summaryrefslogtreecommitdiff
path: root/lib/Transforms/Utils/SimplifyCFG.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Utils/SimplifyCFG.cpp')
-rw-r--r--lib/Transforms/Utils/SimplifyCFG.cpp2213
1 files changed, 2213 insertions, 0 deletions
diff --git a/lib/Transforms/Utils/SimplifyCFG.cpp b/lib/Transforms/Utils/SimplifyCFG.cpp
new file mode 100644
index 000000000000..2cde765560b8
--- /dev/null
+++ b/lib/Transforms/Utils/SimplifyCFG.cpp
@@ -0,0 +1,2213 @@
+//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Peephole optimize the CFG.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "simplifycfg"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Constants.h"
+#include "llvm/Instructions.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Type.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include <algorithm>
+#include <functional>
+#include <set>
+#include <map>
+using namespace llvm;
+
+STATISTIC(NumSpeculations, "Number of speculative executed instructions");
+
+/// SafeToMergeTerminators - Return true if it is safe to merge these two
+/// terminator instructions together.
+///
+static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
+ if (SI1 == SI2) return false; // Can't merge with self!
+
+ // It is not safe to merge these two switch instructions if they have a common
+ // successor, and if that successor has a PHI node, and if *that* PHI node has
+ // conflicting incoming values from the two switch blocks.
+ BasicBlock *SI1BB = SI1->getParent();
+ BasicBlock *SI2BB = SI2->getParent();
+ SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
+
+ for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
+ if (SI1Succs.count(*I))
+ for (BasicBlock::iterator BBI = (*I)->begin();
+ isa<PHINode>(BBI); ++BBI) {
+ PHINode *PN = cast<PHINode>(BBI);
+ if (PN->getIncomingValueForBlock(SI1BB) !=
+ PN->getIncomingValueForBlock(SI2BB))
+ return false;
+ }
+
+ return true;
+}
+
+/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
+/// now be entries in it from the 'NewPred' block. The values that will be
+/// flowing into the PHI nodes will be the same as those coming in from
+/// ExistPred, an existing predecessor of Succ.
+static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
+ BasicBlock *ExistPred) {
+ assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
+ succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
+ if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
+
+ PHINode *PN;
+ for (BasicBlock::iterator I = Succ->begin();
+ (PN = dyn_cast<PHINode>(I)); ++I)
+ PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
+}
+
+/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
+/// almost-empty BB ending in an unconditional branch to Succ, into succ.
+///
+/// Assumption: Succ is the single successor for BB.
+///
+static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
+ assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
+
+ DOUT << "Looking to fold " << BB->getNameStart() << " into "
+ << Succ->getNameStart() << "\n";
+ // Shortcut, if there is only a single predecessor it must be BB and merging
+ // is always safe
+ if (Succ->getSinglePredecessor()) return true;
+
+ typedef SmallPtrSet<Instruction*, 16> InstrSet;
+ InstrSet BBPHIs;
+
+ // Make a list of all phi nodes in BB
+ BasicBlock::iterator BBI = BB->begin();
+ while (isa<PHINode>(*BBI)) BBPHIs.insert(BBI++);
+
+ // Make a list of the predecessors of BB
+ typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
+ BlockSet BBPreds(pred_begin(BB), pred_end(BB));
+
+ // Use that list to make another list of common predecessors of BB and Succ
+ BlockSet CommonPreds;
+ for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
+ PI != PE; ++PI)
+ if (BBPreds.count(*PI))
+ CommonPreds.insert(*PI);
+
+ // Shortcut, if there are no common predecessors, merging is always safe
+ if (CommonPreds.empty())
+ return true;
+
+ // Look at all the phi nodes in Succ, to see if they present a conflict when
+ // merging these blocks
+ for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PN = cast<PHINode>(I);
+
+ // If the incoming value from BB is again a PHINode in
+ // BB which has the same incoming value for *PI as PN does, we can
+ // merge the phi nodes and then the blocks can still be merged
+ PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
+ if (BBPN && BBPN->getParent() == BB) {
+ for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
+ PI != PE; PI++) {
+ if (BBPN->getIncomingValueForBlock(*PI)
+ != PN->getIncomingValueForBlock(*PI)) {
+ DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in "
+ << Succ->getNameStart() << " is conflicting with "
+ << BBPN->getNameStart() << " with regard to common predecessor "
+ << (*PI)->getNameStart() << "\n";
+ return false;
+ }
+ }
+ // Remove this phinode from the list of phis in BB, since it has been
+ // handled.
+ BBPHIs.erase(BBPN);
+ } else {
+ Value* Val = PN->getIncomingValueForBlock(BB);
+ for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
+ PI != PE; PI++) {
+ // See if the incoming value for the common predecessor is equal to the
+ // one for BB, in which case this phi node will not prevent the merging
+ // of the block.
+ if (Val != PN->getIncomingValueForBlock(*PI)) {
+ DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in "
+ << Succ->getNameStart() << " is conflicting with regard to common "
+ << "predecessor " << (*PI)->getNameStart() << "\n";
+ return false;
+ }
+ }
+ }
+ }
+
+ // If there are any other phi nodes in BB that don't have a phi node in Succ
+ // to merge with, they must be moved to Succ completely. However, for any
+ // predecessors of Succ, branches will be added to the phi node that just
+ // point to itself. So, for any common predecessors, this must not cause
+ // conflicts.
+ for (InstrSet::iterator I = BBPHIs.begin(), E = BBPHIs.end();
+ I != E; I++) {
+ PHINode *PN = cast<PHINode>(*I);
+ for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
+ PI != PE; PI++)
+ if (PN->getIncomingValueForBlock(*PI) != PN) {
+ DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in "
+ << BB->getNameStart() << " is conflicting with regard to common "
+ << "predecessor " << (*PI)->getNameStart() << "\n";
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/// TryToSimplifyUncondBranchFromEmptyBlock - BB contains an unconditional
+/// branch to Succ, and contains no instructions other than PHI nodes and the
+/// branch. If possible, eliminate BB.
+static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
+ BasicBlock *Succ) {
+ // Check to see if merging these blocks would cause conflicts for any of the
+ // phi nodes in BB or Succ. If not, we can safely merge.
+ if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
+
+ DOUT << "Killing Trivial BB: \n" << *BB;
+
+ if (isa<PHINode>(Succ->begin())) {
+ // If there is more than one pred of succ, and there are PHI nodes in
+ // the successor, then we need to add incoming edges for the PHI nodes
+ //
+ const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
+
+ // Loop over all of the PHI nodes in the successor of BB.
+ for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PN = cast<PHINode>(I);
+ Value *OldVal = PN->removeIncomingValue(BB, false);
+ assert(OldVal && "No entry in PHI for Pred BB!");
+
+ // If this incoming value is one of the PHI nodes in BB, the new entries
+ // in the PHI node are the entries from the old PHI.
+ if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
+ PHINode *OldValPN = cast<PHINode>(OldVal);
+ for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
+ // Note that, since we are merging phi nodes and BB and Succ might
+ // have common predecessors, we could end up with a phi node with
+ // identical incoming branches. This will be cleaned up later (and
+ // will trigger asserts if we try to clean it up now, without also
+ // simplifying the corresponding conditional branch).
+ PN->addIncoming(OldValPN->getIncomingValue(i),
+ OldValPN->getIncomingBlock(i));
+ } else {
+ // Add an incoming value for each of the new incoming values.
+ for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
+ PN->addIncoming(OldVal, BBPreds[i]);
+ }
+ }
+ }
+
+ if (isa<PHINode>(&BB->front())) {
+ SmallVector<BasicBlock*, 16>
+ OldSuccPreds(pred_begin(Succ), pred_end(Succ));
+
+ // Move all PHI nodes in BB to Succ if they are alive, otherwise
+ // delete them.
+ while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
+ if (PN->use_empty()) {
+ // Just remove the dead phi. This happens if Succ's PHIs were the only
+ // users of the PHI nodes.
+ PN->eraseFromParent();
+ continue;
+ }
+
+ // The instruction is alive, so this means that BB must dominate all
+ // predecessors of Succ (Since all uses of the PN are after its
+ // definition, so in Succ or a block dominated by Succ. If a predecessor
+ // of Succ would not be dominated by BB, PN would violate the def before
+ // use SSA demand). Therefore, we can simply move the phi node to the
+ // next block.
+ Succ->getInstList().splice(Succ->begin(),
+ BB->getInstList(), BB->begin());
+
+ // We need to add new entries for the PHI node to account for
+ // predecessors of Succ that the PHI node does not take into
+ // account. At this point, since we know that BB dominated succ and all
+ // of its predecessors, this means that we should any newly added
+ // incoming edges should use the PHI node itself as the value for these
+ // edges, because they are loop back edges.
+ for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
+ if (OldSuccPreds[i] != BB)
+ PN->addIncoming(PN, OldSuccPreds[i]);
+ }
+ }
+
+ // Everything that jumped to BB now goes to Succ.
+ BB->replaceAllUsesWith(Succ);
+ if (!Succ->hasName()) Succ->takeName(BB);
+ BB->eraseFromParent(); // Delete the old basic block.
+ return true;
+}
+
+/// GetIfCondition - Given a basic block (BB) with two predecessors (and
+/// presumably PHI nodes in it), check to see if the merge at this block is due
+/// to an "if condition". If so, return the boolean condition that determines
+/// which entry into BB will be taken. Also, return by references the block
+/// that will be entered from if the condition is true, and the block that will
+/// be entered if the condition is false.
+///
+///
+static Value *GetIfCondition(BasicBlock *BB,
+ BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
+ assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
+ "Function can only handle blocks with 2 predecessors!");
+ BasicBlock *Pred1 = *pred_begin(BB);
+ BasicBlock *Pred2 = *++pred_begin(BB);
+
+ // We can only handle branches. Other control flow will be lowered to
+ // branches if possible anyway.
