summaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Scalar/SimpleLoopUnswitch.cpp')
-rw-r--r--lib/Transforms/Scalar/SimpleLoopUnswitch.cpp1517
1 files changed, 945 insertions, 572 deletions
diff --git a/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp b/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp
index 3d0fca0bc3a5..34510cb40732 100644
--- a/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp
+++ b/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp
@@ -1,4 +1,4 @@
-//===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
+///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
//
// The LLVM Compiler Infrastructure
//
@@ -17,10 +17,14 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CodeMetrics.h"
+#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/Utils/Local.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
@@ -66,180 +70,65 @@ static cl::opt<int>
UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
cl::desc("The cost threshold for unswitching a loop."));
-static void replaceLoopUsesWithConstant(Loop &L, Value &LIC,
- Constant &Replacement) {
- assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
-
- // Replace uses of LIC in the loop with the given constant.
- for (auto UI = LIC.use_begin(), UE = LIC.use_end(); UI != UE;) {
- // Grab the use and walk past it so we can clobber it in the use list.
- Use *U = &*UI++;
- Instruction *UserI = dyn_cast<Instruction>(U->getUser());
- if (!UserI || !L.contains(UserI))
- continue;
-
- // Replace this use within the loop body.
- *U = &Replacement;
- }
-}
-
-/// Update the IDom for a basic block whose predecessor set has changed.
-///
-/// This routine is designed to work when the domtree update is relatively
-/// localized by leveraging a known common dominator, often a loop header.
-///
-/// FIXME: Should consider hand-rolling a slightly more efficient non-DFS
-/// approach here as we can do that easily by persisting the candidate IDom's
-/// dominating set between each predecessor.
+/// Collect all of the loop invariant input values transitively used by the
+/// homogeneous instruction graph from a given root.
///
-/// FIXME: Longer term, many uses of this can be replaced by an incremental
-/// domtree update strategy that starts from a known dominating block and
-/// rebuilds that subtree.
-static bool updateIDomWithKnownCommonDominator(BasicBlock *BB,
- BasicBlock *KnownDominatingBB,
- DominatorTree &DT) {
- assert(pred_begin(BB) != pred_end(BB) &&
- "This routine does not handle unreachable blocks!");
-
- BasicBlock *OrigIDom = DT[BB]->getIDom()->getBlock();
-
- BasicBlock *IDom = *pred_begin(BB);
- assert(DT.dominates(KnownDominatingBB, IDom) &&
- "Bad known dominating block!");
-
- // Walk all of the other predecessors finding the nearest common dominator
- // until all predecessors are covered or we reach the loop header. The loop
- // header necessarily dominates all loop exit blocks in loop simplified form
- // so we can early-exit the moment we hit that block.
- for (auto PI = std::next(pred_begin(BB)), PE = pred_end(BB);
- PI != PE && IDom != KnownDominatingBB; ++PI) {
- assert(DT.dominates(KnownDominatingBB, *PI) &&
- "Bad known dominating block!");
- IDom = DT.findNearestCommonDominator(IDom, *PI);
- }
+/// This essentially walks from a root recursively through loop variant operands
+/// which have the exact same opcode and finds all inputs which are loop
+/// invariant. For some operations these can be re-associated and unswitched out
+/// of the loop entirely.
+static TinyPtrVector<Value *>
+collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
+ LoopInfo &LI) {
+ assert(!L.isLoopInvariant(&Root) &&
+ "Only need to walk the graph if root itself is not invariant.");
+ TinyPtrVector<Value *> Invariants;
+
+ // Build a worklist and recurse through operators collecting invariants.
+ SmallVector<Instruction *, 4> Worklist;
+ SmallPtrSet<Instruction *, 8> Visited;
+ Worklist.push_back(&Root);
+ Visited.insert(&Root);
+ do {
+ Instruction &I = *Worklist.pop_back_val();
+ for (Value *OpV : I.operand_values()) {
+ // Skip constants as unswitching isn't interesting for them.
+ if (isa<Constant>(OpV))
+ continue;
- if (IDom == OrigIDom)
- return false;
+ // Add it to our result if loop invariant.
+ if (L.isLoopInvariant(OpV)) {
+ Invariants.push_back(OpV);
+ continue;
+ }
- DT.changeImmediateDominator(BB, IDom);
- return true;
-}
+ // If not an instruction with the same opcode, nothing we can do.
+ Instruction *OpI = dyn_cast<Instruction>(OpV);
+ if (!OpI || OpI->getOpcode() != Root.getOpcode())
+ continue;
-// Note that we don't currently use the IDFCalculator here for two reasons:
-// 1) It computes dominator tree levels for the entire function on each run
-// of 'compute'. While this isn't terrible, given that we expect to update
-// relatively small subtrees of the domtree, it isn't necessarily the right
-// tradeoff.
-// 2) The interface doesn't fit this usage well. It doesn't operate in
-// append-only, and builds several sets that we don't need.
-//
-// FIXME: Neither of these issues are a big deal and could be addressed with
-// some amount of refactoring of IDFCalculator. That would allow us to share
-// the core logic here (which is solving the same core problem).
-static void appendDomFrontier(DomTreeNode *Node,
- SmallSetVector<BasicBlock *, 4> &Worklist,
- SmallVectorImpl<DomTreeNode *> &DomNodes,
- SmallPtrSetImpl<BasicBlock *> &DomSet) {
- assert(DomNodes.empty() && "Must start with no dominator nodes.");
- assert(DomSet.empty() && "Must start with an empty dominator set.");
-
- // First flatten this subtree into sequence of nodes by doing a pre-order
- // walk.
- DomNodes.push_back(Node);
- // We intentionally re-evaluate the size as each node can add new children.
- // Because this is a tree walk, this cannot add any duplicates.
- for (int i = 0; i < (int)DomNodes.size(); ++i)
- DomNodes.insert(DomNodes.end(), DomNodes[i]->begin(), DomNodes[i]->end());
-
- // Now create a set of the basic blocks so we can quickly test for
- // dominated successors. We could in theory use the DFS numbers of the
- // dominator tree for this, but we want this to remain predictably fast
- // even while we mutate the dominator tree in ways that would invalidate
- // the DFS numbering.
- for (DomTreeNode *InnerN : DomNodes)
- DomSet.insert(InnerN->getBlock());
-
- // Now re-walk the nodes, appending every successor of every node that isn't
- // in the set. Note that we don't append the node itself, even though if it
- // is a successor it does not strictly dominate itself and thus it would be
- // part of the dominance frontier. The reason we don't append it is that
- // the node passed in came *from* the worklist and so it has already been
- // processed.
- for (DomTreeNode *InnerN : DomNodes)
- for (BasicBlock *SuccBB : successors(InnerN->getBlock()))
- if (!DomSet.count(SuccBB))
- Worklist.insert(SuccBB);
-
- DomNodes.clear();
- DomSet.clear();
-}
+ // Visit this operand.
+ if (Visited.insert(OpI).second)
+ Worklist.push_back(OpI);
+ }
+ } while (!Worklist.empty());
-/// Update the dominator tree after unswitching a particular former exit block.
-///
-/// This handles the full update of the dominator tree after hoisting a block
-/// that previously was an exit block (or split off of an exit block) up to be
-/// reached from the new immediate dominator of the preheader.
-///
-/// The common case is simple -- we just move the unswitched block to have an
-/// immediate dominator of the old preheader. But in complex cases, there may
-/// be other blocks reachable from the unswitched block that are immediately
-/// dominated by some node between the unswitched one and the old preheader.
-/// All of these also need to be hoisted in the dominator tree. We also want to
-/// minimize queries to the dominator tree because each step of this
-/// invalidates any DFS numbers that would make queries fast.
-static void updateDTAfterUnswitch(BasicBlock *UnswitchedBB, BasicBlock *OldPH,
- DominatorTree &DT) {
- DomTreeNode *OldPHNode = DT[OldPH];
- DomTreeNode *UnswitchedNode = DT[UnswitchedBB];
- // If the dominator tree has already been updated for this unswitched node,
- // we're done. This makes it easier to use this routine if there are multiple
- // paths to the same unswitched destination.
- if (UnswitchedNode->getIDom() == OldPHNode)
- return;
+ return Invariants;
+}
- // First collect the domtree nodes that we are hoisting over. These are the
- // set of nodes which may have children that need to be hoisted as well.
- SmallPtrSet<DomTreeNode *, 4> DomChain;
- for (auto *IDom = UnswitchedNode->getIDom(); IDom != OldPHNode;
- IDom = IDom->getIDom())
- DomChain.insert(IDom);
-
- // The unswitched block ends up immediately dominated by the old preheader --
- // regardless of whether it is the loop exit block or split off of the loop
- // exit block.
- DT.changeImmediateDominator(UnswitchedNode, OldPHNode);
-
- // For everything that moves up the dominator tree, we need to examine the
- // dominator frontier to see if it additionally should move up the dominator
- // tree. This lambda appends the dominator frontier for a node on the
- // worklist.
- SmallSetVector<BasicBlock *, 4> Worklist;
-
- // Scratch data structures reused by domfrontier finding.
- SmallVector<DomTreeNode *, 4> DomNodes;
- SmallPtrSet<BasicBlock *, 4> DomSet;
-
- // Append the initial dom frontier nodes.
- appendDomFrontier(UnswitchedNode, Worklist, DomNodes, DomSet);
-
- // Walk the worklist. We grow the list in the loop and so must recompute size.
- for (int i = 0; i < (int)Worklist.size(); ++i) {
- auto *BB = Worklist[i];
-
- DomTreeNode *Node = DT[BB];
- assert(!DomChain.count(Node) &&
- "Cannot be dominated by a block you can reach!");
-
- // If this block had an immediate dominator somewhere in the chain
- // we hoisted over, then its position in the domtree needs to move as it is
- // reachable from a node hoisted over this chain.
- if (!DomChain.count(Node->getIDom()))
- continue;
+static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
+ Constant &Replacement) {
+ assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
- DT.changeImmediateDominator(Node, OldPHNode);
+ // Replace uses of LIC in the loop with the given constant.
+ for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) {
+ // Grab the use and walk past it so we can clobber it in the use list.
+ Use *U = &*UI++;
+ Instruction *UserI = dyn_cast<Instruction>(U->getUser());
- // Now add this node's dominator frontier to the worklist as well.
