp')
| -rw-r--r-- | lib/Transforms/Scalar/MemCpyOptimizer.cpp | 741 | 
1 files changed, 741 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/MemCpyOptimizer.cpp b/lib/Transforms/Scalar/MemCpyOptimizer.cpp new file mode 100644 index 000000000000..5cf05183ec05 --- /dev/null +++ b/lib/Transforms/Scalar/MemCpyOptimizer.cpp @@ -0,0 +1,741 @@ +//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass performs various transformations related to eliminating memcpy +// calls, or transforming sets of stores into memset's. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "memcpyopt" +#include "llvm/Transforms/Scalar.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/Instructions.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/Dominators.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/MemoryDependenceAnalysis.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/Target/TargetData.h" +#include <list> +using namespace llvm; + +STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); +STATISTIC(NumMemSetInfer, "Number of memsets inferred"); + +/// isBytewiseValue - If the specified value can be set by repeating the same +/// byte in memory, return the i8 value that it is represented with.  This is +/// true for all i8 values obviously, but is also true for i32 0, i32 -1, +/// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated +/// byte store (e.g. i16 0x1234), return null. +static Value *isBytewiseValue(Value *V) { +  // All byte-wide stores are splatable, even of arbitrary variables. +  if (V->getType() == Type::Int8Ty) return V; +   +  // Constant float and double values can be handled as integer values if the +  // corresponding integer value is "byteable".  An important case is 0.0.  +  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { +    if (CFP->getType() == Type::FloatTy) +      V = ConstantExpr::getBitCast(CFP, Type::Int32Ty); +    if (CFP->getType() == Type::DoubleTy) +      V = ConstantExpr::getBitCast(CFP, Type::Int64Ty); +    // Don't handle long double formats, which have strange constraints. +  } +   +  // We can handle constant integers that are power of two in size and a  +  // multiple of 8 bits. +  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { +    unsigned Width = CI->getBitWidth(); +    if (isPowerOf2_32(Width) && Width > 8) { +      // We can handle this value if the recursive binary decomposition is the +      // same at all levels. +      APInt Val = CI->getValue(); +      APInt Val2; +      while (Val.getBitWidth() != 8) { +        unsigned NextWidth = Val.getBitWidth()/2; +        Val2  = Val.lshr(NextWidth); +        Val2.trunc(Val.getBitWidth()/2); +        Val.trunc(Val.getBitWidth()/2); + +        // If the top/bottom halves aren't the same, reject it. +        if (Val != Val2) +          return 0; +      } +      return ConstantInt::get(Val); +    } +  } +   +  // Conceptually, we could handle things like: +  //   %a = zext i8 %X to i16 +  //   %b = shl i16 %a, 8 +  //   %c = or i16 %a, %b +  // but until there is an example that actually needs this, it doesn't seem +  // worth worrying about. +  return 0; +} + +static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx, +                                  bool &VariableIdxFound, TargetData &TD) { +  // Skip over the first indices. +  gep_type_iterator GTI = gep_type_begin(GEP); +  for (unsigned i = 1; i != Idx; ++i, ++GTI) +    /*skip along*/; +   +  // Compute the offset implied by the rest of the indices. +  int64_t Offset = 0; +  for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { +    ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); +    if (OpC == 0) +      return VariableIdxFound = true; +    if (OpC->isZero()) continue;  // No offset. + +    // Handle struct indices, which add their field offset to the pointer. +    if (const StructType *STy = dyn_cast<StructType>(*GTI)) { +      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); +      continue; +    } +     +    // Otherwise, we have a sequential type like an array or vector.  Multiply +    // the index by the ElementSize. +    uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); +    Offset += Size*OpC->getSExtValue(); +  } + +  return Offset; +} + +/// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a +/// constant offset, and return that constant offset.  For example, Ptr1 might +/// be &A[42], and Ptr2 might be &A[40].  In this case offset would be -8. +static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset, +                            TargetData &TD) { +  // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical +  // base.  