diff options
Diffstat (limited to 'lib/Transforms/Utils/SimplifyCFG.cpp')
| -rw-r--r-- | lib/Transforms/Utils/SimplifyCFG.cpp | 2213 | 
1 files changed, 2213 insertions, 0 deletions
diff --git a/lib/Transforms/Utils/SimplifyCFG.cpp b/lib/Transforms/Utils/SimplifyCFG.cpp new file mode 100644 index 000000000000..2cde765560b8 --- /dev/null +++ b/lib/Transforms/Utils/SimplifyCFG.cpp @@ -0,0 +1,2213 @@ +//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Peephole optimize the CFG. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "simplifycfg" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Constants.h" +#include "llvm/Instructions.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/Type.h" +#include "llvm/DerivedTypes.h" +#include "llvm/GlobalVariable.h" +#include "llvm/Support/CFG.h" +#include "llvm/Support/Debug.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/Statistic.h" +#include <algorithm> +#include <functional> +#include <set> +#include <map> +using namespace llvm; + +STATISTIC(NumSpeculations, "Number of speculative executed instructions"); + +/// SafeToMergeTerminators - Return true if it is safe to merge these two +/// terminator instructions together. +/// +static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { +  if (SI1 == SI2) return false;  // Can't merge with self! +   +  // It is not safe to merge these two switch instructions if they have a common +  // successor, and if that successor has a PHI node, and if *that* PHI node has +  // conflicting incoming values from the two switch blocks. +  BasicBlock *SI1BB = SI1->getParent(); +  BasicBlock *SI2BB = SI2->getParent(); +  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); +   +  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) +    if (SI1Succs.count(*I)) +      for (BasicBlock::iterator BBI = (*I)->begin(); +           isa<PHINode>(BBI); ++BBI) { +        PHINode *PN = cast<PHINode>(BBI); +        if (PN->getIncomingValueForBlock(SI1BB) != +            PN->getIncomingValueForBlock(SI2BB)) +          return false; +      } +         +  return true; +} + +/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will +/// now be entries in it from the 'NewPred' block.  The values that will be +/// flowing into the PHI nodes will be the same as those coming in from +/// ExistPred, an existing predecessor of Succ. +static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, +                                  BasicBlock *ExistPred) { +  assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) != +         succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!"); +  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do +   +  PHINode *PN; +  for (BasicBlock::iterator I = Succ->begin(); +       (PN = dyn_cast<PHINode>(I)); ++I) +    PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); +} + +/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an +/// almost-empty BB ending in an unconditional branch to Succ, into succ. +/// +/// Assumption: Succ is the single successor for BB. +/// +static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { +  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); + +  DOUT << "Looking to fold " << BB->getNameStart() << " into "  +       << Succ->getNameStart() << "\n"; +  // Shortcut, if there is only a single predecessor it must be BB and merging +  // is always safe +  if (Succ->getSinglePredecessor()) return true; + +  typedef SmallPtrSet<Instruction*, 16> InstrSet; +  InstrSet BBPHIs; + +  // Make a list of all phi nodes in BB +  BasicBlock::iterator BBI = BB->begin(); +  while (isa<PHINode>(*BBI)) BBPHIs.insert(BBI++); + +  // Make a list of the predecessors of BB +  typedef SmallPtrSet<BasicBlock*, 16> BlockSet; +  BlockSet BBPreds(pred_begin(BB), pred_end(BB)); + +  // Use that list to make another list of common predecessors of BB and Succ +  BlockSet CommonPreds; +  for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ); +        PI != PE; ++PI) +    if (BBPreds.count(*PI)) +      CommonPreds.insert(*PI); + +  // Shortcut, if there are no common predecessors, merging is always safe +  if (CommonPreds.empty()) +    return true; +   +  // Look at all the phi nodes in Succ, to see if they present a conflict when +  // merging these blocks +  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { +    PHINode *PN = cast<PHINode>(I); + +    // If the incoming value from BB is again a PHINode in +    // BB which has the same incoming value for *PI as PN does, we can +    // merge the phi nodes and then the blocks can still be merged +    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); +    if (BBPN && BBPN->getParent() == BB) { +      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end(); +            PI != PE; PI++) { +        if (BBPN->getIncomingValueForBlock(*PI)  +              != PN->getIncomingValueForBlock(*PI)) { +          DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in "  +               << Succ->getNameStart() << " is conflicting with "  +               << BBPN->getNameStart() << " with regard to common predecessor " +               << (*PI)->getNameStart() << "\n"; +          return false; +        } +      } +      // Remove this phinode from the list of phis in BB, since it has been +      // handled. +      BBPHIs.erase(BBPN); +    } else { +      Value* Val = PN->getIncomingValueForBlock(BB); +      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end(); +            PI != PE; PI++) { +        // See if the incoming value for the common predecessor is equal to the +        // one for BB, in which case this phi node will not prevent the merging +        // of the block. +        if (Val != PN->getIncomingValueForBlock(*PI)) { +          DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in "  +          << Succ->getNameStart() << " is conflicting with regard to common " +          << "predecessor " << (*PI)->getNameStart() << "\n"; +          return false; +        } +      } +    } +  } + +  // If there are any other phi nodes in BB that don't have a phi node in Succ +  // to merge with, they must be moved to Succ completely. However, for any +  // predecessors of Succ, branches will be added to the phi node that just +  // point to itself. So, for any common predecessors, this must not cause +  // conflicts. +  for (InstrSet::iterator I = BBPHIs.begin(), E = BBPHIs.end(); +        I != E; I++) { +    PHINode *PN = cast<PHINode>(*I); +    for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end(); +          PI != PE; PI++) +      if (PN->getIncomingValueForBlock(*PI) != PN) { +        DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in "  +             << BB->getNameStart() << " is conflicting with regard to common " +             << "predecessor " << (*PI)->getNameStart() << "\n"; +        return false; +      } +  } + +  return true; +} + +/// TryToSimplifyUncondBranchFromEmptyBlock - BB contains an unconditional +/// branch to Succ, and contains no instructions other than PHI nodes and the +/// branch.  If possible, eliminate BB. +static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, +                                                    BasicBlock *Succ) { +  // Check to see if merging these blocks would cause conflicts for any of the +  // phi nodes in BB or Succ. If not, we can safely merge. +  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; +   +  DOUT << "Killing Trivial BB: \n" << *BB; +   +  if (isa<PHINode>(Succ->begin())) { +    // If there is more than one pred of succ, and there are PHI nodes in +    // the successor, then we need to add incoming edges for the PHI nodes +    // +    const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); +     +    // Loop over all of the PHI nodes in the successor of BB. +    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { +      PHINode *PN = cast<PHINode>(I); +      Value *OldVal = PN->removeIncomingValue(BB, false); +      assert(OldVal && "No entry in PHI for Pred BB!"); +       +      // If this incoming value is one of the PHI nodes in BB, the new entries +      // in the PHI node are the entries from the old PHI. +      if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { +        PHINode *OldValPN = cast<PHINode>(OldVal); +        for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) +          // Note that, since we are merging phi nodes and BB and Succ might +          // have common predecessors, we could end up with a phi node with +          // identical incoming branches. This will be cleaned up later (and +          // will trigger asserts if we try to clean it up now, without also +          // simplifying the corresponding conditional branch). +          PN->addIncoming(OldValPN->getIncomingValue(i), +                          OldValPN->getIncomingBlock(i)); +      } else { +        // Add an incoming value for each of the new incoming values. +        for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) +          PN->addIncoming(OldVal, BBPreds[i]); +      } +    } +  } +   +  if (isa<PHINode>(&BB->front())) { +    SmallVector<BasicBlock*, 16> +    OldSuccPreds(pred_begin(Succ), pred_end(Succ)); +     +    // Move all PHI nodes in BB to Succ if they are alive, otherwise +    // delete them. +    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { +      if (PN->use_empty()) { +        // Just remove the dead phi.  This happens if Succ's PHIs were the only +        // users of the PHI nodes. +        PN->eraseFromParent(); +        continue; +      } +     +      // The instruction is alive, so this means that BB must dominate all +      // predecessors of Succ (Since all uses of the PN are after its +      // definition, so in Succ or a block dominated by Succ. If a predecessor +      // of Succ would not be dominated by BB, PN would violate the def before +      // use SSA demand). Therefore, we can simply move the phi node to the +      // next block. +      Succ->getInstList().splice(Succ->begin(), +                                 BB->getInstList(), BB->begin()); +       +      // We need to add new entries for the PHI node to account for +      // predecessors of Succ that the PHI node does not take into +      // account.  At this point, since we know that BB dominated succ and all +      // of its predecessors, this means that we should any newly added +      // incoming edges should use the PHI node itself as the value for these +      // edges, because they are loop back edges. +      for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i) +        if (OldSuccPreds[i] != BB) +          PN->addIncoming(PN, OldSuccPreds[i]); +    } +  } +     +  // Everything that jumped to BB now goes to Succ. +  BB->replaceAllUsesWith(Succ); +  if (!Succ->hasName()) Succ->takeName(BB); +  BB->eraseFromParent();              // Delete the old basic block. +  return true; +} + +/// GetIfCondition - Given a basic block (BB) with two predecessors (and +/// presumably PHI nodes in it), check to see if the merge at this block is due +/// to an "if condition".  If so, return the boolean condition that determines +/// which entry into BB will be taken.  