summaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/SCCP.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Scalar/SCCP.cpp')
-rw-r--r--lib/Transforms/Scalar/SCCP.cpp1855
1 files changed, 1855 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/SCCP.cpp b/lib/Transforms/Scalar/SCCP.cpp
new file mode 100644
index 000000000000..d73519c04e35
--- /dev/null
+++ b/lib/Transforms/Scalar/SCCP.cpp
@@ -0,0 +1,1855 @@
+//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements sparse conditional constant propagation and merging:
+//
+// Specifically, this:
+// * Assumes values are constant unless proven otherwise
+// * Assumes BasicBlocks are dead unless proven otherwise
+// * Proves values to be constant, and replaces them with constants
+// * Proves conditional branches to be unconditional
+//
+// Notice that:
+// * This pass has a habit of making definitions be dead. It is a good idea
+// to to run a DCE pass sometime after running this pass.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "sccp"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/IPO.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Instructions.h"
+#include "llvm/Pass.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/InstVisitor.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/STLExtras.h"
+#include <algorithm>
+#include <map>
+using namespace llvm;
+
+STATISTIC(NumInstRemoved, "Number of instructions removed");
+STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
+
+STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
+STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP");
+STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
+STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
+
+namespace {
+/// LatticeVal class - This class represents the different lattice values that
+/// an LLVM value may occupy. It is a simple class with value semantics.
+///
+class VISIBILITY_HIDDEN LatticeVal {
+ enum {
+ /// undefined - This LLVM Value has no known value yet.
+ undefined,
+
+ /// constant - This LLVM Value has a specific constant value.
+ constant,
+
+ /// forcedconstant - This LLVM Value was thought to be undef until
+ /// ResolvedUndefsIn. This is treated just like 'constant', but if merged
+ /// with another (different) constant, it goes to overdefined, instead of
+ /// asserting.
+ forcedconstant,
+
+ /// overdefined - This instruction is not known to be constant, and we know
+ /// it has a value.
+ overdefined
+ } LatticeValue; // The current lattice position
+
+ Constant *ConstantVal; // If Constant value, the current value
+public:
+ inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {}
+
+ // markOverdefined - Return true if this is a new status to be in...
+ inline bool markOverdefined() {
+ if (LatticeValue != overdefined) {
+ LatticeValue = overdefined;
+ return true;
+ }
+ return false;
+ }
+
+ // markConstant - Return true if this is a new status for us.
+ inline bool markConstant(Constant *V) {
+ if (LatticeValue != constant) {
+ if (LatticeValue == undefined) {
+ LatticeValue = constant;
+ assert(V && "Marking constant with NULL");
+ ConstantVal = V;
+ } else {
+ assert(LatticeValue == forcedconstant &&
+ "Cannot move from overdefined to constant!");
+ // Stay at forcedconstant if the constant is the same.
+ if (V == ConstantVal) return false;
+
+ // Otherwise, we go to overdefined. Assumptions made based on the
+ // forced value are possibly wrong. Assuming this is another constant
+ // could expose a contradiction.
+ LatticeValue = overdefined;
+ }
+ return true;
+ } else {
+ assert(ConstantVal == V && "Marking constant with different value");
+ }
+ return false;
+ }
+
+ inline void markForcedConstant(Constant *V) {
+ assert(LatticeValue == undefined && "Can't force a defined value!");
+ LatticeValue = forcedconstant;
+ ConstantVal = V;
+ }
+
+ inline bool isUndefined() const { return LatticeValue == undefined; }
+ inline bool isConstant() const {
+ return LatticeValue == constant || LatticeValue == forcedconstant;
+ }
+ inline bool isOverdefined() const { return LatticeValue == overdefined; }
+
+ inline Constant *getConstant() const {
+ assert(isConstant() && "Cannot get the constant of a non-constant!");
+ return ConstantVal;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+//
+/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
+/// Constant Propagation.
+///
+class SCCPSolver : public InstVisitor<SCCPSolver> {
+ DenseSet<BasicBlock*> BBExecutable;// The basic blocks that are executable
+ std::map<Value*, LatticeVal> ValueState; // The state each value is in.
+
+ /// GlobalValue - If we are tracking any values for the contents of a global
+ /// variable, we keep a mapping from the constant accessor to the element of
+ /// the global, to the currently known value. If the value becomes
+ /// overdefined, it's entry is simply removed from this map.
+ DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
+
+ /// TrackedRetVals - If we are tracking arguments into and the return
+ /// value out of a function, it will have an entry in this map, indicating
+ /// what the known return value for the function is.
+ DenseMap<Function*, LatticeVal> TrackedRetVals;
+
+ /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
+ /// that return multiple values.
+ DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
+
+ // The reason for two worklists is that overdefined is the lowest state
+ // on the lattice, and moving things to overdefined as fast as possible
+ // makes SCCP converge much faster.
+ // By having a separate worklist, we accomplish this because everything
+ // possibly overdefined will become overdefined at the soonest possible
+ // point.
+ SmallVector<Value*, 64> OverdefinedInstWorkList;
+ SmallVector<Value*, 64> InstWorkList;
+
+
+ SmallVector<BasicBlock*, 64> BBWorkList; // The BasicBlock work list
+
+ /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
+ /// overdefined, despite the fact that the PHI node is overdefined.
+ std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
+
+ /// KnownFeasibleEdges - Entries in this set are edges which have already had
+ /// PHI nodes retriggered.
+ typedef std::pair<BasicBlock*, BasicBlock*> Edge;
+ DenseSet<Edge> KnownFeasibleEdges;
+public:
+
+ /// MarkBlockExecutable - This method can be used by clients to mark all of
+ /// the blocks that are known to be intrinsically live in the processed unit.
+ void MarkBlockExecutable(BasicBlock *BB) {
+ DOUT << "Marking Block Executable: " << BB->getNameStart() << "\n";
+ BBExecutable.insert(BB); // Basic block is executable!
+ BBWorkList.push_back(BB); // Add the block to the work list!
+ }
+
+ /// TrackValueOfGlobalVariable - Clients can use this method to
+ /// inform the SCCPSolver that it should track loads and stores to the
+ /// specified global variable if it can. This is only legal to call if
+ /// performing Interprocedural SCCP.
+ void TrackValueOfGlobalVariable(GlobalVariable *GV) {
+ const Type *ElTy = GV->getType()->getElementType();
+ if (ElTy->isFirstClassType()) {
+ LatticeVal &IV = TrackedGlobals[GV];
+ if (!isa<UndefValue>(GV->getInitializer()))
+ IV.markConstant(GV->getInitializer());
+ }
+ }
+
+ /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
+ /// and out of the specified function (which cannot have its address taken),
+ /// this method must be called.
+ void AddTrackedFunction(Function *F) {
+ assert(F->hasLocalLinkage() && "Can only track internal functions!");
+ // Add an entry, F -> undef.
+ if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
+ TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
+ LatticeVal()));
+ } else
+ TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
+ }
+
+ /// Solve - Solve for constants and executable blocks.
+ ///
+ void Solve();
+
+ /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
+ /// that branches on undef values cannot reach any of their successors.
+ /// However, this is not a safe assumption. After we solve dataflow, this
+ /// method should be use to handle this. If this returns true, the solver
+ /// should be rerun.
+ bool ResolvedUndefsIn(Function &F);
+
+ bool isBlockExecutable(BasicBlock *BB) const {
+ return BBExecutable.count(BB);
+ }
+
+ /// getValueMapping - Once we have solved for constants, return the mapping of
+ /// LLVM values to LatticeVals.
+ std::map<Value*, LatticeVal> &getValueMapping() {
+ return ValueState;
+ }
+
+ /// getTrackedRetVals - Get the inferred return value map.
+ ///
+ const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
+ return TrackedRetVals;
+ }
+
+ /// getTrackedGlobals - Get and return the set of inferred initializers for
+ /// global variables.
