diff options
Diffstat (limited to 'lib/Transforms/Utils/InlineFunction.cpp')
| -rw-r--r-- | lib/Transforms/Utils/InlineFunction.cpp | 656 | 
1 files changed, 656 insertions, 0 deletions
diff --git a/lib/Transforms/Utils/InlineFunction.cpp b/lib/Transforms/Utils/InlineFunction.cpp new file mode 100644 index 000000000000..4989c00ceb81 --- /dev/null +++ b/lib/Transforms/Utils/InlineFunction.cpp @@ -0,0 +1,656 @@ +//===- InlineFunction.cpp - Code to perform function inlining -------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements inlining of a function into a call site, resolving +// parameters and the return value as appropriate. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/Cloning.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Module.h" +#include "llvm/Instructions.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/Intrinsics.h" +#include "llvm/Attributes.h" +#include "llvm/Analysis/CallGraph.h" +#include "llvm/Analysis/DebugInfo.h" +#include "llvm/Target/TargetData.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/Support/CallSite.h" +using namespace llvm; + +bool llvm::InlineFunction(CallInst *CI, CallGraph *CG, const TargetData *TD) { +  return InlineFunction(CallSite(CI), CG, TD); +} +bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG, const TargetData *TD) { +  return InlineFunction(CallSite(II), CG, TD); +} + +/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls +/// in the body of the inlined function into invokes and turn unwind +/// instructions into branches to the invoke unwind dest. +/// +/// II is the invoke instruction being inlined.  FirstNewBlock is the first +/// block of the inlined code (the last block is the end of the function), +/// and InlineCodeInfo is information about the code that got inlined. +static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, +                                ClonedCodeInfo &InlinedCodeInfo, +                                CallGraph *CG) { +  BasicBlock *InvokeDest = II->getUnwindDest(); +  std::vector<Value*> InvokeDestPHIValues; + +  // If there are PHI nodes in the unwind destination block, we need to +  // keep track of which values came into them from this invoke, then remove +  // the entry for this block. +  BasicBlock *InvokeBlock = II->getParent(); +  for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) { +    PHINode *PN = cast<PHINode>(I); +    // Save the value to use for this edge. +    InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock)); +  } + +  Function *Caller = FirstNewBlock->getParent(); + +  // The inlined code is currently at the end of the function, scan from the +  // start of the inlined code to its end, checking for stuff we need to +  // rewrite. +  if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) { +    for (Function::iterator BB = FirstNewBlock, E = Caller->end(); +         BB != E; ++BB) { +      if (InlinedCodeInfo.ContainsCalls) { +        for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){ +          Instruction *I = BBI++; + +          // We only need to check for function calls: inlined invoke +          // instructions require no special handling. +          if (!isa<CallInst>(I)) continue; +          CallInst *CI = cast<CallInst>(I); + +          // If this call cannot unwind, don't convert it to an invoke. +          if (CI->doesNotThrow()) +            continue; + +          // Convert this function call into an invoke instruction. +          // First, split the basic block. +          BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); + +          // Next, create the new invoke instruction, inserting it at the end +          // of the old basic block. +          SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end()); +          InvokeInst *II = +            InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest, +                               InvokeArgs.begin(), InvokeArgs.end(), +                               CI->getName(), BB->getTerminator()); +          II->setCallingConv(CI->getCallingConv()); +          II->setAttributes(CI->getAttributes()); + +          // Make sure that anything using the call now uses the invoke! +          CI->replaceAllUsesWith(II); + +          // Update the callgraph. +          if (CG) { +            // We should be able to do this: +            //   (*CG)[Caller]->replaceCallSite(CI, II); +            // but that fails if the old call site isn't in the call graph, +            // which, because of LLVM bug 3601, it sometimes isn't. +            CallGraphNode *CGN = (*CG)[Caller]; +            for (CallGraphNode::iterator NI = CGN->begin(), NE = CGN->end(); +                 