Also, return by references the block +/// that will be entered from if the condition is true, and the block that will +/// be entered if the condition is false. +/// +/// +static Value *GetIfCondition(BasicBlock *BB, +                             BasicBlock *&IfTrue, BasicBlock *&IfFalse) { +  assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 && +         "Function can only handle blocks with 2 predecessors!"); +  BasicBlock *Pred1 = *pred_begin(BB); +  BasicBlock *Pred2 = *++pred_begin(BB); + +  // We can only handle branches.  Other control flow will be lowered to +  // branches if possible anyway. +  if (!isa<BranchInst>(Pred1->getTerminator()) || +      !isa<BranchInst>(Pred2->getTerminator())) +    return 0; +  BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator()); +  BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator()); + +  // Eliminate code duplication by ensuring that Pred1Br is conditional if +  // either are. +  if (Pred2Br->isConditional()) { +    // If both branches are conditional, we don't have an "if statement".  In +    // reality, we could transform this case, but since the condition will be +    // required anyway, we stand no chance of eliminating it, so the xform is +    // probably not profitable. +    if (Pred1Br->isConditional()) +      return 0; + +    std::swap(Pred1, Pred2); +    std::swap(Pred1Br, Pred2Br); +  } + +  if (Pred1Br->isConditional()) { +    // If we found a conditional branch predecessor, make sure that it branches +    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement". +    if (Pred1Br->getSuccessor(0) == BB && +        Pred1Br->getSuccessor(1) == Pred2) { +      IfTrue = Pred1; +      IfFalse = Pred2; +    } else if (Pred1Br->getSuccessor(0) == Pred2 && +               Pred1Br->getSuccessor(1) == BB) { +      IfTrue = Pred2; +      IfFalse = Pred1; +    } else { +      // We know that one arm of the conditional goes to BB, so the other must +      // go somewhere unrelated, and this must not be an "if statement". +      return 0; +    } + +    // The only thing we have to watch out for here is to make sure that Pred2 +    // doesn't have incoming edges from other blocks.  If it does, the condition +    // doesn't dominate BB. +    if (++pred_begin(Pred2) != pred_end(Pred2)) +      return 0; + +    return Pred1Br->getCondition(); +  } + +  // Ok, if we got here, both predecessors end with an unconditional branch to +  // BB.  Don't panic!  If both blocks only have a single (identical) +  // predecessor, and THAT is a conditional branch, then we're all ok! +  if (pred_begin(Pred1) == pred_end(Pred1) || +      ++pred_begin(Pred1) != pred_end(Pred1) || +      pred_begin(Pred2) == pred_end(Pred2) || +      ++pred_begin(Pred2) != pred_end(Pred2) || +      *pred_begin(Pred1) != *pred_begin(Pred2)) +    return 0; + +  // Otherwise, if this is a conditional branch, then we can use it! +  BasicBlock *CommonPred = *pred_begin(Pred1); +  if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) { +    assert(BI->isConditional() && "Two successors but not conditional?"); +    if (BI->getSuccessor(0) == Pred1) { +      IfTrue = Pred1; +      IfFalse = Pred2; +    } else { +      IfTrue = Pred2; +      IfFalse = Pred1; +    } +    return BI->getCondition(); +  } +  return 0; +} + +/// DominatesMergePoint - If we have a merge point of an "if condition" as +/// accepted above, return true if the specified value dominates the block.  We +/// don't handle the true generality of domination here, just a special case +/// which works well enough for us. +/// +/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to +/// see if V (which must be an instruction) is cheap to compute and is +/// non-trapping.  If both are true, the instruction is inserted into the set +/// and true is returned. +static bool DominatesMergePoint(Value *V, BasicBlock *BB, +                                std::set<Instruction*> *AggressiveInsts) { +  Instruction *I = dyn_cast<Instruction>(V); +  if (!I) { +    // Non-instructions all dominate instructions, but not all constantexprs +    // can be executed unconditionally. +    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) +      if (C->canTrap()) +        return false; +    return true; +  } +  BasicBlock *PBB = I->getParent(); + +  // We don't want to allow weird loops that might have the "if condition" in +  // the bottom of this block. +  if (PBB == BB) return false; + +  // If this instruction is defined in a block that contains an unconditional +  // branch to BB, then it must be in the 'conditional' part of the "if +  // statement". +  if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator())) +    if (BI->isUnconditional() && BI->getSuccessor(0) == BB) { +      if (!AggressiveInsts) return false; +      // Okay, it looks like the instruction IS in the "condition".  Check to +      // see if its a cheap instruction to unconditionally compute, and if it +      // only uses stuff defined outside of the condition.  If so, hoist it out. +      switch (I->getOpcode()) { +      default: return false;  // Cannot hoist this out safely. +      case Instruction::Load: { +        // We can hoist loads that are non-volatile and obviously cannot trap. +        if (cast<LoadInst>(I)->isVolatile()) +          return false; +        // FIXME: A computation of a constant can trap! +        if (!isa<AllocaInst>(I->getOperand(0)) && +            !isa<Constant>(I->getOperand(0))) +          return false; +        // External weak globals may have address 0, so we can't load them. +        Value *V2 = I->getOperand(0)->getUnderlyingObject(); +        if (V2) { +          GlobalVariable* GV = dyn_cast<GlobalVariable>(V2); +          if (GV && GV->hasExternalWeakLinkage()) +            return false; +        } +        // Finally, we have to check to make sure there are no instructions +        // before the load in its basic block, as we are going to hoist the loop +        // out to its predecessor. +        BasicBlock::iterator IP = PBB->begin(); +        while (isa<DbgInfoIntrinsic>(IP)) +          IP++; +        if (IP != BasicBlock::iterator(I)) +          return false; +        break; +      } +      case Instruction::Add: +      case Instruction::Sub: +      case Instruction::And: +      case Instruction::Or: +      case Instruction::Xor: +      case Instruction::Shl: +      case Instruction::LShr: +      case Instruction::AShr: +      case Instruction::ICmp: +      case Instruction::FCmp: +        if (I->getOperand(0)->getType()->isFPOrFPVector()) +          return false;  // FP arithmetic might trap. +        break;   // These are all cheap and non-trapping instructions. +      } + +      // Okay, we can only really hoist these out if their operands are not +      // defined in the conditional region. +      for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) +        if (!DominatesMergePoint(*i, BB, 0)) +          return false; +      // Okay, it's safe to do this!  Remember this instruction. +      AggressiveInsts->insert(I); +    } + +  return true; +} + +/// GatherConstantSetEQs - Given a potentially 'or'd together collection of +/// icmp_eq instructions that compare a value against a constant, return the +/// value being compared, and stick the constant into the Values vector. +static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){ +  if (Instruction *Inst = dyn_cast<Instruction>(V)) { +    if (Inst->getOpcode() == Instruction::ICmp && +        cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_EQ) { +      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) { +        Values.push_back(C); +        return Inst->getOperand(0); +      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) { +        Values.push_back(C); +        return Inst->getOperand(1); +      } +    } else if (Inst->getOpcode() == Instruction::Or) { +      if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values)) +        if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values)) +          if (LHS == RHS) +            return LHS; +    } +  } +  return 0; +} + +/// GatherConstantSetNEs - Given a potentially 'and'd together collection of +/// setne instructions that compare a value against a constant, return the value +/// being compared, and stick the constant into the Values vector. +static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){ +  if (Instruction *Inst = dyn_cast<Instruction>(V)) { +    if (Inst->getOpcode() == Instruction::ICmp && +               cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_NE) { +      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) { +        Values.push_back(C); +        return Inst->getOperand(0); +      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) { +        Values.push_back(C); +        return Inst->getOperand(1); +      } +    } else if (Inst->getOpcode() == Instruction::And) { +      if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values)) +        if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values)) +          if (LHS == RHS) +            return LHS; +    } +  } +  return 0; +} + +/// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a +/// bunch of comparisons of one value against constants, return the value and +/// the constants being compared. +static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal, +                                   std::vector<ConstantInt*> &Values) { +  if (Cond->getOpcode() == Instruction::Or) { +    CompVal = GatherConstantSetEQs(Cond, Values); + +    // Return true to indicate that the condition is true if the CompVal is +    // equal to one of the constants. +    return true; +  } else if (Cond->getOpcode() == Instruction::And) { +    CompVal = GatherConstantSetNEs(Cond, Values); + +    // Return false to indicate that the condition is false if the CompVal is +    // equal to one of the constants. +    return false; +  } +  return false; +} + +static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { +  Instruction* Cond = 0; +  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { +    Cond = dyn_cast<Instruction>(SI->getCondition()); +  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { +    if (BI->isConditional()) +      Cond = dyn_cast<Instruction>(BI->getCondition()); +  } + +  TI->eraseFromParent(); +  if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); +} + +/// isValueEqualityComparison - Return true if the specified terminator checks +/// to see if a value is equal to constant integer value. +static Value *isValueEqualityComparison(TerminatorInst *TI) { +  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { +    // Do not permit merging of large switch instructions into their +    // predecessors unless there is only one predecessor. +    if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()), +                                               pred_end(SI->getParent())) > 128) +      return 0; + +    return SI->getCondition(); +  } +  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) +    if (BI->isConditional() && BI->getCondition()->hasOneUse()) +      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) +        if ((ICI->getPredicate() == ICmpInst::ICMP_EQ || +             ICI->getPredicate() == ICmpInst::ICMP_NE) && +            isa<ConstantInt>(ICI->getOperand(1))) +          return ICI->getOperand(0); +  return 0; +} + +/// GetValueEqualityComparisonCases - Given a value comparison instruction, +/// decode