+ const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
+ return TrackedGlobals;
+ }
+
+ inline void markOverdefined(Value *V) {
+ markOverdefined(ValueState[V], V);
+ }
+
+private:
+ // markConstant - Make a value be marked as "constant". If the value
+ // is not already a constant, add it to the instruction work list so that
+ // the users of the instruction are updated later.
+ //
+ inline void markConstant(LatticeVal &IV, Value *V, Constant *C) {
+ if (IV.markConstant(C)) {
+ DOUT << "markConstant: " << *C << ": " << *V;
+ InstWorkList.push_back(V);
+ }
+ }
+
+ inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) {
+ IV.markForcedConstant(C);
+ DOUT << "markForcedConstant: " << *C << ": " << *V;
+ InstWorkList.push_back(V);
+ }
+
+ inline void markConstant(Value *V, Constant *C) {
+ markConstant(ValueState[V], V, C);
+ }
+
+ // markOverdefined - Make a value be marked as "overdefined". If the
+ // value is not already overdefined, add it to the overdefined instruction
+ // work list so that the users of the instruction are updated later.
+ inline void markOverdefined(LatticeVal &IV, Value *V) {
+ if (IV.markOverdefined()) {
+ DEBUG(DOUT << "markOverdefined: ";
+ if (Function *F = dyn_cast<Function>(V))
+ DOUT << "Function '" << F->getName() << "'\n";
+ else
+ DOUT << *V);
+ // Only instructions go on the work list
+ OverdefinedInstWorkList.push_back(V);
+ }
+ }
+
+ inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) {
+ if (IV.isOverdefined() || MergeWithV.isUndefined())
+ return; // Noop.
+ if (MergeWithV.isOverdefined())
+ markOverdefined(IV, V);
+ else if (IV.isUndefined())
+ markConstant(IV, V, MergeWithV.getConstant());
+ else if (IV.getConstant() != MergeWithV.getConstant())
+ markOverdefined(IV, V);
+ }
+
+ inline void mergeInValue(Value *V, LatticeVal &MergeWithV) {
+ return mergeInValue(ValueState[V], V, MergeWithV);
+ }
+
+
+ // getValueState - Return the LatticeVal object that corresponds to the value.
+ // This function is necessary because not all values should start out in the
+ // underdefined state... Argument's should be overdefined, and
+ // constants should be marked as constants. If a value is not known to be an
+ // Instruction object, then use this accessor to get its value from the map.
+ //
+ inline LatticeVal &getValueState(Value *V) {
+ std::map<Value*, LatticeVal>::iterator I = ValueState.find(V);
+ if (I != ValueState.end()) return I->second; // Common case, in the map
+
+ if (Constant *C = dyn_cast<Constant>(V)) {
+ if (isa<UndefValue>(V)) {
+ // Nothing to do, remain undefined.
+ } else {
+ LatticeVal &LV = ValueState[C];
+ LV.markConstant(C); // Constants are constant
+ return LV;
+ }
+ }
+ // All others are underdefined by default...
+ return ValueState[V];
+ }
+
+ // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
+ // work list if it is not already executable...
+ //
+ void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
+ if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
+ return; // This edge is already known to be executable!
+
+ if (BBExecutable.count(Dest)) {
+ DOUT << "Marking Edge Executable: " << Source->getNameStart()
+ << " -> " << Dest->getNameStart() << "\n";
+
+ // The destination is already executable, but we just made an edge
+ // feasible that wasn't before. Revisit the PHI nodes in the block
+ // because they have potentially new operands.
+ for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
+ visitPHINode(*cast<PHINode>(I));
+
+ } else {
+ MarkBlockExecutable(Dest);
+ }
+ }
+
+ // getFeasibleSuccessors - Return a vector of booleans to indicate which
+ // successors are reachable from a given terminator instruction.
+ //
+ void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
+
+ // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
+ // block to the 'To' basic block is currently feasible...
+ //
+ bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
+
+ // OperandChangedState - This method is invoked on all of the users of an
+ // instruction that was just changed state somehow.... Based on this
+ // information, we need to update the specified user of this instruction.
+ //
+ void OperandChangedState(User *U) {
+ // Only instructions use other variable values!
+ Instruction &I = cast<Instruction>(*U);
+ if (BBExecutable.count(I.getParent())) // Inst is executable?
+ visit(I);
+ }
+
+private:
+ friend class InstVisitor<SCCPSolver>;
+
+ // visit implementations - Something changed in this instruction... Either an
+ // operand made a transition, or the instruction is newly executable. Change
+ // the value type of I to reflect these changes if appropriate.
+ //
+ void visitPHINode(PHINode &I);
+
+ // Terminators
+ void visitReturnInst(ReturnInst &I);
+ void visitTerminatorInst(TerminatorInst &TI);
+
+ void visitCastInst(CastInst &I);
+ void visitSelectInst(SelectInst &I);
+ void visitBinaryOperator(Instruction &I);
+ void visitCmpInst(CmpInst &I);
+ void visitExtractElementInst(ExtractElementInst &I);
+ void visitInsertElementInst(InsertElementInst &I);
+ void visitShuffleVectorInst(ShuffleVectorInst &I);
+ void visitExtractValueInst(ExtractValueInst &EVI);
+ void visitInsertValueInst(InsertValueInst &IVI);
+
+ // Instructions that cannot be folded away...
+ void visitStoreInst (Instruction &I);
+ void visitLoadInst (LoadInst &I);
+ void visitGetElementPtrInst(GetElementPtrInst &I);
+ void visitCallInst (CallInst &I) { visitCallSite(CallSite::get(&I)); }
+ void visitInvokeInst (InvokeInst &II) {
+ visitCallSite(CallSite::get(&II));
+ visitTerminatorInst(II);
+ }
+ void visitCallSite (CallSite CS);
+ void visitUnwindInst (TerminatorInst &I) { /*returns void*/ }
+ void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
+ void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
+ void visitVANextInst (Instruction &I) { markOverdefined(&I); }
+ void visitVAArgInst (Instruction &I) { markOverdefined(&I); }
+ void visitFreeInst (Instruction &I) { /*returns void*/ }
+
+ void visitInstruction(Instruction &I) {
+ // If a new instruction is added to LLVM that we don't handle...
+ cerr << "SCCP: Don't know how to handle: " << I;
+ markOverdefined(&I); // Just in case
+ }
+};
+
+} // end anonymous namespace
+
+
+// getFeasibleSuccessors - Return a vector of booleans to indicate which
+// successors are reachable from a given terminator instruction.
+//
+void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
+ SmallVector<bool, 16> &Succs) {
+ Succs.resize(TI.getNumSuccessors());
+ if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
+ if (BI->isUnconditional()) {
+ Succs[0] = true;
+ } else {
+ LatticeVal &BCValue = getValueState(BI->getCondition());
+ if (BCValue.isOverdefined() ||
+ (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) {
+ // Overdefined condition variables, and branches on unfoldable constant
+ // conditions, mean the branch could go either way.
+ Succs[0] = Succs[1] = true;
+ } else if (BCValue.isConstant()) {
+ // Constant condition variables mean the branch can only go a single way
+ Succs[BCValue.getConstant() == ConstantInt::getFalse()] = true;
+ }
+ }
+ } else if (isa<InvokeInst>(&TI)) {
+ // Invoke instructions successors are always executable.
+ Succs[0] = Succs[1] = true;
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
+ LatticeVal &SCValue = getValueState(SI->getCondition());
+ if (SCValue.isOverdefined() || // Overdefined condition?
+ (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
+ // All destinations are executable!
+ Succs.assign(TI.getNumSuccessors(), true);
+ } else if (SCValue.isConstant())
+ Succs[SI->findCaseValue(cast<ConstantInt>(SCValue.getConstant()))] = true;
+ } else {
+ assert(0 && "SCCP: Don't know how to handle this terminator!");
+ }
+}
+
+
+// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
+// block to the 'To' basic block is currently feasible...
+//
+bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
+ assert(BBExecutable.count(To) && "Dest should always be alive!");
+
+ // Make sure the source basic block is executable!!
+ if (!BBExecutable.count(From)) return false;
+
+ // Check to make sure this edge itself is actually feasible now...