NI != NE; ++NI) { +              if (NI->first == CI) { +                NI->first = II; +                break; +              } +            } +          } + +          // Delete the unconditional branch inserted by splitBasicBlock +          BB->getInstList().pop_back(); +          Split->getInstList().pop_front();  // Delete the original call + +          // Update any PHI nodes in the exceptional block to indicate that +          // there is now a new entry in them. +          unsigned i = 0; +          for (BasicBlock::iterator I = InvokeDest->begin(); +               isa<PHINode>(I); ++I, ++i) { +            PHINode *PN = cast<PHINode>(I); +            PN->addIncoming(InvokeDestPHIValues[i], BB); +          } + +          // This basic block is now complete, start scanning the next one. +          break; +        } +      } + +      if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { +        // An UnwindInst requires special handling when it gets inlined into an +        // invoke site.  Once this happens, we know that the unwind would cause +        // a control transfer to the invoke exception destination, so we can +        // transform it into a direct branch to the exception destination. +        BranchInst::Create(InvokeDest, UI); + +        // Delete the unwind instruction! +        UI->eraseFromParent(); + +        // Update any PHI nodes in the exceptional block to indicate that +        // there is now a new entry in them. +        unsigned i = 0; +        for (BasicBlock::iterator I = InvokeDest->begin(); +             isa<PHINode>(I); ++I, ++i) { +          PHINode *PN = cast<PHINode>(I); +          PN->addIncoming(InvokeDestPHIValues[i], BB); +        } +      } +    } +  } + +  // Now that everything is happy, we have one final detail.  The PHI nodes in +  // the exception destination block still have entries due to the original +  // invoke instruction.  Eliminate these entries (which might even delete the +  // PHI node) now. +  InvokeDest->removePredecessor(II->getParent()); +} + +/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee +/// into the caller, update the specified callgraph to reflect the changes we +/// made.  Note that it's possible that not all code was copied over, so only +/// some edges of the callgraph may remain. +static void UpdateCallGraphAfterInlining(CallSite CS, +                                         Function::iterator FirstNewBlock, +                                       DenseMap<const Value*, Value*> &ValueMap, +                                         CallGraph &CG) { +  const Function *Caller = CS.getInstruction()->getParent()->getParent(); +  const Function *Callee = CS.getCalledFunction(); +  CallGraphNode *CalleeNode = CG[Callee]; +  CallGraphNode *CallerNode = CG[Caller]; + +  // Since we inlined some uninlined call sites in the callee into the caller, +  // add edges from the caller to all of the callees of the callee. +  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); + +  // Consider the case where CalleeNode == CallerNode. +  CallGraphNode::CalledFunctionsVector CallCache; +  if (CalleeNode == CallerNode) { +    CallCache.assign(I, E); +    I = CallCache.begin(); +    E = CallCache.end(); +  } + +  for (; I != E; ++I) { +    const Instruction *OrigCall = I->first.getInstruction(); + +    DenseMap<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall); +    // Only copy the edge if the call was inlined! +    if (VMI != ValueMap.end() && VMI->second) { +      // If the call was inlined, but then constant folded, there is no edge to +      // add.  Check for this case. +      if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second)) +        CallerNode->addCalledFunction(CallSite::get(NewCall), I->second); +    } +  } +  // Update the call graph by deleting the edge from Callee to Caller.  We must +  // do this after the loop above in case Caller and Callee are the same. +  CallerNode->removeCallEdgeFor(CS); +} + +/// findFnRegionEndMarker - This is a utility routine that is used by +/// InlineFunction. Return llvm.dbg.region.end intrinsic that corresponds +/// to the llvm.dbg.func.start of the function F. Otherwise return NULL. +static const DbgRegionEndInst *findFnRegionEndMarker(const Function *F) { + +  GlobalVariable *FnStart = NULL; +  const DbgRegionEndInst *FnEnd = NULL; +  for (Function::const_iterator FI = F->begin(), FE =F->end(); FI != FE; ++FI)  +    for (BasicBlock::const_iterator BI = FI->begin(), BE = FI->end(); BI != BE; +         ++BI) { +      if (FnStart == NULL)  { +        if (const DbgFuncStartInst *FSI = dyn_cast<DbgFuncStartInst>(BI)) { +          DISubprogram SP(cast<GlobalVariable>(FSI->getSubprogram())); +          assert (SP.isNull() == false && "Invalid llvm.dbg.func.start"); +          if (SP.describes(F)) +            FnStart = SP.getGV(); +        } +      } else { +        if (const DbgRegionEndInst *REI = dyn_cast<DbgRegionEndInst>(BI)) +          if (REI->getContext() == FnStart) +            FnEnd = REI; +      } +    } +  return FnEnd; +} + +// InlineFunction - This function inlines the called function into the basic +// block of the caller.  