all of the 'cases' that it represents and return the 'default' block. +static BasicBlock * +GetValueEqualityComparisonCases(TerminatorInst *TI, +                                std::vector<std::pair<ConstantInt*, +                                                      BasicBlock*> > &Cases) { +  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { +    Cases.reserve(SI->getNumCases()); +    for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) +      Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i))); +    return SI->getDefaultDest(); +  } + +  BranchInst *BI = cast<BranchInst>(TI); +  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); +  Cases.push_back(std::make_pair(cast<ConstantInt>(ICI->getOperand(1)), +                                 BI->getSuccessor(ICI->getPredicate() == +                                                  ICmpInst::ICMP_NE))); +  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); +} + + +/// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries +/// in the list that match the specified block. +static void EliminateBlockCases(BasicBlock *BB, +               std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) { +  for (unsigned i = 0, e = Cases.size(); i != e; ++i) +    if (Cases[i].second == BB) { +      Cases.erase(Cases.begin()+i); +      --i; --e; +    } +} + +/// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as +/// well. +static bool +ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1, +              std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) { +  std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2; + +  // Make V1 be smaller than V2. +  if (V1->size() > V2->size()) +    std::swap(V1, V2); + +  if (V1->size() == 0) return false; +  if (V1->size() == 1) { +    // Just scan V2. +    ConstantInt *TheVal = (*V1)[0].first; +    for (unsigned i = 0, e = V2->size(); i != e; ++i) +      if (TheVal == (*V2)[i].first) +        return true; +  } + +  // Otherwise, just sort both lists and compare element by element. +  std::sort(V1->begin(), V1->end()); +  std::sort(V2->begin(), V2->end()); +  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); +  while (i1 != e1 && i2 != e2) { +    if ((*V1)[i1].first == (*V2)[i2].first) +      return true; +    if ((*V1)[i1].first < (*V2)[i2].first) +      ++i1; +    else +      ++i2; +  } +  return false; +} + +/// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a +/// terminator instruction and its block is known to only have a single +/// predecessor block, check to see if that predecessor is also a value +/// comparison with the same value, and if that comparison determines the +/// outcome of this comparison.  If so, simplify TI.  This does a very limited +/// form of jump threading. +static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, +                                                          BasicBlock *Pred) { +  Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); +  if (!PredVal) return false;  // Not a value comparison in predecessor. + +  Value *ThisVal = isValueEqualityComparison(TI); +  assert(ThisVal && "This isn't a value comparison!!"); +  if (ThisVal != PredVal) return false;  // Different predicates. + +  // Find out information about when control will move from Pred to TI's block. +  std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases; +  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), +                                                        PredCases); +  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases. + +  // Find information about how control leaves this block. +  std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases; +  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); +  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases. + +  // If TI's block is the default block from Pred's comparison, potentially +  // simplify TI based on this knowledge. +  if (PredDef == TI->getParent()) { +    // If we are here, we know that the value is none of those cases listed in +    // PredCases.  If there are any cases in ThisCases that are in PredCases, we +    // can simplify TI. +    if (ValuesOverlap(PredCases, ThisCases)) { +      if (isa<BranchInst>(TI)) { +        // Okay, one of the successors of this condbr is dead.  Convert it to a +        // uncond br. +        assert(ThisCases.size() == 1 && "Branch can only have one case!"); +        // Insert the new branch. +        Instruction *NI = BranchInst::Create(ThisDef, TI); + +        // Remove PHI node entries for the dead edge. +        ThisCases[0].second->removePredecessor(TI->getParent()); + +        DOUT << "Threading pred instr: " << *Pred->getTerminator() +             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"; + +        EraseTerminatorInstAndDCECond(TI); +        return true; + +      } else { +        SwitchInst *SI = cast<SwitchInst>(TI); +        // Okay, TI has cases that are statically dead, prune them away. +        SmallPtrSet<Constant*, 16> DeadCases; +        for (unsigned i = 0, e = PredCases.size(); i != e; ++i) +          DeadCases.insert(PredCases[i].first); + +        DOUT << "Threading pred instr: " << *Pred->getTerminator() +             << "Through successor TI: " << *TI; + +        for (unsigned i = SI->getNumCases()-1; i != 0; --i) +          if (DeadCases.count(SI->getCaseValue(i))) { +            SI->getSuccessor(i)->removePredecessor(TI->getParent()); +            SI->removeCase(i); +          } + +        DOUT << "Leaving: " << *TI << "\n"; +        return true; +      } +    } + +  } else { +    // Otherwise, TI's block must correspond to some matched value.  Find out +    // which value (or set of values) this is. +    ConstantInt *TIV = 0; +    BasicBlock *TIBB = TI->getParent(); +    for (unsigned i = 0, e = PredCases.size(); i != e; ++i) +      if (PredCases[i].second == TIBB) { +        if (TIV == 0) +          TIV = PredCases[i].first; +        else +          return false;  // Cannot handle multiple values coming to this block. +      } +    assert(TIV && "No edge from pred to succ?"); + +    // Okay, we found the one constant that our value can be if we get into TI's +    // BB.  Find out which successor will unconditionally be branched to. +    BasicBlock *TheRealDest = 0; +    for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) +      if (ThisCases[i].first == TIV) { +        TheRealDest = ThisCases[i].second; +        break; +      } + +    // If not handled by any explicit cases, it is handled by the default case. +    if (TheRealDest == 0) TheRealDest = ThisDef; + +    // Remove PHI node entries for dead edges. +    BasicBlock *CheckEdge = TheRealDest; +    for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) +      if (*SI != CheckEdge) +        (*SI)->removePredecessor(TIBB); +      else +        CheckEdge = 0; + +    // Insert the new branch. +    Instruction *NI = BranchInst::Create(TheRealDest, TI); + +    DOUT << "Threading pred instr: " << *Pred->getTerminator() +         << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"; + +    EraseTerminatorInstAndDCECond(TI); +    return true; +  } +  return false; +} + +namespace { +  /// ConstantIntOrdering - This class implements a stable ordering of constant +  /// integers that does not depend on their address.  This is important for +  /// applications that sort ConstantInt's to ensure uniqueness. +  struct ConstantIntOrdering { +    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { +      return LHS->getValue().ult(RHS->getValue()); +    } +  }; +} + +/// FoldValueComparisonIntoPredecessors - The specified terminator is a value +/// equality comparison instruction (either a switch or a branch on "X == c"). +/// See if any of the predecessors of the terminator block are value comparisons +/// on the same value.  If so, and if safe to do so, fold them together. +static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) { +  BasicBlock *BB = TI->getParent(); +  Value *CV = isValueEqualityComparison(TI);  // CondVal +  assert(CV && "Not a comparison?"); +  bool Changed = false; + +  SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); +  while (!Preds.empty()) { +    BasicBlock *Pred = Preds.pop_back_val(); + +    // See if the predecessor is a comparison with the same value. +    TerminatorInst *PTI = Pred->getTerminator(); +    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal + +    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { +      // Figure out which 'cases' to copy from SI to PSI. +      std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases; +      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); + +      std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases; +      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); + +      // Based on whether the default edge from PTI goes to BB or not, fill in +      // PredCases and PredDefault with the new switch cases we would like to +      // build. +      SmallVector<BasicBlock*, 8> NewSuccessors; + +      if (PredDefault == BB) { +        // If this is the default destination from PTI, only the edges in TI +        // that don't occur in PTI, or that branch to BB will be activated. +        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; +        for (unsigned i = 0, e = PredCases.size(); i != e; ++i) +          if (PredCases[i].second != BB) +            PTIHandled.insert(PredCases[i].first); +          else { +            // The default destination is BB, we don't need explicit targets. +            std::swap(PredCases[i], PredCases.back()); +            PredCases.pop_back(); +            --i; --e; +          } + +        // Reconstruct the new switch statement we will be building. +        if (PredDefault != BBDefault) { +          PredDefault->removePredecessor(Pred); +          PredDefault = BBDefault; +          NewSuccessors.push_back(BBDefault); +        } +        for (unsigned i = 0, e = BBCases.size(); i != e; ++i) +          if (!PTIHandled.count(BBCases[i].first) && +              BBCases[i].second != BBDefault) { +            PredCases.push_back(BBCases[i]); +            NewSuccessors.push_back(BBCases[i].second); +          } + +      } else { +        // If this is not the default destination from PSI, only the edges +        // in SI that occur in PSI with a destination of BB will be +        // activated. +        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; +        for (unsigned i = 0, e = PredCases.size(); i != e; ++i) +          if (PredCases[i].second == BB) { +            PTIHandled.insert(PredCases[i].first); +            std::swap(PredCases[i], PredCases.back()); +            PredCases.pop_back(); +            --i; --e; +          } + +        // Okay, now we know which constants were sent to BB from the +        // predecessor.  