+ TerminatorInst *TI = From->getTerminator();
+ if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+ if (BI->isUnconditional())
+ return true;
+ else {
+ LatticeVal &BCValue = getValueState(BI->getCondition());
+ if (BCValue.isOverdefined()) {
+ // Overdefined condition variables mean the branch could go either way.
+ return true;
+ } else if (BCValue.isConstant()) {
+ // Not branching on an evaluatable constant?
+ if (!isa<ConstantInt>(BCValue.getConstant())) return true;
+
+ // Constant condition variables mean the branch can only go a single way
+ return BI->getSuccessor(BCValue.getConstant() ==
+ ConstantInt::getFalse()) == To;
+ }
+ return false;
+ }
+ } else if (isa<InvokeInst>(TI)) {
+ // Invoke instructions successors are always executable.
+ return true;
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ LatticeVal &SCValue = getValueState(SI->getCondition());
+ if (SCValue.isOverdefined()) { // Overdefined condition?
+ // All destinations are executable!
+ return true;
+ } else if (SCValue.isConstant()) {
+ Constant *CPV = SCValue.getConstant();
+ if (!isa<ConstantInt>(CPV))
+ return true; // not a foldable constant?
+
+ // Make sure to skip the "default value" which isn't a value
+ for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
+ if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
+ return SI->getSuccessor(i) == To;
+
+ // Constant value not equal to any of the branches... must execute
+ // default branch then...
+ return SI->getDefaultDest() == To;
+ }
+ return false;
+ } else {
+ cerr << "Unknown terminator instruction: " << *TI;
+ abort();
+ }
+}
+
+// visit Implementations - Something changed in this instruction... Either an
+// operand made a transition, or the instruction is newly executable. Change
+// the value type of I to reflect these changes if appropriate. This method
+// makes sure to do the following actions:
+//
+// 1. If a phi node merges two constants in, and has conflicting value coming
+// from different branches, or if the PHI node merges in an overdefined
+// value, then the PHI node becomes overdefined.
+// 2. If a phi node merges only constants in, and they all agree on value, the
+// PHI node becomes a constant value equal to that.
+// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
+// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
+// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
+// 6. If a conditional branch has a value that is constant, make the selected
+// destination executable
+// 7. If a conditional branch has a value that is overdefined, make all
+// successors executable.
+//
+void SCCPSolver::visitPHINode(PHINode &PN) {
+ LatticeVal &PNIV = getValueState(&PN);
+ if (PNIV.isOverdefined()) {
+ // There may be instructions using this PHI node that are not overdefined
+ // themselves. If so, make sure that they know that the PHI node operand
+ // changed.
+ std::multimap<PHINode*, Instruction*>::iterator I, E;
+ tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
+ if (I != E) {
+ SmallVector<Instruction*, 16> Users;
+ for (; I != E; ++I) Users.push_back(I->second);
+ while (!Users.empty()) {
+ visit(Users.back());
+ Users.pop_back();
+ }
+ }
+ return; // Quick exit
+ }
+
+ // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
+ // and slow us down a lot. Just mark them overdefined.
+ if (PN.getNumIncomingValues() > 64) {
+ markOverdefined(PNIV, &PN);
+ return;
+ }
+
+ // Look at all of the executable operands of the PHI node. If any of them
+ // are overdefined, the PHI becomes overdefined as well. If they are all
+ // constant, and they agree with each other, the PHI becomes the identical
+ // constant. If they are constant and don't agree, the PHI is overdefined.
+ // If there are no executable operands, the PHI remains undefined.
+ //
+ Constant *OperandVal = 0;
+ for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
+ LatticeVal &IV = getValueState(PN.getIncomingValue(i));
+ if (IV.isUndefined()) continue; // Doesn't influence PHI node.
+
+ if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
+ if (IV.isOverdefined()) { // PHI node becomes overdefined!
+ markOverdefined(&PN);
+ return;
+ }
+
+ if (OperandVal == 0) { // Grab the first value...
+ OperandVal = IV.getConstant();
+ } else { // Another value is being merged in!
+ // There is already a reachable operand. If we conflict with it,
+ // then the PHI node becomes overdefined. If we agree with it, we
+ // can continue on.
+
+ // Check to see if there are two different constants merging...
+ if (IV.getConstant() != OperandVal) {
+ // Yes there is. This means the PHI node is not constant.
+ // You must be overdefined poor PHI.
+ //
+ markOverdefined(&PN); // The PHI node now becomes overdefined
+ return; // I'm done analyzing you
+ }
+ }
+ }
+ }
+
+ // If we exited the loop, this means that the PHI node only has constant
+ // arguments that agree with each other(and OperandVal is the constant) or
+ // OperandVal is null because there are no defined incoming arguments. If
+ // this is the case, the PHI remains undefined.
+ //
+ if (OperandVal)
+ markConstant(&PN, OperandVal); // Acquire operand value
+}
+
+void SCCPSolver::visitReturnInst(ReturnInst &I) {
+ if (I.getNumOperands() == 0) return; // Ret void
+
+ Function *F = I.getParent()->getParent();
+ // If we are tracking the return value of this function, merge it in.
+ if (!F->hasLocalLinkage())
+ return;
+
+ if (!TrackedRetVals.empty() && I.getNumOperands() == 1) {
+ DenseMap<Function*, LatticeVal>::iterator TFRVI =
+ TrackedRetVals.find(F);
+ if (TFRVI != TrackedRetVals.end() &&
+ !TFRVI->second.isOverdefined()) {
+ LatticeVal &IV = getValueState(I.getOperand(0));
+ mergeInValue(TFRVI->second, F, IV);
+ return;
+ }
+ }
+
+ // Handle functions that return multiple values.
+ if (!TrackedMultipleRetVals.empty() && I.getNumOperands() > 1) {
+ for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
+ DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
+ It = TrackedMultipleRetVals.find(std::make_pair(F, i));
+ if (It == TrackedMultipleRetVals.end()) break;
+ mergeInValue(It->second, F, getValueState(I.getOperand(i)));
+ }
+ } else if (!TrackedMultipleRetVals.empty() &&
+ I.getNumOperands() == 1 &&
+ isa<StructType>(I.getOperand(0)->getType())) {
+ for (unsigned i = 0, e = I.getOperand(0)->getType()->getNumContainedTypes();
+ i != e; ++i) {
+ DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
+ It = TrackedMultipleRetVals.find(std::make_pair(F, i));
+ if (It == TrackedMultipleRetVals.end()) break;
+ Value *Val = FindInsertedValue(I.getOperand(0), i);
+ mergeInValue(It->second, F, getValueState(Val));
+ }
+ }
+}
+
+void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
+ SmallVector<bool, 16> SuccFeasible;
+ getFeasibleSuccessors(TI, SuccFeasible);
+
+ BasicBlock *BB = TI.getParent();
+
+ // Mark all feasible successors executable...
+ for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
+ if (SuccFeasible[i])
+ markEdgeExecutable(BB, TI.getSuccessor(i));
+}
+
+void SCCPSolver::visitCastInst(CastInst &I) {
+ Value *V = I.getOperand(0);
+ LatticeVal &VState = getValueState(V);
+ if (VState.isOverdefined()) // Inherit overdefinedness of operand
+ markOverdefined(&I);
+ else if (VState.isConstant()) // Propagate constant value
+ markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
+ VState.getConstant(), I.getType()));
+}
+
+void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
+ Value *Aggr = EVI.getAggregateOperand();
+
+ // If the operand to the extractvalue is an undef, the result is undef.
+ if (isa<UndefValue>(Aggr))
+ return;
+
+ // Currently only handle single-index extractvalues.
+ if (EVI.getNumIndices() != 1) {
+ markOverdefined(&EVI);
+ return;
+ }
+
+ Function *F = 0;
+ if (CallInst *CI = dyn_cast<CallInst>(Aggr))
+ F = CI->getCalledFunction();
+ else if (InvokeInst *II = dyn_cast<InvokeInst>(Aggr))
+ F = II->getCalledFunction();
+
+ // TODO: If IPSCCP resolves the callee of this function, we could propagate a
+ // result back!
