diff options
Diffstat (limited to 'lib/Transforms/Vectorize/LoopVectorizationLegality.cpp')
-rw-r--r-- | lib/Transforms/Vectorize/LoopVectorizationLegality.cpp | 1072 |
1 files changed, 1072 insertions, 0 deletions
diff --git a/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp b/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp new file mode 100644 index 000000000000..697bc1b448d7 --- /dev/null +++ b/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp @@ -0,0 +1,1072 @@ +//===- LoopVectorizationLegality.cpp --------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file provides loop vectorization legality analysis. Original code +// resided in LoopVectorize.cpp for a long time. +// +// At this point, it is implemented as a utility class, not as an analysis +// pass. It should be easy to create an analysis pass around it if there +// is a need (but D45420 needs to happen first). +// +#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/IR/IntrinsicInst.h" + +using namespace llvm; + +#define LV_NAME "loop-vectorize" +#define DEBUG_TYPE LV_NAME + +static cl::opt<bool> + EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, + cl::desc("Enable if-conversion during vectorization.")); + +static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( + "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, + cl::desc("The maximum allowed number of runtime memory checks with a " + "vectorize(enable) pragma.")); + +static cl::opt<unsigned> VectorizeSCEVCheckThreshold( + "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, + cl::desc("The maximum number of SCEV checks allowed.")); + +static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( + "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, + cl::desc("The maximum number of SCEV checks allowed with a " + "vectorize(enable) pragma")); + +/// Maximum vectorization interleave count. +static const unsigned MaxInterleaveFactor = 16; + +namespace llvm { + +OptimizationRemarkAnalysis createLVMissedAnalysis(const char *PassName, + StringRef RemarkName, + Loop *TheLoop, + Instruction *I) { + Value *CodeRegion = TheLoop->getHeader(); + DebugLoc DL = TheLoop->getStartLoc(); + + if (I) { + CodeRegion = I->getParent(); + // If there is no debug location attached to the instruction, revert back to + // using the loop's. + if (I->getDebugLoc()) + DL = I->getDebugLoc(); + } + + OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); + R << "loop not vectorized: "; + return R; +} + +bool LoopVectorizeHints::Hint::validate(unsigned Val) { + switch (Kind) { + case HK_WIDTH: + return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; + case HK_UNROLL: + return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; + case HK_FORCE: + return (Val <= 1); + case HK_ISVECTORIZED: + return (Val == 0 || Val == 1); + } + return false; +} + +LoopVectorizeHints::LoopVectorizeHints(const Loop *L, bool DisableInterleaving, + OptimizationRemarkEmitter &ORE) + : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH), + Interleave("interleave.count", DisableInterleaving, HK_UNROLL), + Force("vectorize.enable", FK_Undefined, HK_FORCE), + IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) { + // Populate values with existing loop metadata. + getHintsFromMetadata(); + + // force-vector-interleave overrides DisableInterleaving. + if (VectorizerParams::isInterleaveForced()) + Interleave.Value = VectorizerParams::VectorizationInterleave; + + if (IsVectorized.Value != 1) + // If the vectorization width and interleaving count are both 1 then + // consider the loop to have been already vectorized because there's + // nothing more that we can do. + IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; + LLVM_DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() + << "LV: Interleaving disabled by the pass manager\n"); +} + +bool LoopVectorizeHints::allowVectorization(Function *F, Loop *L, + bool AlwaysVectorize) const { + if (getForce() == LoopVectorizeHints::FK_Disabled) { + LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); + emitRemarkWithHints(); + return false; + } + + if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { + LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); + emitRemarkWithHints(); + return false; + } + + if (getIsVectorized() == 1) { + LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); + // FIXME: Add interleave.disable metadata. This will allow + // vectorize.disable to be used without disabling