- appendDomFrontier(Node, Worklist, DomNodes, DomSet);
+ // Replace this use within the loop body.
+ if (UserI && L.contains(UserI))
+ U->set(&Replacement);
}
}
@@ -261,6 +150,26 @@ static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
llvm_unreachable("Basic blocks should never be empty!");
}
+/// Insert code to test a set of loop invariant values, and conditionally branch
+/// on them.
+static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
+ ArrayRef<Value *> Invariants,
+ bool Direction,
+ BasicBlock &UnswitchedSucc,
+ BasicBlock &NormalSucc) {
+ IRBuilder<> IRB(&BB);
+ Value *Cond = Invariants.front();
+ for (Value *Invariant :
+ make_range(std::next(Invariants.begin()), Invariants.end()))
+ if (Direction)
+ Cond = IRB.CreateOr(Cond, Invariant);
+ else
+ Cond = IRB.CreateAnd(Cond, Invariant);
+
+ IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
+ Direction ? &NormalSucc : &UnswitchedSucc);
+}
+
/// Rewrite the PHI nodes in an unswitched loop exit basic block.
///
/// Requires that the loop exit and unswitched basic block are the same, and
@@ -271,19 +180,14 @@ static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
BasicBlock &OldExitingBB,
BasicBlock &OldPH) {
- for (Instruction &I : UnswitchedBB) {
- auto *PN = dyn_cast<PHINode>(&I);
- if (!PN)
- // No more PHIs to check.
- break;
-
+ for (PHINode &PN : UnswitchedBB.phis()) {
// When the loop exit is directly unswitched we just need to update the
// incoming basic block. We loop to handle weird cases with repeated
// incoming blocks, but expect to typically only have one operand here.
- for (auto i : seq<int>(0, PN->getNumOperands())) {
- assert(PN->getIncomingBlock(i) == &OldExitingBB &&
+ for (auto i : seq<int>(0, PN.getNumOperands())) {
+ assert(PN.getIncomingBlock(i) == &OldExitingBB &&
"Found incoming block different from unique predecessor!");
- PN->setIncomingBlock(i, &OldPH);
+ PN.setIncomingBlock(i, &OldPH);
}
}
}
@@ -298,18 +202,14 @@ static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
BasicBlock &UnswitchedBB,
BasicBlock &OldExitingBB,
- BasicBlock &OldPH) {
+ BasicBlock &OldPH,
+ bool FullUnswitch) {
assert(&ExitBB != &UnswitchedBB &&
"Must have different loop exit and unswitched blocks!");
Instruction *InsertPt = &*UnswitchedBB.begin();
- for (Instruction &I : ExitBB) {
- auto *PN = dyn_cast<PHINode>(&I);
- if (!PN)
- // No more PHIs to check.
- break;
-
- auto *NewPN = PHINode::Create(PN->getType(), /*NumReservedValues*/ 2,
- PN->getName() + ".split", InsertPt);
+ for (PHINode &PN : ExitBB.phis()) {
+ auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
+ PN.getName() + ".split", InsertPt);
// Walk backwards over the old PHI node's inputs to minimize the cost of
// removing each one. We have to do this weird loop manually so that we
@@ -320,18 +220,92 @@ static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
// allowed us to create a single entry for a predecessor block without
// having separate entries for each "edge" even though these edges are
// required to produce identical results.
- for (int i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
- if (PN->getIncomingBlock(i) != &OldExitingBB)
+ for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
+ if (PN.getIncomingBlock(i) != &OldExitingBB)
continue;
- Value *Incoming = PN->removeIncomingValue(i);
+ Value *Incoming = PN.getIncomingValue(i);
+ if (FullUnswitch)
+ // No more edge from the old exiting block to the exit block.
+ PN.removeIncomingValue(i);
+
NewPN->addIncoming(Incoming, &OldPH);
}
// Now replace the old PHI with the new one and wire the old one in as an
// input to the new one.
- PN->replaceAllUsesWith(NewPN);
- NewPN->addIncoming(PN, &ExitBB);
+ PN.replaceAllUsesWith(NewPN);
+ NewPN->addIncoming(&PN, &ExitBB);
+ }
+}
+
+/// Hoist the current loop up to the innermost loop containing a remaining exit.
+///
+/// Because we've removed an exit from the loop, we may have changed the set of
+/// loops reachable and need to move the current loop up the loop nest or even
+/// to an entirely separate nest.
+static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
+ DominatorTree &DT, LoopInfo &LI) {
+ // If the loop is already at the top level, we can't hoist it anywhere.
+ Loop *OldParentL = L.getParentLoop();
+ if (!OldParentL)
+ return;
+
+ SmallVector<BasicBlock *, 4> Exits;
+ L.getExitBlocks(Exits);
+ Loop *NewParentL = nullptr;
+ for (auto *ExitBB : Exits)
+ if (Loop *ExitL = LI.getLoopFor(ExitBB))
+ if (!NewParentL || NewParentL->contains(ExitL))
+ NewParentL = ExitL;
+
+ if (NewParentL == OldParentL)
+ return;
+
+ // The new parent loop (if different) should always contain the old one.
+ if (NewParentL)
+ assert(NewParentL->contains(OldParentL) &&
+ "Can only hoist this loop up the nest!");
+
+ // The preheader will need to move with the body of this loop. However,
+ // because it isn't in this loop we also need to update the primary loop map.
+ assert(OldParentL == LI.getLoopFor(&Preheader) &&
+ "Parent loop of this loop should contain this loop's preheader!");
+ LI.changeLoopFor(&Preheader, NewParentL);
+
+ // Remove this loop from its old parent.
+ OldParentL->removeChildLoop(&L);
+
+ // Add the loop either to the new parent or as a top-level loop.
+ if (NewParentL)
+ NewParentL->addChildLoop(&L);
+ else
+ LI.addTopLevelLoop(&L);
+
+ // Remove this loops blocks from the old parent and every other loop up the
+ // nest until reaching the new parent. Also update all of these
+ // no-longer-containing loops to reflect the nesting change.
+ for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
+ OldContainingL = OldContainingL->getParentLoop()) {
+ llvm::erase_if(OldContainingL->getBlocksVector(),
+ [&](const BasicBlock *BB) {
+ return BB == &Preheader || L.contains(BB);
+ });
+
+ OldContainingL->getBlocksSet().erase(&Preheader);
+ for (BasicBlock *BB : L.blocks())
+ OldContainingL->getBlocksSet().erase(BB);
+
+ // Because we just hoisted a loop out of this one, we have essentially
+ // created new exit paths from it. That means we need to form LCSSA PHI
+ // nodes for values used in the no-longer-nested loop.
+ formLCSSA(*OldContainingL, DT, &LI, nullptr);
+
+ // We shouldn't need to form dedicated exits because the exit introduced
+ // here is the (just split by unswitching) preheader. As such, it is
+ // necessarily dedicated.
+ assert(OldContainingL->hasDedicatedExits() &&
+ "Unexpected predecessor of hoisted loop preheader!");
}
}
@@ -349,48 +323,83 @@ static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
/// (splitting the exit block as necessary). It simplifies the branch within
/// the loop to an unconditional branch but doesn't remove it entirely. Further
/// cleanup can be done with some simplify-cfg like pass.
+///
+/// If `SE` is not null, it will be updated based on the potential loop SCEVs
+/// invalidated by this.
static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
- LoopInfo &LI) {
+ LoopInfo &LI, ScalarEvolution *SE) {
assert(BI.isConditional() && "Can only unswitch a conditional branch!");
- DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n");
+ LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n");
- Value *LoopCond = BI.getCondition();
+ // The loop invariant values that we want to unswitch.
+ TinyPtrVector<Value *> Invariants;
- // Need a trivial loop condition to unswitch.
- if (!L.isLoopInvariant(LoopCond))
- return false;
+ // When true, we're fully unswitching the branch rather than just unswitching
+ // some input conditions to the branch.
+ bool FullUnswitch = false;
- // FIXME: We should compute this once at the start and update it!
- SmallVector<BasicBlock *, 16> ExitBlocks;
- L.getExitBlocks(ExitBlocks);
- SmallPtrSet<BasicBlock *, 16> ExitBlockSet(ExitBlocks.begin(),
- ExitBlocks.end());
-
- // Check to see if a successor of the branch is guaranteed to
- // exit through a unique exit block without having any
- // side-effects. If so, determine the value of Cond that causes
- // it to do this.
- ConstantInt *CondVal = ConstantInt::getTrue(BI.getContext());
- ConstantInt *Replacement = ConstantInt::getFalse(BI.getContext());
+ if (L.isLoopInvariant(BI.getCondition())) {
+ Invariants.push_back(BI.getCondition());
+ FullUnswitch = true;
+ } else {
+ if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
+ Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
+ if (Invariants.empty())
+ // Couldn't find invariant inputs!
+ return false;
+ }
+
+ // Check that one of the branch's successors exits, and which one.
+ bool ExitDirection = true;
int LoopExitSuccIdx = 0;
auto *LoopExitBB = BI.getSuccessor(0);
- if (!ExitBlockSet.count(LoopExitBB)) {
- std::swap(CondVal, Replacement);
+ if (L.contains(LoopExitBB)) {
+ ExitDirection = false;
LoopExitSuccIdx = 1;
LoopExitBB = BI.getSuccessor(1);
- if (!ExitBlockSet.count(LoopExitBB))
+ if (L.contains(LoopExitBB))
return false;
}
auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
- assert(L.contains(ContinueBB) &&
- "Cannot have both successors exit and still be in the loop!");
-
auto *ParentBB = BI.getParent();
if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
return false;
- DEBUG(dbgs() << " unswitching trivial branch when: " << CondVal
- << " == " << LoopCond << "\n");
+ // When unswitching only part of the branch's condition, we need the exit
+ // block to be reached directly from the partially unswitched input. This can
+ // be done when the exit block is along the true edge and the branch condition
+ // is a graph of `or` operations, or the exit block is along the false edge
+ // and the condition is a graph of `and` operations.