+ if (!isa<BranchInst>(Pred1->getTerminator()) ||
+ !isa<BranchInst>(Pred2->getTerminator()))
+ return 0;
+ BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
+ BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
+
+ // Eliminate code duplication by ensuring that Pred1Br is conditional if
+ // either are.
+ if (Pred2Br->isConditional()) {
+ // If both branches are conditional, we don't have an "if statement". In
+ // reality, we could transform this case, but since the condition will be
+ // required anyway, we stand no chance of eliminating it, so the xform is
+ // probably not profitable.
+ if (Pred1Br->isConditional())
+ return 0;
+
+ std::swap(Pred1, Pred2);
+ std::swap(Pred1Br, Pred2Br);
+ }
+
+ if (Pred1Br->isConditional()) {
+ // If we found a conditional branch predecessor, make sure that it branches
+ // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
+ if (Pred1Br->getSuccessor(0) == BB &&
+ Pred1Br->getSuccessor(1) == Pred2) {
+ IfTrue = Pred1;
+ IfFalse = Pred2;
+ } else if (Pred1Br->getSuccessor(0) == Pred2 &&
+ Pred1Br->getSuccessor(1) == BB) {
+ IfTrue = Pred2;
+ IfFalse = Pred1;
+ } else {
+ // We know that one arm of the conditional goes to BB, so the other must
+ // go somewhere unrelated, and this must not be an "if statement".
+ return 0;
+ }
+
+ // The only thing we have to watch out for here is to make sure that Pred2
+ // doesn't have incoming edges from other blocks. If it does, the condition
+ // doesn't dominate BB.
+ if (++pred_begin(Pred2) != pred_end(Pred2))
+ return 0;
+
+ return Pred1Br->getCondition();
+ }
+
+ // Ok, if we got here, both predecessors end with an unconditional branch to
+ // BB. Don't panic! If both blocks only have a single (identical)
+ // predecessor, and THAT is a conditional branch, then we're all ok!
+ if (pred_begin(Pred1) == pred_end(Pred1) ||
+ ++pred_begin(Pred1) != pred_end(Pred1) ||
+ pred_begin(Pred2) == pred_end(Pred2) ||
+ ++pred_begin(Pred2) != pred_end(Pred2) ||
+ *pred_begin(Pred1) != *pred_begin(Pred2))
+ return 0;
+
+ // Otherwise, if this is a conditional branch, then we can use it!
+ BasicBlock *CommonPred = *pred_begin(Pred1);
+ if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
+ assert(BI->isConditional() && "Two successors but not conditional?");
+ if (BI->getSuccessor(0) == Pred1) {
+ IfTrue = Pred1;
+ IfFalse = Pred2;
+ } else {
+ IfTrue = Pred2;
+ IfFalse = Pred1;
+ }
+ return BI->getCondition();
+ }
+ return 0;
+}
+
+/// DominatesMergePoint - If we have a merge point of an "if condition" as
+/// accepted above, return true if the specified value dominates the block. We
+/// don't handle the true generality of domination here, just a special case
+/// which works well enough for us.
+///
+/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
+/// see if V (which must be an instruction) is cheap to compute and is
+/// non-trapping. If both are true, the instruction is inserted into the set
+/// and true is returned.
+static bool DominatesMergePoint(Value *V, BasicBlock *BB,
+ std::set<Instruction*> *AggressiveInsts) {
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I) {
+ // Non-instructions all dominate instructions, but not all constantexprs
+ // can be executed unconditionally.
+ if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
+ if (C->canTrap())
+ return false;
+ return true;
+ }
+ BasicBlock *PBB = I->getParent();
+
+ // We don't want to allow weird loops that might have the "if condition" in
+ // the bottom of this block.
+ if (PBB == BB) return false;
+
+ // If this instruction is defined in a block that contains an unconditional
+ // branch to BB, then it must be in the 'conditional' part of the "if
+ // statement".
+ if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
+ if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
+ if (!AggressiveInsts) return false;
+ // Okay, it looks like the instruction IS in the "condition". Check to
+ // see if its a cheap instruction to unconditionally compute, and if it
+ // only uses stuff defined outside of the condition. If so, hoist it out.
+ switch (I->getOpcode()) {
+ default: return false; // Cannot hoist this out safely.
+ case Instruction::Load: {
+ // We can hoist loads that are non-volatile and obviously cannot trap.
+ if (cast<LoadInst>(I)->isVolatile())
+ return false;
+ // FIXME: A computation of a constant can trap!
+ if (!isa<AllocaInst>(I->getOperand(0)) &&
+ !isa<Constant>(I->getOperand(0)))
+ return false;
+ // External weak globals may have address 0, so we can't load them.
+ Value *V2 = I->getOperand(0)->getUnderlyingObject();
+ if (V2) {
+ GlobalVariable* GV = dyn_cast<GlobalVariable>(V2);
+ if (GV && GV->hasExternalWeakLinkage())
+ return false;
+ }
+ // Finally, we have to check to make sure there are no instructions
+ // before the load in its basic block, as we are going to hoist the loop
+ // out to its predecessor.
+ BasicBlock::iterator IP = PBB->begin();
+ while (isa<DbgInfoIntrinsic>(IP))
+ IP++;
+ if (IP != BasicBlock::iterator(I))
+ return false;
+ break;
+ }
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ if (I->getOperand(0)->getType()->isFPOrFPVector())
+ return false; // FP arithmetic might trap.
+ break; // These are all cheap and non-trapping instructions.
+ }
+
+ // Okay, we can only really hoist these out if their operands are not
+ // defined in the conditional region.
+ for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
+ if (!DominatesMergePoint(*i, BB, 0))
+ return false;
+ // Okay, it's safe to do this! Remember this instruction.
+ AggressiveInsts->insert(I);
+ }
+
+ return true;
+}
+
+/// GatherConstantSetEQs - Given a potentially 'or'd together collection of
+/// icmp_eq instructions that compare a value against a constant, return the
+/// value being compared, and stick the constant into the Values vector.
+static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){
+ if (Instruction *Inst = dyn_cast<Instruction>(V)) {
+ if (Inst->getOpcode() == Instruction::ICmp &&
+ cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_EQ) {
+ if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
+ Values.push_back(C);
+ return Inst->getOperand(0);
+ } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
+ Values.push_back(C);
+ return Inst->getOperand(1);
+ }
+ } else if (Inst->getOpcode() == Instruction::Or) {
+ if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
+ if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
+ if (LHS == RHS)
+ return LHS;
+ }
+ }
+ return 0;
+}
+
+/// GatherConstantSetNEs - Given a potentially 'and'd together collection of
+/// setne instructions that compare a value against a constant, return the value
+/// being compared, and stick the constant into the Values vector.
+static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){
+ if (Instruction *Inst = dyn_cast<Instruction>(V)) {
+ if (Inst->getOpcode() == Instruction::ICmp &&
+ cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_NE) {
+ if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
+ Values.push_back(C);
+ return Inst->getOperand(0);
+ } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
+ Values.push_back(C);
+ return Inst->getOperand(1);
+ }
+ } else if (Inst->getOpcode() == Instruction::And) {
+ if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
+ if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
+ if (LHS == RHS)
+ return LHS;
+ }
+ }
+ return 0;
+}
+
+/// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
+/// bunch of comparisons of one value against constants, return the value and
+/// the constants being compared.
+static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
+ std::vector<ConstantInt*> &Values) {
+ if (Cond->getOpcode() == Instruction::Or) {
+ CompVal = GatherConstantSetEQs(Cond, Values);
+
+ // Return true to indicate that the condition is true if the CompVal is
+ // equal to one of the constants.
+ return true;
+ } else if (Cond->getOpcode() == Instruction::And) {
+ CompVal = GatherConstantSetNEs(Cond, Values);
+
+ // Return false to indicate that the condition is false if the CompVal is
+ // equal to one of the constants.
+ return false;
+ }
+ return false;
+}
+
+static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
+ Instruction* Cond = 0;
+ if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ Cond = dyn_cast<Instruction>(SI->getCondition());
+ } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+ if (BI->isConditional())
+ Cond = dyn_cast<Instruction>(BI->getCondition());
+ }
+
+ TI->eraseFromParent();
+ if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
+}
+
+/// isValueEqualityComparison - Return true if the specified terminator checks
+/// to see if a value is equal to constant integer value.
+static Value *isValueEqualityComparison(TerminatorInst *TI) {
+ if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ // Do not permit merging of large switch instructions into their
+ // predecessors unless there is only one predecessor.
+ if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
+ pred_end(SI->getParent())) > 128)
+ return 0;
+
+ return SI->getCondition();
+ }
+ if (BranchInst *BI = dyn_cast<BranchInst>(TI))
+ if (BI->isConditional() && BI->getCondition()->hasOneUse())
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
+ if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
+ ICI->getPredicate() == ICmpInst::ICMP_NE) &&
+ isa<ConstantInt>(ICI->getOperand(1)))
+ return ICI->getOperand(0);
+ return 0;
+}
+
+/// GetValueEqualityComparisonCases - Given a value comparison instruction,
+/// decode all of the 'cases' that it represents and return the 'default' block.
+static BasicBlock *
+GetValueEqualityComparisonCases(TerminatorInst *TI,
+ std::vector<std::pair<ConstantInt*,
+ BasicBlock*> > &Cases) {
+ if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ Cases.reserve(SI->getNumCases());
+ for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
+ Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
+ return SI->getDefaultDest();
+ }
+
+ BranchInst *BI = cast<BranchInst>(TI);
+ ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
+ Cases.push_back(std::make_pair(cast<ConstantInt>(ICI->getOperand(1)),
+ BI->getSuccessor(ICI->getPredicate() ==
+ ICmpInst::ICMP_NE)));
+ return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
+}
+
+
+/// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
+/// in the list that match the specified block.
