diff options
Diffstat (limited to 'lib/Transforms/Scalar/TailDuplication.cpp')
-rw-r--r-- | lib/Transforms/Scalar/TailDuplication.cpp | 365 |
1 files changed, 365 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/TailDuplication.cpp b/lib/Transforms/Scalar/TailDuplication.cpp new file mode 100644 index 000000000000..99a7dee39887 --- /dev/null +++ b/lib/Transforms/Scalar/TailDuplication.cpp @@ -0,0 +1,365 @@ +//===- TailDuplication.cpp - Simplify CFG through tail duplication --------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass performs a limited form of tail duplication, intended to simplify +// CFGs by removing some unconditional branches. This pass is necessary to +// straighten out loops created by the C front-end, but also is capable of +// making other code nicer. After this pass is run, the CFG simplify pass +// should be run to clean up the mess. +// +// This pass could be enhanced in the future to use profile information to be +// more aggressive. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "tailduplicate" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Constant.h" +#include "llvm/Function.h" +#include "llvm/Instructions.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/Pass.h" +#include "llvm/Type.h" +#include "llvm/Support/CFG.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/SmallPtrSet.h" +#include <map> +using namespace llvm; + +STATISTIC(NumEliminated, "Number of unconditional branches eliminated"); + +static cl::opt<unsigned> +TailDupThreshold("taildup-threshold", + cl::desc("Max block size to tail duplicate"), + cl::init(1), cl::Hidden); + +namespace { + class VISIBILITY_HIDDEN TailDup : public FunctionPass { + bool runOnFunction(Function &F); + public: + static char ID; // Pass identification, replacement for typeid + TailDup() : FunctionPass(&ID) {} + + private: + inline bool shouldEliminateUnconditionalBranch(TerminatorInst *, unsigned); + inline void eliminateUnconditionalBranch(BranchInst *BI); + SmallPtrSet<BasicBlock*, 4> CycleDetector; + }; +} + +char TailDup::ID = 0; +static RegisterPass<TailDup> X("tailduplicate", "Tail Duplication"); + +// Public interface to the Tail Duplication pass +FunctionPass *llvm::createTailDuplicationPass() { return new TailDup(); } + +/// runOnFunction - Top level algorithm - Loop over each unconditional branch in +/// the function, eliminating it if it looks attractive enough. CycleDetector +/// prevents infinite loops by checking that we aren't redirecting a branch to +/// a place it already pointed to earlier; see PR 2323. +bool TailDup::runOnFunction(Function &F) { + bool Changed = false; + CycleDetector.clear(); + for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { + if (shouldEliminateUnconditionalBranch(I->getTerminator(), + TailDupThreshold)) { + eliminateUnconditionalBranch(cast<BranchInst>(I->getTerminator())); + Changed = true; + } else { + ++I; + CycleDetector.clear(); + } + } + return Changed; +} + +/// shouldEliminateUnconditionalBranch - Return true if this branch looks +/// attractive to eliminate. We eliminate the branch if the destination basic +/// block has <= 5 instructions in it, not counting PHI nodes. In practice, +/// since one of these is a terminator instruction, this means that we will add +/// up to 4 instructions to the new block. +/// +/// We don't count PHI nodes in the count since they will be removed when the +/// contents of the block are copied over. +/// +bool TailDup::shouldEliminateUnconditionalBranch(TerminatorInst *TI, + unsigned Threshold) { + BranchInst *BI = dyn_cast<BranchInst>(TI); + if (!BI || !BI->isUnconditional()) return false; // Not an uncond branch! + + BasicBlock *Dest = BI->getSuccessor(0); + if (Dest == BI->getParent()) return false; // Do not loop infinitely! + + // Do not inline a block if we will just get another branch to the same block! + TerminatorInst *DTI = Dest->getTerminator(); + if (BranchInst *DBI = dyn_cast<BranchInst>(DTI)) + if (DBI->isUnconditional() && DBI->getSuccessor(0) == Dest) + return false; // Do not loop infinitely! + + // FIXME: DemoteRegToStack cannot yet demote invoke instructions to the stack, + // because doing so would require breaking critical edges. This should be + // fixed eventually. + if (!DTI->use_empty()) + return false; + + // Do not bother with blocks with only a single predecessor: simplify + // CFG will fold these two blocks together! + pred_iterator PI = pred_begin(Dest), PE = pred_end(Dest); + ++PI; + if (PI == PE) return false; // Exactly one predecessor! + + BasicBlock::iterator I = Dest->getFirstNonPHI(); + + for (unsigned Size = 0; I != Dest->end(); ++I) { + if (Size == Threshold) return false; // The block is too