After that base, they may have some number of common (and +  // potentially variable) indices.  After that they handle some constant +  // offset, which determines their offset from each other.  At this point, we +  // handle no other case. +  GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1); +  GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2); +  if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) +    return false; +   +  // Skip any common indices and track the GEP types. +  unsigned Idx = 1; +  for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) +    if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) +      break; + +  bool VariableIdxFound = false; +  int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD); +  int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD); +  if (VariableIdxFound) return false; +   +  Offset = Offset2-Offset1; +  return true; +} + + +/// MemsetRange - Represents a range of memset'd bytes with the ByteVal value. +/// This allows us to analyze stores like: +///   store 0 -> P+1 +///   store 0 -> P+0 +///   store 0 -> P+3 +///   store 0 -> P+2 +/// which sometimes happens with stores to arrays of structs etc.  When we see +/// the first store, we make a range [1, 2).  The second store extends the range +/// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the +/// two ranges into [0, 3) which is memset'able. +namespace { +struct MemsetRange { +  // Start/End - A semi range that describes the span that this range covers. +  // The range is closed at the start and open at the end: [Start, End).   +  int64_t Start, End; + +  /// StartPtr - The getelementptr instruction that points to the start of the +  /// range. +  Value *StartPtr; +   +  /// Alignment - The known alignment of the first store. +  unsigned Alignment; +   +  /// TheStores - The actual stores that make up this range. +  SmallVector<StoreInst*, 16> TheStores; +   +  bool isProfitableToUseMemset(const TargetData &TD) const; + +}; +} // end anon namespace + +bool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const { +  // If we found more than 8 stores to merge or 64 bytes, use memset. +  if (TheStores.size() >= 8 || End-Start >= 64) return true; +   +  // Assume that the code generator is capable of merging pairs of stores +  // together if it wants to. +  if (TheStores.size() <= 2) return false; +   +  // If we have fewer than 8 stores, it can still be worthwhile to do this. +  // For example, merging 4 i8 stores into an i32 store is useful almost always. +  // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the +  // memset will be split into 2 32-bit stores anyway) and doing so can +  // pessimize the llvm optimizer. +  // +  // Since we don't have perfect knowledge here, make some assumptions: assume +  // the maximum GPR width is the same size as the pointer size and assume that +  // this width can be stored.  If so, check to see whether we will end up +  // actually reducing the number of stores used. +  unsigned Bytes = unsigned(End-Start); +  unsigned NumPointerStores = Bytes/TD.getPointerSize(); +   +  // Assume the remaining bytes if any are done a byte at a time. +  unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize(); +   +  // If we will reduce the # stores (according to this heuristic), do the +  // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 +  // etc. +  return TheStores.size() > NumPointerStores+NumByteStores; +}     + + +namespace { +class MemsetRanges { +  /// Ranges - A sorted list of the memset ranges.  We use std::list here +  /// because each element is relatively large and expensive to copy. +  std::list<MemsetRange> Ranges; +  typedef std::list<MemsetRange>::iterator range_iterator; +  TargetData &TD; +public: +  MemsetRanges(TargetData &td) : TD(td) {} +   +  typedef std::list<MemsetRange>::const_iterator const_iterator; +  const_iterator begin() const { return Ranges.begin(); } +  const_iterator end() const { return Ranges.end(); } +  bool empty() const { return Ranges.empty(); } +   +  void addStore(int64_t OffsetFromFirst, StoreInst *SI); +}; +   +} // end anon namespace + + +/// addStore - Add a new store to the MemsetRanges data structure.  This adds a +/// new range for the specified store at the specified offset, merging into +/// existing ranges as appropriate. +void MemsetRanges::addStore(int64_t Start, StoreInst *SI) { +  int64_t End = Start+TD.getTypeStoreSize(SI->getOperand(0)->getType()); +   +  // Do a linear search of the ranges to see if this can be joined and/or to +  // find the insertion point in the list.  We keep the ranges sorted for +  // simplicity here.  