+ if (!FullUnswitch) {
+ if (ExitDirection) {
+ if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or)
+ return false;
+ } else {
+ if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And)
+ return false;
+ }
+ }
+
+ LLVM_DEBUG({
+ dbgs() << " unswitching trivial invariant conditions for: " << BI
+ << "\n";
+ for (Value *Invariant : Invariants) {
+ dbgs() << " " << *Invariant << " == true";
+ if (Invariant != Invariants.back())
+ dbgs() << " ||";
+ dbgs() << "\n";
+ }
+ });
+
+ // If we have scalar evolutions, we need to invalidate them including this
+ // loop and the loop containing the exit block.
+ if (SE) {
+ if (Loop *ExitL = LI.getLoopFor(LoopExitBB))
+ SE->forgetLoop(ExitL);
+ else
+ // Forget the entire nest as this exits the entire nest.
+ SE->forgetTopmostLoop(&L);
+ }
// Split the preheader, so that we know that there is a safe place to insert
// the conditional branch. We will change the preheader to have a conditional
@@ -403,45 +412,73 @@ static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
// unswitching. We need to split this if there are other loop predecessors.
// Because the loop is in simplified form, *any* other predecessor is enough.
BasicBlock *UnswitchedBB;
- if (BasicBlock *PredBB = LoopExitBB->getUniquePredecessor()) {
- (void)PredBB;
- assert(PredBB == BI.getParent() &&
+ if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
+ assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
"A branch's parent isn't a predecessor!");
UnswitchedBB = LoopExitBB;
} else {
UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI);
}
- // Now splice the branch to gate reaching the new preheader and re-point its
- // successors.
- OldPH->getInstList().splice(std::prev(OldPH->end()),
- BI.getParent()->getInstList(), BI);
+ // Actually move the invariant uses into the unswitched position. If possible,
+ // we do this by moving the instructions, but when doing partial unswitching
+ // we do it by building a new merge of the values in the unswitched position.
OldPH->getTerminator()->eraseFromParent();
- BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
- BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
-
- // Create a new unconditional branch that will continue the loop as a new
- // terminator.
- BranchInst::Create(ContinueBB, ParentBB);
+ if (FullUnswitch) {
+ // If fully unswitching, we can use the existing branch instruction.
+ // Splice it into the old PH to gate reaching the new preheader and re-point
+ // its successors.
+ OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
+ BI);
+ BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
+ BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
+
+ // Create a new unconditional branch that will continue the loop as a new
+ // terminator.
+ BranchInst::Create(ContinueBB, ParentBB);
+ } else {
+ // Only unswitching a subset of inputs to the condition, so we will need to
+ // build a new branch that merges the invariant inputs.
+ if (ExitDirection)
+ assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
+ Instruction::Or &&
+ "Must have an `or` of `i1`s for the condition!");
+ else
+ assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
+ Instruction::And &&
+ "Must have an `and` of `i1`s for the condition!");
+ buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
+ *UnswitchedBB, *NewPH);
+ }
// Rewrite the relevant PHI nodes.
if (UnswitchedBB == LoopExitBB)
rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
else
rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
- *ParentBB, *OldPH);
+ *ParentBB, *OldPH, FullUnswitch);
// Now we need to update the dominator tree.
- updateDTAfterUnswitch(UnswitchedBB, OldPH, DT);
- // But if we split something off of the loop exit block then we also removed
- // one of the predecessors for the loop exit block and may need to update its
- // idom.
- if (UnswitchedBB != LoopExitBB)
- updateIDomWithKnownCommonDominator(LoopExitBB, L.getHeader(), DT);
+ DT.insertEdge(OldPH, UnswitchedBB);
+ if (FullUnswitch)
+ DT.deleteEdge(ParentBB, UnswitchedBB);
+
+ // The constant we can replace all of our invariants with inside the loop
+ // body. If any of the invariants have a value other than this the loop won't
+ // be entered.
+ ConstantInt *Replacement = ExitDirection
+ ? ConstantInt::getFalse(BI.getContext())
+ : ConstantInt::getTrue(BI.getContext());
// Since this is an i1 condition we can also trivially replace uses of it
// within the loop with a constant.
- replaceLoopUsesWithConstant(L, *LoopCond, *Replacement);
+ for (Value *Invariant : Invariants)
+ replaceLoopInvariantUses(L, Invariant, *Replacement);
+
+ // If this was full unswitching, we may have changed the nesting relationship
+ // for this loop so hoist it to its correct parent if needed.
+ if (FullUnswitch)
+ hoistLoopToNewParent(L, *NewPH, DT, LI);
++NumTrivial;
++NumBranches;
@@ -471,9 +508,12 @@ static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
/// switch will not be revisited. If after unswitching there is only a single
/// in-loop successor, the switch is further simplified to an unconditional
/// branch. Still more cleanup can be done with some simplify-cfg like pass.
+///
+/// If `SE` is not null, it will be updated based on the potential loop SCEVs
+/// invalidated by this.
static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
- LoopInfo &LI) {
- DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n");
+ LoopInfo &LI, ScalarEvolution *SE) {
+ LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n");
Value *LoopCond = SI.getCondition();
// If this isn't switching on an invariant condition, we can't unswitch it.
@@ -482,41 +522,62 @@ static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
auto *ParentBB = SI.getParent();
- // FIXME: We should compute this once at the start and update it!
- SmallVector<BasicBlock *, 16> ExitBlocks;
- L.getExitBlocks(ExitBlocks);
- SmallPtrSet<BasicBlock *, 16> ExitBlockSet(ExitBlocks.begin(),
- ExitBlocks.end());
-
SmallVector<int, 4> ExitCaseIndices;
for (auto Case : SI.cases()) {
auto *SuccBB = Case.getCaseSuccessor();
- if (ExitBlockSet.count(SuccBB) &&
+ if (!L.contains(SuccBB) &&
areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
ExitCaseIndices.push_back(Case.getCaseIndex());
}
BasicBlock *DefaultExitBB = nullptr;
- if (ExitBlockSet.count(SI.getDefaultDest()) &&
+ if (!L.contains(SI.getDefaultDest()) &&
areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) &&
!isa<UnreachableInst>(SI.getDefaultDest()->getTerminator()))
DefaultExitBB = SI.getDefaultDest();
else if (ExitCaseIndices.empty())
return false;
- DEBUG(dbgs() << " unswitching trivial cases...\n");
+ LLVM_DEBUG(dbgs() << " unswitching trivial cases...\n");
+ // We may need to invalidate SCEVs for the outermost loop reached by any of
+ // the exits.
+ Loop *OuterL = &L;
+
+ if (DefaultExitBB) {
+ // Clear out the default destination temporarily to allow accurate
+ // predecessor lists to be examined below.
+ SI.setDefaultDest(nullptr);
+ // Check the loop containing this exit.
+ Loop *ExitL = LI.getLoopFor(DefaultExitBB);
+ if (!ExitL || ExitL->contains(OuterL))
+ OuterL = ExitL;
+ }
+
+ // Store the exit cases into a separate data structure and remove them from
+ // the switch.
SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases;
ExitCases.reserve(ExitCaseIndices.size());
// We walk the case indices backwards so that we remove the last case first
// and don't disrupt the earlier indices.
for (unsigned Index : reverse(ExitCaseIndices)) {
auto CaseI = SI.case_begin() + Index;
+ // Compute the outer loop from this exit.
+ Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
+ if (!ExitL || ExitL->contains(OuterL))
+ OuterL = ExitL;
// Save the value of this case.
ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()});
// Delete the unswitched cases.
SI.removeCase(CaseI);
}
+ if (SE) {
+ if (OuterL)
+ SE->forgetLoop(OuterL);
+ else
+ SE->forgetTopmostLoop(&L);
+ }
+
// Check if after this all of the remaining cases point at the same
// successor.
BasicBlock *CommonSuccBB = nullptr;
@@ -527,23 +588,7 @@ static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
SI.case_begin()->getCaseSuccessor();
}))
CommonSuccBB = SI.case_begin()->getCaseSuccessor();
-
- if (DefaultExitBB) {
- // We can't remove the default edge so replace it with an edge to either
- // the single common remaining successor (if we have one) or an unreachable
- // block.
- if (CommonSuccBB) {
- SI.setDefaultDest(CommonSuccBB);
- } else {
- BasicBlock *UnreachableBB = BasicBlock::Create(
- ParentBB->getContext(),
- Twine(ParentBB->getName()) + ".unreachable_default",
- ParentBB->getParent());
- new UnreachableInst(ParentBB->getContext(), UnreachableBB);
- SI.setDefaultDest(UnreachableBB);
- DT.addNewBlock(UnreachableBB, ParentBB);
- }
- } else {
+ if (!DefaultExitBB) {
// If we're not unswitching the default, we need it to match any cases to
// have a common successor or if we have no cases it is the common
// successor.
@@ -580,9 +625,8 @@ static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
} else {
auto *SplitBB =
SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI);
- rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
- *ParentBB, *OldPH);
- updateIDomWithKnownCommonDominator(DefaultExitBB, L.getHeader(), DT);
+ rewritePHINodesForExitAndUnswitchedBlocks(
+ *DefaultExitBB, *SplitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true);
DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
}
}
@@ -607,9 +651,8 @@ static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
if (!SplitExitBB) {
// If this is the first time we see this, do the split and remember it.
SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
- rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
- *ParentBB, *OldPH);
- updateIDomWithKnownCommonDominator(ExitBB, L.getHeader(), DT);
+ rewritePHINodesForExitAndUnswitchedBlocks(
+ *ExitBB, *SplitExitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true);
}
// Update the case pair to point to the split block.
CasePair.second = SplitExitBB;
@@ -622,14 +665,12 @@ static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
BasicBlock *UnswitchedBB = CasePair.second;
NewSI->addCase(CaseVal, UnswitchedBB);
- updateDTAfterUnswitch(UnswitchedBB, OldPH, DT);
}
// If the default was unswitched, re-point it and add explicit cases for
// entering the loop.
if (DefaultExitBB) {
NewSI->setDefaultDest(DefaultExitBB);
- updateDTAfterUnswitch(DefaultExitBB, OldPH, DT);
// We removed all the exit cases, so we just copy the cases to the
// unswitched switch.
@@ -643,11 +684,57 @@ static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
// pointing at unreachable and other complexity.
if (CommonSuccBB) {
BasicBlock *BB = SI.getParent();
+ // We may have had multiple edges to this common successor block, so remove
+ // them as predecessors. We skip the first one, either the default or the
+ // actual first case.