Figure out where they will all go now. +        for (unsigned i = 0, e = BBCases.size(); i != e; ++i) +          if (PTIHandled.count(BBCases[i].first)) { +            // If this is one we are capable of getting... +            PredCases.push_back(BBCases[i]); +            NewSuccessors.push_back(BBCases[i].second); +            PTIHandled.erase(BBCases[i].first);// This constant is taken care of +          } + +        // If there are any constants vectored to BB that TI doesn't handle, +        // they must go to the default destination of TI. +        for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =  +                                    PTIHandled.begin(), +               E = PTIHandled.end(); I != E; ++I) { +          PredCases.push_back(std::make_pair(*I, BBDefault)); +          NewSuccessors.push_back(BBDefault); +        } +      } + +      // Okay, at this point, we know which new successor Pred will get.  Make +      // sure we update the number of entries in the PHI nodes for these +      // successors. +      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i) +        AddPredecessorToBlock(NewSuccessors[i], Pred, BB); + +      // Now that the successors are updated, create the new Switch instruction. +      SwitchInst *NewSI = SwitchInst::Create(CV, PredDefault, +                                             PredCases.size(), PTI); +      for (unsigned i = 0, e = PredCases.size(); i != e; ++i) +        NewSI->addCase(PredCases[i].first, PredCases[i].second); + +      EraseTerminatorInstAndDCECond(PTI); + +      // Okay, last check.  If BB is still a successor of PSI, then we must +      // have an infinite loop case.  If so, add an infinitely looping block +      // to handle the case to preserve the behavior of the code. +      BasicBlock *InfLoopBlock = 0; +      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) +        if (NewSI->getSuccessor(i) == BB) { +          if (InfLoopBlock == 0) { +            // Insert it at the end of the function, because it's either code, +            // or it won't matter if it's hot. :) +            InfLoopBlock = BasicBlock::Create("infloop", BB->getParent()); +            BranchInst::Create(InfLoopBlock, InfLoopBlock); +          } +          NewSI->setSuccessor(i, InfLoopBlock); +        } + +      Changed = true; +    } +  } +  return Changed; +} + +/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and +/// BB2, hoist any common code in the two blocks up into the branch block.  The +/// caller of this function guarantees that BI's block dominates BB1 and BB2. +static bool HoistThenElseCodeToIf(BranchInst *BI) { +  // This does very trivial matching, with limited scanning, to find identical +  // instructions in the two blocks.  In particular, we don't want to get into +  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As +  // such, we currently just scan for obviously identical instructions in an +  // identical order. +  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination. +  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination + +  BasicBlock::iterator BB1_Itr = BB1->begin(); +  BasicBlock::iterator BB2_Itr = BB2->begin(); + +  Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++; +  while (isa<DbgInfoIntrinsic>(I1)) +    I1 = BB1_Itr++; +  while (isa<DbgInfoIntrinsic>(I2)) +    I2 = BB2_Itr++; +  if (I1->getOpcode() != I2->getOpcode() || isa<PHINode>(I1) ||  +      isa<InvokeInst>(I1) || !I1->isIdenticalTo(I2)) +    return false; + +  // If we get here, we can hoist at least one instruction. +  BasicBlock *BIParent = BI->getParent(); + +  do { +    // If we are hoisting the terminator instruction, don't move one (making a +    // broken BB), instead clone it, and remove BI. +    if (isa<TerminatorInst>(I1)) +      goto HoistTerminator; + +    // For a normal instruction, we just move one to right before the branch, +    // then replace all uses of the other with the first.  Finally, we remove +    // the now redundant second instruction. +    BIParent->getInstList().splice(BI, BB1->getInstList(), I1); +    if (!I2->use_empty()) +      I2->replaceAllUsesWith(I1); +    BB2->getInstList().erase(I2); + +    I1 = BB1_Itr++; +    while (isa<DbgInfoIntrinsic>(I1)) +      I1 = BB1_Itr++; +    I2 = BB2_Itr++; +    while (isa<DbgInfoIntrinsic>(I2)) +      I2 = BB2_Itr++; +  } while (I1->getOpcode() == I2->getOpcode() && I1->isIdenticalTo(I2)); + +  return true; + +HoistTerminator: +  // Okay, it is safe to hoist the terminator. +  Instruction *NT = I1->clone(); +  BIParent->getInstList().insert(BI, NT); +  if (NT->getType() != Type::VoidTy) { +    I1->replaceAllUsesWith(NT); +    I2->replaceAllUsesWith(NT); +    NT->takeName(I1); +  } + +  // Hoisting one of the terminators from our successor is a great thing. +  // Unfortunately, the successors of the if/else blocks may have PHI nodes in +  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI +  // nodes, so we insert select instruction to compute the final result. +  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; +  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { +    PHINode *PN; +    for (BasicBlock::iterator BBI = SI->begin(); +         (PN = dyn_cast<PHINode>(BBI)); ++BBI) { +      Value *BB1V = PN->getIncomingValueForBlock(BB1); +      Value *BB2V = PN->getIncomingValueForBlock(BB2); +      if (BB1V != BB2V) { +        // These values do not agree.  Insert a select instruction before NT +        // that determines the right value. +        SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; +        if (SI == 0) +          SI = SelectInst::Create(BI->getCondition(), BB1V, BB2V, +                                  BB1V->getName()+"."+BB2V->getName(), NT); +        // Make the PHI node use the select for all incoming values for BB1/BB2 +        for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) +          if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) +            PN->setIncomingValue(i, SI); +      } +    } +  } + +  // Update any PHI nodes in our new successors. +  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) +    AddPredecessorToBlock(*SI, BIParent, BB1); + +  EraseTerminatorInstAndDCECond(BI); +  return true; +} + +/// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1 +/// and an BB2 and the only successor of BB1 is BB2, hoist simple code +/// (for now, restricted to a single instruction that's side effect free) from +/// the BB1 into the branch block to speculatively execute it. +static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) { +  // Only speculatively execution a single instruction (not counting the +  // terminator) for now. +  Instruction *HInst = NULL; +  Instruction *Term = BB1->getTerminator(); +  for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end(); +       BBI != BBE; ++BBI) { +    Instruction *I = BBI; +    // Skip debug info. +    if (isa<DbgInfoIntrinsic>(I))   continue; +    if (I == Term)  break; + +    if (!HInst) +      HInst = I; +    else +      return false; +  } +  if (!HInst) +    return false; + +  // Be conservative for now. FP select instruction can often be expensive. +  Value *BrCond = BI->getCondition(); +  if (isa<Instruction>(BrCond) && +      cast<Instruction>(BrCond)->getOpcode() == Instruction::FCmp) +    return false; + +  // If BB1 is actually on the false edge of the conditional branch, remember +  // to swap the select operands later. +  bool Invert = false; +  if (BB1 != BI->getSuccessor(0)) { +    assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?"); +    Invert = true; +  } + +  // Turn +  // BB: +  //     %t1 = icmp +  //     br i1 %t1, label %BB1, label %BB2 +  // BB1: +  //     %t3 = add %t2, c +  //     br label BB2 +  // BB2: +  // => +  // BB: +  //     %t1 = icmp +  //     %t4 = add %t2, c +  //     %t3 = select i1 %t1, %t2, %t3 +  switch (HInst->getOpcode()) { +  default: return false;  // Not safe / profitable to hoist. +  case Instruction::Add: +  case Instruction::Sub: +    // FP arithmetic might trap. Not worth doing for vector ops. +    if (HInst->getType()->isFloatingPoint()  +        || isa<VectorType>(HInst->getType())) +      return false; +    break; +  case Instruction::And: +  case Instruction::Or: +  case Instruction::Xor: +  case Instruction::Shl: +  case Instruction::LShr: +  case Instruction::AShr: +    // Don't mess with vector operations. +    if (isa<VectorType>(HInst->getType())) +      return false; +    break;   // These are all cheap and non-trapping instructions. +  } +   +  // If the instruction is obviously dead, don't try to predicate it. +  if (HInst->use_empty()) { +    HInst->eraseFromParent(); +    return true; +  } + +  // Can we speculatively execute the instruction? And what is the value  +  // if the condition is false? Consider the phi uses, if the incoming value +  // from the "if" block are all the same V, then V is the value of the +  // select if the condition is false. +  BasicBlock *BIParent = BI->getParent(); +  SmallVector<PHINode*, 4> PHIUses; +  Value *FalseV = NULL; +   +  BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0); +  for (Value::use_iterator UI = HInst->use_begin(), E = HInst->use_end(); +       UI != E; ++UI) { +    // Ignore any user that is not a PHI node in BB2.  These can only occur in +    // unreachable blocks, because they would not be dominated by the instr. +    PHINode *PN = dyn_cast<PHINode>(UI); +    if (!PN || PN->getParent() != BB2) +      return false; +    PHIUses.push_back(PN); +     +    Value *PHIV = PN->getIncomingValueForBlock(BIParent); +    if (!FalseV) +      FalseV = PHIV; +    else if (FalseV != PHIV) +      return false;  // Inconsistent value when condition is false. +  } +   +  assert(FalseV && "Must have at least one user, and it must be a PHI"); + +  // Do not hoist the instruction if any of its operands are defined but not +  // used in this BB. The transformation will prevent the operand from +  // being sunk into the use block. +  for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();  +       i != e; ++i) { +    Instruction *OpI = dyn_cast<Instruction>(*i); +    if (OpI && OpI->getParent() == BIParent && +        !OpI->isUsedInBasicBlock(BIParent)) +      return false; +  } + +  // If we get here, we can hoist the instruction. Try to place it +  // before the icmp instruction preceding the conditional branch. +  BasicBlock::iterator InsertPos = BI; +  if (InsertPos != BIParent->begin()) +    --InsertPos; +  // Skip debug info between condition and branch. +  while (InsertPos != BIParent->begin() && isa<DbgInfoIntrinsic>(InsertPos)) +    --InsertPos; +  if (InsertPos == BrCond && !isa<PHINode>(BrCond)) { +    SmallPtrSet<Instruction *, 4> BB1Insns; +    for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end();  +        BB1I != BB1E; ++BB1I)  +      BB1Insns.insert(BB1I); +    for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end(); +        UI != UE; ++UI) { +      Instruction *Use = cast<Instruction>(*UI); +      if (BB1Insns.count(Use)) { +        // If BrCond uses the instruction that place it just before +        // branch instruction. +        InsertPos = BI; +        break; +      } +    } +  } else +    InsertPos = BI; +  BIParent->getInstList().splice(InsertPos, BB1->getInstList(), HInst); + +  // Create a select whose true value is the speculatively executed value and +  // false value is the previously determined FalseV. +  SelectInst *SI; +  if (Invert) +    SI = SelectInst::Create(BrCond, FalseV, HInst, +                            FalseV->getName() + "." + HInst->getName(), BI); +  else +    SI = SelectInst::Create(BrCond, HInst, FalseV, +                            HInst->getName() + "." + FalseV->getName(), BI); + +  // Make the PHI node use the select for