This is a linear search of a linked list, which is ugly, +  // however the number of ranges is limited, so this won't get crazy slow. +  range_iterator I = Ranges.begin(), E = Ranges.end(); +   +  while (I != E && Start > I->End) +    ++I; +   +  // We now know that I == E, in which case we didn't find anything to merge +  // with, or that Start <= I->End.  If End < I->Start or I == E, then we need +  // to insert a new range.  Handle this now. +  if (I == E || End < I->Start) { +    MemsetRange &R = *Ranges.insert(I, MemsetRange()); +    R.Start        = Start; +    R.End          = End; +    R.StartPtr     = SI->getPointerOperand(); +    R.Alignment    = SI->getAlignment(); +    R.TheStores.push_back(SI); +    return; +  } + +  // This store overlaps with I, add it. +  I->TheStores.push_back(SI); +   +  // At this point, we may have an interval that completely contains our store. +  // If so, just add it to the interval and return. +  if (I->Start <= Start && I->End >= End) +    return; +   +  // Now we know that Start <= I->End and End >= I->Start so the range overlaps +  // but is not entirely contained within the range. +   +  // See if the range extends the start of the range.  In this case, it couldn't +  // possibly cause it to join the prior range, because otherwise we would have +  // stopped on *it*. +  if (Start < I->Start) { +    I->Start = Start; +    I->StartPtr = SI->getPointerOperand(); +  } +     +  // Now we know that Start <= I->End and Start >= I->Start (so the startpoint +  // is in or right at the end of I), and that End >= I->Start.  Extend I out to +  // End. +  if (End > I->End) { +    I->End = End; +    range_iterator NextI = I; +    while (++NextI != E && End >= NextI->Start) { +      // Merge the range in. +      I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); +      if (NextI->End > I->End) +        I->End = NextI->End; +      Ranges.erase(NextI); +      NextI = I; +    } +  } +} + +//===----------------------------------------------------------------------===// +//                         MemCpyOpt Pass +//===----------------------------------------------------------------------===// + +namespace { + +  class VISIBILITY_HIDDEN MemCpyOpt : public FunctionPass { +    bool runOnFunction(Function &F); +  public: +    static char ID; // Pass identification, replacement for typeid +    MemCpyOpt() : FunctionPass(&ID) {} + +  private: +    // This transformation requires dominator postdominator info +    virtual void getAnalysisUsage(AnalysisUsage &AU) const { +      AU.setPreservesCFG(); +      AU.addRequired<DominatorTree>(); +      AU.addRequired<MemoryDependenceAnalysis>(); +      AU.addRequired<AliasAnalysis>(); +      AU.addRequired<TargetData>(); +      AU.addPreserved<AliasAnalysis>(); +      AU.addPreserved<MemoryDependenceAnalysis>(); +      AU.addPreserved<TargetData>(); +    } +   +    // Helper fuctions +    bool processStore(StoreInst *SI, BasicBlock::iterator& BBI); +    bool processMemCpy(MemCpyInst* M); +    bool performCallSlotOptzn(MemCpyInst* cpy, CallInst* C); +    bool iterateOnFunction(Function &F); +  }; +   +  char MemCpyOpt::ID = 0; +} + +// createMemCpyOptPass - The public interface to this file... +FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); } + +static RegisterPass<MemCpyOpt> X("memcpyopt", +                                 "MemCpy Optimization"); + + + +/// processStore - When GVN is scanning forward over instructions, we look for +/// some other patterns to fold away.  In particular, this looks for stores to +/// neighboring locations of memory.  If it sees enough consequtive ones +/// (currently 4) it attempts to merge them together into a memcpy/memset. +bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator& BBI) { +  if (SI->isVolatile()) return false; +   +  // There are two cases that are interesting for this code to handle: memcpy +  // and memset.  Right now we only handle memset. +   +  // Ensure that the value being stored is something that can be memset'able a +  // byte at a time like "0" or "-1" or any width, as well as things like +  // 0xA0A0A0A0 and 0.0. +  Value *ByteVal = isBytewiseValue(SI->getOperand(0)); +  if (!ByteVal) +    return false; + +  TargetData &TD = getAnalysis<TargetData>(); +  AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); + +  // Okay, so we now have a single store that can be splatable.  Scan to find +  // all subsequent stores of the same value to offset from the same pointer. +  // Join these together into ranges, so we can decide whether contiguous blocks +  // are stored. +  MemsetRanges Ranges(TD); +   +  Value *StartPtr = SI->getPointerOperand(); +   +  BasicBlock::iterator BI = SI; +  for (++BI; !isa<TerminatorInst>(BI); ++BI) { +    if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) {  +      // If the call is readnone, ignore it, otherwise bail out.  