diff options
Diffstat (limited to 'lib/Transforms/Utils/LoopUtils.cpp')
| -rw-r--r-- | lib/Transforms/Utils/LoopUtils.cpp | 371 | 
1 files changed, 312 insertions, 59 deletions
diff --git a/lib/Transforms/Utils/LoopUtils.cpp b/lib/Transforms/Utils/LoopUtils.cpp index 3c522786641a..c3fa05a11a24 100644 --- a/lib/Transforms/Utils/LoopUtils.cpp +++ b/lib/Transforms/Utils/LoopUtils.cpp @@ -432,7 +432,7 @@ RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,                                          InstDesc &Prev, bool HasFunNoNaNAttr) {    bool FP = I->getType()->isFloatingPointTy();    Instruction *UAI = Prev.getUnsafeAlgebraInst(); -  if (!UAI && FP && !I->hasUnsafeAlgebra()) +  if (!UAI && FP && !I->isFast())      UAI = I; // Found an unsafe (unvectorizable) algebra instruction.    switch (I->getOpcode()) { @@ -565,7 +565,8 @@ bool RecurrenceDescriptor::isFirstOrderRecurrence(      auto *I = Phi->user_back();      if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() &&          DT->dominates(Previous, I->user_back())) { -      SinkAfter[I] = Previous; +      if (!DT->dominates(Previous, I)) // Otherwise we're good w/o sinking. +        SinkAfter[I] = Previous;        return true;      }    } @@ -659,11 +660,11 @@ Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,      break;    } -  // We only match FP sequences with unsafe algebra, so we can unconditionally +  // We only match FP sequences that are 'fast', so we can unconditionally    // set it on any generated instructions.    IRBuilder<>::FastMathFlagGuard FMFG(Builder);    FastMathFlags FMF; -  FMF.setUnsafeAlgebra(); +  FMF.setFast();    Builder.setFastMathFlags(FMF);    Value *Cmp; @@ -677,7 +678,8 @@ Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,  }  InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, -                                         const SCEV *Step, BinaryOperator *BOp) +                                         const SCEV *Step, BinaryOperator *BOp, +                                         SmallVectorImpl<Instruction *> *Casts)    : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {    assert(IK != IK_NoInduction && "Not an induction"); @@ -704,6 +706,12 @@ InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,            (InductionBinOp->getOpcode() == Instruction::FAdd ||             InductionBinOp->getOpcode() == Instruction::FSub))) &&           "Binary opcode should be specified for FP induction"); + +  if (Casts) { +    for (auto &Inst : *Casts) { +      RedundantCasts.push_back(Inst); +    } +  }  }  int InductionDescriptor::getConsecutiveDirection() const { @@ -767,7 +775,7 @@ Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index,      // Floating point operations had to be 'fast' to enable the induction.      FastMathFlags Flags; -    Flags.setUnsafeAlgebra(); +    Flags.setFast();      Value *MulExp = B.CreateFMul(StepValue, Index);      if (isa<Instruction>(MulExp)) @@ -807,7 +815,7 @@ bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,      StartValue = Phi->getIncomingValue(1);    } else {      assert(TheLoop->contains(Phi->getIncomingBlock(1)) && -           "Unexpected Phi node in the loop");  +           "Unexpected Phi node in the loop");      BEValue = Phi->getIncomingValue(1);      StartValue = Phi->getIncomingValue(0);    } @@ -840,6 +848,110 @@ bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,    return true;  } +/// This function is called when we suspect that the update-chain of a phi node +/// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,  +/// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime  +/// predicate P under which the SCEV expression for the phi can be the  +/// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the  +/// cast instructions that are involved in the update-chain of this induction.  +/// A caller that adds the required runtime predicate can be free to drop these  +/// cast instructions, and compute the phi using \p AR (instead of some scev  +/// expression with casts). +/// +/// For example, without a predicate the scev expression can take the following +/// form: +///      (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy) +/// +/// It corresponds to the following IR sequence: +/// %for.body: +///   %x = phi i64 [ 0, %ph ], [ %add, %for.body ] +///   %casted_phi = "ExtTrunc i64 %x" +///   %add = add i64 %casted_phi, %step +/// +/// where %x is given in \p PN, +/// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate, +/// and the IR sequence that "ExtTrunc i64 %x" represents can take one of +/// several forms, for example, such as: +///   ExtTrunc1:    %casted_phi = and  %x, 2^n-1 +/// or: +///   ExtTrunc2:    %t = shl %x, m +///                 %casted_phi = ashr %t, m +/// +/// If we are able to find such sequence, we return the instructions +/// we found, namely %casted_phi and the instructions on its use-def chain up +/// to the phi (not including the phi). +bool getCastsForInductionPHI( +    PredicatedScalarEvolution &PSE, const SCEVUnknown *PhiScev, +    const SCEVAddRecExpr *AR, SmallVectorImpl<Instruction *> &CastInsts) { + +  assert(CastInsts.empty() && "CastInsts is expected to be empty."); +  auto *PN = cast<PHINode>(PhiScev->getValue()); +  assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression"); +  const Loop *L = AR->getLoop(); + +  // Find any cast instructions that participate in the def-use chain of  +  // PhiScev in the loop. +  // FORNOW/TODO: We currently expect the def-use chain to include only +  // two-operand instructions, where one of the operands is an invariant. +  // createAddRecFromPHIWithCasts() currently does not support anything more +  // involved than that, so we keep the search simple. This can be +  // extended/generalized as needed. + +  auto getDef = [&](const Value *Val) -> Value * { +    const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val); +    if (!BinOp) +      return nullptr; +    Value *Op0 = BinOp->getOperand(0); +    Value *Op1 = BinOp->getOperand(1); +    Value *Def = nullptr; +    if (L->isLoopInvariant(Op0)) +      Def = Op1; +    else if (L->isLoopInvariant(Op1)) +      Def = Op0; +    return Def; +  }; + +  // Look for the instruction that defines the induction via the +  // loop backedge. +  BasicBlock *Latch = L->getLoopLatch(); +  if (!Latch) +    return false; +  Value *Val = PN->getIncomingValueForBlock(Latch); +  if (!Val) +    return false; + +  // Follow the def-use chain until the induction phi is reached. +  // If on the way we encounter a Value that has the same SCEV Expr as the +  // phi node, we can consider the instructions we visit from that point +  // as part of the cast-sequence that can be ignored. +  bool InCastSequence = false; +  auto *Inst = dyn_cast<Instruction>(Val); +  while (Val != PN) { +    // If we encountered a phi node other than PN, or if we left the loop, +    // we bail out. +    if (!Inst || !L->contains(Inst)) { +      return false; +    } +    auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val)); +    if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR)) +      InCastSequence = true; +    if (InCastSequence) { +      // Only the last instruction in the cast sequence is expected to have +      // uses outside the induction def-use chain. +      if (!CastInsts.empty()) +        if (!Inst->hasOneUse()) +          return false; +      CastInsts.push_back(Inst); +    } +    Val = getDef(Val); +    if (!Val) +      return false; +    Inst = dyn_cast<Instruction>(Val); +  } + +  return InCastSequence; +} +  bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,                                           PredicatedScalarEvolution &PSE,                                           InductionDescriptor &D, @@ -869,13 +981,26 @@ bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,      return false;    } +  // Record any Cast instructions that participate in the induction update +  const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev); +  // If we started from an UnknownSCEV, and managed to build an addRecurrence +  // only after enabling Assume with PSCEV, this means we may have encountered +  // cast instructions that required adding a runtime check in order to +  // guarantee the correctness of the AddRecurence respresentation of the +  // induction. +  if (PhiScev != AR && SymbolicPhi) { +    SmallVector<Instruction *, 2> Casts; +    if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts)) +      return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts); +  } +    return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);  } -bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, -                                         ScalarEvolution *SE, -                                         InductionDescriptor &D, -                                         const SCEV *Expr) { +bool InductionDescriptor::isInductionPHI( +    PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE, +    InductionDescriptor &D, const SCEV *Expr, +    SmallVectorImpl<Instruction *> *CastsToIgnore) {    Type *PhiTy = Phi->getType();    // We only handle integer and pointer inductions variables.    