all incoming values for "then" and +  // "if" blocks. +  for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) { +    PHINode *PN = PHIUses[i]; +    for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j) +      if (PN->getIncomingBlock(j) == BB1 || +          PN->getIncomingBlock(j) == BIParent) +        PN->setIncomingValue(j, SI); +  } + +  ++NumSpeculations; +  return true; +} + +/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch +/// across this block. +static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { +  BranchInst *BI = cast<BranchInst>(BB->getTerminator()); +  unsigned Size = 0; +   +  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { +    if (isa<DbgInfoIntrinsic>(BBI)) +      continue; +    if (Size > 10) return false;  // Don't clone large BB's. +    ++Size; +     +    // We can only support instructions that do not define values that are +    // live outside of the current basic block. +    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end(); +         UI != E; ++UI) { +      Instruction *U = cast<Instruction>(*UI); +      if (U->getParent() != BB || isa<PHINode>(U)) return false; +    } +     +    // Looks ok, continue checking. +  } + +  return true; +} + +/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value +/// that is defined in the same block as the branch and if any PHI entries are +/// constants, thread edges corresponding to that entry to be branches to their +/// ultimate destination. +static bool FoldCondBranchOnPHI(BranchInst *BI) { +  BasicBlock *BB = BI->getParent(); +  PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); +  // NOTE: we currently cannot transform this case if the PHI node is used +  // outside of the block. +  if (!PN || PN->getParent() != BB || !PN->hasOneUse()) +    return false; +   +  // Degenerate case of a single entry PHI. +  if (PN->getNumIncomingValues() == 1) { +    FoldSingleEntryPHINodes(PN->getParent()); +    return true;     +  } + +  // Now we know that this block has multiple preds and two succs. +  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; +   +  // Okay, this is a simple enough basic block.  See if any phi values are +  // constants. +  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { +    ConstantInt *CB; +    if ((CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i))) && +        CB->getType() == Type::Int1Ty) { +      // Okay, we now know that all edges from PredBB should be revectored to +      // branch to RealDest. +      BasicBlock *PredBB = PN->getIncomingBlock(i); +      BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); +       +      if (RealDest == BB) continue;  // Skip self loops. +       +      // The dest block might have PHI nodes, other predecessors and other +      // difficult cases.  Instead of being smart about this, just insert a new +      // block that jumps to the destination block, effectively splitting +      // the edge we are about to create. +      BasicBlock *EdgeBB = BasicBlock::Create(RealDest->getName()+".critedge", +                                              RealDest->getParent(), RealDest); +      BranchInst::Create(RealDest, EdgeBB); +      PHINode *PN; +      for (BasicBlock::iterator BBI = RealDest->begin(); +           (PN = dyn_cast<PHINode>(BBI)); ++BBI) { +        Value *V = PN->getIncomingValueForBlock(BB); +        PN->addIncoming(V, EdgeBB); +      } + +      // BB may have instructions that are being threaded over.  Clone these +      // instructions into EdgeBB.  We know that there will be no uses of the +      // cloned instructions outside of EdgeBB. +      BasicBlock::iterator InsertPt = EdgeBB->begin(); +      std::map<Value*, Value*> TranslateMap;  // Track translated values. +      for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { +        if (PHINode *PN = dyn_cast<PHINode>(BBI)) { +          TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); +        } else { +          // Clone the instruction. +          Instruction *N = BBI->clone(); +          if (BBI->hasName()) N->setName(BBI->getName()+".c"); +           +          // Update operands due to translation. +          for (User::op_iterator i = N->op_begin(), e = N->op_end(); +               i != e; ++i) { +            std::map<Value*, Value*>::iterator PI = +              TranslateMap.find(*i); +            if (PI != TranslateMap.end()) +              *i = PI->second; +          } +           +          // Check for trivial simplification. +          if (Constant *C = ConstantFoldInstruction(N)) { +            TranslateMap[BBI] = C; +            delete N;   // Constant folded away, don't need actual inst +          } else { +            // Insert the new instruction into its new home. +            EdgeBB->getInstList().insert(InsertPt, N); +            if (!BBI->use_empty()) +              TranslateMap[BBI] = N; +          } +        } +      } + +      // Loop over all of the edges from PredBB to BB, changing them to branch +      // to EdgeBB instead. +      TerminatorInst *PredBBTI = PredBB->getTerminator(); +      for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) +        if (PredBBTI->getSuccessor(i) == BB) { +          BB->removePredecessor(PredBB); +          PredBBTI->setSuccessor(i, EdgeBB); +        } +       +      // Recurse, simplifying any other constants. +      return FoldCondBranchOnPHI(BI) | true; +    } +  } + +  return false; +} + +/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry +/// PHI node, see if we can eliminate it. +static bool FoldTwoEntryPHINode(PHINode *PN) { +  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if +  // statement", which has a very simple dominance structure.  Basically, we +  // are trying to find the condition that is being branched on, which +  // subsequently causes this merge to happen.  We really want control +  // dependence information for this check, but simplifycfg can't keep it up +  // to date, and this catches most of the cases we care about anyway. +  // +  BasicBlock *BB = PN->getParent(); +  BasicBlock *IfTrue, *IfFalse; +  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); +  if (!IfCond) return false; +   +  // Okay, we found that we can merge this two-entry phi node into a select. +  // Doing so would require us to fold *all* two entry phi nodes in this block. +  // At some point this becomes non-profitable (particularly if the target +  // doesn't support cmov's).  Only do this transformation if there are two or +  // fewer PHI nodes in this block. +  unsigned NumPhis = 0; +  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) +    if (NumPhis > 2) +      return false; +   +  DOUT << "FOUND IF CONDITION!  " << *IfCond << "  T: " +       << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n"; +   +  // Loop over the PHI's seeing if we can promote them all to select +  // instructions.  While we are at it, keep track of the instructions +  // that need to be moved to the dominating block. +  std::set<Instruction*> AggressiveInsts; +   +  BasicBlock::iterator AfterPHIIt = BB->begin(); +  while (isa<PHINode>(AfterPHIIt)) { +    PHINode *PN = cast<PHINode>(AfterPHIIt++); +    if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) { +      if (PN->getIncomingValue(0) != PN) +        PN->replaceAllUsesWith(PN->getIncomingValue(0)); +      else +        PN->replaceAllUsesWith(UndefValue::get(PN->getType())); +    } else if (!DominatesMergePoint(PN->getIncomingValue(0), BB, +                                    &AggressiveInsts) || +               !DominatesMergePoint(PN->getIncomingValue(1), BB, +                                    &AggressiveInsts)) { +      return false; +    } +  } +   +  // If we all PHI nodes are promotable, check to make sure that all +  // instructions in the predecessor blocks can be promoted as well.  If +  // not, we won't be able to get rid of the control flow, so it's not +  // worth promoting to select instructions. +  BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0; +  PN = cast<PHINode>(BB->begin()); +  BasicBlock *Pred = PN->getIncomingBlock(0); +  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) { +    IfBlock1 = Pred; +    DomBlock = *pred_begin(Pred); +    for (BasicBlock::iterator I = Pred->begin(); +         !isa<TerminatorInst>(I); ++I) +      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { +        // This is not an aggressive instruction that we can promote. +        // Because of this, we won't be able to get rid of the control +        // flow, so the xform is not worth it. +        return false; +      } +  } +     +  Pred = PN->getIncomingBlock(1); +  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) { +    IfBlock2 = Pred; +    DomBlock = *pred_begin(Pred); +    for (BasicBlock::iterator I = Pred->begin(); +         !isa<TerminatorInst>(I); ++I) +      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { +        // This is not an aggressive instruction that we can promote. +        // Because of this, we won't be able to get rid of the control +        // flow, so the xform is not worth it. +        return false; +      } +  } +       +  // If we can still promote the PHI nodes after this gauntlet of tests, +  // do all of the PHI's now. + +  // Move all 'aggressive' instructions, which are defined in the +  // conditional parts of the if's up to the dominating block. +  if (IfBlock1) { +    DomBlock->getInstList().splice(DomBlock->getTerminator(), +                                   IfBlock1->getInstList(), +                                   IfBlock1->begin(), +                                   IfBlock1->getTerminator()); +  } +  if (IfBlock2) { +    DomBlock->getInstList().splice(DomBlock->getTerminator(), +                                   IfBlock2->getInstList(), +                                   IfBlock2->begin(), +                                   IfBlock2->getTerminator()); +  } +   +  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { +    // Change the PHI node into a select instruction. +    Value *TrueVal = +      PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); +    Value *FalseVal = +      PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); +     +    Value *NV = SelectInst::Create(IfCond, TrueVal, FalseVal, "", AfterPHIIt); +    PN->replaceAllUsesWith(NV); +    NV->takeName(PN); +     +    BB->getInstList().erase(PN); +  } +  return true; +} + +/// isTerminatorFirstRelevantInsn - Return true if Term is very first  +/// instruction ignoring Phi nodes and dbg intrinsics. +static bool isTerminatorFirstRelevantInsn(BasicBlock *BB, Instruction *Term) { +  BasicBlock::iterator BBI = Term; +  while (BBI != BB->begin()) { +    --BBI; +    if (!isa<DbgInfoIntrinsic>(BBI)) +      break; +  } + +  if (isa<PHINode>(BBI) || &*BBI == Term || isa<DbgInfoIntrinsic>(BBI)) +    return true; +  return false; +} + +/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes +/// to two returning blocks, try to merge them together into one return, +/// introducing a select if the return values disagree. +static bool SimplifyCondBranchToTwoReturns(BranchInst *BI) { +  assert(BI->isConditional() && "Must be a conditional branch"); +  BasicBlock *TrueSucc = BI->getSuccessor(0); +  BasicBlock *FalseSucc = BI->getSuccessor(1); +  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); +  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); +   +  // Check to ensure both blocks are empty (just a return) or optionally empty +  // with PHI nodes.  