+ if (F == 0 || TrackedMultipleRetVals.empty()) {
+ markOverdefined(&EVI);
+ return;
+ }
+
+ // See if we are tracking the result of the callee. If not tracking this
+ // function (for example, it is a declaration) just move to overdefined.
+ if (!TrackedMultipleRetVals.count(std::make_pair(F, *EVI.idx_begin()))) {
+ markOverdefined(&EVI);
+ return;
+ }
+
+ // Otherwise, the value will be merged in here as a result of CallSite
+ // handling.
+}
+
+void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
+ Value *Aggr = IVI.getAggregateOperand();
+ Value *Val = IVI.getInsertedValueOperand();
+
+ // If the operands to the insertvalue are undef, the result is undef.
+ if (isa<UndefValue>(Aggr) && isa<UndefValue>(Val))
+ return;
+
+ // Currently only handle single-index insertvalues.
+ if (IVI.getNumIndices() != 1) {
+ markOverdefined(&IVI);
+ return;
+ }
+
+ // Currently only handle insertvalue instructions that are in a single-use
+ // chain that builds up a return value.
+ for (const InsertValueInst *TmpIVI = &IVI; ; ) {
+ if (!TmpIVI->hasOneUse()) {
+ markOverdefined(&IVI);
+ return;
+ }
+ const Value *V = *TmpIVI->use_begin();
+ if (isa<ReturnInst>(V))
+ break;
+ TmpIVI = dyn_cast<InsertValueInst>(V);
+ if (!TmpIVI) {
+ markOverdefined(&IVI);
+ return;
+ }
+ }
+
+ // See if we are tracking the result of the callee.
+ Function *F = IVI.getParent()->getParent();
+ DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
+ It = TrackedMultipleRetVals.find(std::make_pair(F, *IVI.idx_begin()));
+
+ // Merge in the inserted member value.
+ if (It != TrackedMultipleRetVals.end())
+ mergeInValue(It->second, F, getValueState(Val));
+
+ // Mark the aggregate result of the IVI overdefined; any tracking that we do
+ // will be done on the individual member values.
+ markOverdefined(&IVI);
+}
+
+void SCCPSolver::visitSelectInst(SelectInst &I) {
+ LatticeVal &CondValue = getValueState(I.getCondition());
+ if (CondValue.isUndefined())
+ return;
+ if (CondValue.isConstant()) {
+ if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){
+ mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue()
+ : I.getFalseValue()));
+ return;
+ }
+ }
+
+ // Otherwise, the condition is overdefined or a constant we can't evaluate.
+ // See if we can produce something better than overdefined based on the T/F
+ // value.
+ LatticeVal &TVal = getValueState(I.getTrueValue());
+ LatticeVal &FVal = getValueState(I.getFalseValue());
+
+ // select ?, C, C -> C.
+ if (TVal.isConstant() && FVal.isConstant() &&
+ TVal.getConstant() == FVal.getConstant()) {
+ markConstant(&I, FVal.getConstant());
+ return;
+ }
+
+ if (TVal.isUndefined()) { // select ?, undef, X -> X.
+ mergeInValue(&I, FVal);
+ } else if (FVal.isUndefined()) { // select ?, X, undef -> X.
+ mergeInValue(&I, TVal);
+ } else {
+ markOverdefined(&I);
+ }
+}
+
+// Handle BinaryOperators and Shift Instructions...
+void SCCPSolver::visitBinaryOperator(Instruction &I) {
+ LatticeVal &IV = ValueState[&I];
+ if (IV.isOverdefined()) return;
+
+ LatticeVal &V1State = getValueState(I.getOperand(0));
+ LatticeVal &V2State = getValueState(I.getOperand(1));
+
+ if (V1State.isOverdefined() || V2State.isOverdefined()) {
+ // If this is an AND or OR with 0 or -1, it doesn't matter that the other
+ // operand is overdefined.
+ if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
+ LatticeVal *NonOverdefVal = 0;
+ if (!V1State.isOverdefined()) {
+ NonOverdefVal = &V1State;
+ } else if (!V2State.isOverdefined()) {
+ NonOverdefVal = &V2State;
+ }
+
+ if (NonOverdefVal) {
+ if (NonOverdefVal->isUndefined()) {
+ // Could annihilate value.
+ if (I.getOpcode() == Instruction::And)
+ markConstant(IV, &I, Constant::getNullValue(I.getType()));
+ else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
+ markConstant(IV, &I, ConstantVector::getAllOnesValue(PT));
+ else
+ markConstant(IV, &I, ConstantInt::getAllOnesValue(I.getType()));
+ return;
+ } else {
+ if (I.getOpcode() == Instruction::And) {
+ if (NonOverdefVal->getConstant()->isNullValue()) {
+ markConstant(IV, &I, NonOverdefVal->getConstant());
+ return; // X and 0 = 0
+ }
+ } else {
+ if (ConstantInt *CI =
+ dyn_cast<ConstantInt>(NonOverdefVal->getConstant()))
+ if (CI->isAllOnesValue()) {
+ markConstant(IV, &I, NonOverdefVal->getConstant());
+ return; // X or -1 = -1
+ }
+ }
+ }
+ }
+ }
+
+
+ // If both operands are PHI nodes, it is possible that this instruction has
+ // a constant value, despite the fact that the PHI node doesn't. Check for
+ // this condition now.
+ if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
+ if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
+ if (PN1->getParent() == PN2->getParent()) {
+ // Since the two PHI nodes are in the same basic block, they must have
+ // entries for the same predecessors. Walk the predecessor list, and
+ // if all of the incoming values are constants, and the result of
+ // evaluating this expression with all incoming value pairs is the
+ // same, then this expression is a constant even though the PHI node
+ // is not a constant!
+ LatticeVal Result;
+ for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
+ LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
+ BasicBlock *InBlock = PN1->getIncomingBlock(i);
+ LatticeVal &In2 =
+ getValueState(PN2->getIncomingValueForBlock(InBlock));
+
+ if (In1.isOverdefined() || In2.isOverdefined()) {
+ Result.markOverdefined();
+ break; // Cannot fold this operation over the PHI nodes!
+ } else if (In1.isConstant() && In2.isConstant()) {
+ Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
+ In2.getConstant());
+ if (Result.isUndefined())
+ Result.markConstant(V);
+ else if (Result.isConstant() && Result.getConstant() != V) {
+ Result.markOverdefined();
+ break;
+ }
+ }
+ }
+
+ // If we found a constant value here, then we know the instruction is
+ // constant despite the fact that the PHI nodes are overdefined.
+ if (Result.isConstant()) {
+ markConstant(IV, &I, Result.getConstant());
+ // Remember that this instruction is virtually using the PHI node
+ // operands.
+ UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
+ UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
+ return;
+ } else if (Result.isUndefined()) {
+ return;
+ }
+
+ // Okay, this really is overdefined now. Since we might have
+ // speculatively thought that this was not overdefined before, and
+ // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
+ // make sure to clean out any entries that we put there, for
+ // efficiency.
+ std::multimap<PHINode*, Instruction*>::iterator It, E;
+ tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
+ while (It != E) {
+ if (It->second == &I) {
+ UsersOfOverdefinedPHIs.erase(It++);
+ } else
+ ++It;
+ }
+ tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
+ while (It != E) {
+ if (It->second == &I) {
+ UsersOfOverdefinedPHIs.erase(It++);
+ } else
+ ++It;
+ }
+ }
+
+ markOverdefined(IV, &I);
+ } else if (V1State.isConstant() && V2State.isConstant()) {
+ markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
+ V2State.getConstant()));
+ }
+}
+
+// Handle ICmpInst instruction...
+void SCCPSolver::visitCmpInst(CmpInst &I) {
+ LatticeVal &IV = ValueState[&I];
+ if (IV.isOverdefined()) return;
+
+ LatticeVal &V1State = getValueState(I.getOperand(0));
+ LatticeVal &V2State = getValueState(I.getOperand(1));
+
+ if (V1State.isOverdefined() || V2State.isOverdefined()) {
+ // If both operands are PHI nodes, it is possible that this instruction has
+ // a constant value, despite the fact that the PHI node doesn't. Check for
+ // this condition now.