+ bool SkippedFirst = DefaultExitBB == nullptr;
+ for (auto Case : SI.cases()) {
+ assert(Case.getCaseSuccessor() == CommonSuccBB &&
+ "Non-common successor!");
+ (void)Case;
+ if (!SkippedFirst) {
+ SkippedFirst = true;
+ continue;
+ }
+ CommonSuccBB->removePredecessor(BB,
+ /*DontDeleteUselessPHIs*/ true);
+ }
+ // Now nuke the switch and replace it with a direct branch.
SI.eraseFromParent();
BranchInst::Create(CommonSuccBB, BB);
+ } else if (DefaultExitBB) {
+ assert(SI.getNumCases() > 0 &&
+ "If we had no cases we'd have a common successor!");
+ // Move the last case to the default successor. This is valid as if the
+ // default got unswitched it cannot be reached. This has the advantage of
+ // being simple and keeping the number of edges from this switch to
+ // successors the same, and avoiding any PHI update complexity.
+ auto LastCaseI = std::prev(SI.case_end());
+ SI.setDefaultDest(LastCaseI->getCaseSuccessor());
+ SI.removeCase(LastCaseI);
+ }
+
+ // Walk the unswitched exit blocks and the unswitched split blocks and update
+ // the dominator tree based on the CFG edits. While we are walking unordered
+ // containers here, the API for applyUpdates takes an unordered list of
+ // updates and requires them to not contain duplicates.
+ SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
+ for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
+ DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
+ DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
}
+ for (auto SplitUnswitchedPair : SplitExitBBMap) {
+ auto *UnswitchedBB = SplitUnswitchedPair.second;
+ DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedBB});
+ DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB});
+ }
+ DT.applyUpdates(DTUpdates);
+ assert(DT.verify(DominatorTree::VerificationLevel::Fast));
+
+ // We may have changed the nesting relationship for this loop so hoist it to
+ // its correct parent if needed.
+ hoistLoopToNewParent(L, *NewPH, DT, LI);
- DT.verifyDomTree();
++NumTrivial;
++NumSwitches;
return true;
@@ -662,8 +749,11 @@ static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
///
/// The return value indicates whether anything was unswitched (and therefore
/// changed).
+///
+/// If `SE` is not null, it will be updated based on the potential loop SCEVs
+/// invalidated by this.
static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
- LoopInfo &LI) {
+ LoopInfo &LI, ScalarEvolution *SE) {
bool Changed = false;
// If loop header has only one reachable successor we should keep looking for
@@ -697,8 +787,8 @@ static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
if (isa<Constant>(SI->getCondition()))
return Changed;
- if (!unswitchTrivialSwitch(L, *SI, DT, LI))
- // Coludn't unswitch this one so we're done.
+ if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE))
+ // Couldn't unswitch this one so we're done.
return Changed;
// Mark that we managed to unswitch something.
@@ -729,17 +819,19 @@ static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
// Found a trivial condition candidate: non-foldable conditional branch. If
// we fail to unswitch this, we can't do anything else that is trivial.
- if (!unswitchTrivialBranch(L, *BI, DT, LI))
+ if (!unswitchTrivialBranch(L, *BI, DT, LI, SE))
return Changed;
// Mark that we managed to unswitch something.
Changed = true;
- // We unswitched the branch. This should always leave us with an
- // unconditional branch that we can follow now.
+ // If we only unswitched some of the conditions feeding the branch, we won't
+ // have collapsed it to a single successor.
BI = cast<BranchInst>(CurrentBB->getTerminator());
- assert(!BI->isConditional() &&
- "Cannot form a conditional branch by unswitching1");
+ if (BI->isConditional())
+ return Changed;
+
+ // Follow the newly unconditional branch into its successor.
CurrentBB = BI->getSuccessor(0);
// When continuing, if we exit the loop or reach a previous visited block,
@@ -758,8 +850,12 @@ static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
///
/// This routine handles cloning all of the necessary loop blocks and exit
/// blocks including rewriting their instructions and the relevant PHI nodes.
-/// It skips loop and exit blocks that are not necessary based on the provided
-/// set. It also correctly creates the unconditional branch in the cloned
+/// Any loop blocks or exit blocks which are dominated by a different successor
+/// than the one for this clone of the loop blocks can be trivially skipped. We
+/// use the `DominatingSucc` map to determine whether a block satisfies that
+/// property with a simple map lookup.
+///
+/// It also correctly creates the unconditional branch in the cloned
/// unswitched parent block to only point at the unswitched successor.
///
/// This does not handle most of the necessary updates to `LoopInfo`. Only exit
@@ -773,9 +869,10 @@ static BasicBlock *buildClonedLoopBlocks(
Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
- const SmallPtrSetImpl<BasicBlock *> &SkippedLoopAndExitBlocks,
- ValueToValueMapTy &VMap, AssumptionCache &AC, DominatorTree &DT,
- LoopInfo &LI) {
+ const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
+ ValueToValueMapTy &VMap,
+ SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
+ DominatorTree &DT, LoopInfo &LI) {
SmallVector<BasicBlock *, 4> NewBlocks;
NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
@@ -790,26 +887,29 @@ static BasicBlock *buildClonedLoopBlocks(
NewBlocks.push_back(NewBB);
VMap[OldBB] = NewBB;
- // Add the block to the domtree. We'll move it to the correct position
- // below.
- DT.addNewBlock(NewBB, SplitBB);
-
return NewBB;
};
+ // We skip cloning blocks when they have a dominating succ that is not the
+ // succ we are cloning for.
+ auto SkipBlock = [&](BasicBlock *BB) {
+ auto It = DominatingSucc.find(BB);
+ return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
+ };
+
// First, clone the preheader.
auto *ClonedPH = CloneBlock(LoopPH);
// Then clone all the loop blocks, skipping the ones that aren't necessary.
for (auto *LoopBB : L.blocks())
- if (!SkippedLoopAndExitBlocks.count(LoopBB))
+ if (!SkipBlock(LoopBB))
CloneBlock(LoopBB);
// Split all the loop exit edges so that when we clone the exit blocks, if
// any of the exit blocks are *also* a preheader for some other loop, we
// don't create multiple predecessors entering the loop header.
for (auto *ExitBB : ExitBlocks) {
- if (SkippedLoopAndExitBlocks.count(ExitBB))
+ if (SkipBlock(ExitBB))
continue;
// When we are going to clone an exit, we don't need to clone all the
@@ -832,17 +932,6 @@ static BasicBlock *buildClonedLoopBlocks(
assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
"Cloned exit block has the wrong successor!");
- // Move the merge block's idom to be the split point as one exit is
- // dominated by one header, and the other by another, so we know the split
- // point dominates both. While the dominator tree isn't fully accurate, we
- // want sub-trees within the original loop to be correctly reflect
- // dominance within that original loop (at least) and that requires moving
- // the merge block out of that subtree.
- // FIXME: This is very brittle as we essentially have a partial contract on
- // the dominator tree. We really need to instead update it and keep it
- // valid or stop relying on it.
- DT.changeImmediateDominator(MergeBB, SplitBB);
-
// Remap any cloned instructions and create a merge phi node for them.
for (auto ZippedInsts : llvm::zip_first(
llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
@@ -882,28 +971,63 @@ static BasicBlock *buildClonedLoopBlocks(
AC.registerAssumption(II);
}
- // Remove the cloned parent as a predecessor of the cloned continue successor
- // if we did in fact clone it.
- auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
- if (auto *ClonedContinueSuccBB =
- cast_or_null<BasicBlock>(VMap.lookup(ContinueSuccBB)))
- ClonedContinueSuccBB->removePredecessor(ClonedParentBB,
- /*DontDeleteUselessPHIs*/ true);
- // Replace the cloned branch with an unconditional branch to the cloneed
- // unswitched successor.
- auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
- ClonedParentBB->getTerminator()->eraseFromParent();
- BranchInst::Create(ClonedSuccBB, ClonedParentBB);
-
// Update any PHI nodes in the cloned successors of the skipped blocks to not
// have spurious incoming values.
for (auto *LoopBB : L.blocks())
- if (SkippedLoopAndExitBlocks.count(LoopBB))
+ if (SkipBlock(LoopBB))
for (auto *SuccBB : successors(LoopBB))
if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
for (PHINode &PN : ClonedSuccBB->phis())
PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
+ // Remove the cloned parent as a predecessor of any successor we ended up
+ // cloning other than the unswitched one.
+ auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
+ for (auto *SuccBB : successors(ParentBB)) {
+ if (SuccBB == UnswitchedSuccBB)
+ continue;
+
+ auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
+ if (!ClonedSuccBB)
+ continue;
+
+ ClonedSuccBB->removePredecessor(ClonedParentBB,
+ /*DontDeleteUselessPHIs*/ true);
+ }
+
+ // Replace the cloned branch with an unconditional branch to the cloned
+ // unswitched successor.
+ auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
+ ClonedParentBB->getTerminator()->eraseFromParent();
+ BranchInst::Create(ClonedSuccBB, ClonedParentBB);
+
+ // If there are duplicate entries in the PHI nodes because of multiple edges
+ // to the unswitched successor, we need to nuke all but one as we replaced it
+ // with a direct branch.
+ for (PHINode &PN : ClonedSuccBB->phis()) {
+ bool Found = false;
+ // Loop over the incoming operands backwards so we can easily delete as we
+ // go without invalidating the index.
+ for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
+ if (PN.getIncomingBlock(i) != ClonedParentBB)
+ continue;
+ if (!Found) {
+ Found = true;
+ continue;
+ }
+ PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
+ }
+ }
+
+ // Record the domtree updates for the new blocks.
+ SmallPtrSet<BasicBlock *, 4> SuccSet;
+ for (auto *ClonedBB : NewBlocks) {
+ for (auto *SuccBB : successors(ClonedBB))
+ if (SuccSet.insert(SuccBB).second)
+ DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
+ SuccSet.clear();
+ }
+
return ClonedPH;
}
@@ -921,11 +1045,8 @@ static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
for (auto *BB : OrigL.blocks()) {
auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
ClonedL.addBlockEntry(ClonedBB);
- if (LI.getLoopFor(BB) == &OrigL) {
- assert(!LI.getLoopFor(ClonedBB) &&
- "Should not have an existing loop for this block!");
+ if (LI.getLoopFor(BB) == &OrigL)
LI.changeLoopFor(ClonedBB, &ClonedL);
- }
}
};
@@ -975,9 +1096,9 @@ static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
/// original loop, multiple cloned sibling loops may be created. All of them
/// are returned so that the newly introduced loop nest roots can be
/// identified.
