diff options
Diffstat (limited to 'lib/Transforms/Utils/LoopUtils.cpp')
| -rw-r--r-- | lib/Transforms/Utils/LoopUtils.cpp | 1032 |
1 files changed, 0 insertions, 1032 deletions
diff --git a/lib/Transforms/Utils/LoopUtils.cpp b/lib/Transforms/Utils/LoopUtils.cpp deleted file mode 100644 index b4d7f35d2d9a..000000000000 --- a/lib/Transforms/Utils/LoopUtils.cpp +++ /dev/null @@ -1,1032 +0,0 @@ -//===-- LoopUtils.cpp - Loop Utility functions -------------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file defines common loop utility functions. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Utils/LoopUtils.h" -#include "llvm/ADT/ScopeExit.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/BasicAliasAnalysis.h" -#include "llvm/Analysis/DomTreeUpdater.h" -#include "llvm/Analysis/GlobalsModRef.h" -#include "llvm/Analysis/InstructionSimplify.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/LoopPass.h" -#include "llvm/Analysis/MemorySSA.h" -#include "llvm/Analysis/MemorySSAUpdater.h" -#include "llvm/Analysis/MustExecute.h" -#include "llvm/Analysis/ScalarEvolution.h" -#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" -#include "llvm/Analysis/ScalarEvolutionExpander.h" -#include "llvm/Analysis/ScalarEvolutionExpressions.h" -#include "llvm/Analysis/TargetTransformInfo.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/IR/DIBuilder.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/IR/ValueHandle.h" -#include "llvm/Pass.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/KnownBits.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" - -using namespace llvm; -using namespace llvm::PatternMatch; - -#define DEBUG_TYPE "loop-utils" - -static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; -static const char *LLVMLoopDisableLICM = "llvm.licm.disable"; - -bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, - MemorySSAUpdater *MSSAU, - bool PreserveLCSSA) { - bool Changed = false; - - // We re-use a vector for the in-loop predecesosrs. - SmallVector<BasicBlock *, 4> InLoopPredecessors; - - auto RewriteExit = [&](BasicBlock *BB) { - assert(InLoopPredecessors.empty() && - "Must start with an empty predecessors list!"); - auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); - - // See if there are any non-loop predecessors of this exit block and - // keep track of the in-loop predecessors. - bool IsDedicatedExit = true; - for (auto *PredBB : predecessors(BB)) - if (L->contains(PredBB)) { - if (isa<IndirectBrInst>(PredBB->getTerminator())) - // We cannot rewrite exiting edges from an indirectbr. - return false; - if (isa<CallBrInst>(PredBB->getTerminator())) - // We cannot rewrite exiting edges from a callbr. - return false; - - InLoopPredecessors.push_back(PredBB); - } else { - IsDedicatedExit = false; - } - - assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); - - // Nothing to do if this is already a dedicated exit. - if (IsDedicatedExit) - return false; - - auto *NewExitBB = SplitBlockPredecessors( - BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA); - - if (!NewExitBB) - LLVM_DEBUG( - dbgs() << "WARNING: Can't create a dedicated exit block for loop: " - << *L << "\n"); - else - LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " - << NewExitBB->getName() << "\n"); - return true; - }; - - // Walk the exit blocks directly rather than building up a data structure for - // them, but only visit each one once. - SmallPtrSet<BasicBlock *, 4> Visited; - for (auto *BB : L->blocks()) - for (auto *SuccBB : successors(BB)) { - // We're looking for exit blocks so skip in-loop successors. - if (L->contains(SuccBB)) - continue; - - // Visit each exit block exactly once. - if (!Visited.insert(SuccBB).second) - continue; - - Changed |= RewriteExit(SuccBB); - } - - return Changed; -} - -/// Returns the instructions that use values defined in the loop. -SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { - SmallVector<Instruction *, 8> UsedOutside; - - for (auto *Block : L->getBlocks()) - // FIXME: I believe that this could use copy_if if the Inst reference could - // be adapted into a pointer. - for (auto &Inst : *Block) { - auto Users = Inst.users(); - if (any_of(Users, [&](User *U) { - auto *Use = cast<Instruction>(U); - return !L->contains(Use->getParent()); - })) - UsedOutside.push_back(&Inst); - } - - return UsedOutside; -} - -void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { - // By definition, all