+ if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
+ if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
+ if (PN1->getParent() == PN2->getParent()) {
+ // Since the two PHI nodes are in the same basic block, they must have
+ // entries for the same predecessors. Walk the predecessor list, and
+ // if all of the incoming values are constants, and the result of
+ // evaluating this expression with all incoming value pairs is the
+ // same, then this expression is a constant even though the PHI node
+ // is not a constant!
+ LatticeVal Result;
+ for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
+ LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
+ BasicBlock *InBlock = PN1->getIncomingBlock(i);
+ LatticeVal &In2 =
+ getValueState(PN2->getIncomingValueForBlock(InBlock));
+
+ if (In1.isOverdefined() || In2.isOverdefined()) {
+ Result.markOverdefined();
+ break; // Cannot fold this operation over the PHI nodes!
+ } else if (In1.isConstant() && In2.isConstant()) {
+ Constant *V = ConstantExpr::getCompare(I.getPredicate(),
+ In1.getConstant(),
+ In2.getConstant());
+ if (Result.isUndefined())
+ Result.markConstant(V);
+ else if (Result.isConstant() && Result.getConstant() != V) {
+ Result.markOverdefined();
+ break;
+ }
+ }
+ }
+
+ // If we found a constant value here, then we know the instruction is
+ // constant despite the fact that the PHI nodes are overdefined.
+ if (Result.isConstant()) {
+ markConstant(IV, &I, Result.getConstant());
+ // Remember that this instruction is virtually using the PHI node
+ // operands.
+ UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
+ UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
+ return;
+ } else if (Result.isUndefined()) {
+ return;
+ }
+
+ // Okay, this really is overdefined now. Since we might have
+ // speculatively thought that this was not overdefined before, and
+ // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
+ // make sure to clean out any entries that we put there, for
+ // efficiency.
+ std::multimap<PHINode*, Instruction*>::iterator It, E;
+ tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
+ while (It != E) {
+ if (It->second == &I) {
+ UsersOfOverdefinedPHIs.erase(It++);
+ } else
+ ++It;
+ }
+ tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
+ while (It != E) {
+ if (It->second == &I) {
+ UsersOfOverdefinedPHIs.erase(It++);
+ } else
+ ++It;
+ }
+ }
+
+ markOverdefined(IV, &I);
+ } else if (V1State.isConstant() && V2State.isConstant()) {
+ markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
+ V1State.getConstant(),
+ V2State.getConstant()));
+ }
+}
+
+void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
+ // FIXME : SCCP does not handle vectors properly.
+ markOverdefined(&I);
+ return;
+
+#if 0
+ LatticeVal &ValState = getValueState(I.getOperand(0));
+ LatticeVal &IdxState = getValueState(I.getOperand(1));
+
+ if (ValState.isOverdefined() || IdxState.isOverdefined())
+ markOverdefined(&I);
+ else if(ValState.isConstant() && IdxState.isConstant())
+ markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
+ IdxState.getConstant()));
+#endif
+}
+
+void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
+ // FIXME : SCCP does not handle vectors properly.
+ markOverdefined(&I);
+ return;
+#if 0
+ LatticeVal &ValState = getValueState(I.getOperand(0));
+ LatticeVal &EltState = getValueState(I.getOperand(1));
+ LatticeVal &IdxState = getValueState(I.getOperand(2));
+
+ if (ValState.isOverdefined() || EltState.isOverdefined() ||
+ IdxState.isOverdefined())
+ markOverdefined(&I);
+ else if(ValState.isConstant() && EltState.isConstant() &&
+ IdxState.isConstant())
+ markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
+ EltState.getConstant(),
+ IdxState.getConstant()));
+ else if (ValState.isUndefined() && EltState.isConstant() &&
+ IdxState.isConstant())
+ markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
+ EltState.getConstant(),
+ IdxState.getConstant()));
+#endif
+}
+
+void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
+ // FIXME : SCCP does not handle vectors properly.
+ markOverdefined(&I);
+ return;
+#if 0
+ LatticeVal &V1State = getValueState(I.getOperand(0));
+ LatticeVal &V2State = getValueState(I.getOperand(1));
+ LatticeVal &MaskState = getValueState(I.getOperand(2));
+
+ if (MaskState.isUndefined() ||
+ (V1State.isUndefined() && V2State.isUndefined()))
+ return; // Undefined output if mask or both inputs undefined.
+
+ if (V1State.isOverdefined() || V2State.isOverdefined() ||
+ MaskState.isOverdefined()) {
+ markOverdefined(&I);
+ } else {
+ // A mix of constant/undef inputs.
+ Constant *V1 = V1State.isConstant() ?
+ V1State.getConstant() : UndefValue::get(I.getType());
+ Constant *V2 = V2State.isConstant() ?
+ V2State.getConstant() : UndefValue::get(I.getType());
+ Constant *Mask = MaskState.isConstant() ?
+ MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
+ markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
+ }
+#endif
+}
+
+// Handle getelementptr instructions... if all operands are constants then we
+// can turn this into a getelementptr ConstantExpr.
+//
+void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
+ LatticeVal &IV = ValueState[&I];
+ if (IV.isOverdefined()) return;
+
+ SmallVector<Constant*, 8> Operands;
+ Operands.reserve(I.getNumOperands());
+
+ for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
+ LatticeVal &State = getValueState(I.getOperand(i));
+ if (State.isUndefined())
+ return; // Operands are not resolved yet...
+ else if (State.isOverdefined()) {
+ markOverdefined(IV, &I);
+ return;
+ }
+ assert(State.isConstant() && "Unknown state!");
+ Operands.push_back(State.getConstant());
+ }
+
+ Constant *Ptr = Operands[0];
+ Operands.erase(Operands.begin()); // Erase the pointer from idx list...
+
+ markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0],
+ Operands.size()));
+}
+
+void SCCPSolver::visitStoreInst(Instruction &SI) {
+ if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
+ return;
+ GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
+ DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
+ if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
+
+ // Get the value we are storing into the global.
+ LatticeVal &PtrVal = getValueState(SI.getOperand(0));
+
+ mergeInValue(I->second, GV, PtrVal);
+ if (I->second.isOverdefined())
+ TrackedGlobals.erase(I); // No need to keep tracking this!
+}
+
+
+// Handle load instructions. If the operand is a constant pointer to a constant
+// global, we can replace the load with the loaded constant value!
+void SCCPSolver::visitLoadInst(LoadInst &I) {
+ LatticeVal &IV = ValueState[&I];
+ if (IV.isOverdefined()) return;
+
+ LatticeVal &PtrVal = getValueState(I.getOperand(0));
+ if (PtrVal.isUndefined()) return; // The pointer is not resolved yet!
+ if (PtrVal.isConstant() && !I.isVolatile()) {
+ Value *Ptr = PtrVal.getConstant();
+ // TODO: Consider a target hook for valid address spaces for this xform.
+ if (isa<ConstantPointerNull>(Ptr) &&
+ cast<PointerType>(Ptr->getType())->getAddressSpace() == 0) {
+ // load null -> null
+ markConstant(IV, &I, Constant::getNullValue(I.getType()));
+ return;
+ }
+
+ // Transform load (constant global) into the value loaded.
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
+ if (GV->isConstant()) {
+ if (GV->hasDefinitiveInitializer()) {
+ markConstant(IV, &I, GV->getInitializer());
+ return;
+ }
+ } else if (!TrackedGlobals.empty()) {
+ // If we are tracking this global, merge in the known value for it.