This returns false if it is not possible to inline this +// call.  The program is still in a well defined state if this occurs though. +// +// Note that this only does one level of inlining.  For example, if the +// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now +// exists in the instruction stream.  Similiarly this will inline a recursive +// function by one level. +// +bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) { +  Instruction *TheCall = CS.getInstruction(); +  assert(TheCall->getParent() && TheCall->getParent()->getParent() && +         "Instruction not in function!"); + +  const Function *CalledFunc = CS.getCalledFunction(); +  if (CalledFunc == 0 ||          // Can't inline external function or indirect +      CalledFunc->isDeclaration() || // call, or call to a vararg function! +      CalledFunc->getFunctionType()->isVarArg()) return false; + + +  // If the call to the callee is not a tail call, we must clear the 'tail' +  // flags on any calls that we inline. +  bool MustClearTailCallFlags = +    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall()); + +  // If the call to the callee cannot throw, set the 'nounwind' flag on any +  // calls that we inline. +  bool MarkNoUnwind = CS.doesNotThrow(); + +  BasicBlock *OrigBB = TheCall->getParent(); +  Function *Caller = OrigBB->getParent(); + +  // GC poses two hazards to inlining, which only occur when the callee has GC: +  //  1. If the caller has no GC, then the callee's GC must be propagated to the +  //     caller. +  //  2. If the caller has a differing GC, it is invalid to inline. +  if (CalledFunc->hasGC()) { +    if (!Caller->hasGC()) +      Caller->setGC(CalledFunc->getGC()); +    else if (CalledFunc->getGC() != Caller->getGC()) +      return false; +  } + +  // Get an iterator to the last basic block in the function, which will have +  // the new function inlined after it. +  // +  Function::iterator LastBlock = &Caller->back(); + +  // Make sure to capture all of the return instructions from the cloned +  // function. +  std::vector<ReturnInst*> Returns; +  ClonedCodeInfo InlinedFunctionInfo; +  Function::iterator FirstNewBlock; + +  { // Scope to destroy ValueMap after cloning. +    DenseMap<const Value*, Value*> ValueMap; + +    assert(CalledFunc->arg_size() == CS.arg_size() && +           "No varargs calls can be inlined!"); + +    // Calculate the vector of arguments to pass into the function cloner, which +    // matches up the formal to the actual argument values. +    CallSite::arg_iterator AI = CS.arg_begin(); +    unsigned ArgNo = 0; +    for (Function::const_arg_iterator I = CalledFunc->arg_begin(), +         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { +      Value *ActualArg = *AI; + +      // When byval arguments actually inlined, we need to make the copy implied +      // by them explicit.  However, we don't do this if the callee is readonly +      // or readnone, because the copy would be unneeded: the callee doesn't +      // modify the struct. +      if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal) && +          !CalledFunc->onlyReadsMemory()) { +        const Type *AggTy = cast<PointerType>(I->getType())->getElementType(); +        const Type *VoidPtrTy = PointerType::getUnqual(Type::Int8Ty); + +        // Create the alloca.  If we have TargetData, use nice alignment. +        unsigned Align = 1; +        if (TD) Align = TD->getPrefTypeAlignment(AggTy); +        Value *NewAlloca = new AllocaInst(AggTy, 0, Align, I->getName(), +                                          Caller->begin()->begin()); +        // Emit a memcpy. +        const Type *Tys[] = { Type::Int64Ty }; +        Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(), +                                                       Intrinsic::memcpy,  +                                                       Tys, 1); +        Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall); +        Value *SrcCast = new BitCastInst(*AI, VoidPtrTy, "tmp", TheCall); + +        Value *Size; +        if (TD == 0) +          Size = ConstantExpr::getSizeOf(AggTy); +        else +          Size = ConstantInt::get(Type::Int64Ty, TD->getTypeStoreSize(AggTy)); + +        // Always generate a memcpy of alignment 1 here because we don't know +        // the alignment of the src pointer.  