+static void EliminateBlockCases(BasicBlock *BB,
+ std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
+ for (unsigned i = 0, e = Cases.size(); i != e; ++i)
+ if (Cases[i].second == BB) {
+ Cases.erase(Cases.begin()+i);
+ --i; --e;
+ }
+}
+
+/// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
+/// well.
+static bool
+ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
+ std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
+ std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
+
+ // Make V1 be smaller than V2.
+ if (V1->size() > V2->size())
+ std::swap(V1, V2);
+
+ if (V1->size() == 0) return false;
+ if (V1->size() == 1) {
+ // Just scan V2.
+ ConstantInt *TheVal = (*V1)[0].first;
+ for (unsigned i = 0, e = V2->size(); i != e; ++i)
+ if (TheVal == (*V2)[i].first)
+ return true;
+ }
+
+ // Otherwise, just sort both lists and compare element by element.
+ std::sort(V1->begin(), V1->end());
+ std::sort(V2->begin(), V2->end());
+ unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
+ while (i1 != e1 && i2 != e2) {
+ if ((*V1)[i1].first == (*V2)[i2].first)
+ return true;
+ if ((*V1)[i1].first < (*V2)[i2].first)
+ ++i1;
+ else
+ ++i2;
+ }
+ return false;
+}
+
+/// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
+/// terminator instruction and its block is known to only have a single
+/// predecessor block, check to see if that predecessor is also a value
+/// comparison with the same value, and if that comparison determines the
+/// outcome of this comparison. If so, simplify TI. This does a very limited
+/// form of jump threading.
+static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
+ BasicBlock *Pred) {
+ Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
+ if (!PredVal) return false; // Not a value comparison in predecessor.
+
+ Value *ThisVal = isValueEqualityComparison(TI);
+ assert(ThisVal && "This isn't a value comparison!!");
+ if (ThisVal != PredVal) return false; // Different predicates.
+
+ // Find out information about when control will move from Pred to TI's block.
+ std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
+ BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
+ PredCases);
+ EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
+
+ // Find information about how control leaves this block.
+ std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
+ BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
+ EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
+
+ // If TI's block is the default block from Pred's comparison, potentially
+ // simplify TI based on this knowledge.
+ if (PredDef == TI->getParent()) {
+ // If we are here, we know that the value is none of those cases listed in
+ // PredCases. If there are any cases in ThisCases that are in PredCases, we
+ // can simplify TI.
+ if (ValuesOverlap(PredCases, ThisCases)) {
+ if (isa<BranchInst>(TI)) {
+ // Okay, one of the successors of this condbr is dead. Convert it to a
+ // uncond br.
+ assert(ThisCases.size() == 1 && "Branch can only have one case!");
+ // Insert the new branch.
+ Instruction *NI = BranchInst::Create(ThisDef, TI);
+
+ // Remove PHI node entries for the dead edge.
+ ThisCases[0].second->removePredecessor(TI->getParent());
+
+ DOUT << "Threading pred instr: " << *Pred->getTerminator()
+ << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
+
+ EraseTerminatorInstAndDCECond(TI);
+ return true;
+
+ } else {
+ SwitchInst *SI = cast<SwitchInst>(TI);
+ // Okay, TI has cases that are statically dead, prune them away.
+ SmallPtrSet<Constant*, 16> DeadCases;
+ for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
+ DeadCases.insert(PredCases[i].first);
+
+ DOUT << "Threading pred instr: " << *Pred->getTerminator()
+ << "Through successor TI: " << *TI;
+
+ for (unsigned i = SI->getNumCases()-1; i != 0; --i)
+ if (DeadCases.count(SI->getCaseValue(i))) {
+ SI->getSuccessor(i)->removePredecessor(TI->getParent());
+ SI->removeCase(i);
+ }
+
+ DOUT << "Leaving: " << *TI << "\n";
+ return true;
+ }
+ }
+
+ } else {
+ // Otherwise, TI's block must correspond to some matched value. Find out
+ // which value (or set of values) this is.
+ ConstantInt *TIV = 0;
+ BasicBlock *TIBB = TI->getParent();
+ for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
+ if (PredCases[i].second == TIBB) {
+ if (TIV == 0)
+ TIV = PredCases[i].first;
+ else
+ return false; // Cannot handle multiple values coming to this block.
+ }
+ assert(TIV && "No edge from pred to succ?");
+
+ // Okay, we found the one constant that our value can be if we get into TI's
+ // BB. Find out which successor will unconditionally be branched to.
+ BasicBlock *TheRealDest = 0;
+ for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
+ if (ThisCases[i].first == TIV) {
+ TheRealDest = ThisCases[i].second;
+ break;
+ }
+
+ // If not handled by any explicit cases, it is handled by the default case.
+ if (TheRealDest == 0) TheRealDest = ThisDef;
+
+ // Remove PHI node entries for dead edges.
+ BasicBlock *CheckEdge = TheRealDest;
+ for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
+ if (*SI != CheckEdge)
+ (*SI)->removePredecessor(TIBB);
+ else
+ CheckEdge = 0;
+
+ // Insert the new branch.
+ Instruction *NI = BranchInst::Create(TheRealDest, TI);
+
+ DOUT << "Threading pred instr: " << *Pred->getTerminator()
+ << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
+
+ EraseTerminatorInstAndDCECond(TI);
+ return true;
+ }
+ return false;
+}
+
+namespace {
+ /// ConstantIntOrdering - This class implements a stable ordering of constant
+ /// integers that does not depend on their address. This is important for
+ /// applications that sort ConstantInt's to ensure uniqueness.
+ struct ConstantIntOrdering {
+ bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
+ return LHS->getValue().ult(RHS->getValue());
+ }
+ };
+}
+
+/// FoldValueComparisonIntoPredecessors - The specified terminator is a value
+/// equality comparison instruction (either a switch or a branch on "X == c").
+/// See if any of the predecessors of the terminator block are value comparisons
+/// on the same value. If so, and if safe to do so, fold them together.
+static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
+ BasicBlock *BB = TI->getParent();
+ Value *CV = isValueEqualityComparison(TI); // CondVal
+ assert(CV && "Not a comparison?");
+ bool Changed = false;
+
+ SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
+ while (!Preds.empty()) {
+ BasicBlock *Pred = Preds.pop_back_val();
+
+ // See if the predecessor is a comparison with the same value.
+ TerminatorInst *PTI = Pred->getTerminator();
+ Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
+
+ if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
+ // Figure out which 'cases' to copy from SI to PSI.
+ std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
+ BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
+
+ std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
+ BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
+
+ // Based on whether the default edge from PTI goes to BB or not, fill in
+ // PredCases and PredDefault with the new switch cases we would like to
+ // build.
+ SmallVector<BasicBlock*, 8> NewSuccessors;
+
+ if (PredDefault == BB) {
+ // If this is the default destination from PTI, only the edges in TI
+ // that don't occur in PTI, or that branch to BB will be activated.
+ std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
+ for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
+ if (PredCases[i].second != BB)
+ PTIHandled.insert(PredCases[i].first);
+ else {
+ // The default destination is BB, we don't need explicit targets.
+ std::swap(PredCases[i], PredCases.back());
+ PredCases.pop_back();
+ --i; --e;
+ }
+
+ // Reconstruct the new switch statement we will be building.
+ if (PredDefault != BBDefault) {
+ PredDefault->removePredecessor(Pred);
+ PredDefault = BBDefault;
+ NewSuccessors.push_back(BBDefault);
+ }
+ for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
+ if (!PTIHandled.count(BBCases[i].first) &&
+ BBCases[i].second != BBDefault) {
+ PredCases.push_back(BBCases[i]);
+ NewSuccessors.push_back(BBCases[i].second);
+ }
+
+ } else {
+ // If this is not the default destination from PSI, only the edges
+ // in SI that occur in PSI with a destination of BB will be
+ // activated.
+ std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
+ for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
+ if (PredCases[i].second == BB) {
+ PTIHandled.insert(PredCases[i].first);
+ std::swap(PredCases[i], PredCases.back());
+ PredCases.pop_back();
+ --i; --e;
+ }
+
+ // Okay, now we know which constants were sent to BB from the
+ // predecessor. Figure out where they will all go now.
+ for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
+ if (PTIHandled.count(BBCases[i].first)) {
+ // If this is one we are capable of getting...
+ PredCases.push_back(BBCases[i]);
+ NewSuccessors.push_back(BBCases[i].second);
+ PTIHandled.erase(BBCases[i].first);// This constant is taken care of
+ }
+
+ // If there are any constants vectored to BB that TI doesn't handle,
+ // they must go to the default destination of TI.
+ for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
+ PTIHandled.begin(),
+ E = PTIHandled.end(); I != E; ++I) {
+ PredCases.push_back(std::make_pair(*I, BBDefault));
+ NewSuccessors.push_back(BBDefault);
+ }
+ }
+
+ // Okay, at this point, we know which new successor Pred will get. Make
+ // sure we update the number of entries in the PHI nodes for these
+ // successors.
+ for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
+ AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
+
+ // Now that the successors are updated, create the new Switch instruction.
+ SwitchInst *NewSI = SwitchInst::Create(CV, PredDefault,
+ PredCases.size(), PTI);
+ for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
+ NewSI->addCase(PredCases[i].first, PredCases[i].second);
+
+ EraseTerminatorInstAndDCECond(PTI);
+
+ // Okay, last check. If BB is still a successor of PSI, then we must
+ // have an infinite loop case. If so, add an infinitely looping block
+ // to handle the case to preserve the behavior of the code.
+ BasicBlock *InfLoopBlock = 0;
+ for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
+ if (NewSI->getSuccessor(i) == BB) {
+ if (InfLoopBlock == 0) {
+ // Insert it at the end of the function, because it's either code,
+ // or it won't matter if it's hot. :)
+ InfLoopBlock = BasicBlock::Create("infloop", BB->getParent());
+ BranchInst::Create(InfLoopBlock, InfLoopBlock);
+ }
+ NewSI->setSuccessor(i, InfLoopBlock);
+ }
+
+ Changed = true;
+ }
+ }
+ return Changed;
+}
+
+/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
+/// BB2, hoist any common code in the two blocks up into the branch block. The
+/// caller of this function guarantees that BI's block dominates BB1 and BB2.