If there are other instructions, merging would cause extra +  // computation on one path or the other. +  if (!isTerminatorFirstRelevantInsn(TrueSucc, TrueRet)) +    return false; +  if (!isTerminatorFirstRelevantInsn(FalseSucc, FalseRet)) +    return false; + +  // Okay, we found a branch that is going to two return nodes.  If +  // there is no return value for this function, just change the +  // branch into a return. +  if (FalseRet->getNumOperands() == 0) { +    TrueSucc->removePredecessor(BI->getParent()); +    FalseSucc->removePredecessor(BI->getParent()); +    ReturnInst::Create(0, BI); +    EraseTerminatorInstAndDCECond(BI); +    return true; +  } +     +  // Otherwise, figure out what the true and false return values are +  // so we can insert a new select instruction. +  Value *TrueValue = TrueRet->getReturnValue(); +  Value *FalseValue = FalseRet->getReturnValue(); +   +  // Unwrap any PHI nodes in the return blocks. +  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) +    if (TVPN->getParent() == TrueSucc) +      TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); +  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) +    if (FVPN->getParent() == FalseSucc) +      FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); +   +  // In order for this transformation to be safe, we must be able to +  // unconditionally execute both operands to the return.  This is +  // normally the case, but we could have a potentially-trapping +  // constant expression that prevents this transformation from being +  // safe. +  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) +    if (TCV->canTrap()) +      return false; +  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) +    if (FCV->canTrap()) +      return false; +   +  // Okay, we collected all the mapped values and checked them for sanity, and +  // defined to really do this transformation.  First, update the CFG. +  TrueSucc->removePredecessor(BI->getParent()); +  FalseSucc->removePredecessor(BI->getParent()); +   +  // Insert select instructions where needed. +  Value *BrCond = BI->getCondition(); +  if (TrueValue) { +    // Insert a select if the results differ. +    if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { +    } else if (isa<UndefValue>(TrueValue)) { +      TrueValue = FalseValue; +    } else { +      TrueValue = SelectInst::Create(BrCond, TrueValue, +                                     FalseValue, "retval", BI); +    } +  } + +  Value *RI = !TrueValue ? +              ReturnInst::Create(BI) : +              ReturnInst::Create(TrueValue, BI); +       +  DOUT << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" +       << "\n  " << *BI << "NewRet = " << *RI +       << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc; +       +  EraseTerminatorInstAndDCECond(BI); + +  return true; +} + +/// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch, +/// and if a predecessor branches to us and one of our successors, fold the +/// setcc into the predecessor and use logical operations to pick the right +/// destination. +static bool FoldBranchToCommonDest(BranchInst *BI) { +  BasicBlock *BB = BI->getParent(); +  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); +  if (Cond == 0) return false; + +   +  // Only allow this if the condition is a simple instruction that can be +  // executed unconditionally.  It must be in the same block as the branch, and +  // must be at the front of the block. +  BasicBlock::iterator FrontIt = BB->front(); +  // Ignore dbg intrinsics. +  while(isa<DbgInfoIntrinsic>(FrontIt)) +    ++FrontIt; +  if ((!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || +      Cond->getParent() != BB || &*FrontIt != Cond || !Cond->hasOneUse()) { +    return false; +  } +   +  // Make sure the instruction after the condition is the cond branch. +  BasicBlock::iterator CondIt = Cond; ++CondIt; +  // Ingore dbg intrinsics. +  while(isa<DbgInfoIntrinsic>(CondIt)) +    ++CondIt; +  if (&*CondIt != BI) { +    assert (!isa<DbgInfoIntrinsic>(CondIt) && "Hey do not forget debug info!"); +    return false; +  } + +  // Cond is known to be a compare or binary operator.  Check to make sure that +  // neither operand is a potentially-trapping constant expression. +  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) +    if (CE->canTrap()) +      return false; +  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) +    if (CE->canTrap()) +      return false; +   +   +  // Finally, don't infinitely unroll conditional loops. +  BasicBlock *TrueDest  = BI->getSuccessor(0); +  BasicBlock *FalseDest = BI->getSuccessor(1); +  if (TrueDest == BB || FalseDest == BB) +    return false; +   +  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { +    BasicBlock *PredBlock = *PI; +    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); +     +    // Check that we have two conditional branches.  If there is a PHI node in +    // the common successor, verify that the same value flows in from both +    // blocks. +    if (PBI == 0 || PBI->isUnconditional() || +        !SafeToMergeTerminators(BI, PBI)) +      continue; +     +    Instruction::BinaryOps Opc; +    bool InvertPredCond = false; + +    if (PBI->getSuccessor(0) == TrueDest) +      Opc = Instruction::Or; +    else if (PBI->getSuccessor(1) == FalseDest) +      Opc = Instruction::And; +    else if (PBI->getSuccessor(0) == FalseDest) +      Opc = Instruction::And, InvertPredCond = true; +    else if (PBI->getSuccessor(1) == TrueDest) +      Opc = Instruction::Or, InvertPredCond = true; +    else +      continue; + +    DOUT << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB; +     +    // If we need to invert the condition in the pred block to match, do so now. +    if (InvertPredCond) { +      Value *NewCond = +        BinaryOperator::CreateNot(PBI->getCondition(), +                                  PBI->getCondition()->getName()+".not", PBI); +      PBI->setCondition(NewCond); +      BasicBlock *OldTrue = PBI->getSuccessor(0); +      BasicBlock *OldFalse = PBI->getSuccessor(1); +      PBI->setSuccessor(0, OldFalse); +      PBI->setSuccessor(1, OldTrue); +    } +     +    // Clone Cond into the predecessor basic block, and or/and the +    // two conditions together. +    Instruction *New = Cond->clone(); +    PredBlock->getInstList().insert(PBI, New); +    New->takeName(Cond); +    Cond->setName(New->getName()+".old"); +     +    Value *NewCond = BinaryOperator::Create(Opc, PBI->getCondition(), +                                            New, "or.cond", PBI); +    PBI->setCondition(NewCond); +    if (PBI->getSuccessor(0) == BB) { +      AddPredecessorToBlock(TrueDest, PredBlock, BB); +      PBI->setSuccessor(0, TrueDest); +    } +    if (PBI->getSuccessor(1) == BB) { +      AddPredecessorToBlock(FalseDest, PredBlock, BB); +      PBI->setSuccessor(1, FalseDest); +    } +    return true; +  } +  return false; +} + +/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a +/// predecessor of another block, this function tries to simplify it.  We know +/// that PBI and BI are both conditional branches, and BI is in one of the +/// successor blocks of PBI - PBI branches to BI. +static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { +  assert(PBI->isConditional() && BI->isConditional()); +  BasicBlock *BB = BI->getParent(); +   +  // If this block ends with a branch instruction, and if there is a +  // predecessor that ends on a branch of the same condition, make  +  // this conditional branch redundant. +  if (PBI->getCondition() == BI->getCondition() && +      PBI->getSuccessor(0) != PBI->getSuccessor(1)) { +    // Okay, the outcome of this conditional branch is statically +    // knowable.  If this block had a single pred, handle specially. +    if (BB->getSinglePredecessor()) { +      // Turn this into a branch on constant. +      bool CondIsTrue = PBI->getSuccessor(0) == BB; +      BI->setCondition(ConstantInt::get(Type::Int1Ty, CondIsTrue)); +      return true;  // Nuke the branch on constant. +    } +     +    // Otherwise, if there are multiple predecessors, insert a PHI that merges +    // in the constant and simplify the block result.  Subsequent passes of +    // simplifycfg will thread the block. +    if (BlockIsSimpleEnoughToThreadThrough(BB)) { +      PHINode *NewPN = PHINode::Create(Type::Int1Ty, +                                       BI->getCondition()->getName() + ".pr", +                                       BB->begin()); +      // Okay, we're going to insert the PHI node.  Since PBI is not the only +      // predecessor, compute the PHI'd conditional value for all of the preds. +      // Any predecessor where the condition is not computable we keep symbolic. +      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) +        if ((PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) && +            PBI != BI && PBI->isConditional() && +            PBI->getCondition() == BI->getCondition() && +            PBI->getSuccessor(0) != PBI->getSuccessor(1)) { +          bool CondIsTrue = PBI->getSuccessor(0) == BB; +          NewPN->addIncoming(ConstantInt::get(Type::Int1Ty,  +                                              CondIsTrue), *PI); +        } else { +          NewPN->addIncoming(BI->getCondition(), *PI); +        } +       +      BI->setCondition(NewPN); +      return true; +    } +  } +   +  // If this is a conditional branch in an empty block, and if any +  // predecessors is a conditional branch to one of our destinations, +  // fold the conditions into logical ops and one cond br. +  BasicBlock::iterator BBI = BB->begin(); +  // Ignore dbg intrinsics. +  while (isa<DbgInfoIntrinsic>(BBI)) +    ++BBI; +  if (&*BBI != BI) +    return false; + +   +  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition())) +    if (CE->canTrap()) +      return false; +   +  int PBIOp, BIOp; +  if (PBI->getSuccessor(0) == BI->getSuccessor(0)) +    PBIOp = BIOp = 0; +  else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) +    PBIOp = 0, BIOp = 1; +  else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) +    PBIOp = 1, BIOp = 0; +  else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) +    PBIOp = BIOp = 1; +  else +    return false; +     +  // Check to make sure that the other destination of this branch +  // isn't BB itself.  If so, this is an infinite loop that will +  // keep getting unwound. +  if (PBI->getSuccessor(PBIOp) == BB) +    return false; +     +  // Do not perform this transformation if it would require  +  // insertion of a large number of select instructions. For targets +  // without predication/cmovs, this is a big pessimization. +  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); +       +  unsigned NumPhis = 0; +  for (BasicBlock::iterator II = CommonDest->begin(); +       isa<PHINode>(II); ++II, ++NumPhis) +    if (NumPhis > 2) // Disable this xform. +      return false; +     +  // Finally, if everything is ok, fold the branches to logical ops. +  BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1); +   +  DOUT << "FOLDING BRs:" << *PBI->getParent() +       << "AND: " << *BI->getParent(); +   +   +  // If OtherDest *is* BB, then BB is a basic block with a single conditional +  // branch in it, where one edge (OtherDest) goes back to itself but the other +  // exits.  