We don't even +      // allow readonly here because we don't want something like: +      // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). +      if (AA.getModRefBehavior(CallSite::get(BI)) == +            AliasAnalysis::DoesNotAccessMemory) +        continue; +       +      // TODO: If this is a memset, try to join it in. +       +      break; +    } else if (isa<VAArgInst>(BI) || isa<LoadInst>(BI)) +      break; + +    // If this is a non-store instruction it is fine, ignore it. +    StoreInst *NextStore = dyn_cast<StoreInst>(BI); +    if (NextStore == 0) continue; +     +    // If this is a store, see if we can merge it in. +    if (NextStore->isVolatile()) break; +     +    // Check to see if this stored value is of the same byte-splattable value. +    if (ByteVal != isBytewiseValue(NextStore->getOperand(0))) +      break; + +    // Check to see if this store is to a constant offset from the start ptr. +    int64_t Offset; +    if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, TD)) +      break; + +    Ranges.addStore(Offset, NextStore); +  } + +  // If we have no ranges, then we just had a single store with nothing that +  // could be merged in.  This is a very common case of course. +  if (Ranges.empty()) +    return false; +   +  // If we had at least one store that could be merged in, add the starting +  // store as well.  We try to avoid this unless there is at least something +  // interesting as a small compile-time optimization. +  Ranges.addStore(0, SI); + +   +  Function *MemSetF = 0; +   +  // Now that we have full information about ranges, loop over the ranges and +  // emit memset's for anything big enough to be worthwhile. +  bool MadeChange = false; +  for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end(); +       I != E; ++I) { +    const MemsetRange &Range = *I; + +    if (Range.TheStores.size() == 1) continue; +     +    // If it is profitable to lower this range to memset, do so now. +    if (!Range.isProfitableToUseMemset(TD)) +      continue; +     +    // Otherwise, we do want to transform this!  Create a new memset.  We put +    // the memset right before the first instruction that isn't part of this +    // memset block.  This ensure that the memset is dominated by any addressing +    // instruction needed by the start of the block. +    BasicBlock::iterator InsertPt = BI; +   +    if (MemSetF == 0) { +      const Type *Tys[] = {Type::Int64Ty}; +      MemSetF = Intrinsic::getDeclaration(SI->getParent()->getParent() +                                          ->getParent(), Intrinsic::memset, +                                          Tys, 1); +   } +     +    // Get the starting pointer of the block. +    StartPtr = Range.StartPtr; +   +    // Cast the start ptr to be i8* as memset requires. +    const Type *i8Ptr = PointerType::getUnqual(Type::Int8Ty); +    if (StartPtr->getType() != i8Ptr) +      StartPtr = new BitCastInst(StartPtr, i8Ptr, StartPtr->getNameStart(), +                                 InsertPt); +   +    Value *Ops[] = { +      StartPtr, ByteVal,   // Start, value +      ConstantInt::get(Type::Int64Ty, Range.End-Range.Start),  // size +      ConstantInt::get(Type::Int32Ty, Range.Alignment)   // align +    }; +    Value *C = CallInst::Create(MemSetF, Ops, Ops+4, "", InsertPt); +    DEBUG(cerr << "Replace stores:\n"; +          for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i) +            cerr << *Range.TheStores[i]; +          cerr << "With: " << *C); C=C; +   +    // Don't invalidate the iterator +    BBI = BI; +   +    // Zap all the stores. +    for (SmallVector<StoreInst*, 16>::const_iterator SI = Range.TheStores.begin(), +         SE = Range.TheStores.end(); SI != SE; ++SI) +      (*SI)->eraseFromParent(); +    ++NumMemSetInfer; +    MadeChange = true; +  } +   +  return MadeChange; +} + + +/// performCallSlotOptzn - takes a memcpy and a call that it depends on, +/// and checks for the possibility of a call slot optimization by having +/// the call write its result directly into the destination of the memcpy. +bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) { +  // The general transformation to keep in mind is +  // +  //   call @func(..., src, ...) +  //   memcpy(dest, src, ...) +  // +  // -> +  // +  //   memcpy(dest, src, ...) +  //   call @func(..., dest, ...) +  // +  // Since moving the memcpy is technically awkward, we additionally check that +  // src only holds uninitialized values at the moment of the call, meaning that +  // the memcpy can be discarded rather than moved. + +  // Deliberately get the source and destination with bitcasts stripped away, +  // because we'll need to do type comparisons based on the underlying type. +  Value* cpyDest = cpy->getDest(); +  Value* cpySrc = cpy->getSource(); +  CallSite CS = CallSite::get(C); + +  // We need to be able to reason about the size of the memcpy, so we require +  // that it be a constant. +  ConstantInt* cpyLength = dyn_cast<ConstantInt>(cpy->getLength()); +  if (!cpyLength) +    return false; + +  // Require that src be an alloca.  