large. + + // Don't tail duplicate call instructions. They are very large compared to + // other instructions. + if (isa<CallInst>(I) || isa<InvokeInst>(I)) return false; + + // Allso alloca and malloc. + if (isa<AllocationInst>(I)) return false; + + // Some vector instructions can expand into a number of instructions. + if (isa<ShuffleVectorInst>(I) || isa<ExtractElementInst>(I) || + isa<InsertElementInst>(I)) return false; + + // Only count instructions that are not debugger intrinsics. + if (!isa<DbgInfoIntrinsic>(I)) ++Size; + } + + // Do not tail duplicate a block that has thousands of successors into a block + // with a single successor if the block has many other predecessors. This can + // cause an N^2 explosion in CFG edges (and PHI node entries), as seen in + // cases that have a large number of indirect gotos. + unsigned NumSuccs = DTI->getNumSuccessors(); + if (NumSuccs > 8) { + unsigned TooMany = 128; + if (NumSuccs >= TooMany) return false; + TooMany = TooMany/NumSuccs; + for (; PI != PE; ++PI) + if (TooMany-- == 0) return false; + } + + // If this unconditional branch is a fall-through, be careful about + // tail duplicating it. In particular, we don't want to taildup it if the + // original block will still be there after taildup is completed: doing so + // would eliminate the fall-through, requiring unconditional branches. + Function::iterator DestI = Dest; + if (&*--DestI == BI->getParent()) { + // The uncond branch is a fall-through. Tail duplication of the block is + // will eliminate the fall-through-ness and end up cloning the terminator + // at the end of the Dest block. Since the original Dest block will + // continue to exist, this means that one or the other will not be able to + // fall through. One typical example that this helps with is code like: + // if (a) + // foo(); + // if (b) + // foo(); + // Cloning the 'if b' block into the end of the first foo block is messy. + + // The messy case is when the fall-through block falls through to other + // blocks. This is what we would be preventing if we cloned the block. + DestI = Dest; + if (++DestI != Dest->getParent()->end()) { + BasicBlock *DestSucc = DestI; + // If any of Dest's successors are fall-throughs, don't do this xform. + for (succ_iterator SI = succ_begin(Dest), SE = succ_end(Dest); + SI != SE; ++SI) + if (*SI == DestSucc) + return false; + } + } + + // Finally, check that we haven't redirected to this target block earlier; + // there are cases where we loop forever if we don't check this (PR 2323). + if (!CycleDetector.insert(Dest)) + return false; + + return true; +} + +/// FindObviousSharedDomOf - We know there is a branch from SrcBlock to +/// DestBlock, and that SrcBlock is not the only predecessor of DstBlock. If we +/// can find a predecessor of SrcBlock that is a dominator of both SrcBlock and +/// DstBlock, return it. +static BasicBlock *FindObviousSharedDomOf(BasicBlock *SrcBlock, + BasicBlock *DstBlock) { + // SrcBlock must have a single predecessor. + pred_iterator PI = pred_begin(SrcBlock), PE = pred_end(SrcBlock); + if (PI == PE || ++PI != PE) return 0; + + BasicBlock *SrcPred = *pred_begin(SrcBlock); + + // Look at the predecessors of DstBlock. One of them will be SrcBlock. If + // there is only one other pred, get it, otherwise we can't handle it. + PI = pred_begin(DstBlock); PE = pred_end(DstBlock); + BasicBlock *DstOtherPred = 0; + if (*PI == SrcBlock) { + if (++PI == PE) return 0; + DstOtherPred = *PI; + if (++PI != PE) return 0; + } else { + DstOtherPred = *PI; + if (++PI == PE || *PI != SrcBlock || ++PI != PE) return 0; + } + + // We can handle two situations here: "if then" and "if then else" blocks. An + // 'if then' situation is just where DstOtherPred == SrcPred. + if (DstOtherPred == SrcPred) + return SrcPred; + + // Check to see if we have an "if then else" situation, which means that + // DstOtherPred will have a single predecessor and it will be SrcPred. + PI = pred_begin(DstOtherPred); PE = pred_end(DstOtherPred); + if (PI != PE && *PI == SrcPred) { + if (++PI != PE) return 0; // Not a single pred. + return SrcPred; // Otherwise, it's an "if then" situation. Return the if. + } + + // Otherwise, this is something we can't handle. + return 0; +} + + +/// eliminateUnconditionalBranch - Clone the instructions from the destination +/// block into the source block, eliminating the specified unconditional branch. +/// If the destination block defines values used by successors of the dest +/// block, we may need to insert PHI nodes. +/// +void TailDup::eliminateUnconditionalBranch(BranchInst *Branch) { + BasicBlock *SourceBlock = Branch->getParent(); + BasicBlock *DestBlock = Branch->getSuccessor(0); + assert(SourceBlock != DestBlock && "Our predicate is broken!"); + + DOUT << "TailDuplication[" << SourceBlock->getParent()->getName() + << "]: Eliminating branch: " << *Branch; + + // See if we can avoid duplicating code by moving it up to a dominator of both + // blocks. + if (BasicBlock *DomBlock = FindObviousSharedDomOf(SourceBlock, DestBlock)) { + DOUT << "Found shared dominator: " << DomBlock->getName() << "\n"; + + // If there are non-phi instructions in DestBlock that have no operands + // defined in DestBlock, and if the instruction has no side effects, we can + // move the instruction to DomBlock instead of duplicating it. + BasicBlock::iterator BBI = DestBlock->getFirstNonPHI(); + while (!isa<TerminatorInst>(BBI)) { + Instruction *I = BBI++; + + bool CanHoist = !I->isTrapping() && !I->mayHaveSideEffects(); + if (CanHoist) { + for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) + if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(op))) + if (OpI->getParent() == DestBlock || + (isa<InvokeInst>(OpI) && OpI->getParent() == DomBlock)) { + CanHoist = false; + break; + } + if (CanHoist) { + // Remove from DestBlock, move right before the term in DomBlock. + DestBlock->getInstList().remove(I); + DomBlock->getInstList().insert(DomBlock->getTerminator(), I); + DOUT << "Hoisted: " << *I; + } + } + } + } + + // Tail duplication can not update SSA properties correctly if the values + // defined in the duplicated tail are used outside of the tail itself. For + // this reason, we spill all values that are used outside of the tail to the + // stack. + for (BasicBlock::iterator I = DestBlock->begin(); I != DestBlock->end(); ++I) + if (I->isUsedOutsideOfBlock(DestBlock)) { + // We found a use outside of the tail. Create a new stack slot to + // break this inter-block usage pattern. + DemoteRegToStack(*I); + } + + // We are going to have to map operands from the original block B to the new + // copy of the block B'. If there are PHI nodes in the DestBlock, these PHI + // nodes also define part of this mapping. Loop over these PHI nodes, adding + // them to our mapping. + // + std::map<Value*, Value*> ValueMapping; + + BasicBlock::iterator BI = DestBlock->begin(); + bool HadPHINodes = isa<PHINode>(BI); + for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) + ValueMapping[PN] = PN->getIncomingValueForBlock(SourceBlock); + + // Clone the non-phi instructions of the dest block into the source block, + // keeping track of the mapping... + // + for (; BI != DestBlock->end(); ++BI) { + Instruction *New = BI->clone(); + New->setName(BI->getName()); + SourceBlock->getInstList().push_back(New); + ValueMapping[BI] = New; + } + + // Now that we have built the mapping information and cloned all of the + // instructions (giving us a new terminator, among other things), walk the new + // instructions, rewriting references of old instructions to use new + // instructions. + // + BI = Branch; ++BI; // Get an iterator to the first new instruction + for (; BI != SourceBlock->end(); ++BI) + for (unsigned i = 0, e = BI->getNumOperands(); i != e; ++i) + if (Value *Remapped = ValueMapping[BI->getOperand(i)]) + BI->setOperand(i, Remapped); + + // Next we check to see if any of the successors of DestBlock had PHI nodes. + // If so, we need to add entries to the PHI nodes for SourceBlock now. + for (succ_iterator SI = succ_begin(DestBlock), SE = succ_end(DestBlock); + SI != SE; ++SI) { + BasicBlock *Succ = *SI; + for (BasicBlock::iterator PNI = Succ->begin(); isa<PHINode>(PNI); ++PNI) { + PHINode *PN = cast<PHINode>(PNI); + // Ok, we have a PHI node. Figure out what the incoming value was for the + // DestBlock. + Value *IV = PN->getIncomingValueForBlock(DestBlock); + + // Remap the value if necessary... + if (Value *MappedIV = ValueMapping[IV]) + IV = MappedIV; + PN->addIncoming(IV, SourceBlock); + } + } + + // Next, remove the old branch instruction, and any PHI node entries that we + // had. + BI = Branch; ++BI; // Get an iterator to the first new instruction + DestBlock->removePredecessor(SourceBlock); // Remove entries in PHI nodes... + SourceBlock->getInstList().erase(Branch); // Destroy the uncond branch... + + // Final step: now that we have finished everything up, walk the cloned + // instructions one last time, constant propagating and DCE'ing them, because + // they may not be needed anymore. + // + if (HadPHINodes) { + while (BI != SourceBlock->end()) { + Instruction *Inst = BI++; + if (isInstructionTriviallyDead(Inst)) + Inst->eraseFromParent(); + else if (Constant *C = ConstantFoldInstruction(Inst)) { + Inst->replaceAllUsesWith(C); + Inst->eraseFromParent(); + } + } + } + + ++NumEliminated; // We just killed a branch! +} |