if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) @@ -894,7 +1019,7 @@ bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,      // FIXME: We should treat this as a uniform. Unfortunately, we      // don't currently know how to handled uniform PHIs.      DEBUG(dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n"); -    return false;     +    return false;    }    Value *StartValue = @@ -907,7 +1032,8 @@ bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,      return false;    if (PhiTy->isIntegerTy()) { -    D = InductionDescriptor(StartValue, IK_IntInduction, Step); +    D = InductionDescriptor(StartValue, IK_IntInduction, Step, /*BOp=*/ nullptr, +                            CastsToIgnore);      return true;    } @@ -1115,6 +1241,149 @@ Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,    return None;  } +/// Does a BFS from a given node to all of its children inside a given loop. +/// The returned vector of nodes includes the starting point. +SmallVector<DomTreeNode *, 16> +llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { +  SmallVector<DomTreeNode *, 16> Worklist; +  auto AddRegionToWorklist = [&](DomTreeNode *DTN) { +    // Only include subregions in the top level loop. +    BasicBlock *BB = DTN->getBlock(); +    if (CurLoop->contains(BB)) +      Worklist.push_back(DTN); +  }; + +  AddRegionToWorklist(N); + +  for (size_t I = 0; I < Worklist.size(); I++) +    for (DomTreeNode *Child : Worklist[I]->getChildren()) +      AddRegionToWorklist(Child); + +  return Worklist; +} + +void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr, +                          ScalarEvolution *SE = nullptr, +                          LoopInfo *LI = nullptr) { +  assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); +  auto *Preheader = L->getLoopPreheader(); +  assert(Preheader && "Preheader should exist!"); + +  // Now that we know the removal is safe, remove the loop by changing the +  // branch from the preheader to go to the single exit block. +  // +  // Because we're deleting a large chunk of code at once, the sequence in which +  // we remove things is very important to avoid invalidation issues. + +  // Tell ScalarEvolution that the loop is deleted. Do this before +  // deleting the loop so that ScalarEvolution can look at the loop +  // to determine what it needs to clean up. +  if (SE) +    SE->forgetLoop(L); + +  auto *ExitBlock = L->getUniqueExitBlock(); +  assert(ExitBlock && "Should have a unique exit block!"); +  assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); + +  auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); +  assert(OldBr && "Preheader must end with a branch"); +  assert(OldBr->isUnconditional() && "Preheader must have a single successor"); +  // Connect the preheader to the exit block. Keep the old edge to the header +  // around to perform the dominator tree update in two separate steps +  // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge +  // preheader -> header. +  // +  // +  // 0.  Preheader          1.  Preheader           2.  