This simplifies the reasoning considerably. +  AllocaInst* srcAlloca = dyn_cast<AllocaInst>(cpySrc); +  if (!srcAlloca) +    return false; + +  // Check that all of src is copied to dest. +  TargetData& TD = getAnalysis<TargetData>(); + +  ConstantInt* srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); +  if (!srcArraySize) +    return false; + +  uint64_t srcSize = TD.getTypeAllocSize(srcAlloca->getAllocatedType()) * +    srcArraySize->getZExtValue(); + +  if (cpyLength->getZExtValue() < srcSize) +    return false; + +  // Check that accessing the first srcSize bytes of dest will not cause a +  // trap.  Otherwise the transform is invalid since it might cause a trap +  // to occur earlier than it otherwise would. +  if (AllocaInst* A = dyn_cast<AllocaInst>(cpyDest)) { +    // The destination is an alloca.  Check it is larger than srcSize. +    ConstantInt* destArraySize = dyn_cast<ConstantInt>(A->getArraySize()); +    if (!destArraySize) +      return false; + +    uint64_t destSize = TD.getTypeAllocSize(A->getAllocatedType()) * +      destArraySize->getZExtValue(); + +    if (destSize < srcSize) +      return false; +  } else if (Argument* A = dyn_cast<Argument>(cpyDest)) { +    // If the destination is an sret parameter then only accesses that are +    // outside of the returned struct type can trap. +    if (!A->hasStructRetAttr()) +      return false; + +    const Type* StructTy = cast<PointerType>(A->getType())->getElementType(); +    uint64_t destSize = TD.getTypeAllocSize(StructTy); + +    if (destSize < srcSize) +      return false; +  } else { +    return false; +  } + +  // Check that src is not accessed except via the call and the memcpy.  This +  // guarantees that it holds only undefined values when passed in (so the final +  // memcpy can be dropped), that it is not read or written between the call and +  // the memcpy, and that writing beyond the end of it is undefined. +  SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(), +                                   srcAlloca->use_end()); +  while (!srcUseList.empty()) { +    User* UI = srcUseList.back(); +    srcUseList.pop_back(); + +    if (isa<BitCastInst>(UI)) { +      for (User::use_iterator I = UI->use_begin(), E = UI->use_end(); +           I != E; ++I) +        srcUseList.push_back(*I); +    } else if (GetElementPtrInst* G = dyn_cast<GetElementPtrInst>(UI)) { +      if (G->hasAllZeroIndices()) +        for (User::use_iterator I = UI->use_begin(), E = UI->use_end(); +             I != E; ++I) +          srcUseList.push_back(*I); +      else +        return false; +    } else if (UI != C && UI != cpy) { +      return false; +    } +  } + +  // Since we're changing the parameter to the callsite, we need to make sure +  // that what would be the new parameter dominates the callsite. +  DominatorTree& DT = getAnalysis<DominatorTree>(); +  if (Instruction* cpyDestInst = dyn_cast<Instruction>(cpyDest)) +    if (!DT.dominates(cpyDestInst, C)) +      return false; + +  // In addition to knowing that the call does not access src in some +  // unexpected manner, for example via a global, which we deduce from +  // the use analysis, we also need to know that it does not sneakily +  // access dest.  We rely on AA to figure this out for us. +  AliasAnalysis& AA = getAnalysis<AliasAnalysis>(); +  if (AA.getModRefInfo(C, cpy->getRawDest(), srcSize) != +      AliasAnalysis::NoModRef) +    return false; + +  // All the checks have passed, so do the transformation. +  bool changedArgument = false; +  for (unsigned i = 0; i < CS.arg_size(); ++i) +    if (CS.getArgument(i)->stripPointerCasts() == cpySrc) { +      if (cpySrc->getType() != cpyDest->getType()) +        cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), +                                              cpyDest->getName(), C); +      changedArgument = true; +      if (CS.getArgument(i)->getType() != cpyDest->getType()) +        CS.setArgument(i, CastInst::CreatePointerCast(cpyDest,  +                       CS.getArgument(i)->getType(), cpyDest->getName(), C)); +      else +        CS.setArgument(i, cpyDest); +    } + +  if (!changedArgument) +    return false; + +  // Drop any cached information about the call, because we may have changed +  // its dependence information by changing its parameter. +  MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>(); +  MD.removeInstruction(C); + +  // Remove the memcpy +  MD.removeInstruction(cpy); +  cpy->eraseFromParent(); +  NumMemCpyInstr++; + +  return true; +} + +/// processMemCpy - perform simplication of memcpy's.  