+static bool HoistThenElseCodeToIf(BranchInst *BI) {
+ // This does very trivial matching, with limited scanning, to find identical
+ // instructions in the two blocks. In particular, we don't want to get into
+ // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
+ // such, we currently just scan for obviously identical instructions in an
+ // identical order.
+ BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
+ BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
+
+ BasicBlock::iterator BB1_Itr = BB1->begin();
+ BasicBlock::iterator BB2_Itr = BB2->begin();
+
+ Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
+ while (isa<DbgInfoIntrinsic>(I1))
+ I1 = BB1_Itr++;
+ while (isa<DbgInfoIntrinsic>(I2))
+ I2 = BB2_Itr++;
+ if (I1->getOpcode() != I2->getOpcode() || isa<PHINode>(I1) ||
+ isa<InvokeInst>(I1) || !I1->isIdenticalTo(I2))
+ return false;
+
+ // If we get here, we can hoist at least one instruction.
+ BasicBlock *BIParent = BI->getParent();
+
+ do {
+ // If we are hoisting the terminator instruction, don't move one (making a
+ // broken BB), instead clone it, and remove BI.
+ if (isa<TerminatorInst>(I1))
+ goto HoistTerminator;
+
+ // For a normal instruction, we just move one to right before the branch,
+ // then replace all uses of the other with the first. Finally, we remove
+ // the now redundant second instruction.
+ BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
+ if (!I2->use_empty())
+ I2->replaceAllUsesWith(I1);
+ BB2->getInstList().erase(I2);
+
+ I1 = BB1_Itr++;
+ while (isa<DbgInfoIntrinsic>(I1))
+ I1 = BB1_Itr++;
+ I2 = BB2_Itr++;
+ while (isa<DbgInfoIntrinsic>(I2))
+ I2 = BB2_Itr++;
+ } while (I1->getOpcode() == I2->getOpcode() && I1->isIdenticalTo(I2));
+
+ return true;
+
+HoistTerminator:
+ // Okay, it is safe to hoist the terminator.
+ Instruction *NT = I1->clone();
+ BIParent->getInstList().insert(BI, NT);
+ if (NT->getType() != Type::VoidTy) {
+ I1->replaceAllUsesWith(NT);
+ I2->replaceAllUsesWith(NT);
+ NT->takeName(I1);
+ }
+
+ // Hoisting one of the terminators from our successor is a great thing.
+ // Unfortunately, the successors of the if/else blocks may have PHI nodes in
+ // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
+ // nodes, so we insert select instruction to compute the final result.
+ std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
+ for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
+ PHINode *PN;
+ for (BasicBlock::iterator BBI = SI->begin();
+ (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
+ Value *BB1V = PN->getIncomingValueForBlock(BB1);
+ Value *BB2V = PN->getIncomingValueForBlock(BB2);
+ if (BB1V != BB2V) {
+ // These values do not agree. Insert a select instruction before NT
+ // that determines the right value.
+ SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
+ if (SI == 0)
+ SI = SelectInst::Create(BI->getCondition(), BB1V, BB2V,
+ BB1V->getName()+"."+BB2V->getName(), NT);
+ // Make the PHI node use the select for all incoming values for BB1/BB2
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
+ PN->setIncomingValue(i, SI);
+ }
+ }
+ }
+
+ // Update any PHI nodes in our new successors.
+ for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
+ AddPredecessorToBlock(*SI, BIParent, BB1);
+
+ EraseTerminatorInstAndDCECond(BI);
+ return true;
+}
+
+/// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
+/// and an BB2 and the only successor of BB1 is BB2, hoist simple code
+/// (for now, restricted to a single instruction that's side effect free) from
+/// the BB1 into the branch block to speculatively execute it.
+static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
+ // Only speculatively execution a single instruction (not counting the
+ // terminator) for now.
+ Instruction *HInst = NULL;
+ Instruction *Term = BB1->getTerminator();
+ for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
+ BBI != BBE; ++BBI) {
+ Instruction *I = BBI;
+ // Skip debug info.
+ if (isa<DbgInfoIntrinsic>(I)) continue;
+ if (I == Term) break;
+
+ if (!HInst)
+ HInst = I;
+ else
+ return false;
+ }
+ if (!HInst)
+ return false;
+
+ // Be conservative for now. FP select instruction can often be expensive.
+ Value *BrCond = BI->getCondition();
+ if (isa<Instruction>(BrCond) &&
+ cast<Instruction>(BrCond)->getOpcode() == Instruction::FCmp)
+ return false;
+
+ // If BB1 is actually on the false edge of the conditional branch, remember
+ // to swap the select operands later.
+ bool Invert = false;
+ if (BB1 != BI->getSuccessor(0)) {
+ assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
+ Invert = true;
+ }
+
+ // Turn
+ // BB:
+ // %t1 = icmp
+ // br i1 %t1, label %BB1, label %BB2
+ // BB1:
+ // %t3 = add %t2, c
+ // br label BB2
+ // BB2:
+ // =>
+ // BB:
+ // %t1 = icmp
+ // %t4 = add %t2, c
+ // %t3 = select i1 %t1, %t2, %t3
+ switch (HInst->getOpcode()) {
+ default: return false; // Not safe / profitable to hoist.
+ case Instruction::Add:
+ case Instruction::Sub:
+ // FP arithmetic might trap. Not worth doing for vector ops.
+ if (HInst->getType()->isFloatingPoint()
+ || isa<VectorType>(HInst->getType()))
+ return false;
+ break;
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ // Don't mess with vector operations.
+ if (isa<VectorType>(HInst->getType()))
+ return false;
+ break; // These are all cheap and non-trapping instructions.
+ }
+
+ // If the instruction is obviously dead, don't try to predicate it.
+ if (HInst->use_empty()) {
+ HInst->eraseFromParent();
+ return true;
+ }
+
+ // Can we speculatively execute the instruction? And what is the value
+ // if the condition is false? Consider the phi uses, if the incoming value
+ // from the "if" block are all the same V, then V is the value of the
+ // select if the condition is false.
+ BasicBlock *BIParent = BI->getParent();
+ SmallVector<PHINode*, 4> PHIUses;
+ Value *FalseV = NULL;
+
+ BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
+ for (Value::use_iterator UI = HInst->use_begin(), E = HInst->use_end();
+ UI != E; ++UI) {
+ // Ignore any user that is not a PHI node in BB2. These can only occur in
+ // unreachable blocks, because they would not be dominated by the instr.
+ PHINode *PN = dyn_cast<PHINode>(UI);
+ if (!PN || PN->getParent() != BB2)
+ return false;
+ PHIUses.push_back(PN);
+
+ Value *PHIV = PN->getIncomingValueForBlock(BIParent);
+ if (!FalseV)
+ FalseV = PHIV;
+ else if (FalseV != PHIV)
+ return false; // Inconsistent value when condition is false.
+ }
+
+ assert(FalseV && "Must have at least one user, and it must be a PHI");
+
+ // Do not hoist the instruction if any of its operands are defined but not
+ // used in this BB. The transformation will prevent the operand from
+ // being sunk into the use block.
+ for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
+ i != e; ++i) {
+ Instruction *OpI = dyn_cast<Instruction>(*i);
+ if (OpI && OpI->getParent() == BIParent &&
+ !OpI->isUsedInBasicBlock(BIParent))
+ return false;
+ }
+
+ // If we get here, we can hoist the instruction. Try to place it
+ // before the icmp instruction preceding the conditional branch.
+ BasicBlock::iterator InsertPos = BI;
+ if (InsertPos != BIParent->begin())
+ --InsertPos;
+ // Skip debug info between condition and branch.
+ while (InsertPos != BIParent->begin() && isa<DbgInfoIntrinsic>(InsertPos))
+ --InsertPos;
+ if (InsertPos == BrCond && !isa<PHINode>(BrCond)) {
+ SmallPtrSet<Instruction *, 4> BB1Insns;
+ for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end();
+ BB1I != BB1E; ++BB1I)
+ BB1Insns.insert(BB1I);
+ for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end();
+ UI != UE; ++UI) {
+ Instruction *Use = cast<Instruction>(*UI);
+ if (BB1Insns.count(Use)) {
+ // If BrCond uses the instruction that place it just before
+ // branch instruction.
+ InsertPos = BI;
+ break;
+ }
+ }
+ } else
+ InsertPos = BI;
+ BIParent->getInstList().splice(InsertPos, BB1->getInstList(), HInst);
+
+ // Create a select whose true value is the speculatively executed value and
+ // false value is the previously determined FalseV.
+ SelectInst *SI;
+ if (Invert)
+ SI = SelectInst::Create(BrCond, FalseV, HInst,
+ FalseV->getName() + "." + HInst->getName(), BI);
+ else
+ SI = SelectInst::Create(BrCond, HInst, FalseV,
+ HInst->getName() + "." + FalseV->getName(), BI);
+
+ // Make the PHI node use the select for all incoming values for "then" and
+ // "if" blocks.
+ for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) {
+ PHINode *PN = PHIUses[i];
+ for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j)
+ if (PN->getIncomingBlock(j) == BB1 ||
+ PN->getIncomingBlock(j) == BIParent)
+ PN->setIncomingValue(j, SI);
+ }
+
+ ++NumSpeculations;
+ return true;
+}
+
+/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
+/// across this block.
+static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
+ BranchInst *BI = cast<BranchInst>(BB->getTerminator());
+ unsigned Size = 0;
+
+ for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
+ if (isa<DbgInfoIntrinsic>(BBI))
+ continue;
+ if (Size > 10) return false; // Don't clone large BB's.
+ ++Size;
+
+ // We can only support instructions that do not define values that are
+ // live outside of the current basic block.