+ DenseMap<GlobalVariable*, LatticeVal>::iterator It =
+ TrackedGlobals.find(GV);
+ if (It != TrackedGlobals.end()) {
+ mergeInValue(IV, &I, It->second);
+ return;
+ }
+ }
+ }
+
+ // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
+ if (CE->getOpcode() == Instruction::GetElementPtr)
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
+ if (GV->isConstant() && GV->hasDefinitiveInitializer())
+ if (Constant *V =
+ ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) {
+ markConstant(IV, &I, V);
+ return;
+ }
+ }
+
+ // Otherwise we cannot say for certain what value this load will produce.
+ // Bail out.
+ markOverdefined(IV, &I);
+}
+
+void SCCPSolver::visitCallSite(CallSite CS) {
+ Function *F = CS.getCalledFunction();
+ Instruction *I = CS.getInstruction();
+
+ // The common case is that we aren't tracking the callee, either because we
+ // are not doing interprocedural analysis or the callee is indirect, or is
+ // external. Handle these cases first.
+ if (F == 0 || !F->hasLocalLinkage()) {
+CallOverdefined:
+ // Void return and not tracking callee, just bail.
+ if (I->getType() == Type::VoidTy) return;
+
+ // Otherwise, if we have a single return value case, and if the function is
+ // a declaration, maybe we can constant fold it.
+ if (!isa<StructType>(I->getType()) && F && F->isDeclaration() &&
+ canConstantFoldCallTo(F)) {
+
+ SmallVector<Constant*, 8> Operands;
+ for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
+ AI != E; ++AI) {
+ LatticeVal &State = getValueState(*AI);
+ if (State.isUndefined())
+ return; // Operands are not resolved yet.
+ else if (State.isOverdefined()) {
+ markOverdefined(I);
+ return;
+ }
+ assert(State.isConstant() && "Unknown state!");
+ Operands.push_back(State.getConstant());
+ }
+
+ // If we can constant fold this, mark the result of the call as a
+ // constant.
+ if (Constant *C = ConstantFoldCall(F, Operands.data(), Operands.size())) {
+ markConstant(I, C);
+ return;
+ }
+ }
+
+ // Otherwise, we don't know anything about this call, mark it overdefined.
+ markOverdefined(I);
+ return;
+ }
+
+ // If this is a single/zero retval case, see if we're tracking the function.
+ DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
+ if (TFRVI != TrackedRetVals.end()) {
+ // If so, propagate the return value of the callee into this call result.
+ mergeInValue(I, TFRVI->second);
+ } else if (isa<StructType>(I->getType())) {
+ // Check to see if we're tracking this callee, if not, handle it in the
+ // common path above.
+ DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
+ TMRVI = TrackedMultipleRetVals.find(std::make_pair(F, 0));
+ if (TMRVI == TrackedMultipleRetVals.end())
+ goto CallOverdefined;
+
+ // If we are tracking this callee, propagate the return values of the call
+ // into this call site. We do this by walking all the uses. Single-index
+ // ExtractValueInst uses can be tracked; anything more complicated is
+ // currently handled conservatively.
+ for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
+ UI != E; ++UI) {
+ if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(*UI)) {
+ if (EVI->getNumIndices() == 1) {
+ mergeInValue(EVI,
+ TrackedMultipleRetVals[std::make_pair(F, *EVI->idx_begin())]);
+ continue;
+ }
+ }
+ // The aggregate value is used in a way not handled here. Assume nothing.
+ markOverdefined(*UI);
+ }
+ } else {
+ // Otherwise we're not tracking this callee, so handle it in the
+ // common path above.
+ goto CallOverdefined;
+ }
+
+ // Finally, if this is the first call to the function hit, mark its entry
+ // block executable.
+ if (!BBExecutable.count(F->begin()))
+ MarkBlockExecutable(F->begin());
+
+ // Propagate information from this call site into the callee.
+ CallSite::arg_iterator CAI = CS.arg_begin();
+ for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
+ AI != E; ++AI, ++CAI) {
+ LatticeVal &IV = ValueState[AI];
+ if (!IV.isOverdefined())
+ mergeInValue(IV, AI, getValueState(*CAI));
+ }
+}
+
+
+void SCCPSolver::Solve() {
+ // Process the work lists until they are empty!
+ while (!BBWorkList.empty() || !InstWorkList.empty() ||
+ !OverdefinedInstWorkList.empty()) {
+ // Process the instruction work list...
+ while (!OverdefinedInstWorkList.empty()) {
+ Value *I = OverdefinedInstWorkList.back();
+ OverdefinedInstWorkList.pop_back();
+
+ DOUT << "\nPopped off OI-WL: " << *I;
+
+ // "I" got into the work list because it either made the transition from
+ // bottom to constant
+ //
+ // Anything on this worklist that is overdefined need not be visited
+ // since all of its users will have already been marked as overdefined
+ // Update all of the users of this instruction's value...
+ //
+ for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
+ UI != E; ++UI)
+ OperandChangedState(*UI);
+ }
+ // Process the instruction work list...
+ while (!InstWorkList.empty()) {
+ Value *I = InstWorkList.back();
+ InstWorkList.pop_back();
+
+ DOUT << "\nPopped off I-WL: " << *I;
+
+ // "I" got into the work list because it either made the transition from
+ // bottom to constant
+ //
+ // Anything on this worklist that is overdefined need not be visited
+ // since all of its users will have already been marked as overdefined.
+ // Update all of the users of this instruction's value...
+ //
+ if (!getValueState(I).isOverdefined())
+ for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
+ UI != E; ++UI)
+ OperandChangedState(*UI);
+ }
+
+ // Process the basic block work list...
+ while (!BBWorkList.empty()) {
+ BasicBlock *BB = BBWorkList.back();
+ BBWorkList.pop_back();
+
+ DOUT << "\nPopped off BBWL: " << *BB;
+
+ // Notify all instructions in this basic block that they are newly
+ // executable.
+ visit(BB);
+ }
+ }
+}
+
+/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
+/// that branches on undef values cannot reach any of their successors.
+/// However, this is not a safe assumption. After we solve dataflow, this
+/// method should be use to handle this. If this returns true, the solver
+/// should be rerun.
+///
+/// This method handles this by finding an unresolved branch and marking it one
+/// of the edges from the block as being feasible, even though the condition
+/// doesn't say it would otherwise be. This allows SCCP to find the rest of the
+/// CFG and only slightly pessimizes the analysis results (by marking one,
+/// potentially infeasible, edge feasible). This cannot usefully modify the
+/// constraints on the condition of the branch, as that would impact other users
+/// of the value.
+///
+/// This scan also checks for values that use undefs, whose results are actually
+/// defined. For example, 'zext i8 undef to i32' should produce all zeros
+/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
+/// even if X isn't defined.
+bool SCCPSolver::ResolvedUndefsIn(Function &F) {
+ for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
+ if (!BBExecutable.count(BB))
+ continue;
+
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
+ // Look for instructions which produce undef values.
+ if (I->getType() == Type::VoidTy) continue;
+
+ LatticeVal &LV = getValueState(I);
+ if (!LV.isUndefined()) continue;
+
+ // Get the lattice values of the first two operands for use below.
+ LatticeVal &Op0LV = getValueState(I->getOperand(0));
+ LatticeVal Op1LV;
+ if (I->getNumOperands() == 2) {
+ // If this is a two-operand instruction, and if both operands are
+ // undefs, the result stays undef.
+ Op1LV = getValueState(I->getOperand(1));
+ if (Op0LV.isUndefined() && Op1LV.isUndefined())
+ continue;
+ }
+
+ // If this is an instructions whose result is defined even if the input is
+ // not fully defined, propagate the information.
+ const Type *ITy = I->getType();
+ switch (I->getOpcode()) {
+ default: break; // Leave the instruction as an undef.
+ case Instruction::ZExt:
+ // After a zero extend, we know the top part is zero. SExt doesn't have
+ // to be handled here, because we don't know whether the top part is 1's
+ // or 0's.
+ assert(Op0LV.isUndefined());
+ markForcedConstant(LV, I, Constant::getNullValue(ITy));
+ return true;
+ case Instruction::Mul:
+ case Instruction::And:
+ // undef * X -> 0. X could be zero.
+ // undef & X -> 0. X could be zero.