Other optimizations can infer +        // better alignment. +        Value *CallArgs[] = { +          DestCast, SrcCast, Size, ConstantInt::get(Type::Int32Ty, 1) +        }; +        CallInst *TheMemCpy = +          CallInst::Create(MemCpyFn, CallArgs, CallArgs+4, "", TheCall); + +        // If we have a call graph, update it. +        if (CG) { +          CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn); +          CallGraphNode *CallerNode = (*CG)[Caller]; +          CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN); +        } + +        // Uses of the argument in the function should use our new alloca +        // instead. +        ActualArg = NewAlloca; +      } + +      ValueMap[I] = ActualArg; +    } + +    // Adjust llvm.dbg.region.end. If the CalledFunc has region end +    // marker then clone that marker after next stop point at the  +    // call site. The function body cloner does not clone original +    // region end marker from the CalledFunc. This will ensure that +    // inlined function's scope ends at the right place.  +    const DbgRegionEndInst *DREI = findFnRegionEndMarker(CalledFunc); +    if (DREI) { +      for (BasicBlock::iterator BI = TheCall,  +             BE = TheCall->getParent()->end(); BI != BE; ++BI) { +        if (DbgStopPointInst *DSPI = dyn_cast<DbgStopPointInst>(BI)) { +          if (DbgRegionEndInst *NewDREI =  +              dyn_cast<DbgRegionEndInst>(DREI->clone())) +            NewDREI->insertAfter(DSPI); +          break; +        } +      } +    } + +    // We want the inliner to prune the code as it copies.  We would LOVE to +    // have no dead or constant instructions leftover after inlining occurs +    // (which can happen, e.g., because an argument was constant), but we'll be +    // happy with whatever the cloner can do. +    CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i", +                              &InlinedFunctionInfo, TD); + +    // Remember the first block that is newly cloned over. +    FirstNewBlock = LastBlock; ++FirstNewBlock; + +    // Update the callgraph if requested. +    if (CG) +      UpdateCallGraphAfterInlining(CS, FirstNewBlock, ValueMap, *CG); +  } + +  // If there are any alloca instructions in the block that used to be the entry +  // block for the callee, move them to the entry block of the caller.  First +  // calculate which instruction they should be inserted before.  We insert the +  // instructions at the end of the current alloca list. +  // +  { +    BasicBlock::iterator InsertPoint = Caller->begin()->begin(); +    for (BasicBlock::iterator I = FirstNewBlock->begin(), +           E = FirstNewBlock->end(); I != E; ) +      if (AllocaInst *AI = dyn_cast<AllocaInst>(I++)) { +        // If the alloca is now dead, remove it.  This often occurs due to code +        // specialization. +        if (AI->use_empty()) { +          AI->eraseFromParent(); +          continue; +        } + +        if (isa<Constant>(AI->getArraySize())) { +          // Scan for the block of allocas that we can move over, and move them +          // all at once. +          while (isa<AllocaInst>(I) && +                 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) +            ++I; + +          // Transfer all of the allocas over in a block.  Using splice means +          // that the instructions aren't removed from the symbol table, then +          // reinserted. +          Caller->getEntryBlock().getInstList().splice( +              InsertPoint, +              FirstNewBlock->getInstList(), +              AI, I); +        } +      } +  } + +  // If the inlined code contained dynamic alloca instructions, wrap the inlined +  // code with llvm.stacksave/llvm.stackrestore intrinsics. +  if (InlinedFunctionInfo.ContainsDynamicAllocas) { +    Module *M = Caller->getParent(); +    // Get the two intrinsics we care about. +    Constant *StackSave, *StackRestore; +    StackSave    = Intrinsic::getDeclaration(M, Intrinsic::stacksave); +    StackRestore = Intrinsic::getDeclaration(M, Intrinsic::stackrestore); + +    // If we are preserving the callgraph, add edges to the stacksave/restore +    // functions for the calls we insert. +    CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0; +    if (CG) { +      // We know that StackSave/StackRestore are Function*'s, because they are +      // intrinsics which must have the right types. +      StackSaveCGN    = CG->getOrInsertFunction(cast<Function>(StackSave)); +      