+ for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
+ UI != E; ++UI) {
+ Instruction *U = cast<Instruction>(*UI);
+ if (U->getParent() != BB || isa<PHINode>(U)) return false;
+ }
+
+ // Looks ok, continue checking.
+ }
+
+ return true;
+}
+
+/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
+/// that is defined in the same block as the branch and if any PHI entries are
+/// constants, thread edges corresponding to that entry to be branches to their
+/// ultimate destination.
+static bool FoldCondBranchOnPHI(BranchInst *BI) {
+ BasicBlock *BB = BI->getParent();
+ PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
+ // NOTE: we currently cannot transform this case if the PHI node is used
+ // outside of the block.
+ if (!PN || PN->getParent() != BB || !PN->hasOneUse())
+ return false;
+
+ // Degenerate case of a single entry PHI.
+ if (PN->getNumIncomingValues() == 1) {
+ FoldSingleEntryPHINodes(PN->getParent());
+ return true;
+ }
+
+ // Now we know that this block has multiple preds and two succs.
+ if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
+
+ // Okay, this is a simple enough basic block. See if any phi values are
+ // constants.
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ ConstantInt *CB;
+ if ((CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i))) &&
+ CB->getType() == Type::Int1Ty) {
+ // Okay, we now know that all edges from PredBB should be revectored to
+ // branch to RealDest.
+ BasicBlock *PredBB = PN->getIncomingBlock(i);
+ BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
+
+ if (RealDest == BB) continue; // Skip self loops.
+
+ // The dest block might have PHI nodes, other predecessors and other
+ // difficult cases. Instead of being smart about this, just insert a new
+ // block that jumps to the destination block, effectively splitting
+ // the edge we are about to create.
+ BasicBlock *EdgeBB = BasicBlock::Create(RealDest->getName()+".critedge",
+ RealDest->getParent(), RealDest);
+ BranchInst::Create(RealDest, EdgeBB);
+ PHINode *PN;
+ for (BasicBlock::iterator BBI = RealDest->begin();
+ (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
+ Value *V = PN->getIncomingValueForBlock(BB);
+ PN->addIncoming(V, EdgeBB);
+ }
+
+ // BB may have instructions that are being threaded over. Clone these
+ // instructions into EdgeBB. We know that there will be no uses of the
+ // cloned instructions outside of EdgeBB.
+ BasicBlock::iterator InsertPt = EdgeBB->begin();
+ std::map<Value*, Value*> TranslateMap; // Track translated values.
+ for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
+ if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
+ TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
+ } else {
+ // Clone the instruction.
+ Instruction *N = BBI->clone();
+ if (BBI->hasName()) N->setName(BBI->getName()+".c");
+
+ // Update operands due to translation.
+ for (User::op_iterator i = N->op_begin(), e = N->op_end();
+ i != e; ++i) {
+ std::map<Value*, Value*>::iterator PI =
+ TranslateMap.find(*i);
+ if (PI != TranslateMap.end())
+ *i = PI->second;
+ }
+
+ // Check for trivial simplification.
+ if (Constant *C = ConstantFoldInstruction(N)) {
+ TranslateMap[BBI] = C;
+ delete N; // Constant folded away, don't need actual inst
+ } else {
+ // Insert the new instruction into its new home.
+ EdgeBB->getInstList().insert(InsertPt, N);
+ if (!BBI->use_empty())
+ TranslateMap[BBI] = N;
+ }
+ }
+ }
+
+ // Loop over all of the edges from PredBB to BB, changing them to branch
+ // to EdgeBB instead.
+ TerminatorInst *PredBBTI = PredBB->getTerminator();
+ for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
+ if (PredBBTI->getSuccessor(i) == BB) {
+ BB->removePredecessor(PredBB);
+ PredBBTI->setSuccessor(i, EdgeBB);
+ }
+
+ // Recurse, simplifying any other constants.
+ return FoldCondBranchOnPHI(BI) | true;
+ }
+ }
+
+ return false;
+}
+
+/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
+/// PHI node, see if we can eliminate it.
+static bool FoldTwoEntryPHINode(PHINode *PN) {
+ // Ok, this is a two entry PHI node. Check to see if this is a simple "if
+ // statement", which has a very simple dominance structure. Basically, we
+ // are trying to find the condition that is being branched on, which
+ // subsequently causes this merge to happen. We really want control
+ // dependence information for this check, but simplifycfg can't keep it up
+ // to date, and this catches most of the cases we care about anyway.
+ //
+ BasicBlock *BB = PN->getParent();
+ BasicBlock *IfTrue, *IfFalse;
+ Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
+ if (!IfCond) return false;
+
+ // Okay, we found that we can merge this two-entry phi node into a select.
+ // Doing so would require us to fold *all* two entry phi nodes in this block.
+ // At some point this becomes non-profitable (particularly if the target
+ // doesn't support cmov's). Only do this transformation if there are two or
+ // fewer PHI nodes in this block.
+ unsigned NumPhis = 0;
+ for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
+ if (NumPhis > 2)
+ return false;
+
+ DOUT << "FOUND IF CONDITION! " << *IfCond << " T: "
+ << IfTrue->getName() << " F: " << IfFalse->getName() << "\n";
+
+ // Loop over the PHI's seeing if we can promote them all to select
+ // instructions. While we are at it, keep track of the instructions
+ // that need to be moved to the dominating block.
+ std::set<Instruction*> AggressiveInsts;
+
+ BasicBlock::iterator AfterPHIIt = BB->begin();
+ while (isa<PHINode>(AfterPHIIt)) {
+ PHINode *PN = cast<PHINode>(AfterPHIIt++);
+ if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) {
+ if (PN->getIncomingValue(0) != PN)
+ PN->replaceAllUsesWith(PN->getIncomingValue(0));
+ else
+ PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
+ } else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
+ &AggressiveInsts) ||
+ !DominatesMergePoint(PN->getIncomingValue(1), BB,
+ &AggressiveInsts)) {
+ return false;
+ }
+ }
+
+ // If we all PHI nodes are promotable, check to make sure that all
+ // instructions in the predecessor blocks can be promoted as well. If
+ // not, we won't be able to get rid of the control flow, so it's not
+ // worth promoting to select instructions.
+ BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
+ PN = cast<PHINode>(BB->begin());
+ BasicBlock *Pred = PN->getIncomingBlock(0);
+ if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
+ IfBlock1 = Pred;
+ DomBlock = *pred_begin(Pred);
+ for (BasicBlock::iterator I = Pred->begin();
+ !isa<TerminatorInst>(I); ++I)
+ if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
+ // This is not an aggressive instruction that we can promote.
+ // Because of this, we won't be able to get rid of the control
+ // flow, so the xform is not worth it.
+ return false;
+ }
+ }
+
+ Pred = PN->getIncomingBlock(1);
+ if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
+ IfBlock2 = Pred;
+ DomBlock = *pred_begin(Pred);
+ for (BasicBlock::iterator I = Pred->begin();
+ !isa<TerminatorInst>(I); ++I)
+ if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
+ // This is not an aggressive instruction that we can promote.
+ // Because of this, we won't be able to get rid of the control
+ // flow, so the xform is not worth it.
+ return false;
+ }
+ }
+
+ // If we can still promote the PHI nodes after this gauntlet of tests,
+ // do all of the PHI's now.
+
+ // Move all 'aggressive' instructions, which are defined in the
+ // conditional parts of the if's up to the dominating block.
+ if (IfBlock1) {
+ DomBlock->getInstList().splice(DomBlock->getTerminator(),
+ IfBlock1->getInstList(),
+ IfBlock1->begin(),
+ IfBlock1->getTerminator());
+ }
+ if (IfBlock2) {
+ DomBlock->getInstList().splice(DomBlock->getTerminator(),
+ IfBlock2->getInstList(),
+ IfBlock2->begin(),
+ IfBlock2->getTerminator());
+ }
+
+ while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
+ // Change the PHI node into a select instruction.
+ Value *TrueVal =
+ PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
+ Value *FalseVal =
+ PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
+
+ Value *NV = SelectInst::Create(IfCond, TrueVal, FalseVal, "", AfterPHIIt);
+ PN->replaceAllUsesWith(NV);
+ NV->takeName(PN);
+
+ BB->getInstList().erase(PN);
+ }
+ return true;
+}
+
+/// isTerminatorFirstRelevantInsn - Return true if Term is very first
+/// instruction ignoring Phi nodes and dbg intrinsics.
+static bool isTerminatorFirstRelevantInsn(BasicBlock *BB, Instruction *Term) {
+ BasicBlock::iterator BBI = Term;
+ while (BBI != BB->begin()) {
+ --BBI;
+ if (!isa<DbgInfoIntrinsic>(BBI))
+ break;
+ }
+
+ if (isa<PHINode>(BBI) || &*BBI == Term || isa<DbgInfoIntrinsic>(BBI))
+ return true;
+ return false;
+}
+
+/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
+/// to two returning blocks, try to merge them together into one return,
+/// introducing a select if the return values disagree.
+static bool SimplifyCondBranchToTwoReturns(BranchInst *BI) {
+ assert(BI->isConditional() && "Must be a conditional branch");
+ BasicBlock *TrueSucc = BI->getSuccessor(0);
+ BasicBlock *FalseSucc = BI->getSuccessor(1);
+ ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
+ ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
+
+ // Check to ensure both blocks are empty (just a return) or optionally empty
+ // with PHI nodes. If there are other instructions, merging would cause extra
+ // computation on one path or the other.
+ if (!isTerminatorFirstRelevantInsn(TrueSucc, TrueRet))
+ return false;
+ if (!isTerminatorFirstRelevantInsn(FalseSucc, FalseRet))
+ return false;
+
+ // Okay, we found a branch that is going to two return nodes. If
+ // there is no return value for this function, just change the
+ // branch into a return.