loop passes need the LoopInfo analysis and the - // Dominator tree it depends on. Because they all participate in the loop - // pass manager, they must also preserve these. - AU.addRequired<DominatorTreeWrapperPass>(); - AU.addPreserved<DominatorTreeWrapperPass>(); - AU.addRequired<LoopInfoWrapperPass>(); - AU.addPreserved<LoopInfoWrapperPass>(); - - // We must also preserve LoopSimplify and LCSSA. We locally access their IDs - // here because users shouldn't directly get them from this header. - extern char &LoopSimplifyID; - extern char &LCSSAID; - AU.addRequiredID(LoopSimplifyID); - AU.addPreservedID(LoopSimplifyID); - AU.addRequiredID(LCSSAID); - AU.addPreservedID(LCSSAID); - // This is used in the LPPassManager to perform LCSSA verification on passes - // which preserve lcssa form - AU.addRequired<LCSSAVerificationPass>(); - AU.addPreserved<LCSSAVerificationPass>(); - - // Loop passes are designed to run inside of a loop pass manager which means - // that any function analyses they require must be required by the first loop - // pass in the manager (so that it is computed before the loop pass manager - // runs) and preserved by all loop pasess in the manager. To make this - // reasonably robust, the set needed for most loop passes is maintained here. - // If your loop pass requires an analysis not listed here, you will need to - // carefully audit the loop pass manager nesting structure that results. - AU.addRequired<AAResultsWrapperPass>(); - AU.addPreserved<AAResultsWrapperPass>(); - AU.addPreserved<BasicAAWrapperPass>(); - AU.addPreserved<GlobalsAAWrapperPass>(); - AU.addPreserved<SCEVAAWrapperPass>(); - AU.addRequired<ScalarEvolutionWrapperPass>(); - AU.addPreserved<ScalarEvolutionWrapperPass>(); - // FIXME: When all loop passes preserve MemorySSA, it can be required and - // preserved here instead of the individual handling in each pass. -} - -/// Manually defined generic "LoopPass" dependency initialization. This is used -/// to initialize the exact set of passes from above in \c -/// getLoopAnalysisUsage. It can be used within a loop pass's initialization -/// with: -/// -/// INITIALIZE_PASS_DEPENDENCY(LoopPass) -/// -/// As-if "LoopPass" were a pass. -void llvm::initializeLoopPassPass(PassRegistry &Registry) { - INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) - INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) - INITIALIZE_PASS_DEPENDENCY(LoopSimplify) - INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) - INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) - INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) - INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) - INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) - INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) - INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) -} - -/// Create MDNode for input string. -static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) { - LLVMContext &Context = TheLoop->getHeader()->getContext(); - Metadata *MDs[] = { - MDString::get(Context, Name), - ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; - return MDNode::get(Context, MDs); -} - -/// Set input string into loop metadata by keeping other values intact. -/// If the string is already in loop metadata update value if it is -/// different. -void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD, - unsigned V) { - SmallVector<Metadata *, 4> MDs(1); - // If the loop already has metadata, retain it. - MDNode *LoopID = TheLoop->getLoopID(); - if (LoopID) { - for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { - MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); - // If it is of form key = value, try to parse it. - if (Node->getNumOperands() == 2) { - MDString *S = dyn_cast<MDString>(Node->getOperand(0)); - if (S && S->getString().equals(StringMD)) { - ConstantInt *IntMD = - mdconst::extract_or_null<ConstantInt>(Node->getOperand(1)); - if (IntMD && IntMD->getSExtValue() == V) - // It is already in place. Do nothing. - return; - // We need to update the value, so just skip it here and it will - // be added after copying other existed nodes. - continue; - } - } - MDs.push_back(Node); - } - } - // Add new metadata. - MDs.push_back(createStringMetadata(TheLoop, StringMD, V)); - // Replace current metadata node with new one. - LLVMContext &Context = TheLoop->getHeader()->getContext(); - MDNode *NewLoopID = MDNode::get(Context, MDs); - // Set operand 0 to refer to the loop id itself. - NewLoopID->replaceOperandWith(0, NewLoopID); - TheLoop->setLoopID(NewLoopID); -} - -/// Find string metadata for loop -/// -/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an -/// operand or null otherwise. If the string metadata is not found return -/// Optional's not-a-value. -Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop, - StringRef Name) { - MDNode *MD = findOptionMDForLoop(TheLoop, Name); - if (!MD) - return None; - switch (MD->getNumOperands()) { - case 1: - return nullptr; - case 2: - return &MD->getOperand(1); - default: - llvm_unreachable("loop metadata has 0 or 1 operand"); - } -} - -static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop, - StringRef Name) { - MDNode *MD = findOptionMDForLoop(TheLoop, Name); - if (!MD) - return None; - switch (MD->getNumOperands()) { - case 1: - // When the value is absent it is interpreted as 'attribute set'. - return true; - case 2: - if (ConstantInt *IntMD = - mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get())) - return IntMD->getZExtValue(); - return true; - } - llvm_unreachable("unexpected number of options"); -} - -static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) { - return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false); -} - -llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop, - StringRef Name) { - const MDOperand *AttrMD = - findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr); - if (!AttrMD) - return None; - - ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get()); - if (!IntMD) - return None; - - return IntMD->getSExtValue(); -} - -Optional<MDNode *> llvm::makeFollowupLoopID( - MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, - const char *InheritOptionsExceptPrefix, bool AlwaysNew) { - if (!OrigLoopID) { - if (AlwaysNew) - return nullptr; - return None; - } - - assert(OrigLoopID->getOperand(0) == OrigLoopID); - - bool InheritAllAttrs = !InheritOptionsExceptPrefix; - bool InheritSomeAttrs = - InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; - SmallVector<Metadata *, 8> MDs; - MDs.push_back(nullptr); - - bool Changed = false; - if (InheritAllAttrs || InheritSomeAttrs) { - for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) { - MDNode *Op = cast<MDNode>(Existing.get()); - - auto InheritThisAttribute = [InheritSomeAttrs, - InheritOptionsExceptPrefix](MDNode *Op) { - if (!InheritSomeAttrs) - return false; - - // Skip malformatted attribute metadata nodes. - if (Op->getNumOperands() == 0) - return true; - Metadata *NameMD = Op->getOperand(0).get(); - if (!isa<MDString>(NameMD)) - return true; - StringRef AttrName = cast<MDString>(NameMD)->getString(); - - // Do not inherit excluded attributes. - return !AttrName.startswith(InheritOptionsExceptPrefix); - }; - - if (InheritThisAttribute(Op)) - MDs.push_back(Op); - else - Changed = true; - } - } else { - // Modified if we dropped at least one attribute. - Changed = OrigLoopID->getNumOperands() > 1; - } - - bool HasAnyFollowup = false; - for (StringRef OptionName : FollowupOptions) { - MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); - if (!FollowupNode) - continue; - - HasAnyFollowup = true; - for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) { - MDs.push_back(Option.get()); - Changed = true; - } - } - - // Attributes of the followup loop not specified explicity, so signal to the - // transformation pass to add suitable attributes. - if (!AlwaysNew && !HasAnyFollowup) - return None; - - // If no attributes were added or remove, the previous loop Id can be reused. - if (!AlwaysNew && !Changed) - return OrigLoopID; - - // No attributes is equivalent to having no !llvm.loop metadata at all. - if (MDs.size() == 1) - return nullptr; - - // Build the new loop ID. - MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); - FollowupLoopID->replaceOperandWith(0, FollowupLoopID); - return FollowupLoopID; -} - -bool llvm::hasDisableAllTransformsHint(const Loop *L) { - return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); -} - -bool llvm::hasDisableLICMTransformsHint(const Loop *L) { - return getBooleanLoopAttribute(L, LLVMLoopDisableLICM); -} - -TransformationMode llvm::hasUnrollTransformation(Loop *L) { - if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) - return TM_SuppressedByUser; - - Optional<int> Count = - getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); - if (Count.hasValue()) - return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; - - if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) - return TM_ForcedByUser; - - if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) - return TM_ForcedByUser; - - if (hasDisableAllTransformsHint(L)) - return TM_Disable; - - return TM_Unspecified; -} - -TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) { - if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) - return TM_SuppressedByUser; - - Optional<int> Count = - getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); - if (Count.hasValue()) - return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; - - if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) - return TM_ForcedByUser; - - if (hasDisableAllTransformsHint(L)) - return TM_Disable; - - return TM_Unspecified; -} - -TransformationMode llvm::hasVectorizeTransformation(Loop *L) { - Optional<bool> Enable = - getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); - - if (Enable == false) - return TM_SuppressedByUser; - - Optional<int> VectorizeWidth = - getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width"); - Optional<int> InterleaveCount = - getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); - - // 'Forcing' vector width and interleave count to one effectively disables - // this tranformation. - if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1) - return TM_SuppressedByUser; - - if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) - return TM_Disable; - - if (Enable == true) - return TM_ForcedByUser; - - if (VectorizeWidth == 1 && InterleaveCount == 1) - return TM_Disable; - - if (VectorizeWidth > 1 || InterleaveCount > 1) - return TM_Enable; - - if (hasDisableAllTransformsHint(L)) - return TM_Disable; - - return TM_Unspecified; -} - -TransformationMode llvm::hasDistributeTransformation(Loop *L) { - if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) - return TM_ForcedByUser; - - if (hasDisableAllTransformsHint(L)) - return TM_Disable; - - return TM_Unspecified; -} - -TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) { - if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) - return TM_SuppressedByUser; - - if (hasDisableAllTransformsHint(L)) - return TM_Disable; - - return TM_Unspecified; -} - -/// Does a BFS from a given node to all of its children inside a given loop. -/// The returned vector of nodes includes the starting point. -SmallVector<DomTreeNode *, 16> -llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { - SmallVector<DomTreeNode *, 16> Worklist; - auto AddRegionToWorklist = [&](DomTreeNode *DTN) { - // Only include subregions in the top level loop. - BasicBlock *BB = DTN->getBlock(); - if (CurLoop->contains(BB)) - Worklist.push_back(DTN); - }; - - AddRegionToWorklist(N); - - for (size_t I = 0; I < Worklist.size(); I++) - for (DomTreeNode *Child : Worklist[I]->getChildren()) - AddRegionToWorklist(Child); - - return Worklist; -} - -void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr, - ScalarEvolution *SE = nullptr, - LoopInfo *LI = nullptr) { - assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); - auto *Preheader = L->getLoopPreheader(); - assert(Preheader && "Preheader should exist!"); - - // Now that we know the removal is safe, remove the loop by changing the - // branch from the preheader to go to the single exit block. - // - // Because we're deleting a large chunk of code at once, the sequence in which - // we remove things is very important to avoid invalidation issues. - - // Tell ScalarEvolution that the loop is deleted. Do this before - // deleting the loop so that ScalarEvolution can look at the loop - // to determine what it needs to clean up. - if (SE) - SE->forgetLoop(L); - - auto *ExitBlock = L->getUniqueExitBlock(); - assert(ExitBlock && "Should have a unique exit block!"); - assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); - - auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); - assert(OldBr && "Preheader must end with a branch"); - assert(OldBr->isUnconditional() && "Preheader must have a single successor"); - // Connect the preheader to the exit block. Keep the old edge to the header - // around to perform the dominator tree update in two separate steps - // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge - // preheader -> header. - // - // - // 0. Preheader 1. Preheader 2. Preheader - // | | | | - // V | V | - // Header <--\ | Header <--\ | Header <--\ - // | | | | | | | | | | | - // | V | | | V | | | V | - // | Body --/ | | Body --/ | | Body --/ - // V V V V V - // Exit Exit Exit - // - // By doing this is two separate steps we can perform the dominator tree - // update without using the batch update API. - // - // Even when the loop is never executed, we cannot remove the edge from the - // source block to the exit block. Consider the case where the unexecuted loop - // branches back to an outer loop. If we deleted the loop and removed the edge - // coming to this inner loop, this will break the outer loop structure (by - // deleting the backedge of the outer loop). If the outer loop is indeed a - // non-loop, it will be deleted in a future iteration of loop deletion pass. - IRBuilder<> Builder(OldBr); - Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); - // Remove the old branch. The conditional branch becomes a new terminator. - OldBr->eraseFromParent(); - - // Rewrite phis in the exit block to get their inputs from the Preheader - // instead of the exiting block. - for (PHINode &P : ExitBlock->phis()) { - // Set the zero'th element of Phi to be from the preheader and remove all - // other incoming values. Given the loop has dedicated exits, all other - // incoming values must be from the exiting blocks. - int PredIndex = 0; - P.setIncomingBlock(PredIndex, Preheader); - // Removes all incoming values from all other exiting blocks (including - // duplicate values from an exiting block). - // Nuke all entries except the zero'th entry which is the preheader entry. - // NOTE! We need to remove Incoming Values in the reverse order as done - // below, to keep the indices valid for deletion (removeIncomingValues - // updates getNumIncomingValues and shifts all values down into the operand - // being deleted). - for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) - P.removeIncomingValue(e - i, false); - - assert((P.getNumIncomingValues() == 1 && - P.getIncomingBlock(PredIndex) == Preheader) && - "Should have exactly one value and that's from the preheader!"); - } - - // Disconnect the loop body by branching directly to its exit. - Builder.SetInsertPoint(Preheader->getTerminator()); - Builder.CreateBr(ExitBlock); - // Remove the old branch. - Preheader->getTerminator()->eraseFromParent(); - - DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); - if (DT) { - // Update the dominator tree by informing it about the new edge from the - // preheader to the exit and the removed edge. - DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}, - {DominatorTree::Delete, Preheader, L->getHeader()}}); - } - - // Use a map to unique and a vector to guarantee deterministic ordering. - llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet; - llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; - - // Given LCSSA form is satisfied, we should not have users of instructions - // within the dead loop outside of the loop. However, LCSSA doesn't take - // unreachable uses into account. We handle them here. - // We could do it after drop all references (in this case all users in the - // loop will be already eliminated and we have less work to do but according - // to API doc of User::dropAllReferences only valid operation after dropping - // references, is deletion. So let's substitute all usages of - // instruction from the loop with undef value of corresponding type first. - for (auto *Block : L->blocks()) - for (Instruction &I : *Block) { - auto *Undef = UndefValue::get(I.getType()); - for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) { - Use &U = *UI; - ++UI; - if (auto *Usr = dyn_cast<Instruction>(U.getUser())) - if (L->contains(Usr->getParent())) - continue; - // If we have a DT then we can check that uses outside a loop only in - // unreachable block. - if (DT) - assert(!DT->isReachableFromEntry(U) && - "Unexpected user in reachable block"); - U.set(Undef); - } - auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); - if (!DVI) - continue; - auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); - if (Key != DeadDebugSet.end()) - continue; - DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); - DeadDebugInst.push_back(DVI); - } - - // After the loop has been deleted all the values defined and modified - // inside the loop are going to be unavailable. - // Since debug values in the loop have been