-static Loop *buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
- const ValueToValueMapTy &VMap, LoopInfo &LI,
- SmallVectorImpl<Loop *> &NonChildClonedLoops) {
+static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
+ const ValueToValueMapTy &VMap, LoopInfo &LI,
+ SmallVectorImpl<Loop *> &NonChildClonedLoops) {
Loop *ClonedL = nullptr;
auto *OrigPH = OrigL.getLoopPreheader();
@@ -1070,6 +1191,7 @@ static Loop *buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
} else {
LI.addTopLevelLoop(ClonedL);
}
+ NonChildClonedLoops.push_back(ClonedL);
ClonedL->reserveBlocks(BlocksInClonedLoop.size());
// We don't want to just add the cloned loop blocks based on how we
@@ -1138,11 +1260,11 @@ static Loop *buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
// matter as we're just trying to build up the map from inside-out; we use
// the map in a more stably ordered way below.
auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
- std::sort(OrderedClonedExitsInLoops.begin(), OrderedClonedExitsInLoops.end(),
- [&](BasicBlock *LHS, BasicBlock *RHS) {
- return ExitLoopMap.lookup(LHS)->getLoopDepth() <
- ExitLoopMap.lookup(RHS)->getLoopDepth();
- });
+ llvm::sort(OrderedClonedExitsInLoops.begin(), OrderedClonedExitsInLoops.end(),
+ [&](BasicBlock *LHS, BasicBlock *RHS) {
+ return ExitLoopMap.lookup(LHS)->getLoopDepth() <
+ ExitLoopMap.lookup(RHS)->getLoopDepth();
+ });
// Populate the existing ExitLoopMap with everything reachable from each
// exit, starting from the inner most exit.
@@ -1222,60 +1344,69 @@ static Loop *buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
NonChildClonedLoops.push_back(cloneLoopNest(
*ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
}
+}
+
+static void
+deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
+ ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
+ DominatorTree &DT) {
+ // Find all the dead clones, and remove them from their successors.
+ SmallVector<BasicBlock *, 16> DeadBlocks;
+ for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
+ for (auto &VMap : VMaps)
+ if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
+ if (!DT.isReachableFromEntry(ClonedBB)) {
+ for (BasicBlock *SuccBB : successors(ClonedBB))
+ SuccBB->removePredecessor(ClonedBB);
+ DeadBlocks.push_back(ClonedBB);
+ }
- // Return the main cloned loop if any.
- return ClonedL;
+ // Drop any remaining references to break cycles.
+ for (BasicBlock *BB : DeadBlocks)
+ BB->dropAllReferences();
+ // Erase them from the IR.
+ for (BasicBlock *BB : DeadBlocks)
+ BB->eraseFromParent();
}
-static void deleteDeadBlocksFromLoop(Loop &L, BasicBlock *DeadSubtreeRoot,
- SmallVectorImpl<BasicBlock *> &ExitBlocks,
- DominatorTree &DT, LoopInfo &LI) {
- // Walk the dominator tree to build up the set of blocks we will delete here.
- // The order is designed to allow us to always delete bottom-up and avoid any
- // dangling uses.
- SmallSetVector<BasicBlock *, 16> DeadBlocks;
- DeadBlocks.insert(DeadSubtreeRoot);
- for (int i = 0; i < (int)DeadBlocks.size(); ++i)
- for (DomTreeNode *ChildN : *DT[DeadBlocks[i]]) {
- // FIXME: This assert should pass and that means we don't change nearly
- // as much below! Consider rewriting all of this to avoid deleting
- // blocks. They are always cloned before being deleted, and so instead
- // could just be moved.
- // FIXME: This in turn means that we might actually be more able to
- // update the domtree.
- assert((L.contains(ChildN->getBlock()) ||
- llvm::find(ExitBlocks, ChildN->getBlock()) != ExitBlocks.end()) &&
- "Should never reach beyond the loop and exits when deleting!");
- DeadBlocks.insert(ChildN->getBlock());
+static void
+deleteDeadBlocksFromLoop(Loop &L,
+ SmallVectorImpl<BasicBlock *> &ExitBlocks,
+ DominatorTree &DT, LoopInfo &LI) {
+ // Find all the dead blocks, and remove them from their successors.
+ SmallVector<BasicBlock *, 16> DeadBlocks;
+ for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
+ if (!DT.isReachableFromEntry(BB)) {
+ for (BasicBlock *SuccBB : successors(BB))
+ SuccBB->removePredecessor(BB);
+ DeadBlocks.push_back(BB);
}
+ SmallPtrSet<BasicBlock *, 16> DeadBlockSet(DeadBlocks.begin(),
+ DeadBlocks.end());
+
// Filter out the dead blocks from the exit blocks list so that it can be
// used in the caller.
llvm::erase_if(ExitBlocks,
- [&](BasicBlock *BB) { return DeadBlocks.count(BB); });
-
- // Remove these blocks from their successors.
- for (auto *BB : DeadBlocks)
- for (BasicBlock *SuccBB : successors(BB))
- SuccBB->removePredecessor(BB, /*DontDeleteUselessPHIs*/ true);
+ [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
// Walk from this loop up through its parents removing all of the dead blocks.
for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
for (auto *BB : DeadBlocks)
ParentL->getBlocksSet().erase(BB);
llvm::erase_if(ParentL->getBlocksVector(),
- [&](BasicBlock *BB) { return DeadBlocks.count(BB); });
+ [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
}
// Now delete the dead child loops. This raw delete will clear them
// recursively.
llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
- if (!DeadBlocks.count(ChildL->getHeader()))
+ if (!DeadBlockSet.count(ChildL->getHeader()))
return false;
assert(llvm::all_of(ChildL->blocks(),
[&](BasicBlock *ChildBB) {
- return DeadBlocks.count(ChildBB);
+ return DeadBlockSet.count(ChildBB);
}) &&
"If the child loop header is dead all blocks in the child loop must "
"be dead as well!");
@@ -1283,19 +1414,20 @@ static void deleteDeadBlocksFromLoop(Loop &L, BasicBlock *DeadSubtreeRoot,
return true;
});
- // Remove the mappings for the dead blocks.
- for (auto *BB : DeadBlocks)
+ // Remove the loop mappings for the dead blocks and drop all the references
+ // from these blocks to others to handle cyclic references as we start
+ // deleting the blocks themselves.
+ for (auto *BB : DeadBlocks) {
+ // Check that the dominator tree has already been updated.
+ assert(!DT.getNode(BB) && "Should already have cleared domtree!");
LI.changeLoopFor(BB, nullptr);
-
- // Drop all the references from these blocks to others to handle cyclic
- // references as we start deleting the blocks themselves.
- for (auto *BB : DeadBlocks)
BB->dropAllReferences();
+ }
- for (auto *BB : llvm::reverse(DeadBlocks)) {
- DT.eraseNode(BB);
+ // Actually delete the blocks now that they've been fully unhooked from the
+ // IR.
+ for (auto *BB : DeadBlocks)
BB->eraseFromParent();
- }
}
/// Recompute the set of blocks in a loop after unswitching.
@@ -1343,14 +1475,15 @@ static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
if (LoopBlockSet.empty())
return LoopBlockSet;
- // Add the loop header to the set.
- LoopBlockSet.insert(Header);
-
// We found backedges, recurse through them to identify the loop blocks.
while (!Worklist.empty()) {
BasicBlock *BB = Worklist.pop_back_val();
assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
+ // No need to walk past the header.
+ if (BB == Header)
+ continue;
+
// Because we know the inner loop structure remains valid we can use the
// loop structure to jump immediately across the entire nested loop.
// Further, because it is in loop simplified form, we can directly jump
@@ -1371,9 +1504,10 @@ static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
continue;
// Insert all of the blocks (other than those already present) into
- // the loop set. The only block we expect to already be in the set is
- // the one we used to find this loop as we immediately handle the
- // others the first time we encounter the loop.
+ // the loop set. We expect at least the block that led us to find the
+ // inner loop to be in the block set, but we may also have other loop
+ // blocks if they were already enqueued as predecessors of some other
+ // outer loop block.
for (auto *InnerBB : InnerL->blocks()) {
if (InnerBB == BB) {
assert(LoopBlockSet.count(InnerBB) &&
@@ -1381,9 +1515,7 @@ static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
continue;
}
- bool Inserted = LoopBlockSet.insert(InnerBB).second;
- (void)Inserted;
- assert(Inserted && "Should only insert an inner loop once!");
+ LoopBlockSet.insert(InnerBB);
}
// Add the preheader to the worklist so we will continue past the
@@ -1399,6 +1531,8 @@ static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
Worklist.push_back(Pred);
}
+ assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
+
// We've found all the blocks participating in the loop, return our completed
// set.
return LoopBlockSet;
@@ -1646,32 +1780,58 @@ void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
} while (!DomWorklist.empty());
}
-/// Take an invariant branch that has been determined to be safe and worthwhile
-/// to unswitch despite being non-trivial to do so and perform the unswitch.
-///
-/// This directly updates the CFG to hoist the predicate out of the loop, and
-/// clone the necessary parts of the loop to maintain behavior.
-///
-/// It also updates both dominator tree and loopinfo based on the unswitching.
-///
-/// Once unswitching has been performed it runs the provided callback to report
-/// the new loops and no-longer valid loops to the caller.
-static bool unswitchInvariantBranch(
- Loop &L, BranchInst &BI, DominatorTree &DT, LoopInfo &LI,
- AssumptionCache &AC,
- function_ref<void(bool, ArrayRef<Loop *>)> NonTrivialUnswitchCB) {
- assert(BI.isConditional() && "Can only unswitch a conditional branch!");
- assert(L.isLoopInvariant(BI.getCondition()) &&
- "Can only unswitch an invariant branch condition!");
+static bool unswitchNontrivialInvariants(
+ Loop &L, TerminatorInst &TI, ArrayRef<Value *> Invariants,
+ DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
+ function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
+ ScalarEvolution *SE) {
+ auto *ParentBB = TI.getParent();
+ BranchInst *BI = dyn_cast<BranchInst>(&TI);
+ SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
+
+ // We can only unswitch switches, conditional branches with an invariant
+ // condition, or combining invariant conditions with an instruction.