+ markForcedConstant(LV, I, Constant::getNullValue(ITy));
+ return true;
+
+ case Instruction::Or:
+ // undef | X -> -1. X could be -1.
+ if (const VectorType *PTy = dyn_cast<VectorType>(ITy))
+ markForcedConstant(LV, I, ConstantVector::getAllOnesValue(PTy));
+ else
+ markForcedConstant(LV, I, ConstantInt::getAllOnesValue(ITy));
+ return true;
+
+ case Instruction::SDiv:
+ case Instruction::UDiv:
+ case Instruction::SRem:
+ case Instruction::URem:
+ // X / undef -> undef. No change.
+ // X % undef -> undef. No change.
+ if (Op1LV.isUndefined()) break;
+
+ // undef / X -> 0. X could be maxint.
+ // undef % X -> 0. X could be 1.
+ markForcedConstant(LV, I, Constant::getNullValue(ITy));
+ return true;
+
+ case Instruction::AShr:
+ // undef >>s X -> undef. No change.
+ if (Op0LV.isUndefined()) break;
+
+ // X >>s undef -> X. X could be 0, X could have the high-bit known set.
+ if (Op0LV.isConstant())
+ markForcedConstant(LV, I, Op0LV.getConstant());
+ else
+ markOverdefined(LV, I);
+ return true;
+ case Instruction::LShr:
+ case Instruction::Shl:
+ // undef >> X -> undef. No change.
+ // undef << X -> undef. No change.
+ if (Op0LV.isUndefined()) break;
+
+ // X >> undef -> 0. X could be 0.
+ // X << undef -> 0. X could be 0.
+ markForcedConstant(LV, I, Constant::getNullValue(ITy));
+ return true;
+ case Instruction::Select:
+ // undef ? X : Y -> X or Y. There could be commonality between X/Y.
+ if (Op0LV.isUndefined()) {
+ if (!Op1LV.isConstant()) // Pick the constant one if there is any.
+ Op1LV = getValueState(I->getOperand(2));
+ } else if (Op1LV.isUndefined()) {
+ // c ? undef : undef -> undef. No change.
+ Op1LV = getValueState(I->getOperand(2));
+ if (Op1LV.isUndefined())
+ break;
+ // Otherwise, c ? undef : x -> x.
+ } else {
+ // Leave Op1LV as Operand(1)'s LatticeValue.
+ }
+
+ if (Op1LV.isConstant())
+ markForcedConstant(LV, I, Op1LV.getConstant());
+ else
+ markOverdefined(LV, I);
+ return true;
+ case Instruction::Call:
+ // If a call has an undef result, it is because it is constant foldable
+ // but one of the inputs was undef. Just force the result to
+ // overdefined.
+ markOverdefined(LV, I);
+ return true;
+ }
+ }
+
+ TerminatorInst *TI = BB->getTerminator();
+ if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+ if (!BI->isConditional()) continue;
+ if (!getValueState(BI->getCondition()).isUndefined())
+ continue;
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ if (SI->getNumSuccessors()<2) // no cases
+ continue;
+ if (!getValueState(SI->getCondition()).isUndefined())
+ continue;
+ } else {
+ continue;
+ }
+
+ // If the edge to the second successor isn't thought to be feasible yet,
+ // mark it so now. We pick the second one so that this goes to some
+ // enumerated value in a switch instead of going to the default destination.
+ if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1))))
+ continue;
+
+ // Otherwise, it isn't already thought to be feasible. Mark it as such now
+ // and return. This will make other blocks reachable, which will allow new
+ // values to be discovered and existing ones to be moved in the lattice.
+ markEdgeExecutable(BB, TI->getSuccessor(1));
+
+ // This must be a conditional branch of switch on undef. At this point,
+ // force the old terminator to branch to the first successor. This is
+ // required because we are now influencing the dataflow of the function with
+ // the assumption that this edge is taken. If we leave the branch condition
+ // as undef, then further analysis could think the undef went another way
+ // leading to an inconsistent set of conclusions.
+ if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+ BI->setCondition(ConstantInt::getFalse());
+ } else {
+ SwitchInst *SI = cast<SwitchInst>(TI);
+ SI->setCondition(SI->getCaseValue(1));
+ }
+
+ return true;
+ }
+
+ return false;
+}
+
+
+namespace {
+ //===--------------------------------------------------------------------===//
+ //
+ /// SCCP Class - This class uses the SCCPSolver to implement a per-function
+ /// Sparse Conditional Constant Propagator.
+ ///
+ struct VISIBILITY_HIDDEN SCCP : public FunctionPass {
+ static char ID; // Pass identification, replacement for typeid
+ SCCP() : FunctionPass(&ID) {}
+
+ // runOnFunction - Run the Sparse Conditional Constant Propagation
+ // algorithm, and return true if the function was modified.
+ //
+ bool runOnFunction(Function &F);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ }
+ };
+} // end anonymous namespace
+
+char SCCP::ID = 0;
+static RegisterPass<SCCP>
+X("sccp", "Sparse Conditional Constant Propagation");
+
+// createSCCPPass - This is the public interface to this file...
+FunctionPass *llvm::createSCCPPass() {
+ return new SCCP();
+}
+
+
+// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
+// and return true if the function was modified.
+//
+bool SCCP::runOnFunction(Function &F) {
+ DOUT << "SCCP on function '" << F.getNameStart() << "'\n";
+ SCCPSolver Solver;
+
+ // Mark the first block of the function as being executable.
+ Solver.MarkBlockExecutable(F.begin());
+
+ // Mark all arguments to the function as being overdefined.
+ for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
+ Solver.markOverdefined(AI);
+
+ // Solve for constants.
+ bool ResolvedUndefs = true;
+ while (ResolvedUndefs) {
+ Solver.Solve();
+ DOUT << "RESOLVING UNDEFs\n";
+ ResolvedUndefs = Solver.ResolvedUndefsIn(F);
+ }
+
+ bool MadeChanges = false;
+
+ // If we decided that there are basic blocks that are dead in this function,
+ // delete their contents now. Note that we cannot actually delete the blocks,
+ // as we cannot modify the CFG of the function.
+ //
+ SmallVector<Instruction*, 512> Insts;
+ std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
+
+ for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+ if (!Solver.isBlockExecutable(BB)) {
+ DOUT << " BasicBlock Dead:" << *BB;
+ ++NumDeadBlocks;
+
+ // Delete the instructions backwards, as it has a reduced likelihood of
+ // having to update as many def-use and use-def chains.
+ for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator();
+ I != E; ++I)
+ Insts.push_back(I);
+ while (!Insts.empty()) {
+ Instruction *I = Insts.back();
+ Insts.pop_back();
+ if (!I->use_empty())
+ I->replaceAllUsesWith(UndefValue::get(I->getType()));
+ BB->getInstList().erase(I);
+ MadeChanges = true;
+ ++NumInstRemoved;
+ }
+ } else {
+ // Iterate over all of the instructions in a function, replacing them with
+ // constants if we have found them to be of constant values.
+ //
+ for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
+ Instruction *Inst = BI++;
+ if (Inst->getType() == Type::VoidTy ||
+ isa<TerminatorInst>(Inst))
+ continue;
+
+ LatticeVal &IV = Values[Inst];
+ if (!IV.isConstant() && !IV.isUndefined())
+ continue;
+
+ Constant *Const = IV.isConstant()
+ ? IV.getConstant() : UndefValue::get(Inst->getType());
+ DOUT << " Constant: " << *Const << " = " << *Inst;
+
+ // Replaces all of the uses of a variable with uses of the constant.
+ Inst->replaceAllUsesWith(Const);
+
+ // Delete the instruction.
+ Inst->eraseFromParent();
+
+ // Hey, we just changed something!
+ MadeChanges = true;
+ ++NumInstRemoved;
+ }
+ }
+
+ return MadeChanges;
+}
+
+namespace {
+ //===--------------------------------------------------------------------===//
+ //
+ /// IPSCCP Class - This class implements interprocedural Sparse Conditional
+ /// Constant Propagation.