We don't *know* that the program avoids the infinite loop +  // (even though that seems likely).  If we do this xform naively, we'll end up +  // recursively unpeeling the loop.  Since we know that (after the xform is +  // done) that the block *is* infinite if reached, we just make it an obviously +  // infinite loop with no cond branch. +  if (OtherDest == BB) { +    // Insert it at the end of the function, because it's either code, +    // or it won't matter if it's hot. :) +    BasicBlock *InfLoopBlock = BasicBlock::Create("infloop", BB->getParent()); +    BranchInst::Create(InfLoopBlock, InfLoopBlock); +    OtherDest = InfLoopBlock; +  }   +   +  DOUT << *PBI->getParent()->getParent(); +   +  // BI may have other predecessors.  Because of this, we leave +  // it alone, but modify PBI. +   +  // Make sure we get to CommonDest on True&True directions. +  Value *PBICond = PBI->getCondition(); +  if (PBIOp) +    PBICond = BinaryOperator::CreateNot(PBICond, +                                        PBICond->getName()+".not", +                                        PBI); +  Value *BICond = BI->getCondition(); +  if (BIOp) +    BICond = BinaryOperator::CreateNot(BICond, +                                       BICond->getName()+".not", +                                       PBI); +  // Merge the conditions. +  Value *Cond = BinaryOperator::CreateOr(PBICond, BICond, "brmerge", PBI); +   +  // Modify PBI to branch on the new condition to the new dests. +  PBI->setCondition(Cond); +  PBI->setSuccessor(0, CommonDest); +  PBI->setSuccessor(1, OtherDest); +   +  // OtherDest may have phi nodes.  If so, add an entry from PBI's +  // block that are identical to the entries for BI's block. +  PHINode *PN; +  for (BasicBlock::iterator II = OtherDest->begin(); +       (PN = dyn_cast<PHINode>(II)); ++II) { +    Value *V = PN->getIncomingValueForBlock(BB); +    PN->addIncoming(V, PBI->getParent()); +  } +   +  // We know that the CommonDest already had an edge from PBI to +  // it.  If it has PHIs though, the PHIs may have different +  // entries for BB and PBI's BB.  If so, insert a select to make +  // them agree. +  for (BasicBlock::iterator II = CommonDest->begin(); +       (PN = dyn_cast<PHINode>(II)); ++II) { +    Value *BIV = PN->getIncomingValueForBlock(BB); +    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); +    Value *PBIV = PN->getIncomingValue(PBBIdx); +    if (BIV != PBIV) { +      // Insert a select in PBI to pick the right value. +      Value *NV = SelectInst::Create(PBICond, PBIV, BIV, +                                     PBIV->getName()+".mux", PBI); +      PN->setIncomingValue(PBBIdx, NV); +    } +  } +   +  DOUT << "INTO: " << *PBI->getParent(); +   +  DOUT << *PBI->getParent()->getParent(); +   +  // This basic block is probably dead.  We know it has at least +  // one fewer predecessor. +  return true; +} + + +/// SimplifyCFG - This function is used to do simplification of a CFG.  For +/// example, it adjusts branches to branches to eliminate the extra hop, it +/// eliminates unreachable basic blocks, and does other "peephole" optimization +/// of the CFG.  It returns true if a modification was made. +/// +/// WARNING:  The entry node of a function may not be simplified. +/// +bool llvm::SimplifyCFG(BasicBlock *BB) { +  bool Changed = false; +  Function *M = BB->getParent(); + +  assert(BB && BB->getParent() && "Block not embedded in function!"); +  assert(BB->getTerminator() && "Degenerate basic block encountered!"); +  assert(&BB->getParent()->getEntryBlock() != BB && +         "Can't Simplify entry block!"); + +  // Remove basic blocks that have no predecessors... or that just have themself +  // as a predecessor.  These are unreachable. +  if (pred_begin(BB) == pred_end(BB) || BB->getSinglePredecessor() == BB) { +    DOUT << "Removing BB: \n" << *BB; +    DeleteDeadBlock(BB); +    return true; +  } + +  // Check to see if we can constant propagate this terminator instruction +  // away... +  Changed |= ConstantFoldTerminator(BB); + +  // If there is a trivial two-entry PHI node in this basic block, and we can +  // eliminate it, do so now. +  if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) +    if (PN->getNumIncomingValues() == 2) +      Changed |= FoldTwoEntryPHINode(PN);  + +  // If this is a returning block with only PHI nodes in it, fold the return +  // instruction into any unconditional branch predecessors. +  // +  // If any predecessor is a conditional branch that just selects among +  // different return values, fold the replace the branch/return with a select +  // and return. +  if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { +    if (isTerminatorFirstRelevantInsn(BB, BB->getTerminator())) { +      // Find predecessors that end with branches. +      SmallVector<BasicBlock*, 8> UncondBranchPreds; +      SmallVector<BranchInst*, 8> CondBranchPreds; +      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { +        TerminatorInst *PTI = (*PI)->getTerminator(); +        if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { +          if (BI->isUnconditional()) +            UncondBranchPreds.push_back(*PI); +          else +            CondBranchPreds.push_back(BI); +        } +      } + +      // If we found some, do the transformation! +      if (!UncondBranchPreds.empty()) { +        while (!UncondBranchPreds.empty()) { +          BasicBlock *Pred = UncondBranchPreds.pop_back_val(); +          DOUT << "FOLDING: " << *BB +               << "INTO UNCOND BRANCH PRED: " << *Pred; +          Instruction *UncondBranch = Pred->getTerminator(); +          // Clone the return and add it to the end of the predecessor. +          Instruction *NewRet = RI->clone(); +          Pred->getInstList().push_back(NewRet); + +          BasicBlock::iterator BBI = RI; +          if (BBI != BB->begin()) { +            // Move region end info into the predecessor. +            if (DbgRegionEndInst *DREI = dyn_cast<DbgRegionEndInst>(--BBI)) +              DREI->moveBefore(NewRet); +          } + +          // If the return instruction returns a value, and if the value was a +          // PHI node in "BB", propagate the right value into the return. +          for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); +               i != e; ++i) +            if (PHINode *PN = dyn_cast<PHINode>(*i)) +              if (PN->getParent() == BB) +                *i = PN->getIncomingValueForBlock(Pred); +           +          // Update any PHI nodes in the returning block to realize that we no +          // longer branch to them. +          BB->removePredecessor(Pred); +          Pred->getInstList().erase(UncondBranch); +        } + +        // If we eliminated all predecessors of the block, delete the block now. +        if (pred_begin(BB) == pred_end(BB)) +          // We know there are no successors, so just nuke the block. +          M->getBasicBlockList().erase(BB); + +        return true; +      } + +      // Check out all of the conditional branches going to this return +      // instruction.  If any of them just select between returns, change the +      // branch itself into a select/return pair. +      while (!CondBranchPreds.empty()) { +        BranchInst *BI = CondBranchPreds.pop_back_val(); + +        // Check to see if the non-BB successor is also a return block. +        if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && +            isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && +            SimplifyCondBranchToTwoReturns(BI)) +          return true; +      } +    } +  } else if (isa<UnwindInst>(BB->begin())) { +    // Check to see if the first instruction in this block is just an unwind. +    // If so, replace any invoke instructions which use this as an exception +    // destination with call instructions, and any unconditional branch +    // predecessor with an unwind. +    // +    SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); +    while (!Preds.empty()) { +      BasicBlock *Pred = Preds.back(); +      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) { +        if (BI->isUnconditional()) { +          Pred->getInstList().pop_back();  // nuke uncond branch +          new UnwindInst(Pred);            // Use unwind. +          Changed = true; +        } +      } else if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator())) +        if (II->getUnwindDest() == BB) { +          // Insert a new branch instruction before the invoke, because this +          // is now a fall through... +          BranchInst *BI = BranchInst::Create(II->getNormalDest(), II); +          Pred->getInstList().remove(II);   // Take out of symbol table + +          // Insert the call now... +          SmallVector<Value*,8> Args(II->op_begin()+3, II->op_end()); +          CallInst *CI = CallInst::Create(II->getCalledValue(), +                                          Args.begin(), Args.end(), +                                          II->getName(), BI); +          CI->setCallingConv(II->getCallingConv()); +          CI->setAttributes(II->getAttributes()); +          // If the invoke produced a value, the Call now does instead +          II->replaceAllUsesWith(CI); +          delete II; +          Changed = true; +        } + +      Preds.pop_back(); +    } + +    // If this block is now dead, remove it. +    if (pred_begin(BB) == pred_end(BB)) { +      // We know there are no successors, so just nuke the block. +      M->getBasicBlockList().erase(BB); +      return true; +    } + +  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { +    if (isValueEqualityComparison(SI)) { +      // If we only have one predecessor, and if it is a branch on this value, +      // see if that predecessor totally determines the outcome of this switch. +      if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) +        if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred)) +          return SimplifyCFG(BB) || 1; + +      // If the block only contains the switch, see if we can fold the block +      // away into any preds. +      BasicBlock::iterator BBI = BB->begin(); +      // Ignore dbg intrinsics. +      while (isa<DbgInfoIntrinsic>(BBI)) +        ++BBI; +      if (SI == &*BBI) +        if (FoldValueComparisonIntoPredecessors(SI)) +          return SimplifyCFG(BB) || 1; +    } +  } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { +    if (BI->isUnconditional()) { +      BasicBlock::iterator BBI = BB->getFirstNonPHI(); + +      BasicBlock *Succ = BI->getSuccessor(0); +      // Ignore dbg intrinsics. +      while (isa<DbgInfoIntrinsic>(BBI)) +        ++BBI; +      if (BBI->isTerminator() &&  // Terminator is the only non-phi instruction! +          Succ != BB)             // Don't hurt infinite loops! +        if (TryToSimplifyUncondBranchFromEmptyBlock(BB, Succ)) +          return true; +       +    } else {  // Conditional branch +      if (isValueEqualityComparison(BI)) { +        // If we only have one predecessor, and if it is a branch on this value, +        // see if that predecessor totally determines the outcome of this +        // switch. +        