+ assert((SI || BI->isConditional()) &&
+ "Can only unswitch switches and conditional branch!");
+ bool FullUnswitch = SI || BI->getCondition() == Invariants[0];
+ if (FullUnswitch)
+ assert(Invariants.size() == 1 &&
+ "Cannot have other invariants with full unswitching!");
+ else
+ assert(isa<Instruction>(BI->getCondition()) &&
+ "Partial unswitching requires an instruction as the condition!");
+
+ // Constant and BBs tracking the cloned and continuing successor. When we are
+ // unswitching the entire condition, this can just be trivially chosen to
+ // unswitch towards `true`. However, when we are unswitching a set of
+ // invariants combined with `and` or `or`, the combining operation determines
+ // the best direction to unswitch: we want to unswitch the direction that will
+ // collapse the branch.
+ bool Direction = true;
+ int ClonedSucc = 0;
+ if (!FullUnswitch) {
+ if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) {
+ assert(cast<Instruction>(BI->getCondition())->getOpcode() ==
+ Instruction::And &&
+ "Only `or` and `and` instructions can combine invariants being "
+ "unswitched.");
+ Direction = false;
+ ClonedSucc = 1;
+ }
+ }
- // Constant and BBs tracking the cloned and continuing successor.
- const int ClonedSucc = 0;
- auto *ParentBB = BI.getParent();
- auto *UnswitchedSuccBB = BI.getSuccessor(ClonedSucc);
- auto *ContinueSuccBB = BI.getSuccessor(1 - ClonedSucc);
+ BasicBlock *RetainedSuccBB =
+ BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
+ SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
+ if (BI)
+ UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
+ else
+ for (auto Case : SI->cases())
+ if (Case.getCaseSuccessor() != RetainedSuccBB)
+ UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
- assert(UnswitchedSuccBB != ContinueSuccBB &&
- "Should not unswitch a branch that always goes to the same place!");
+ assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
+ "Should not unswitch the same successor we are retaining!");
// The branch should be in this exact loop. Any inner loop's invariant branch
// should be handled by unswitching that inner loop. The caller of this
@@ -1690,9 +1850,6 @@ static bool unswitchInvariantBranch(
if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI()))
return false;
- SmallPtrSet<BasicBlock *, 4> ExitBlockSet(ExitBlocks.begin(),
- ExitBlocks.end());
-
// Compute the parent loop now before we start hacking on things.
Loop *ParentL = L.getParentLoop();
@@ -1711,27 +1868,31 @@ static bool unswitchInvariantBranch(
OuterExitL = NewOuterExitL;
}
- // If the edge we *aren't* cloning in the unswitch (the continuing edge)
- // dominates its target, we can skip cloning the dominated region of the loop
- // and its exits. We compute this as a set of nodes to be skipped.
- SmallPtrSet<BasicBlock *, 4> SkippedLoopAndExitBlocks;
- if (ContinueSuccBB->getUniquePredecessor() ||
- llvm::all_of(predecessors(ContinueSuccBB), [&](BasicBlock *PredBB) {
- return PredBB == ParentBB || DT.dominates(ContinueSuccBB, PredBB);
- })) {
- visitDomSubTree(DT, ContinueSuccBB, [&](BasicBlock *BB) {
- SkippedLoopAndExitBlocks.insert(BB);
- return true;
- });
+ // At this point, we're definitely going to unswitch something so invalidate
+ // any cached information in ScalarEvolution for the outer most loop
+ // containing an exit block and all nested loops.
+ if (SE) {
+ if (OuterExitL)
+ SE->forgetLoop(OuterExitL);
+ else
+ SE->forgetTopmostLoop(&L);
}
- // Similarly, if the edge we *are* cloning in the unswitch (the unswitched
- // edge) dominates its target, we will end up with dead nodes in the original
- // loop and its exits that will need to be deleted. Here, we just retain that
- // the property holds and will compute the deleted set later.
- bool DeleteUnswitchedSucc =
- UnswitchedSuccBB->getUniquePredecessor() ||
- llvm::all_of(predecessors(UnswitchedSuccBB), [&](BasicBlock *PredBB) {
- return PredBB == ParentBB || DT.dominates(UnswitchedSuccBB, PredBB);
+
+ // If the edge from this terminator to a successor dominates that successor,
+ // store a map from each block in its dominator subtree to it. This lets us
+ // tell when cloning for a particular successor if a block is dominated by
+ // some *other* successor with a single data structure. We use this to
+ // significantly reduce cloning.
+ SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
+ for (auto *SuccBB : llvm::concat<BasicBlock *const>(
+ makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
+ if (SuccBB->getUniquePredecessor() ||
+ llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
+ return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
+ }))
+ visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
+ DominatingSucc[BB] = SuccBB;
+ return true;
});
// Split the preheader, so that we know that there is a safe place to insert
@@ -1742,52 +1903,162 @@ static bool unswitchInvariantBranch(
BasicBlock *SplitBB = L.getLoopPreheader();
BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI);
- // Keep a mapping for the cloned values.
- ValueToValueMapTy VMap;
+ // Keep track of the dominator tree updates needed.
+ SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
+
+ // Clone the loop for each unswitched successor.
+ SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
+ VMaps.reserve(UnswitchedSuccBBs.size());
+ SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
+ for (auto *SuccBB : UnswitchedSuccBBs) {
+ VMaps.emplace_back(new ValueToValueMapTy());
+ ClonedPHs[SuccBB] = buildClonedLoopBlocks(
+ L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
+ DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI);
+ }
+
+ // The stitching of the branched code back together depends on whether we're
+ // doing full unswitching or not with the exception that we always want to
+ // nuke the initial terminator placed in the split block.
+ SplitBB->getTerminator()->eraseFromParent();
+ if (FullUnswitch) {
+ // First we need to unhook the successor relationship as we'll be replacing
+ // the terminator with a direct branch. This is much simpler for branches
+ // than switches so we handle those first.
+ if (BI) {
+ // Remove the parent as a predecessor of the unswitched successor.
+ assert(UnswitchedSuccBBs.size() == 1 &&
+ "Only one possible unswitched block for a branch!");
+ BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
+ UnswitchedSuccBB->removePredecessor(ParentBB,
+ /*DontDeleteUselessPHIs*/ true);
+ DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
+ } else {
+ // Note that we actually want to remove the parent block as a predecessor
+ // of *every* case successor. The case successor is either unswitched,
+ // completely eliminating an edge from the parent to that successor, or it
+ // is a duplicate edge to the retained successor as the retained successor
+ // is always the default successor and as we'll replace this with a direct
+ // branch we no longer need the duplicate entries in the PHI nodes.
+ assert(SI->getDefaultDest() == RetainedSuccBB &&
+ "Not retaining default successor!");
+ for (auto &Case : SI->cases())
+ Case.getCaseSuccessor()->removePredecessor(
+ ParentBB,
+ /*DontDeleteUselessPHIs*/ true);
+
+ // We need to use the set to populate domtree updates as even when there
+ // are multiple cases pointing at the same successor we only want to
+ // remove and insert one edge in the domtree.
+ for (BasicBlock *SuccBB : UnswitchedSuccBBs)
+ DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
+ }
+
+ // Now that we've unhooked the successor relationship, splice the terminator
+ // from the original loop to the split.
+ SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
+
+ // Now wire up the terminator to the preheaders.
+ if (BI) {
+ BasicBlock *ClonedPH = ClonedPHs.begin()->second;
+ BI->setSuccessor(ClonedSucc, ClonedPH);
+ BI->setSuccessor(1 - ClonedSucc, LoopPH);
+ DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
+ } else {
+ assert(SI && "Must either be a branch or switch!");
+
+ // Walk the cases and directly update their successors.
+ SI->setDefaultDest(LoopPH);
+ for (auto &Case : SI->cases())
+ if (Case.getCaseSuccessor() == RetainedSuccBB)
+ Case.setSuccessor(LoopPH);
+ else
+ Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
+
+ // We need to use the set to populate domtree updates as even when there
+ // are multiple cases pointing at the same successor we only want to
+ // remove and insert one edge in the domtree.
+ for (BasicBlock *SuccBB : UnswitchedSuccBBs)
+ DTUpdates.push_back(
+ {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
+ }
+
+ // Create a new unconditional branch to the continuing block (as opposed to
+ // the one cloned).
+ BranchInst::Create(RetainedSuccBB, ParentBB);
+ } else {
+ assert(BI && "Only branches have partial unswitching.");
+ assert(UnswitchedSuccBBs.size() == 1 &&
+ "Only one possible unswitched block for a branch!");
+ BasicBlock *ClonedPH = ClonedPHs.begin()->second;
+ // When doing a partial unswitch, we have to do a bit more work to build up
+ // the branch in the split block.
+ buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
+ *ClonedPH, *LoopPH);
+ DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
+ }
- // Build the cloned blocks from the loop.
- auto *ClonedPH = buildClonedLoopBlocks(
- L, LoopPH, SplitBB, ExitBlocks, ParentBB, UnswitchedSuccBB,
- ContinueSuccBB, SkippedLoopAndExitBlocks, VMap, AC, DT, LI);
+ // Apply the updates accumulated above to get an up-to-date dominator tree.
+ DT.applyUpdates(DTUpdates);
+
+ // Now that we have an accurate dominator tree, first delete the dead cloned
+ // blocks so that we can accurately build any cloned loops. It is important to
+ // not delete the blocks from the original loop yet because we still want to
+ // reference the original loop to understand the cloned loop's structure.
+ deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT);
// Build the cloned loop structure itself. This may be substantially
// different from the original structure due to the simplified CFG. This also
// handles inserting all the cloned blocks into the correct loops.
SmallVector<Loop *, 4> NonChildClonedLoops;
- Loop *ClonedL =
- buildClonedLoops(L, ExitBlocks, VMap, LI, NonChildClonedLoops);
-
- // Remove the parent as a predecessor of the unswitched successor.
- UnswitchedSuccBB->removePredecessor(ParentBB, /*DontDeleteUselessPHIs*/ true);
-
- // Now splice the branch from the original loop and use it to select between
- // the two loops.