If we have memcpy A which +/// copies X to Y, and memcpy B which copies Y to Z, then we can rewrite B to be +/// a memcpy from X to Z (or potentially a memmove, depending on circumstances). +///  This allows later passes to remove the first memcpy altogether. +bool MemCpyOpt::processMemCpy(MemCpyInst* M) { +  MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>(); + +  // The are two possible optimizations we can do for memcpy: +  //   a) memcpy-memcpy xform which exposes redundance for DSE +  //   b) call-memcpy xform for return slot optimization +  MemDepResult dep = MD.getDependency(M); +  if (!dep.isClobber()) +    return false; +  if (!isa<MemCpyInst>(dep.getInst())) { +    if (CallInst* C = dyn_cast<CallInst>(dep.getInst())) +      return performCallSlotOptzn(M, C); +    return false; +  } +   +  MemCpyInst* MDep = cast<MemCpyInst>(dep.getInst()); +   +  // We can only transforms memcpy's where the dest of one is the source of the +  // other +  if (M->getSource() != MDep->getDest()) +    return false; +   +  // Second, the length of the memcpy's must be the same, or the preceeding one +  // must be larger than the following one. +  ConstantInt* C1 = dyn_cast<ConstantInt>(MDep->getLength()); +  ConstantInt* C2 = dyn_cast<ConstantInt>(M->getLength()); +  if (!C1 || !C2) +    return false; +   +  uint64_t DepSize = C1->getValue().getZExtValue(); +  uint64_t CpySize = C2->getValue().getZExtValue(); +   +  if (DepSize < CpySize) +    return false; +   +  // Finally, we have to make sure that the dest of the second does not +  // alias the source of the first +  AliasAnalysis& AA = getAnalysis<AliasAnalysis>(); +  if (AA.alias(M->getRawDest(), CpySize, MDep->getRawSource(), DepSize) != +      AliasAnalysis::NoAlias) +    return false; +  else if (AA.alias(M->getRawDest(), CpySize, M->getRawSource(), CpySize) != +           AliasAnalysis::NoAlias) +    return false; +  else if (AA.alias(MDep->getRawDest(), DepSize, MDep->getRawSource(), DepSize) +           != AliasAnalysis::NoAlias) +    return false; +   +  // If all checks passed, then we can transform these memcpy's +  const Type *Tys[1]; +  Tys[0] = M->getLength()->getType(); +  Function* MemCpyFun = Intrinsic::getDeclaration( +                                 M->getParent()->getParent()->getParent(), +                                 M->getIntrinsicID(), Tys, 1); +     +  Value *Args[4] = { +    M->getRawDest(), MDep->getRawSource(), M->getLength(), M->getAlignmentCst() +  }; +   +  CallInst* C = CallInst::Create(MemCpyFun, Args, Args+4, "", M); +   +   +  // If C and M don't interfere, then this is a valid transformation.  If they +  // did, this would mean that the two sources overlap, which would be bad. +  if (MD.getDependency(C) == dep) { +    MD.removeInstruction(M); +    M->eraseFromParent(); +    NumMemCpyInstr++; +    return true; +  } +   +  // Otherwise, there was no point in doing this, so we remove the call we +  // inserted and act like nothing happened. +  MD.removeInstruction(C); +  C->eraseFromParent(); +  return false; +} + +// MemCpyOpt::runOnFunction - This is the main transformation entry point for a +// function. +// +bool MemCpyOpt::runOnFunction(Function& F) { +   +  bool changed = false; +  bool shouldContinue = true; +   +  while (shouldContinue) { +    shouldContinue = iterateOnFunction(F); +    changed |= shouldContinue; +  } +   +  return changed; +} + + +// MemCpyOpt::iterateOnFunction - Executes one iteration of GVN +bool MemCpyOpt::iterateOnFunction(Function &F) { +  bool changed_function = false; + +  // Walk all instruction in the function +  for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) { +    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); +         BI != BE;) { +      // Avoid invalidating the iterator +      Instruction* I = BI++; +       +      if (StoreInst *SI = dyn_cast<StoreInst>(I)) +        changed_function |= processStore(SI, BI); +      else if (MemCpyInst* M = dyn_cast<MemCpyInst>(I)) { +        changed_function |= processMemCpy(M); +      } +    } +  } +   +  return changed_function; +}  | 