+ if (FalseRet->getNumOperands() == 0) {
+ TrueSucc->removePredecessor(BI->getParent());
+ FalseSucc->removePredecessor(BI->getParent());
+ ReturnInst::Create(0, BI);
+ EraseTerminatorInstAndDCECond(BI);
+ return true;
+ }
+
+ // Otherwise, figure out what the true and false return values are
+ // so we can insert a new select instruction.
+ Value *TrueValue = TrueRet->getReturnValue();
+ Value *FalseValue = FalseRet->getReturnValue();
+
+ // Unwrap any PHI nodes in the return blocks.
+ if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
+ if (TVPN->getParent() == TrueSucc)
+ TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
+ if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
+ if (FVPN->getParent() == FalseSucc)
+ FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
+
+ // In order for this transformation to be safe, we must be able to
+ // unconditionally execute both operands to the return. This is
+ // normally the case, but we could have a potentially-trapping
+ // constant expression that prevents this transformation from being
+ // safe.
+ if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
+ if (TCV->canTrap())
+ return false;
+ if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
+ if (FCV->canTrap())
+ return false;
+
+ // Okay, we collected all the mapped values and checked them for sanity, and
+ // defined to really do this transformation. First, update the CFG.
+ TrueSucc->removePredecessor(BI->getParent());
+ FalseSucc->removePredecessor(BI->getParent());
+
+ // Insert select instructions where needed.
+ Value *BrCond = BI->getCondition();
+ if (TrueValue) {
+ // Insert a select if the results differ.
+ if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
+ } else if (isa<UndefValue>(TrueValue)) {
+ TrueValue = FalseValue;
+ } else {
+ TrueValue = SelectInst::Create(BrCond, TrueValue,
+ FalseValue, "retval", BI);
+ }
+ }
+
+ Value *RI = !TrueValue ?
+ ReturnInst::Create(BI) :
+ ReturnInst::Create(TrueValue, BI);
+
+ DOUT << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
+ << "\n " << *BI << "NewRet = " << *RI
+ << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc;
+
+ EraseTerminatorInstAndDCECond(BI);
+
+ return true;
+}
+
+/// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch,
+/// and if a predecessor branches to us and one of our successors, fold the
+/// setcc into the predecessor and use logical operations to pick the right
+/// destination.
+static bool FoldBranchToCommonDest(BranchInst *BI) {
+ BasicBlock *BB = BI->getParent();
+ Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
+ if (Cond == 0) return false;
+
+
+ // Only allow this if the condition is a simple instruction that can be
+ // executed unconditionally. It must be in the same block as the branch, and
+ // must be at the front of the block.
+ BasicBlock::iterator FrontIt = BB->front();
+ // Ignore dbg intrinsics.
+ while(isa<DbgInfoIntrinsic>(FrontIt))
+ ++FrontIt;
+ if ((!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
+ Cond->getParent() != BB || &*FrontIt != Cond || !Cond->hasOneUse()) {
+ return false;
+ }
+
+ // Make sure the instruction after the condition is the cond branch.
+ BasicBlock::iterator CondIt = Cond; ++CondIt;
+ // Ingore dbg intrinsics.
+ while(isa<DbgInfoIntrinsic>(CondIt))
+ ++CondIt;
+ if (&*CondIt != BI) {
+ assert (!isa<DbgInfoIntrinsic>(CondIt) && "Hey do not forget debug info!");
+ return false;
+ }
+
+ // Cond is known to be a compare or binary operator. Check to make sure that
+ // neither operand is a potentially-trapping constant expression.
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
+ if (CE->canTrap())
+ return false;
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
+ if (CE->canTrap())
+ return false;
+
+
+ // Finally, don't infinitely unroll conditional loops.
+ BasicBlock *TrueDest = BI->getSuccessor(0);
+ BasicBlock *FalseDest = BI->getSuccessor(1);
+ if (TrueDest == BB || FalseDest == BB)
+ return false;
+
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
+ BasicBlock *PredBlock = *PI;
+ BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
+
+ // Check that we have two conditional branches. If there is a PHI node in
+ // the common successor, verify that the same value flows in from both
+ // blocks.
+ if (PBI == 0 || PBI->isUnconditional() ||
+ !SafeToMergeTerminators(BI, PBI))
+ continue;
+
+ Instruction::BinaryOps Opc;
+ bool InvertPredCond = false;
+
+ if (PBI->getSuccessor(0) == TrueDest)
+ Opc = Instruction::Or;
+ else if (PBI->getSuccessor(1) == FalseDest)
+ Opc = Instruction::And;
+ else if (PBI->getSuccessor(0) == FalseDest)
+ Opc = Instruction::And, InvertPredCond = true;
+ else if (PBI->getSuccessor(1) == TrueDest)
+ Opc = Instruction::Or, InvertPredCond = true;
+ else
+ continue;
+
+ DOUT << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB;
+
+ // If we need to invert the condition in the pred block to match, do so now.
+ if (InvertPredCond) {
+ Value *NewCond =
+ BinaryOperator::CreateNot(PBI->getCondition(),
+ PBI->getCondition()->getName()+".not", PBI);
+ PBI->setCondition(NewCond);
+ BasicBlock *OldTrue = PBI->getSuccessor(0);
+ BasicBlock *OldFalse = PBI->getSuccessor(1);
+ PBI->setSuccessor(0, OldFalse);
+ PBI->setSuccessor(1, OldTrue);
+ }
+
+ // Clone Cond into the predecessor basic block, and or/and the
+ // two conditions together.
+ Instruction *New = Cond->clone();
+ PredBlock->getInstList().insert(PBI, New);
+ New->takeName(Cond);
+ Cond->setName(New->getName()+".old");
+
+ Value *NewCond = BinaryOperator::Create(Opc, PBI->getCondition(),
+ New, "or.cond", PBI);
+ PBI->setCondition(NewCond);
+ if (PBI->getSuccessor(0) == BB) {
+ AddPredecessorToBlock(TrueDest, PredBlock, BB);
+ PBI->setSuccessor(0, TrueDest);
+ }
+ if (PBI->getSuccessor(1) == BB) {
+ AddPredecessorToBlock(FalseDest, PredBlock, BB);
+ PBI->setSuccessor(1, FalseDest);
+ }
+ return true;
+ }
+ return false;
+}
+
+/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
+/// predecessor of another block, this function tries to simplify it. We know
+/// that PBI and BI are both conditional branches, and BI is in one of the
+/// successor blocks of PBI - PBI branches to BI.
+static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
+ assert(PBI->isConditional() && BI->isConditional());
+ BasicBlock *BB = BI->getParent();
+
+ // If this block ends with a branch instruction, and if there is a
+ // predecessor that ends on a branch of the same condition, make
+ // this conditional branch redundant.
+ if (PBI->getCondition() == BI->getCondition() &&
+ PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
+ // Okay, the outcome of this conditional branch is statically
+ // knowable. If this block had a single pred, handle specially.
+ if (BB->getSinglePredecessor()) {
+ // Turn this into a branch on constant.
+ bool CondIsTrue = PBI->getSuccessor(0) == BB;
+ BI->setCondition(ConstantInt::get(Type::Int1Ty, CondIsTrue));
+ return true; // Nuke the branch on constant.
+ }
+
+ // Otherwise, if there are multiple predecessors, insert a PHI that merges
+ // in the constant and simplify the block result. Subsequent passes of
+ // simplifycfg will thread the block.
+ if (BlockIsSimpleEnoughToThreadThrough(BB)) {
+ PHINode *NewPN = PHINode::Create(Type::Int1Ty,
+ BI->getCondition()->getName() + ".pr",
+ BB->begin());
+ // Okay, we're going to insert the PHI node. Since PBI is not the only
+ // predecessor, compute the PHI'd conditional value for all of the preds.
+ // Any predecessor where the condition is not computable we keep symbolic.
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
+ if ((PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) &&
+ PBI != BI && PBI->isConditional() &&
+ PBI->getCondition() == BI->getCondition() &&
+ PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
+ bool CondIsTrue = PBI->getSuccessor(0) == BB;
+ NewPN->addIncoming(ConstantInt::get(Type::Int1Ty,
+ CondIsTrue), *PI);
+ } else {
+ NewPN->addIncoming(BI->getCondition(), *PI);
+ }
+
+ BI->setCondition(NewPN);
+ return true;
+ }
+ }
+
+ // If this is a conditional branch in an empty block, and if any
+ // predecessors is a conditional branch to one of our destinations,
+ // fold the conditions into logical ops and one cond br.
+ BasicBlock::iterator BBI = BB->begin();
+ // Ignore dbg intrinsics.
+ while (isa<DbgInfoIntrinsic>(BBI))
+ ++BBI;
+ if (&*BBI != BI)
+ return false;
+
+
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
+ if (CE->canTrap())
+ return false;
+
+ int PBIOp, BIOp;
+ if (PBI->getSuccessor(0) == BI->getSuccessor(0))
+ PBIOp = BIOp = 0;
+ else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
+ PBIOp = 0, BIOp = 1;
+ else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
+ PBIOp = 1, BIOp = 0;
+ else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
+ PBIOp = BIOp = 1;
+ else
+ return false;
+
+ // Check to make sure that the other destination of this branch
+ // isn't BB itself. If so, this is an infinite loop that will
+ // keep getting unwound.
+ if (PBI->getSuccessor(PBIOp) == BB)
+ return false;
+
+ // Do not perform this transformation if it would require
+ // insertion of a large number of select instructions. For targets
+ // without predication/cmovs, this is a big pessimization.
+ BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
+
+ unsigned NumPhis = 0;
+ for (BasicBlock::iterator II = CommonDest->begin();
+ isa<PHINode>(II); ++II, ++NumPhis)
+ if (NumPhis > 2) // Disable this xform.
+ return false;
+
+ // Finally, if everything is ok, fold the branches to logical ops.
+ BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
+
+ DOUT << "FOLDING BRs:" << *PBI->getParent()
+ << "AND: " << *BI->getParent();
+
+
+ // If OtherDest *is* BB, then BB is a basic block with a single conditional
+ // branch in it, where one edge (OtherDest) goes back to itself but the other
+ // exits. We don't *know* that the program avoids the infinite loop
+ // (even though that seems likely). If we do this xform naively, we'll end up
+ // recursively unpeeling the loop. Since we know that (after the xform is
+ // done) that the block *is* infinite if reached, we just make it an obviously
+ // infinite loop with no cond branch.
+ if (OtherDest == BB) {
+ // Insert it at the end of the function, because it's either code,
+ // or it won't matter if it's hot. :)
+ BasicBlock *InfLoopBlock = BasicBlock::Create("infloop", BB->getParent());
+ BranchInst::Create(InfLoopBlock, InfLoopBlock);
+ OtherDest = InfLoopBlock;
+ }
+
+ DOUT << *PBI->getParent()->getParent();
+
+ // BI may have other predecessors. Because of this, we leave
+ // it alone, but modify PBI.
+
+ // Make sure we get to CommonDest on True&True directions.
+ Value *PBICond = PBI->getCondition();
+ if (PBIOp)
+ PBICond = BinaryOperator::CreateNot(PBICond,
+ PBICond->getName()+".not",
+ PBI);
+ Value *BICond = BI->getCondition();
+ if (BIOp)
+ BICond = BinaryOperator::CreateNot(BICond,
+ BICond->getName()+".not",
+ PBI);
+ // Merge the conditions.
+ Value *Cond = BinaryOperator::CreateOr(PBICond, BICond, "brmerge", PBI);
+
+ // Modify PBI to branch on the new condition to the new dests.
+ PBI->setCondition(Cond);
+ PBI->setSuccessor(0, CommonDest);
+ PBI->setSuccessor(1, OtherDest);
+
+ // OtherDest may have phi nodes. If so, add an entry from PBI's
+ // block that are identical to the entries for BI's block.
+ PHINode *PN;
+ for (BasicBlock::iterator II = OtherDest->begin();
+ (PN = dyn_cast<PHINode>(II)); ++II) {
+ Value *V = PN->getIncomingValueForBlock(BB);
+ PN->addIncoming(V, PBI->getParent());
+ }
+
+ // We know that the CommonDest already had an edge from PBI to
+ // it. If it has PHIs though, the PHIs may have different
+ // entries for BB and PBI's BB. If so, insert a select to make
+ // them agree.
+ for (BasicBlock::iterator II = CommonDest->begin();
+ (PN = dyn_cast<PHINode>(II)); ++II) {
+ Value *BIV = PN->getIncomingValueForBlock(BB);
+ unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
+ Value *PBIV = PN->getIncomingValue(PBBIdx);
+ if (BIV != PBIV) {
+ // Insert a select in PBI to pick the right value.
+ Value *NV = SelectInst::Create(PBICond, PBIV, BIV,
+ PBIV->getName()+".mux", PBI);
+ PN->setIncomingValue(PBBIdx, NV);
+ }
+ }
+
+ DOUT << "INTO: " << *PBI->getParent();
+
+ DOUT << *PBI->getParent()->getParent();
+
+ // This basic block is probably dead. We know it has at least
+ // one fewer predecessor.
+ return true;
+}
+
+
+/// SimplifyCFG - This function is used to do simplification of a CFG. For
+/// example, it adjusts branches to branches to eliminate the extra hop, it
+/// eliminates unreachable basic blocks, and does other "peephole" optimization
+/// of the CFG. It returns true if a modification was made.
+///
+/// WARNING: The entry node of a function may not be simplified.
+///
+bool llvm::SimplifyCFG(BasicBlock *BB) {
+ bool Changed = false;
+ Function *M = BB->getParent();
+
+ assert(BB && BB->getParent() && "Block not embedded in function!");
+ assert(BB->getTerminator() && "Degenerate basic block encountered!");
+ assert(&BB->getParent()->getEntryBlock() != BB &&
+ "Can't Simplify entry block!");
+
+ // Remove basic blocks that have no predecessors... or that just have themself
+ // as a predecessor. These are unreachable.
+ if (pred_begin(BB) == pred_end(BB) || BB->getSinglePredecessor() == BB) {
+ DOUT << "Removing BB: \n" << *BB;
+ DeleteDeadBlock(BB);
+ return true;
+ }
+
+ // Check to see if we can constant propagate this terminator instruction
+ // away...
+ Changed |= ConstantFoldTerminator(BB);
+
+ // If there is a trivial two-entry PHI node in this basic block, and we can
+ // eliminate it, do so now.
+ if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
+ if (PN->getNumIncomingValues() == 2)
+ Changed |= FoldTwoEntryPHINode(PN);
+
+ // If this is a returning block with only PHI nodes in it, fold the return
+ // instruction into any unconditional branch predecessors.
+ //
+ // If any predecessor is a conditional branch that just selects among
+ // different return values, fold the replace the branch/return with a select
+ // and return.
+ if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
+ if (isTerminatorFirstRelevantInsn(BB, BB->getTerminator())) {
+ // Find predecessors that end with branches.
+ SmallVector<BasicBlock*, 8> UncondBranchPreds;
+ SmallVector<BranchInst*, 8> CondBranchPreds;
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
+ TerminatorInst *PTI = (*PI)->getTerminator();
+ if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
+ if (BI->isUnconditional())
+ UncondBranchPreds.push_back(*PI);
+ else
+ CondBranchPreds.push_back(BI);
+ }
+ }
+
+ // If we found some, do the transformation!
+ if (!UncondBranchPreds.empty()) {
+ while (!UncondBranchPreds.empty()) {
+ BasicBlock *Pred = UncondBranchPreds.pop_back_val();
+ DOUT << "FOLDING: " << *BB
+ << "INTO UNCOND BRANCH PRED: " << *Pred;
+ Instruction *UncondBranch = Pred->getTerminator();
+ // Clone the return and add it to the end of the predecessor.
+ Instruction *NewRet = RI->clone();
+ Pred->getInstList().push_back(NewRet);
+
+ BasicBlock::iterator BBI = RI;
+ if (BBI != BB->begin()) {
+ // Move region end info into the predecessor.
+ if (DbgRegionEndInst *DREI = dyn_cast<DbgRegionEndInst>(--BBI))
+ DREI->moveBefore(NewRet);
+ }
+
+ // If the return instruction returns a value, and if the value was a
+ // PHI node in "BB", propagate the right value into the return.
+ for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
+ i != e; ++i)
+ if (PHINode *PN = dyn_cast<PHINode>(*i))
+ if (PN->getParent() == BB)
+ *i = PN->getIncomingValueForBlock(Pred);
+
+ // Update any PHI nodes in the returning block to realize that we no
+ // longer branch to them.
+ BB->removePredecessor(Pred);
+ Pred->getInstList().erase(UncondBranch);
+ }
+
+ // If we eliminated all predecessors of the block, delete the block now.
+ if (pred_begin(BB) == pred_end(BB))
+ // We know there are no successors, so just nuke the block.
+ M->getBasicBlockList().erase(BB);
+
+ return true;
+ }
+
+ // Check out all of the conditional branches going to this return
+ // instruction. If any of them just select between returns, change the
+ // branch itself into a select/return pair.
+ while (!CondBranchPreds.empty()) {
+ BranchInst *BI = CondBranchPreds.pop_back_val();
+
+ // Check to see if the non-BB successor is also a return block.
+ if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
+ isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
+ SimplifyCondBranchToTwoReturns(BI))
+ return true;
+ }
+ }
+ } else if (isa<UnwindInst>(BB->begin())) {
+ // Check to see if the first instruction in this block is just an unwind.
+ // If so, replace any invoke instructions which use this as an exception
+ // destination with call instructions, and any unconditional branch
+ // predecessor with an unwind.
+ //
+ SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
+ while (!Preds.empty()) {
+ BasicBlock *Pred = Preds.back();
+ if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) {
+ if (BI->isUnconditional()) {
+ Pred->getInstList().pop_back(); // nuke uncond branch
+ new UnwindInst(Pred); // Use unwind.
+ Changed = true;
+ }
+ } else if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
+ if (II->getUnwindDest() == BB) {
+ // Insert a new branch instruction before the invoke, because this
+ // is now a fall through...
+ BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
+ Pred->getInstList().remove(II); // Take out of symbol table
+
+ // Insert the call now...
+ SmallVector<Value*,8> Args(II->op_begin()+3, II->op_end());
+ CallInst *CI = CallInst::Create(II->getCalledValue(),
+ Args.begin(), Args.end(),
+ II->getName(), BI);
+ CI->setCallingConv(II->getCallingConv());
+ CI->setAttributes(II->getAttributes());
+ // If the invoke produced a value, the Call now does instead
+ II->replaceAllUsesWith(CI);
+ delete II;
+ Changed = true;
+ }
+
+ Preds.pop_back();
+ }
+
+ // If this block is now dead, remove it.
+ if (pred_begin(BB) == pred_end(BB)) {
+ // We know there are no successors, so just nuke the block.
+ M->getBasicBlockList().erase(BB);
+ return true;
+ }
+
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
+ if (isValueEqualityComparison(SI)) {
+ // If we only have one predecessor, and if it is a branch on this value,
+ // see if that predecessor totally determines the outcome of this switch.
+ if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
+ if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
+ return SimplifyCFG(BB) || 1;
+
+ // If the block only contains the switch, see if we can fold the block
+ // away into any preds.
+ BasicBlock::iterator BBI = BB->begin();
+ // Ignore dbg intrinsics.
+ while (isa<DbgInfoIntrinsic>(BBI))
+ ++BBI;
+ if (SI == &*BBI)
+ if (FoldValueComparisonIntoPredecessors(SI))
+ return SimplifyCFG(BB) || 1;
+ }
+ } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
+ if (BI->isUnconditional()) {
+ BasicBlock::iterator BBI = BB->getFirstNonPHI();
+
+ BasicBlock *Succ = BI->getSuccessor(0);
+ // Ignore dbg intrinsics.