- SplitBB->getTerminator()->eraseFromParent();
- SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), BI);
- BI.setSuccessor(ClonedSucc, ClonedPH);
- BI.setSuccessor(1 - ClonedSucc, LoopPH);
-
- // Create a new unconditional branch to the continuing block (as opposed to
- // the one cloned).
- BranchInst::Create(ContinueSuccBB, ParentBB);
-
- // Delete anything that was made dead in the original loop due to
- // unswitching.
- if (DeleteUnswitchedSucc)
- deleteDeadBlocksFromLoop(L, UnswitchedSuccBB, ExitBlocks, DT, LI);
+ for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
+ buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
+ // Now that our cloned loops have been built, we can update the original loop.
+ // First we delete the dead blocks from it and then we rebuild the loop
+ // structure taking these deletions into account.
+ deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI);
SmallVector<Loop *, 4> HoistedLoops;
bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
- // This will have completely invalidated the dominator tree. We can't easily
- // bound how much is invalid because in some cases we will refine the
- // predecessor set of exit blocks of the loop which can move large unrelated
- // regions of code into a new subtree.
- //
- // FIXME: Eventually, we should use an incremental update utility that
- // leverages the existing information in the dominator tree (and potentially
- // the nature of the change) to more efficiently update things.
- DT.recalculate(*SplitBB->getParent());
+ // This transformation has a high risk of corrupting the dominator tree, and
+ // the below steps to rebuild loop structures will result in hard to debug
+ // errors in that case so verify that the dominator tree is sane first.
+ // FIXME: Remove this when the bugs stop showing up and rely on existing
+ // verification steps.
+ assert(DT.verify(DominatorTree::VerificationLevel::Fast));
+
+ if (BI) {
+ // If we unswitched a branch which collapses the condition to a known
+ // constant we want to replace all the uses of the invariants within both
+ // the original and cloned blocks. We do this here so that we can use the
+ // now updated dominator tree to identify which side the users are on.
+ assert(UnswitchedSuccBBs.size() == 1 &&
+ "Only one possible unswitched block for a branch!");
+ BasicBlock *ClonedPH = ClonedPHs.begin()->second;
+ ConstantInt *UnswitchedReplacement =
+ Direction ? ConstantInt::getTrue(BI->getContext())
+ : ConstantInt::getFalse(BI->getContext());
+ ConstantInt *ContinueReplacement =
+ Direction ? ConstantInt::getFalse(BI->getContext())
+ : ConstantInt::getTrue(BI->getContext());
+ for (Value *Invariant : Invariants)
+ for (auto UI = Invariant->use_begin(), UE = Invariant->use_end();
+ UI != UE;) {
+ // Grab the use and walk past it so we can clobber it in the use list.
+ Use *U = &*UI++;
+ Instruction *UserI = dyn_cast<Instruction>(U->getUser());
+ if (!UserI)
+ continue;
+
+ // Replace it with the 'continue' side if in the main loop body, and the
+ // unswitched if in the cloned blocks.
+ if (DT.dominates(LoopPH, UserI->getParent()))
+ U->set(ContinueReplacement);
+ else if (DT.dominates(ClonedPH, UserI->getParent()))
+ U->set(UnswitchedReplacement);
+ }
+ }
// We can change which blocks are exit blocks of all the cloned sibling
// loops, the current loop, and any parent loops which shared exit blocks
@@ -1801,57 +2072,50 @@ static bool unswitchInvariantBranch(
// also need to cover any intervening loops. We add all of these loops to
// a list and sort them by loop depth to achieve this without updating
// unnecessary loops.
- auto UpdateLCSSA = [&](Loop &UpdateL) {
+ auto UpdateLoop = [&](Loop &UpdateL) {
#ifndef NDEBUG
- for (Loop *ChildL : UpdateL)
+ UpdateL.verifyLoop();
+ for (Loop *ChildL : UpdateL) {
+ ChildL->verifyLoop();
assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
"Perturbed a child loop's LCSSA form!");
+ }
#endif
+ // First build LCSSA for this loop so that we can preserve it when
+ // forming dedicated exits. We don't want to perturb some other loop's
+ // LCSSA while doing that CFG edit.
formLCSSA(UpdateL, DT, &LI, nullptr);
+
+ // For loops reached by this loop's original exit blocks we may
+ // introduced new, non-dedicated exits. At least try to re-form dedicated
+ // exits for these loops. This may fail if they couldn't have dedicated
+ // exits to start with.
+ formDedicatedExitBlocks(&UpdateL, &DT, &LI, /*PreserveLCSSA*/ true);
};
// For non-child cloned loops and hoisted loops, we just need to update LCSSA
// and we can do it in any order as they don't nest relative to each other.
- for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
- UpdateLCSSA(*UpdatedL);
+ //
+ // Also check if any of the loops we have updated have become top-level loops
+ // as that will necessitate widening the outer loop scope.
+ for (Loop *UpdatedL :
+ llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
+ UpdateLoop(*UpdatedL);
+ if (!UpdatedL->getParentLoop())
+ OuterExitL = nullptr;
+ }
+ if (IsStillLoop) {
+ UpdateLoop(L);
+ if (!L.getParentLoop())
+ OuterExitL = nullptr;
+ }
// If the original loop had exit blocks, walk up through the outer most loop
// of those exit blocks to update LCSSA and form updated dedicated exits.
- if (OuterExitL != &L) {
- SmallVector<Loop *, 4> OuterLoops;
- // We start with the cloned loop and the current loop if they are loops and
- // move toward OuterExitL. Also, if either the cloned loop or the current
- // loop have become top level loops we need to walk all the way out.
- if (ClonedL) {
- OuterLoops.push_back(ClonedL);
- if (!ClonedL->getParentLoop())
- OuterExitL = nullptr;
- }
- if (IsStillLoop) {
- OuterLoops.push_back(&L);
- if (!L.getParentLoop())
- OuterExitL = nullptr;
- }
- // Grab all of the enclosing loops now.
+ if (OuterExitL != &L)
for (Loop *OuterL = ParentL; OuterL != OuterExitL;
OuterL = OuterL->getParentLoop())
- OuterLoops.push_back(OuterL);
-
- // Finally, update our list of outer loops. This is nicely ordered to work
- // inside-out.
- for (Loop *OuterL : OuterLoops) {
- // First build LCSSA for this loop so that we can preserve it when
- // forming dedicated exits. We don't want to perturb some other loop's
- // LCSSA while doing that CFG edit.
- UpdateLCSSA(*OuterL);
-
- // For loops reached by this loop's original exit blocks we may
- // introduced new, non-dedicated exits. At least try to re-form dedicated
- // exits for these loops. This may fail if they couldn't have dedicated
- // exits to start with.
- formDedicatedExitBlocks(OuterL, &DT, &LI, /*PreserveLCSSA*/ true);
- }
- }
+ UpdateLoop(*OuterL);
#ifndef NDEBUG
// Verify the entire loop structure to catch any incorrect updates before we
@@ -1866,7 +2130,7 @@ static bool unswitchInvariantBranch(
for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
if (UpdatedL->getParentLoop() == ParentL)
SibLoops.push_back(UpdatedL);
- NonTrivialUnswitchCB(IsStillLoop, SibLoops);
+ UnswitchCB(IsStillLoop, SibLoops);
++NumBranches;
return true;
@@ -1905,50 +2169,69 @@ computeDomSubtreeCost(DomTreeNode &N,
return Cost;
}
-/// Unswitch control flow predicated on loop invariant conditions.
-///
-/// This first hoists all branches or switches which are trivial (IE, do not
-/// require duplicating any part of the loop) out of the loop body. It then
-/// looks at other loop invariant control flows and tries to unswitch those as
-/// well by cloning the loop if the result is small enough.
static bool
-unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
- TargetTransformInfo &TTI, bool NonTrivial,
- function_ref<void(bool, ArrayRef<Loop *>)> NonTrivialUnswitchCB) {
- assert(L.isRecursivelyLCSSAForm(DT, LI) &&
- "Loops must be in LCSSA form before unswitching.");
- bool Changed = false;
+unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
+ AssumptionCache &AC, TargetTransformInfo &TTI,
+ function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
+ ScalarEvolution *SE) {
+ // Collect all invariant conditions within this loop (as opposed to an inner
+ // loop which would be handled when visiting that inner loop).
+ SmallVector<std::pair<TerminatorInst *, TinyPtrVector<Value *>>, 4>
+ UnswitchCandidates;
+ for (auto *BB : L.blocks()) {
+ if (LI.getLoopFor(BB) != &L)
+ continue;
- // Must be in loop simplified form: we need a preheader and dedicated exits.
- if (!L.isLoopSimplifyForm())
- return false;
+ if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
+ // We can only consider fully loop-invariant switch conditions as we need
+ // to completely eliminate the switch after unswitching.
+ if (!isa<Constant>(SI->getCondition()) &&
+ L.isLoopInvariant(SI->getCondition()))
+ UnswitchCandidates.push_back({SI, {SI->getCondition()}});
+ continue;
+ }
- // Try trivial unswitch first before loop over other basic blocks in the loop.
- Changed |= unswitchAllTrivialConditions(L, DT, LI);
+ auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
+ if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
+ BI->getSuccessor(0) == BI->getSuccessor(1))
+ continue;
- // If we're not doing non-trivial unswitching, we're done. We both accept
- // a parameter but also check a local flag that can be used for testing
- // a debugging.
- if (!NonTrivial && !EnableNonTrivialUnswitch)
- return Changed;
-
- // Collect all remaining invariant branch conditions within this loop (as
- // opposed to an inner loop which would be handled when visiting that inner
- // loop).