if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) +          if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred)) +            return SimplifyCFG(BB) || 1; + +        // This block must be empty, except for the setcond inst, if it exists. +        // Ignore dbg intrinsics. +        BasicBlock::iterator I = BB->begin(); +        // Ignore dbg intrinsics. +        while (isa<DbgInfoIntrinsic>(I)) +          ++I; +        if (&*I == BI) { +          if (FoldValueComparisonIntoPredecessors(BI)) +            return SimplifyCFG(BB) | true; +        } else if (&*I == cast<Instruction>(BI->getCondition())){ +          ++I; +          // Ignore dbg intrinsics. +          while (isa<DbgInfoIntrinsic>(I)) +            ++I; +          if(&*I == BI) { +            if (FoldValueComparisonIntoPredecessors(BI)) +              return SimplifyCFG(BB) | true; +          } +        } +      } + +      // If this is a branch on a phi node in the current block, thread control +      // through this block if any PHI node entries are constants. +      if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) +        if (PN->getParent() == BI->getParent()) +          if (FoldCondBranchOnPHI(BI)) +            return SimplifyCFG(BB) | true; + +      // If this basic block is ONLY a setcc and a branch, and if a predecessor +      // branches to us and one of our successors, fold the setcc into the +      // predecessor and use logical operations to pick the right destination. +      if (FoldBranchToCommonDest(BI)) +        return SimplifyCFG(BB) | 1; + + +      // Scan predecessor blocks for conditional branches. +      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) +        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) +          if (PBI != BI && PBI->isConditional()) +            if (SimplifyCondBranchToCondBranch(PBI, BI)) +              return SimplifyCFG(BB) | true; +    } +  } else if (isa<UnreachableInst>(BB->getTerminator())) { +    // If there are any instructions immediately before the unreachable that can +    // be removed, do so. +    Instruction *Unreachable = BB->getTerminator(); +    while (Unreachable != BB->begin()) { +      BasicBlock::iterator BBI = Unreachable; +      --BBI; +      // Do not delete instructions that can have side effects, like calls +      // (which may never return) and volatile loads and stores. +      if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; + +      if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) +        if (SI->isVolatile()) +          break; + +      if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) +        if (LI->isVolatile()) +          break; + +      // Delete this instruction +      BB->getInstList().erase(BBI); +      Changed = true; +    } + +    // If the unreachable instruction is the first in the block, take a gander +    // at all of the predecessors of this instruction, and simplify them. +    if (&BB->front() == Unreachable) { +      SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); +      for (unsigned i = 0, e = Preds.size(); i != e; ++i) { +        TerminatorInst *TI = Preds[i]->getTerminator(); + +        if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { +          if (BI->isUnconditional()) { +            if (BI->getSuccessor(0) == BB) { +              new UnreachableInst(TI); +              TI->eraseFromParent(); +              Changed = true; +            } +          } else { +            if (BI->getSuccessor(0) == BB) { +              BranchInst::Create(BI->getSuccessor(1), BI); +              EraseTerminatorInstAndDCECond(BI); +            } else if (BI->getSuccessor(1) == BB) { +              BranchInst::Create(BI->getSuccessor(0), BI); +              EraseTerminatorInstAndDCECond(BI); +              Changed = true; +            } +          } +        } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { +          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) +            if (SI->getSuccessor(i) == BB) { +              BB->removePredecessor(SI->getParent()); +              SI->removeCase(i); +              --i; --e; +              Changed = true; +            } +          // If the default value is unreachable, figure out the most popular +          // destination and make it the default. +          if (SI->getSuccessor(0) == BB) { +            std::map<BasicBlock*, unsigned> Popularity; +            for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) +              Popularity[SI->getSuccessor(i)]++; + +            // Find the most popular block. +            unsigned MaxPop = 0; +            BasicBlock *MaxBlock = 0; +            for (std::map<BasicBlock*, unsigned>::iterator +                   I = Popularity.begin(), E = Popularity.end(); I != E; ++I) { +              if (I->second > MaxPop) { +                MaxPop = I->second; +                MaxBlock = I->first; +              } +            } +            if (MaxBlock) { +              // Make this the new default, allowing us to delete any explicit +              // edges to it. +              SI->setSuccessor(0, MaxBlock); +              Changed = true; + +              // If MaxBlock has phinodes in it, remove MaxPop-1 entries from +              // it. +              if (isa<PHINode>(MaxBlock->begin())) +                for (unsigned i = 0; i != MaxPop-1; ++i) +                  MaxBlock->removePredecessor(SI->getParent()); + +              for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) +                if (SI->getSuccessor(i) == MaxBlock) { +                  SI->removeCase(i); +                  --i; --e; +                } +            } +          } +        } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { +          if (II->getUnwindDest() == BB) { +            // Convert the invoke to a call instruction.  This would be a good +            // place to note that the call does not throw though. +            BranchInst *BI = BranchInst::Create(II->getNormalDest(), II); +            II->removeFromParent();   // Take out of symbol table + +            // Insert the call now... +            SmallVector<Value*, 8> Args(II->op_begin()+3, II->op_end()); +            CallInst *CI = CallInst::Create(II->getCalledValue(), +                                            Args.begin(), Args.end(), +                                            II->getName(), BI); +            CI->setCallingConv(II->getCallingConv()); +            CI->setAttributes(II->getAttributes()); +            // If the invoke produced a value, the Call does now instead. +            II->replaceAllUsesWith(CI); +            delete II; +            Changed = true; +          } +        } +      } + +      // If this block is now dead, remove it. +      if (pred_begin(BB) == pred_end(BB)) { +        // We know there are no successors, so just nuke the block. +        M->getBasicBlockList().erase(BB); +        return true; +      } +    } +  } + +  // Merge basic blocks into their predecessor if there is only one distinct +  // pred, and if there is only one distinct successor of the predecessor, and +  // if there are no PHI nodes. +  // +  if (MergeBlockIntoPredecessor(BB)) +    return true; + +  // Otherwise, if this block only has a single predecessor, and if that block +  // is a conditional branch, see if we can hoist any code from this block up +  // into our predecessor. +  pred_iterator PI(pred_begin(BB)), PE(pred_end(BB)); +  BasicBlock *OnlyPred = *PI++; +  for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same +    if (*PI != OnlyPred) { +      OnlyPred = 0;       // There are multiple different predecessors... +      break; +    } +   +  if (OnlyPred) +    if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator())) +      if (BI->isConditional()) { +        // Get the other block. +        BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB); +        PI = pred_begin(OtherBB); +        ++PI; +         +        if (PI == pred_end(OtherBB)) { +          // We have a conditional branch to two blocks that are only reachable +          // from the condbr.  We know that the condbr dominates the two blocks, +          // so see if there is any identical code in the "then" and "else" +          // blocks.  If so, we can hoist it up to the branching block. +          Changed |= HoistThenElseCodeToIf(BI); +        } else { +          BasicBlock* OnlySucc = NULL; +          for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); +               SI != SE; ++SI) { +            if (!OnlySucc) +              OnlySucc = *SI; +            else if (*SI != OnlySucc) { +              OnlySucc = 0;     // There are multiple distinct successors! +              break; +            } +          } + +          if (OnlySucc == OtherBB) { +            // If BB's only successor is the other successor of the predecessor, +            // i.e. a triangle, see if we can hoist any code from this block up +            // to the "if" block. +            Changed |= SpeculativelyExecuteBB(BI, BB); +          } +        } +      } + +  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) +    if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator())) +      // Change br (X == 0 | X == 1), T, F into a switch instruction. +      if (BI->isConditional() && isa<Instruction>(BI->getCondition())) { +        Instruction *Cond = cast<Instruction>(BI->getCondition()); +        // If this is a bunch of seteq's or'd together, or if it's a bunch of +        // 'setne's and'ed together, collect them. +        Value *CompVal = 0; +        std::vector<ConstantInt*> Values; +        bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values); +        if (CompVal && CompVal->getType()->isInteger()) { +          // There might be duplicate constants in the list, which the switch +          // instruction can't handle, remove them now. +          std::sort(Values.begin(), Values.end(), ConstantIntOrdering()); +          Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); + +          // Figure out which block is which destination. +          BasicBlock *DefaultBB = BI->getSuccessor(1); +          BasicBlock *EdgeBB    = BI->getSuccessor(0); +          if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); + +          // Create the new switch instruction now. +          SwitchInst *New = SwitchInst::Create(CompVal, DefaultBB, +                                               Values.size(), BI); + +          // Add all of the 'cases' to the switch instruction. +          for (unsigned i = 0, e = Values.size(); i != e; ++i) +            New->addCase(Values[i], EdgeBB); + +          // We added edges from PI to the EdgeBB.  As such, if there were any +          // PHI nodes in EdgeBB, they need entries to be added corresponding to +          // the number of edges added. +          for (BasicBlock::iterator BBI = EdgeBB->begin(); +               isa<PHINode>(BBI); ++BBI) { +            PHINode *PN = cast<PHINode>(BBI); +            Value *InVal = PN->getIncomingValueForBlock(*PI); +            for (unsigned i = 0, e = Values.size()-1; i != e; ++i) +              PN->addIncoming(InVal, *PI); +          } + +          // Erase the old branch instruction. +          EraseTerminatorInstAndDCECond(BI); +          return true; +        } +      } + +  return Changed; +}  | 