deleted, inserting an undef - // dbg.value truncates the range of any dbg.value before the loop where the - // loop used to be. This is particularly important for constant values. - DIBuilder DIB(*ExitBlock->getModule()); - Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI(); - assert(InsertDbgValueBefore && - "There should be a non-PHI instruction in exit block, else these " - "instructions will have no parent."); - for (auto *DVI : DeadDebugInst) - DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()), - DVI->getVariable(), DVI->getExpression(), - DVI->getDebugLoc(), InsertDbgValueBefore); - - // Remove the block from the reference counting scheme, so that we can - // delete it freely later. - for (auto *Block : L->blocks()) - Block->dropAllReferences(); - - if (LI) { - // Erase the instructions and the blocks without having to worry - // about ordering because we already dropped the references. - // NOTE: This iteration is safe because erasing the block does not remove - // its entry from the loop's block list. We do that in the next section. - for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); - LpI != LpE; ++LpI) - (*LpI)->eraseFromParent(); - - // Finally, the blocks from loopinfo. This has to happen late because - // otherwise our loop iterators won't work. - - SmallPtrSet<BasicBlock *, 8> blocks; - blocks.insert(L->block_begin(), L->block_end()); - for (BasicBlock *BB : blocks) - LI->removeBlock(BB); - - // The last step is to update LoopInfo now that we've eliminated this loop. - LI->erase(L); - } -} - -Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) { - // Support loops with an exiting latch and other existing exists only - // deoptimize. - - // Get the branch weights for the loop's backedge. - BasicBlock *Latch = L->getLoopLatch(); - if (!Latch) - return None; - BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); - if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) - return None; - - assert((LatchBR->getSuccessor(0) == L->getHeader() || - LatchBR->getSuccessor(1) == L->getHeader()) && - "At least one edge out of the latch must go to the header"); - - SmallVector<BasicBlock *, 4> ExitBlocks; - L->getUniqueNonLatchExitBlocks(ExitBlocks); - if (any_of(ExitBlocks, [](const BasicBlock *EB) { - return !EB->getTerminatingDeoptimizeCall(); - })) - return None; - - // To estimate the number of times the loop body was executed, we want to - // know the number of times the backedge was taken, vs. the number of times - // we exited the loop. - uint64_t TrueVal, FalseVal; - if (!LatchBR->extractProfMetadata(TrueVal, FalseVal)) - return None; - - if (!TrueVal || !FalseVal) - return 0; - - // Divide the count of the backedge by the count of the edge exiting the loop, - // rounding to nearest. - if (LatchBR->getSuccessor(0) == L->getHeader()) - return (TrueVal + (FalseVal / 2)) / FalseVal; - else - return (FalseVal + (TrueVal / 2)) / TrueVal; -} - -bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, - ScalarEvolution &SE) { - Loop *OuterL = InnerLoop->getParentLoop(); - if (!OuterL) - return true; - - // Get the backedge taken count for the inner loop - BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); - const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); - if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || - !InnerLoopBECountSC->getType()->isIntegerTy()) - return false; - - // Get whether count is invariant to the outer loop - ScalarEvolution::LoopDisposition LD = - SE.getLoopDisposition(InnerLoopBECountSC, OuterL); - if (LD != ScalarEvolution::LoopInvariant) - return false; - - return true; -} - -Value *llvm::createMinMaxOp(IRBuilder<> &Builder, - RecurrenceDescriptor::MinMaxRecurrenceKind RK, - Value *Left, Value *Right) { - CmpInst::Predicate P = CmpInst::ICMP_NE; - switch (RK) { - default: - llvm_unreachable("Unknown min/max recurrence kind"); - case RecurrenceDescriptor::MRK_UIntMin: - P = CmpInst::ICMP_ULT; - break; - case RecurrenceDescriptor::MRK_UIntMax: - P = CmpInst::ICMP_UGT; - break; - case RecurrenceDescriptor::MRK_SIntMin: - P = CmpInst::ICMP_SLT; - break; - case RecurrenceDescriptor::MRK_SIntMax: - P = CmpInst::ICMP_SGT; - break; - case RecurrenceDescriptor::MRK_FloatMin: - P = CmpInst::FCMP_OLT; - break; - case RecurrenceDescriptor::MRK_FloatMax: - P = CmpInst::FCMP_OGT; - break; - } - - // We only match FP sequences that are 'fast', so we can unconditionally - // set