- SmallVector<TerminatorInst *, 4> UnswitchCandidates;
- for (auto *BB : L.blocks())
- if (LI.getLoopFor(BB) == &L)
- if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator()))
- if (BI->isConditional() && L.isLoopInvariant(BI->getCondition()) &&
- BI->getSuccessor(0) != BI->getSuccessor(1))
- UnswitchCandidates.push_back(BI);
+ if (L.isLoopInvariant(BI->getCondition())) {
+ UnswitchCandidates.push_back({BI, {BI->getCondition()}});
+ continue;
+ }
+
+ Instruction &CondI = *cast<Instruction>(BI->getCondition());
+ if (CondI.getOpcode() != Instruction::And &&
+ CondI.getOpcode() != Instruction::Or)
+ continue;
+
+ TinyPtrVector<Value *> Invariants =
+ collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
+ if (Invariants.empty())
+ continue;
+
+ UnswitchCandidates.push_back({BI, std::move(Invariants)});
+ }
// If we didn't find any candidates, we're done.
if (UnswitchCandidates.empty())
- return Changed;
+ return false;
+
+ // Check if there are irreducible CFG cycles in this loop. If so, we cannot
+ // easily unswitch non-trivial edges out of the loop. Doing so might turn the
+ // irreducible control flow into reducible control flow and introduce new
+ // loops "out of thin air". If we ever discover important use cases for doing
+ // this, we can add support to loop unswitch, but it is a lot of complexity
+ // for what seems little or no real world benefit.
+ LoopBlocksRPO RPOT(&L);
+ RPOT.perform(&LI);
+ if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
+ return false;
- DEBUG(dbgs() << "Considering " << UnswitchCandidates.size()
- << " non-trivial loop invariant conditions for unswitching.\n");
+ LLVM_DEBUG(
+ dbgs() << "Considering " << UnswitchCandidates.size()
+ << " non-trivial loop invariant conditions for unswitching.\n");
// Given that unswitching these terminators will require duplicating parts of
// the loop, so we need to be able to model that cost. Compute the ephemeral
@@ -1972,10 +2255,10 @@ unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
continue;
if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
- return Changed;
+ return false;
if (auto CS = CallSite(&I))
if (CS.isConvergent() || CS.cannotDuplicate())
- return Changed;
+ return false;
Cost += TTI.getUserCost(&I);
}
@@ -1984,7 +2267,7 @@ unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
assert(LoopCost >= 0 && "Must not have negative loop costs!");
BBCostMap[BB] = Cost;
}
- DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n");
+ LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n");
// Now we find the best candidate by searching for the one with the following
// properties in order:
@@ -2003,8 +2286,8 @@ unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
// Given a terminator which might be unswitched, computes the non-duplicated
// cost for that terminator.
- auto ComputeUnswitchedCost = [&](TerminatorInst *TI) {
- BasicBlock &BB = *TI->getParent();
+ auto ComputeUnswitchedCost = [&](TerminatorInst &TI, bool FullUnswitch) {
+ BasicBlock &BB = *TI.getParent();
SmallPtrSet<BasicBlock *, 4> Visited;
int Cost = LoopCost;
@@ -2013,6 +2296,26 @@ unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
if (!Visited.insert(SuccBB).second)
continue;
+ // If this is a partial unswitch candidate, then it must be a conditional
+ // branch with a condition of either `or` or `and`. In that case, one of
+ // the successors is necessarily duplicated, so don't even try to remove
+ // its cost.
+ if (!FullUnswitch) {
+ auto &BI = cast<BranchInst>(TI);
+ if (cast<Instruction>(BI.getCondition())->getOpcode() ==
+ Instruction::And) {
+ if (SuccBB == BI.getSuccessor(1))
+ continue;
+ } else {
+ assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
+ Instruction::Or &&
+ "Only `and` and `or` conditions can result in a partial "
+ "unswitch!");
+ if (SuccBB == BI.getSuccessor(0))
+ continue;
+ }
+ }
+
// This successor's domtree will not need to be duplicated after
// unswitching if the edge to the successor dominates it (and thus the
// entire tree). This essentially means there is no other path into this
@@ -2036,27 +2339,95 @@ unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
};
TerminatorInst *BestUnswitchTI = nullptr;
int BestUnswitchCost;
- for (TerminatorInst *CandidateTI : UnswitchCandidates) {
- int CandidateCost = ComputeUnswitchedCost(CandidateTI);
- DEBUG(dbgs() << " Computed cost of " << CandidateCost
- << " for unswitch candidate: " << *CandidateTI << "\n");
+ ArrayRef<Value *> BestUnswitchInvariants;
+ for (auto &TerminatorAndInvariants : UnswitchCandidates) {
+ TerminatorInst &TI = *TerminatorAndInvariants.first;
+ ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
+ BranchInst *BI = dyn_cast<BranchInst>(&TI);
+ int CandidateCost = ComputeUnswitchedCost(
+ TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
+ Invariants[0] == BI->getCondition()));
+ LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
+ << " for unswitch candidate: " << TI << "\n");
if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
- BestUnswitchTI = CandidateTI;
+ BestUnswitchTI = &TI;
BestUnswitchCost = CandidateCost;
+ BestUnswitchInvariants = Invariants;
}
}
- if (BestUnswitchCost < UnswitchThreshold) {
- DEBUG(dbgs() << " Trying to unswitch non-trivial (cost = "
- << BestUnswitchCost << ") branch: " << *BestUnswitchTI
- << "\n");
- Changed |= unswitchInvariantBranch(L, cast<BranchInst>(*BestUnswitchTI), DT,
- LI, AC, NonTrivialUnswitchCB);
- } else {
- DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " << BestUnswitchCost
- << "\n");
+ if (BestUnswitchCost >= UnswitchThreshold) {
+ LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
+ << BestUnswitchCost << "\n");
+ return false;
+ }
+
+ LLVM_DEBUG(dbgs() << " Trying to unswitch non-trivial (cost = "
+ << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
+ << "\n");
+ return unswitchNontrivialInvariants(
+ L, *BestUnswitchTI, BestUnswitchInvariants, DT, LI, AC, UnswitchCB, SE);
+}
+
+/// Unswitch control flow predicated on loop invariant conditions.
+///
+/// This first hoists all branches or switches which are trivial (IE, do not
+/// require duplicating any part of the loop) out of the loop body. It then
+/// looks at other loop invariant control flows and tries to unswitch those as
+/// well by cloning the loop if the result is small enough.
+///
+/// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also
+/// updated based on the unswitch.
+///
+/// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
+/// true, we will attempt to do non-trivial unswitching as well as trivial
+/// unswitching.
+///
+/// The `UnswitchCB` callback provided will be run after unswitching is
+/// complete, with the first parameter set to `true` if the provided loop
+/// remains a loop, and a list of new sibling loops created.
+///
+/// If `SE` is non-null, we will update that analysis based on the unswitching
+/// done.
+static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
+ AssumptionCache &AC, TargetTransformInfo &TTI,
+ bool NonTrivial,
+ function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
+ ScalarEvolution *SE) {
+ assert(L.isRecursivelyLCSSAForm(DT, LI) &&
+ "Loops must be in LCSSA form before unswitching.");
+ bool Changed = false;
+
+ // Must be in loop simplified form: we need a preheader and dedicated exits.
+ if (!L.isLoopSimplifyForm())
+ return false;
+
+ // Try trivial unswitch first before loop over other basic blocks in the loop.
+ if (unswitchAllTrivialConditions(L, DT, LI, SE)) {
+ // If we unswitched successfully we will want to clean up the loop before
+ // processing it further so just mark it as unswitched and return.
+ UnswitchCB(/*CurrentLoopValid*/ true, {});
+ return true;
}
+ // If we're not doing non-trivial unswitching, we're done. We both accept
+ // a parameter but also check a local flag that can be used for testing
+ // a debugging.
+ if (!NonTrivial && !EnableNonTrivialUnswitch)
+ return false;
+
+ // For non-trivial unswitching, because it often creates new loops, we rely on
+ // the pass manager to iterate on the loops rather than trying to immediately
+ // reach a fixed point. There is no substantial advantage to iterating
+ // internally, and if any of the new loops are simplified enough to contain
+ // trivial unswitching we want to prefer those.
+
+ // Try to unswitch the best invariant condition. We prefer this full unswitch to
+ // a partial unswitch when possible below the threshold.
+ if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE))
+ return true;
+
+ // No other opportunities to unswitch.
return Changed;
}
@@ -2066,16 +2437,18 @@ PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
Function &F = *L.getHeader()->getParent();
(void)F;
- DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L << "\n");
+ LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
+ << "\n");
// Save the current loop name in a variable so that we can report it even
// after it has been deleted.
std::string LoopName = L.getName();
- auto NonTrivialUnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
- ArrayRef<Loop *> NewLoops) {
+ auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
+ ArrayRef<Loop *> NewLoops) {
// If we did a non-trivial unswitch, we have added new (cloned) loops.
- U.addSiblingLoops(NewLoops);
+ if (!NewLoops.empty())
+ U.addSiblingLoops(NewLoops);
// If the current loop remains valid, we should revisit it to catch any
// other unswitch opportunities. Otherwise, we need to mark it as deleted.
@@ -2085,15 +2458,13 @@ PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
U.markLoopAsDeleted(L, LoopName);
};
- if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial,
- NonTrivialUnswitchCB))
+ if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB,
+ &AR.SE))
return PreservedAnalyses::all();
-#ifndef NDEBUG
// Historically this pass has had issues with the dominator tree so verify it
// in asserts builds.
- AR.DT.verifyDomTree();
-#endif
+ assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
return getLoopPassPreservedAnalyses();
}
@@ -2128,15 +2499,19 @@ bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
Function &F = *L->getHeader()->getParent();
- DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L << "\n");
+ LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
+ << "\n");
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- auto NonTrivialUnswitchCB = [&L, &LPM](bool CurrentLoopValid,
- ArrayRef<Loop *> NewLoops) {
+ auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
+ auto *SE = SEWP ? &SEWP->getSE() : nullptr;
+
+ auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid,
+ ArrayRef<Loop *> NewLoops) {
// If we did a non-trivial unswitch, we have added new (cloned) loops.
for (auto *NewL : NewLoops)
LPM.addLoop(*NewL);
@@ -2150,18 +2525,16 @@ bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
LPM.markLoopAsDeleted(*L);
};
- bool Changed =
- unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, NonTrivialUnswitchCB);
+ bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE);
// If anything was unswitched, also clear any cached information about this
// loop.
LPM.deleteSimpleAnalysisLoop(L);
-#ifndef NDEBUG
// Historically this pass has had issues with the dominator tree so verify it
// in asserts builds.
- DT.verifyDomTree();
-#endif
+ assert(DT.verify(DominatorTree::VerificationLevel::Fast));
+
return Changed;
}