+ ///
+ struct VISIBILITY_HIDDEN IPSCCP : public ModulePass {
+ static char ID;
+ IPSCCP() : ModulePass(&ID) {}
+ bool runOnModule(Module &M);
+ };
+} // end anonymous namespace
+
+char IPSCCP::ID = 0;
+static RegisterPass<IPSCCP>
+Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
+
+// createIPSCCPPass - This is the public interface to this file...
+ModulePass *llvm::createIPSCCPPass() {
+ return new IPSCCP();
+}
+
+
+static bool AddressIsTaken(GlobalValue *GV) {
+ // Delete any dead constantexpr klingons.
+ GV->removeDeadConstantUsers();
+
+ for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
+ UI != E; ++UI)
+ if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
+ if (SI->getOperand(0) == GV || SI->isVolatile())
+ return true; // Storing addr of GV.
+ } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
+ // Make sure we are calling the function, not passing the address.
+ CallSite CS = CallSite::get(cast<Instruction>(*UI));
+ if (CS.hasArgument(GV))
+ return true;
+ } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
+ if (LI->isVolatile())
+ return true;
+ } else {
+ return true;
+ }
+ return false;
+}
+
+bool IPSCCP::runOnModule(Module &M) {
+ SCCPSolver Solver;
+
+ // Loop over all functions, marking arguments to those with their addresses
+ // taken or that are external as overdefined.
+ //
+ for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
+ if (!F->hasLocalLinkage() || AddressIsTaken(F)) {
+ if (!F->isDeclaration())
+ Solver.MarkBlockExecutable(F->begin());
+ for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
+ AI != E; ++AI)
+ Solver.markOverdefined(AI);
+ } else {
+ Solver.AddTrackedFunction(F);
+ }
+
+ // Loop over global variables. We inform the solver about any internal global
+ // variables that do not have their 'addresses taken'. If they don't have
+ // their addresses taken, we can propagate constants through them.
+ for (Module::global_iterator G = M.global_begin(), E = M.global_end();
+ G != E; ++G)
+ if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
+ Solver.TrackValueOfGlobalVariable(G);
+
+ // Solve for constants.
+ bool ResolvedUndefs = true;
+ while (ResolvedUndefs) {
+ Solver.Solve();
+
+ DOUT << "RESOLVING UNDEFS\n";
+ ResolvedUndefs = false;
+ for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
+ ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
+ }
+
+ bool MadeChanges = false;
+
+ // Iterate over all of the instructions in the module, replacing them with
+ // constants if we have found them to be of constant values.
+ //
+ SmallVector<Instruction*, 512> Insts;
+ SmallVector<BasicBlock*, 512> BlocksToErase;
+ std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
+
+ for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
+ for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
+ AI != E; ++AI)
+ if (!AI->use_empty()) {
+ LatticeVal &IV = Values[AI];
+ if (IV.isConstant() || IV.isUndefined()) {
+ Constant *CST = IV.isConstant() ?
+ IV.getConstant() : UndefValue::get(AI->getType());
+ DOUT << "*** Arg " << *AI << " = " << *CST <<"\n";
+
+ // Replaces all of the uses of a variable with uses of the
+ // constant.
+ AI->replaceAllUsesWith(CST);
+ ++IPNumArgsElimed;
+ }
+ }
+
+ for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
+ if (!Solver.isBlockExecutable(BB)) {
+ DOUT << " BasicBlock Dead:" << *BB;
+ ++IPNumDeadBlocks;
+
+ // Delete the instructions backwards, as it has a reduced likelihood of
+ // having to update as many def-use and use-def chains.
+ TerminatorInst *TI = BB->getTerminator();
+ for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I)
+ Insts.push_back(I);
+
+ while (!Insts.empty()) {
+ Instruction *I = Insts.back();
+ Insts.pop_back();
+ if (!I->use_empty())
+ I->replaceAllUsesWith(UndefValue::get(I->getType()));
+ BB->getInstList().erase(I);
+ MadeChanges = true;
+ ++IPNumInstRemoved;
+ }
+
+ for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
+ BasicBlock *Succ = TI->getSuccessor(i);
+ if (!Succ->empty() && isa<PHINode>(Succ->begin()))
+ TI->getSuccessor(i)->removePredecessor(BB);
+ }
+ if (!TI->use_empty())
+ TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
+ BB->getInstList().erase(TI);
+
+ if (&*BB != &F->front())
+ BlocksToErase.push_back(BB);
+ else
+ new UnreachableInst(BB);
+
+ } else {
+ for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
+ Instruction *Inst = BI++;
+ if (Inst->getType() == Type::VoidTy)
+ continue;
+
+ LatticeVal &IV = Values[Inst];
+ if (!IV.isConstant() && !IV.isUndefined())
+ continue;
+
+ Constant *Const = IV.isConstant()
+ ? IV.getConstant() : UndefValue::get(Inst->getType());
+ DOUT << " Constant: " << *Const << " = " << *Inst;
+
+ // Replaces all of the uses of a variable with uses of the
+ // constant.
+ Inst->replaceAllUsesWith(Const);
+
+ // Delete the instruction.
+ if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
+ Inst->eraseFromParent();
+
+ // Hey, we just changed something!
+ MadeChanges = true;
+ ++IPNumInstRemoved;
+ }
+ }
+
+ // Now that all instructions in the function are constant folded, erase dead
+ // blocks, because we can now use ConstantFoldTerminator to get rid of
+ // in-edges.
+ for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
+ // If there are any PHI nodes in this successor, drop entries for BB now.
+ BasicBlock *DeadBB = BlocksToErase[i];
+ while (!DeadBB->use_empty()) {
+ Instruction *I = cast<Instruction>(DeadBB->use_back());
+ bool Folded = ConstantFoldTerminator(I->getParent());
+ if (!Folded) {
+ // The constant folder may not have been able to fold the terminator
+ // if this is a branch or switch on undef. Fold it manually as a
+ // branch to the first successor.
+#ifndef NDEBUG
+ if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
+ assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
+ "Branch should be foldable!");
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
+ assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
+ } else {
+ assert(0 && "Didn't fold away reference to block!");
+ }
+#endif
+
+ // Make this an uncond branch to the first successor.
+ TerminatorInst *TI = I->getParent()->getTerminator();
+ BranchInst::Create(TI->getSuccessor(0), TI);
+
+ // Remove entries in successor phi nodes to remove edges.
+ for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
+ TI->getSuccessor(i)->removePredecessor(TI->getParent());
+
+ // Remove the old terminator.
+ TI->eraseFromParent();
+ }
+ }
+
+ // Finally, delete the basic block.
+ F->getBasicBlockList().erase(DeadBB);
+ }
+ BlocksToErase.clear();
+ }
+
+ // If we inferred constant or undef return values for a function, we replaced
+ // all call uses with the inferred value. This means we don't need to bother
+ // actually returning anything from the function. Replace all return
+ // instructions with return undef.
+ // TODO: Process multiple value ret instructions also.
+ const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
+ for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
+ E = RV.end(); I != E; ++I)
+ if (!I->second.isOverdefined() &&
+ I->first->getReturnType() != Type::VoidTy) {
+ Function *F = I->first;
+ for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
+ if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
+ if (!isa<UndefValue>(RI->getOperand(0)))
+ RI->setOperand(0, UndefValue::get(F->getReturnType()));
+ }
+
+ // If we infered constant or undef values for globals variables, we can delete
+ // the global and any stores that remain to it.
+ const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
+ for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
+ E = TG.end(); I != E; ++I) {
+ GlobalVariable *GV = I->first;
+ assert(!I->second.isOverdefined() &&
+ "Overdefined values should have been taken out of the map!");
+ DOUT << "Found that GV '" << GV->getNameStart() << "' is constant!\n";
+ while (!GV->use_empty()) {
+ StoreInst *SI = cast<StoreInst>(GV->use_back());
+ SI->eraseFromParent();
+ }
+ M.getGlobalList().erase(GV);
+ ++IPNumGlobalConst;
+ }
+
+ return MadeChanges;
+}