Preheader +  //        |                    |   |                   | +  //        V                    |   V                   | +  //      Header <--\            | Header <--\           | Header <--\ +  //       |  |     |            |  |  |     |           |  |  |     | +  //       |  V     |            |  |  V     |           |  |  V     | +  //       | Body --/            |  | Body --/           |  | Body --/ +  //       V                     V  V                    V  V +  //      Exit                   Exit                    Exit +  // +  // By doing this is two separate steps we can perform the dominator tree +  // update without using the batch update API. +  // +  // Even when the loop is never executed, we cannot remove the edge from the +  // source block to the exit block. Consider the case where the unexecuted loop +  // branches back to an outer loop. If we deleted the loop and removed the edge +  // coming to this inner loop, this will break the outer loop structure (by +  // deleting the backedge of the outer loop). If the outer loop is indeed a +  // non-loop, it will be deleted in a future iteration of loop deletion pass. +  IRBuilder<> Builder(OldBr); +  Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); +  // Remove the old branch. The conditional branch becomes a new terminator. +  OldBr->eraseFromParent(); + +  // Rewrite phis in the exit block to get their inputs from the Preheader +  // instead of the exiting block. +  BasicBlock::iterator BI = ExitBlock->begin(); +  while (PHINode *P = dyn_cast<PHINode>(BI)) { +    // Set the zero'th element of Phi to be from the preheader and remove all +    // other incoming values. Given the loop has dedicated exits, all other +    // incoming values must be from the exiting blocks. +    int PredIndex = 0; +    P->setIncomingBlock(PredIndex, Preheader); +    // Removes all incoming values from all other exiting blocks (including +    // duplicate values from an exiting block). +    // Nuke all entries except the zero'th entry which is the preheader entry. +    // NOTE! We need to remove Incoming Values in the reverse order as done +    // below, to keep the indices valid for deletion (removeIncomingValues +    // updates getNumIncomingValues and shifts all values down into the operand +    // being deleted). +    for (unsigned i = 0, e = P->getNumIncomingValues() - 1; i != e; ++i) +      P->removeIncomingValue(e - i, false); + +    assert((P->getNumIncomingValues() == 1 && +            P->getIncomingBlock(PredIndex) == Preheader) && +           "Should have exactly one value and that's from the preheader!"); +    ++BI; +  } + +  // Disconnect the loop body by branching directly to its exit. +  Builder.SetInsertPoint(Preheader->getTerminator()); +  Builder.CreateBr(ExitBlock); +  // Remove the old branch. +  Preheader->getTerminator()->eraseFromParent(); + +  if (DT) { +    // Update the dominator tree by informing it about the new edge from the +    // preheader to the exit. +    DT->insertEdge(Preheader, ExitBlock); +    // Inform the dominator tree about the removed edge. +    DT->deleteEdge(Preheader, L->getHeader()); +  } + +  // Remove the block from the reference counting scheme, so that we can +  // delete it freely later. +  for (auto *Block : L->blocks()) +    Block->dropAllReferences(); + +  if (LI) { +    // Erase the instructions and the blocks without having to worry +    // about ordering because we already dropped the references. +    // NOTE: This iteration is safe because erasing the block does not remove +    // its entry from the loop's block list.  We do that in the next section. +    for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); +         LpI != LpE; ++LpI) +      (*LpI)->eraseFromParent(); + +    // Finally, the blocks from loopinfo.  This has to happen late because +    // otherwise our loop iterators won't work. + +    SmallPtrSet<BasicBlock *, 8> blocks; +    blocks.insert(L->block_begin(), L->block_end()); +    for (BasicBlock *BB : blocks) +      LI->removeBlock(BB); + +    // The last step is to update LoopInfo now that we've eliminated this loop. +    LI->erase(L); +  } +} +  /// Returns true if the instruction in a loop is guaranteed to execute at least  /// once.  bool llvm::isGuaranteedToExecute(const Instruction &Inst, @@ -1194,7 +1463,7 @@ Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {  static Value *addFastMathFlag(Value *V) {    if (isa<FPMathOperator>(V)) {      FastMathFlags Flags; -    Flags.setUnsafeAlgebra(); +    Flags.setFast();      cast<Instruction>(V)->setFastMathFlags(Flags);    }    return V; @@ -1256,8 +1525,8 @@ Value *llvm::createSimpleTargetReduction(    using RD = RecurrenceDescriptor;    RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;    // TODO: Support creating ordered reductions. -  