it on any generated instructions. - IRBuilder<>::FastMathFlagGuard FMFG(Builder); - FastMathFlags FMF; - FMF.setFast(); - Builder.setFastMathFlags(FMF); - - Value *Cmp; - if (RK == RecurrenceDescriptor::MRK_FloatMin || - RK == RecurrenceDescriptor::MRK_FloatMax) - Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); - else - Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); - - Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); - return Select; -} - -// Helper to generate an ordered reduction. -Value * -llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src, - unsigned Op, - RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, - ArrayRef<Value *> RedOps) { - unsigned VF = Src->getType()->getVectorNumElements(); - - // Extract and apply reduction ops in ascending order: - // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] - Value *Result = Acc; - for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { - Value *Ext = - Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); - - if (Op != Instruction::ICmp && Op != Instruction::FCmp) { - Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, - "bin.rdx"); - } else { - assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && - "Invalid min/max"); - Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext); - } - - if (!RedOps.empty()) - propagateIRFlags(Result, RedOps); - } - - return Result; -} - -// Helper to generate a log2 shuffle reduction. -Value * -llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op, - RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, - ArrayRef<Value *> RedOps) { - unsigned VF = Src->getType()->getVectorNumElements(); - // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles - // and vector ops, reducing the set of values being computed by half each - // round. - assert(isPowerOf2_32(VF) && - "Reduction emission only supported for pow2 vectors!"); - Value *TmpVec = Src; - SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); - for (unsigned i = VF; i != 1; i >>= 1) { - // Move the upper half of the vector to the lower half. - for (unsigned j = 0; j != i / 2; ++j) - ShuffleMask[j] = Builder.getInt32(i / 2 + j); - - // Fill the rest of the mask with undef. - std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), - UndefValue::get(Builder.getInt32Ty())); - - Value *Shuf = Builder.CreateShuffleVector( - TmpVec, UndefValue::get(TmpVec->getType()), - ConstantVector::get(ShuffleMask), "rdx.shuf"); - - if (Op != Instruction::ICmp && Op != Instruction::FCmp) { - // The builder propagates its fast-math-flags setting. - TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, - "bin.rdx"); - } else { - assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && - "Invalid min/max"); - TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf); - } - if (!RedOps.empty()) - propagateIRFlags(TmpVec, RedOps); - } - // The result is in the first element of the vector. - return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); -} - -/// Create a simple vector reduction specified by an opcode and some -/// flags (if generating min/max reductions). -Value *llvm::createSimpleTargetReduction( - IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode, - Value *Src, TargetTransformInfo::ReductionFlags Flags, - ArrayRef<Value *> RedOps) { - assert(isa<VectorType>(Src->getType()) && "Type must be a vector"); - - std::function<Value *()> BuildFunc; - using RD = RecurrenceDescriptor; - RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid; - - switch (Opcode) { - case Instruction::Add: - BuildFunc = [&]() { return Builder.CreateAddReduce(Src); }; - break; - case Instruction::Mul: - BuildFunc = [&]() { return Builder.CreateMulReduce(Src); }; - break; - case Instruction::And: - BuildFunc = [&]() { return Builder.CreateAndReduce(Src); }; - break; - case Instruction::Or: - BuildFunc = [&]() { return Builder.CreateOrReduce(Src); }; - break; - case Instruction::Xor: - BuildFunc = [&]() { return Builder.CreateXorReduce(Src); }; - break; - case Instruction::FAdd: - BuildFunc = [&]() { - auto Rdx = Builder.CreateFAddReduce( - Constant::getNullValue(Src->getType()->getVectorElementType()), Src); - return Rdx; - }; - break; - case Instruction::FMul: - BuildFunc = [&]() { - Type *Ty = Src->getType()->getVectorElementType(); - auto Rdx = Builder.CreateFMulReduce(ConstantFP::get(Ty, 1.0), Src); - return Rdx; - }; - break; - case Instruction::ICmp: - if (Flags.IsMaxOp) { - MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax; - BuildFunc = [&]() { - return Builder.CreateIntMaxReduce(Src, Flags.IsSigned); - }; - } else { - MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin; - BuildFunc = [&]() { - return Builder.CreateIntMinReduce(Src, Flags.IsSigned); - }; - } - break; - case Instruction::FCmp: - if (Flags.IsMaxOp) { - MinMaxKind = RD::MRK_FloatMax; - BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); }; - } else { - MinMaxKind = RD::MRK_FloatMin; - BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); }; - } - break; - default: - llvm_unreachable("Unhandled opcode"); - break; - } - if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags)) - return BuildFunc(); - return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps); -} - -/// Create a vector reduction using a given recurrence descriptor. -Value *llvm::createTargetReduction(IRBuilder<> &B, - const TargetTransformInfo *TTI, - RecurrenceDescriptor &Desc, Value *Src, - bool NoNaN) { - // TODO: Support in-order reductions based on the recurrence descriptor. - using RD = RecurrenceDescriptor; - RD::RecurrenceKind RecKind = Desc.getRecurrenceKind(); - TargetTransformInfo::ReductionFlags Flags; - Flags.NoNaN = NoNaN; - - // All ops in the reduction inherit fast-math-flags from the recurrence - // descriptor. - IRBuilder<>::FastMathFlagGuard FMFGuard(B); - B.setFastMathFlags(Desc.getFastMathFlags()); - - switch (RecKind) { - case RD::RK_FloatAdd: - return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags); - case RD::RK_FloatMult: - return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags); - case RD::RK_IntegerAdd: - return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags); - case RD::RK_IntegerMult: - return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags); - case RD::RK_IntegerAnd: - return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags); - case RD::RK_IntegerOr: - return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags); - case RD::RK_IntegerXor: - return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags); - case RD::RK_IntegerMinMax: { - RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind(); - Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax); - Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin); - return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags); - } - case RD::RK_FloatMinMax: { - Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax; - return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags); - } - default: - llvm_unreachable("Unhandled RecKind"); - } -} - -void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { - auto *VecOp = dyn_cast<Instruction>(I); - if (!VecOp) - return; - auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) - : dyn_cast<Instruction>(OpValue); - if (!Intersection) - return; - const unsigned Opcode = Intersection->getOpcode(); - VecOp->copyIRFlags(Intersection); - for (auto *V : VL) { - auto *Instr = dyn_cast<Instruction>(V); - if (!Instr) - continue; - if (OpValue == nullptr || Opcode == Instr->getOpcode()) - VecOp->andIRFlags(V); - } -} - -bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, - ScalarEvolution &SE) { - const SCEV *Zero = SE.getZero(S->getType()); - return SE.isAvailableAtLoopEntry(S, L) && - SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); -} - -bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, - ScalarEvolution &SE) { - const SCEV *Zero = SE.getZero(S->getType()); - return SE.isAvailableAtLoopEntry(S, L) && - SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); -} - -bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, - bool Signed) { - unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); - APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : - APInt::getMinValue(BitWidth); - auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; - return SE.isAvailableAtLoopEntry(S, L) && - SE.isLoopEntryGuardedByCond(L, Predicate, S, - SE.getConstant(Min)); -} - -bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, - bool Signed) { - unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); - APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : - APInt::getMaxValue(BitWidth); - auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; - return SE.isAvailableAtLoopEntry(S, L) && - SE.isLoopEntryGuardedByCond(L, Predicate, S, - SE.getConstant(Max)); -} |