StackRestoreCGN = CG->getOrInsertFunction(cast<Function>(StackRestore)); +      CallerNode = (*CG)[Caller]; +    } + +    // Insert the llvm.stacksave. +    CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack", +                                          FirstNewBlock->begin()); +    if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN); + +    // Insert a call to llvm.stackrestore before any return instructions in the +    // inlined function. +    for (unsigned i = 0, e = Returns.size(); i != e; ++i) { +      CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]); +      if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN); +    } + +    // Count the number of StackRestore calls we insert. +    unsigned NumStackRestores = Returns.size(); + +    // If we are inlining an invoke instruction, insert restores before each +    // unwind.  These unwinds will be rewritten into branches later. +    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) { +      for (Function::iterator BB = FirstNewBlock, E = Caller->end(); +           BB != E; ++BB) +        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { +          CallInst::Create(StackRestore, SavedPtr, "", UI); +          ++NumStackRestores; +        } +    } +  } + +  // If we are inlining tail call instruction through a call site that isn't +  // marked 'tail', we must remove the tail marker for any calls in the inlined +  // code.  Also, calls inlined through a 'nounwind' call site should be marked +  // 'nounwind'. +  if (InlinedFunctionInfo.ContainsCalls && +      (MustClearTailCallFlags || MarkNoUnwind)) { +    for (Function::iterator BB = FirstNewBlock, E = Caller->end(); +         BB != E; ++BB) +      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) +        if (CallInst *CI = dyn_cast<CallInst>(I)) { +          if (MustClearTailCallFlags) +            CI->setTailCall(false); +          if (MarkNoUnwind) +            CI->setDoesNotThrow(); +        } +  } + +  // If we are inlining through a 'nounwind' call site then any inlined 'unwind' +  // instructions are unreachable. +  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind) +    for (Function::iterator BB = FirstNewBlock, E = Caller->end(); +         BB != E; ++BB) { +      TerminatorInst *Term = BB->getTerminator(); +      if (isa<UnwindInst>(Term)) { +        new UnreachableInst(Term); +        BB->getInstList().erase(Term); +      } +    } + +  // If we are inlining for an invoke instruction, we must make sure to rewrite +  // any inlined 'unwind' instructions into branches to the invoke exception +  // destination, and call instructions into invoke instructions. +  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) +    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo, CG); + +  // If we cloned in _exactly one_ basic block, and if that block ends in a +  // return instruction, we splice the body of the inlined callee directly into +  // the calling basic block. +  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { +    // Move all of the instructions right before the call. +    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), +                                 FirstNewBlock->begin(), FirstNewBlock->end()); +    // Remove the cloned basic block. +    Caller->getBasicBlockList().pop_back(); + +    // If the call site was an invoke instruction, add a branch to the normal +    // destination. +    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) +      BranchInst::Create(II->getNormalDest(), TheCall); + +    // If the return instruction returned a value, replace uses of the call with +    // uses of the returned value. +    if (!TheCall->use_empty()) { +      ReturnInst *R = Returns[0]; +      if (TheCall == R->getReturnValue()) +        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); +      else +        TheCall->replaceAllUsesWith(R->getReturnValue()); +    } +    // Since we are now done with the Call/Invoke, we can delete it. +    TheCall->eraseFromParent(); + +    // Since we are now done with the return instruction, delete it also. +    Returns[0]->eraseFromParent(); + +    // We are now done with the inlining. +    return true; +  } + +  // Otherwise, we have the normal case, of more than one block to inline or +  // multiple return sites. + +  // We want to clone the entire callee function into the hole between the +  // "starter" and "ender" blocks.  How we accomplish this depends on whether +  // this is an invoke instruction or a call instruction. +  BasicBlock *AfterCallBB; +  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { + +    // Add an unconditional branch to make this look like the CallInst case... +    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); + +    // Split the basic block.  