+ while (isa<DbgInfoIntrinsic>(BBI))
+ ++BBI;
+ if (BBI->isTerminator() && // Terminator is the only non-phi instruction!
+ Succ != BB) // Don't hurt infinite loops!
+ if (TryToSimplifyUncondBranchFromEmptyBlock(BB, Succ))
+ return true;
+
+ } else { // Conditional branch
+ if (isValueEqualityComparison(BI)) {
+ // If we only have one predecessor, and if it is a branch on this value,
+ // see if that predecessor totally determines the outcome of this
+ // switch.
+ if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
+ if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
+ return SimplifyCFG(BB) || 1;
+
+ // This block must be empty, except for the setcond inst, if it exists.
+ // Ignore dbg intrinsics.
+ BasicBlock::iterator I = BB->begin();
+ // Ignore dbg intrinsics.
+ while (isa<DbgInfoIntrinsic>(I))
+ ++I;
+ if (&*I == BI) {
+ if (FoldValueComparisonIntoPredecessors(BI))
+ return SimplifyCFG(BB) | true;
+ } else if (&*I == cast<Instruction>(BI->getCondition())){
+ ++I;
+ // Ignore dbg intrinsics.
+ while (isa<DbgInfoIntrinsic>(I))
+ ++I;
+ if(&*I == BI) {
+ if (FoldValueComparisonIntoPredecessors(BI))
+ return SimplifyCFG(BB) | true;
+ }
+ }
+ }
+
+ // If this is a branch on a phi node in the current block, thread control
+ // through this block if any PHI node entries are constants.
+ if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
+ if (PN->getParent() == BI->getParent())
+ if (FoldCondBranchOnPHI(BI))
+ return SimplifyCFG(BB) | true;
+
+ // If this basic block is ONLY a setcc and a branch, and if a predecessor
+ // branches to us and one of our successors, fold the setcc into the
+ // predecessor and use logical operations to pick the right destination.
+ if (FoldBranchToCommonDest(BI))
+ return SimplifyCFG(BB) | 1;
+
+
+ // Scan predecessor blocks for conditional branches.
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
+ if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
+ if (PBI != BI && PBI->isConditional())
+ if (SimplifyCondBranchToCondBranch(PBI, BI))
+ return SimplifyCFG(BB) | true;
+ }
+ } else if (isa<UnreachableInst>(BB->getTerminator())) {
+ // If there are any instructions immediately before the unreachable that can
+ // be removed, do so.
+ Instruction *Unreachable = BB->getTerminator();
+ while (Unreachable != BB->begin()) {
+ BasicBlock::iterator BBI = Unreachable;
+ --BBI;
+ // Do not delete instructions that can have side effects, like calls
+ // (which may never return) and volatile loads and stores.
+ if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
+
+ if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
+ if (SI->isVolatile())
+ break;
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(BBI))
+ if (LI->isVolatile())
+ break;
+
+ // Delete this instruction
+ BB->getInstList().erase(BBI);
+ Changed = true;
+ }
+
+ // If the unreachable instruction is the first in the block, take a gander
+ // at all of the predecessors of this instruction, and simplify them.
+ if (&BB->front() == Unreachable) {
+ SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
+ for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
+ TerminatorInst *TI = Preds[i]->getTerminator();
+
+ if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+ if (BI->isUnconditional()) {
+ if (BI->getSuccessor(0) == BB) {
+ new UnreachableInst(TI);
+ TI->eraseFromParent();
+ Changed = true;
+ }
+ } else {
+ if (BI->getSuccessor(0) == BB) {
+ BranchInst::Create(BI->getSuccessor(1), BI);
+ EraseTerminatorInstAndDCECond(BI);
+ } else if (BI->getSuccessor(1) == BB) {
+ BranchInst::Create(BI->getSuccessor(0), BI);
+ EraseTerminatorInstAndDCECond(BI);
+ Changed = true;
+ }
+ }
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
+ if (SI->getSuccessor(i) == BB) {
+ BB->removePredecessor(SI->getParent());
+ SI->removeCase(i);
+ --i; --e;
+ Changed = true;
+ }
+ // If the default value is unreachable, figure out the most popular
+ // destination and make it the default.
+ if (SI->getSuccessor(0) == BB) {
+ std::map<BasicBlock*, unsigned> Popularity;
+ for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
+ Popularity[SI->getSuccessor(i)]++;
+
+ // Find the most popular block.
+ unsigned MaxPop = 0;
+ BasicBlock *MaxBlock = 0;
+ for (std::map<BasicBlock*, unsigned>::iterator
+ I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
+ if (I->second > MaxPop) {
+ MaxPop = I->second;
+ MaxBlock = I->first;
+ }
+ }
+ if (MaxBlock) {
+ // Make this the new default, allowing us to delete any explicit
+ // edges to it.
+ SI->setSuccessor(0, MaxBlock);
+ Changed = true;
+
+ // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
+ // it.
+ if (isa<PHINode>(MaxBlock->begin()))
+ for (unsigned i = 0; i != MaxPop-1; ++i)
+ MaxBlock->removePredecessor(SI->getParent());
+
+ for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
+ if (SI->getSuccessor(i) == MaxBlock) {
+ SI->removeCase(i);
+ --i; --e;
+ }
+ }
+ }
+ } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
+ if (II->getUnwindDest() == BB) {
+ // Convert the invoke to a call instruction. This would be a good
+ // place to note that the call does not throw though.
+ BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
+ II->removeFromParent(); // Take out of symbol table
+
+ // Insert the call now...
+ SmallVector<Value*, 8> Args(II->op_begin()+3, II->op_end());
+ CallInst *CI = CallInst::Create(II->getCalledValue(),
+ Args.begin(), Args.end(),
+ II->getName(), BI);
+ CI->setCallingConv(II->getCallingConv());
+ CI->setAttributes(II->getAttributes());
+ // If the invoke produced a value, the Call does now instead.
+ II->replaceAllUsesWith(CI);
+ delete II;
+ Changed = true;
+ }
+ }
+ }
+
+ // If this block is now dead, remove it.
+ if (pred_begin(BB) == pred_end(BB)) {
+ // We know there are no successors, so just nuke the block.
+ M->getBasicBlockList().erase(BB);
+ return true;
+ }
+ }
+ }
+
+ // Merge basic blocks into their predecessor if there is only one distinct
+ // pred, and if there is only one distinct successor of the predecessor, and
+ // if there are no PHI nodes.
+ //
+ if (MergeBlockIntoPredecessor(BB))
+ return true;
+
+ // Otherwise, if this block only has a single predecessor, and if that block
+ // is a conditional branch, see if we can hoist any code from this block up
+ // into our predecessor.
+ pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
+ BasicBlock *OnlyPred = *PI++;
+ for (; PI != PE; ++PI) // Search all predecessors, see if they are all same
+ if (*PI != OnlyPred) {
+ OnlyPred = 0; // There are multiple different predecessors...
+ break;
+ }
+
+ if (OnlyPred)
+ if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
+ if (BI->isConditional()) {
+ // Get the other block.
+ BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
+ PI = pred_begin(OtherBB);
+ ++PI;
+
+ if (PI == pred_end(OtherBB)) {
+ // We have a conditional branch to two blocks that are only reachable
+ // from the condbr. We know that the condbr dominates the two blocks,
+ // so see if there is any identical code in the "then" and "else"
+ // blocks. If so, we can hoist it up to the branching block.
+ Changed |= HoistThenElseCodeToIf(BI);
+ } else {
+ BasicBlock* OnlySucc = NULL;
+ for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
+ SI != SE; ++SI) {
+ if (!OnlySucc)
+ OnlySucc = *SI;
+ else if (*SI != OnlySucc) {
+ OnlySucc = 0; // There are multiple distinct successors!
+ break;
+ }
+ }
+
+ if (OnlySucc == OtherBB) {
+ // If BB's only successor is the other successor of the predecessor,
+ // i.e. a triangle, see if we can hoist any code from this block up
+ // to the "if" block.
+ Changed |= SpeculativelyExecuteBB(BI, BB);
+ }
+ }
+ }
+
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
+ if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
+ // Change br (X == 0 | X == 1), T, F into a switch instruction.
+ if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
+ Instruction *Cond = cast<Instruction>(BI->getCondition());
+ // If this is a bunch of seteq's or'd together, or if it's a bunch of
+ // 'setne's and'ed together, collect them.
+ Value *CompVal = 0;
+ std::vector<ConstantInt*> Values;
+ bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
+ if (CompVal && CompVal->getType()->isInteger()) {
+ // There might be duplicate constants in the list, which the switch
+ // instruction can't handle, remove them now.
+ std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
+ Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
+
+ // Figure out which block is which destination.
+ BasicBlock *DefaultBB = BI->getSuccessor(1);
+ BasicBlock *EdgeBB = BI->getSuccessor(0);
+ if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
+
+ // Create the new switch instruction now.
+ SwitchInst *New = SwitchInst::Create(CompVal, DefaultBB,
+ Values.size(), BI);
+
+ // Add all of the 'cases' to the switch instruction.
+ for (unsigned i = 0, e = Values.size(); i != e; ++i)
+ New->addCase(Values[i], EdgeBB);
+
+ // We added edges from PI to the EdgeBB. As such, if there were any
+ // PHI nodes in EdgeBB, they need entries to be added corresponding to
+ // the number of edges added.
+ for (BasicBlock::iterator BBI = EdgeBB->begin();
+ isa<PHINode>(BBI); ++BBI) {
+ PHINode *PN = cast<PHINode>(BBI);
+ Value *InVal = PN->getIncomingValueForBlock(*PI);
+ for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
+ PN->addIncoming(InVal, *PI);
+ }
+
+ // Erase the old branch instruction.
+ EraseTerminatorInstAndDCECond(BI);
+ return true;
+ }
+ }
+
+ return Changed;
+}