FastMathFlags FMFUnsafe; -  FMFUnsafe.setUnsafeAlgebra(); +  FastMathFlags FMFFast; +  FMFFast.setFast();    switch (Opcode) {    case Instruction::Add: @@ -1278,14 +1547,14 @@ Value *llvm::createSimpleTargetReduction(    case Instruction::FAdd:      BuildFunc = [&]() {        auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src); -      cast<CallInst>(Rdx)->setFastMathFlags(FMFUnsafe); +      cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);        return Rdx;      };      break;    case Instruction::FMul:      BuildFunc = [&]() {        auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src); -      cast<CallInst>(Rdx)->setFastMathFlags(FMFUnsafe); +      cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);        return Rdx;      };      break; @@ -1321,55 +1590,39 @@ Value *llvm::createSimpleTargetReduction(  }  /// Create a vector reduction using a given recurrence descriptor. -Value *llvm::createTargetReduction(IRBuilder<> &Builder, +Value *llvm::createTargetReduction(IRBuilder<> &B,                                     const TargetTransformInfo *TTI,                                     RecurrenceDescriptor &Desc, Value *Src,                                     bool NoNaN) {    // TODO: Support in-order reductions based on the recurrence descriptor. -  RecurrenceDescriptor::RecurrenceKind RecKind = Desc.getRecurrenceKind(); +  using RD = RecurrenceDescriptor; +  RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();    TargetTransformInfo::ReductionFlags Flags;    Flags.NoNaN = NoNaN; -  auto getSimpleRdx = [&](unsigned Opc) { -    return createSimpleTargetReduction(Builder, TTI, Opc, Src, Flags); -  };    switch (RecKind) { -  case RecurrenceDescriptor::RK_FloatAdd: -    return getSimpleRdx(Instruction::FAdd); -  case RecurrenceDescriptor::RK_FloatMult: -    return getSimpleRdx(Instruction::FMul); -  case RecurrenceDescriptor::RK_IntegerAdd: -    return getSimpleRdx(Instruction::Add); -  case RecurrenceDescriptor::RK_IntegerMult: -    return getSimpleRdx(Instruction::Mul); -  case RecurrenceDescriptor::RK_IntegerAnd: -    return getSimpleRdx(Instruction::And); -  case RecurrenceDescriptor::RK_IntegerOr: -    return getSimpleRdx(Instruction::Or); -  case RecurrenceDescriptor::RK_IntegerXor: -    return getSimpleRdx(Instruction::Xor); -  case RecurrenceDescriptor::RK_IntegerMinMax: { -    switch (Desc.getMinMaxRecurrenceKind()) { -    case RecurrenceDescriptor::MRK_SIntMax: -      Flags.IsSigned = true; -      Flags.IsMaxOp = true; -      break; -    case RecurrenceDescriptor::MRK_UIntMax: -      Flags.IsMaxOp = true; -      break; -    case RecurrenceDescriptor::MRK_SIntMin: -      Flags.IsSigned = true; -      break; -    case RecurrenceDescriptor::MRK_UIntMin: -      break; -    default: -      llvm_unreachable("Unhandled MRK"); -    } -    return getSimpleRdx(Instruction::ICmp); +  case RD::RK_FloatAdd: +    return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags); +  case RD::RK_FloatMult: +    return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags); +  case RD::RK_IntegerAdd: +    return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags); +  case RD::RK_IntegerMult: +    return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags); +  case RD::RK_IntegerAnd: +    return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags); +  case RD::RK_IntegerOr: +    return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags); +  case RD::RK_IntegerXor: +    return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags); +  case RD::RK_IntegerMinMax: { +    RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind(); +    Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax); +    Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin); +    return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);    } -  case RecurrenceDescriptor::RK_FloatMinMax: { -    Flags.IsMaxOp = -        Desc.getMinMaxRecurrenceKind() == RecurrenceDescriptor::MRK_FloatMax; -    return getSimpleRdx(Instruction::FCmp); +  case RD::RK_FloatMinMax: { +    Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax; +    return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);    }    default:      llvm_unreachable("Unhandled RecKind");  | 