This guarantees that no PHI nodes will have to be +    // updated due to new incoming edges, and make the invoke case more +    // symmetric to the call case. +    AfterCallBB = OrigBB->splitBasicBlock(NewBr, +                                          CalledFunc->getName()+".exit"); + +  } else {  // It's a call +    // If this is a call instruction, we need to split the basic block that +    // the call lives in. +    // +    AfterCallBB = OrigBB->splitBasicBlock(TheCall, +                                          CalledFunc->getName()+".exit"); +  } + +  // Change the branch that used to go to AfterCallBB to branch to the first +  // basic block of the inlined function. +  // +  TerminatorInst *Br = OrigBB->getTerminator(); +  assert(Br && Br->getOpcode() == Instruction::Br && +         "splitBasicBlock broken!"); +  Br->setOperand(0, FirstNewBlock); + + +  // Now that the function is correct, make it a little bit nicer.  In +  // particular, move the basic blocks inserted from the end of the function +  // into the space made by splitting the source basic block. +  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), +                                     FirstNewBlock, Caller->end()); + +  // Handle all of the return instructions that we just cloned in, and eliminate +  // any users of the original call/invoke instruction. +  const Type *RTy = CalledFunc->getReturnType(); + +  if (Returns.size() > 1) { +    // The PHI node should go at the front of the new basic block to merge all +    // possible incoming values. +    PHINode *PHI = 0; +    if (!TheCall->use_empty()) { +      PHI = PHINode::Create(RTy, TheCall->getName(), +                            AfterCallBB->begin()); +      // Anything that used the result of the function call should now use the +      // PHI node as their operand. +      TheCall->replaceAllUsesWith(PHI); +    } + +    // Loop over all of the return instructions adding entries to the PHI node +    // as appropriate. +    if (PHI) { +      for (unsigned i = 0, e = Returns.size(); i != e; ++i) { +        ReturnInst *RI = Returns[i]; +        assert(RI->getReturnValue()->getType() == PHI->getType() && +               "Ret value not consistent in function!"); +        PHI->addIncoming(RI->getReturnValue(), RI->getParent()); +      } +    } + +    // Add a branch to the merge points and remove return instructions. +    for (unsigned i = 0, e = Returns.size(); i != e; ++i) { +      ReturnInst *RI = Returns[i]; +      BranchInst::Create(AfterCallBB, RI); +      RI->eraseFromParent(); +    } +  } else if (!Returns.empty()) { +    // Otherwise, if there is exactly one return value, just replace anything +    // using the return value of the call with the computed value. +    if (!TheCall->use_empty()) { +      if (TheCall == Returns[0]->getReturnValue()) +        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); +      else +        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); +    } + +    // Splice the code from the return block into the block that it will return +    // to, which contains the code that was after the call. +    BasicBlock *ReturnBB = Returns[0]->getParent(); +    AfterCallBB->getInstList().splice(AfterCallBB->begin(), +                                      ReturnBB->getInstList()); + +    // Update PHI nodes that use the ReturnBB to use the AfterCallBB. +    ReturnBB->replaceAllUsesWith(AfterCallBB); + +    // Delete the return instruction now and empty ReturnBB now. +    Returns[0]->eraseFromParent(); +    ReturnBB->eraseFromParent(); +  } else if (!TheCall->use_empty()) { +    // No returns, but something is using the return value of the call.  Just +    // nuke the result. +    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); +  } + +  // Since we are now done with the Call/Invoke, we can delete it. +  TheCall->eraseFromParent(); + +  // We should always be able to fold the entry block of the function into the +  // single predecessor of the block... +  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); +  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); + +  // Splice the code entry block into calling block, right before the +  // unconditional branch. +  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); +  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes + +  // Remove the unconditional branch. +  OrigBB->getInstList().erase(Br); + +  // Now we can remove the CalleeEntry block, which is now empty. +  Caller->getBasicBlockList().erase(CalleeEntry); + +  return true; +}  | 