the pass and errors + // to differentiate between disabled vectorization and a width of 1. + ORE.emit([&]() { + return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), + "AllDisabled", L->getStartLoc(), + L->getHeader()) + << "loop not vectorized: vectorization and interleaving are " + "explicitly disabled, or the loop has already been " + "vectorized"; + }); + return false; + } + + return true; +} + +void LoopVectorizeHints::emitRemarkWithHints() const { + using namespace ore; + + ORE.emit([&]() { + if (Force.Value == LoopVectorizeHints::FK_Disabled) + return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", + TheLoop->getStartLoc(), + TheLoop->getHeader()) + << "loop not vectorized: vectorization is explicitly disabled"; + else { + OptimizationRemarkMissed R(LV_NAME, "MissedDetails", + TheLoop->getStartLoc(), TheLoop->getHeader()); + R << "loop not vectorized"; + if (Force.Value == LoopVectorizeHints::FK_Enabled) { + R << " (Force=" << NV("Force", true); + if (Width.Value != 0) + R << ", Vector Width=" << NV("VectorWidth", Width.Value); + if (Interleave.Value != 0) + R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); + R << ")"; + } + return R; + } + }); +} + +const char *LoopVectorizeHints::vectorizeAnalysisPassName() const { + if (getWidth() == 1) + return LV_NAME; + if (getForce() == LoopVectorizeHints::FK_Disabled) + return LV_NAME; + if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) + return LV_NAME; + return OptimizationRemarkAnalysis::AlwaysPrint; +} + +void LoopVectorizeHints::getHintsFromMetadata() { + MDNode *LoopID = TheLoop->getLoopID(); + if (!LoopID) + return; + + // First operand should refer to the loop id itself. + assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); + assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); + + for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { + const MDString *S = nullptr; + SmallVector<Metadata *, 4> Args; + + // The expected hint is either a MDString or a MDNode with the first + // operand a MDString. + if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { + if (!MD || MD->getNumOperands() == 0) + continue; + S = dyn_cast<MDString>(MD->getOperand(0)); + for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) + Args.push_back(MD->getOperand(i)); + } else { + S = dyn_cast<MDString>(LoopID->getOperand(i)); + assert(Args.size() == 0 && "too many arguments for MDString"); + } + + if (!S) + continue; + + // Check if the hint starts with the loop metadata prefix. + StringRef Name = S->getString(); + if (Args.size() == 1) + setHint(Name, Args[0]); + } +} + +void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) { + if (!Name.startswith(Prefix())) + return; + Name = Name.substr(Prefix().size(), StringRef::npos); + + const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); + if (!C) + return; + unsigned Val = C->getZExtValue(); + + Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized}; + for (auto H : Hints) { + if (Name == H->Name) { + if (H->validate(Val)) + H->Value = Val; + else + LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); + break; + } + } +} + +MDNode *LoopVectorizeHints::createHintMetadata(StringRef Name, + unsigned V) const { + LLVMContext &Context = TheLoop->getHeader()->getContext(); + Metadata *MDs[] = { + MDString::get(Context, Name), + ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; + return MDNode::get(Context, MDs); +} + +bool LoopVectorizeHints::matchesHintMetadataName(MDNode *Node, + ArrayRef<Hint> HintTypes) { + MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); + if (!Name) + return false; + + for (auto H : HintTypes) + if (Name->getString().endswith(H.Name)) + return true; + return false; +} + +void LoopVectorizeHints::writeHintsToMetadata(ArrayRef<Hint> HintTypes) { + if (HintTypes.empty()) + return; + + // Reserve the first element to LoopID (see below). + SmallVector<Metadata *, 4> MDs(1); + // If the loop already has metadata, then ignore the existing operands. + MDNode *LoopID = TheLoop->getLoopID(); + if (LoopID) { + for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { + MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); + // If node in update list, ignore old value. + if (!matchesHintMetadataName(Node, HintTypes)) + MDs.push_back(Node); + } + } + + // Now, add the missing hints. + for (auto H : HintTypes) + MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); + + // Replace current metadata node with new one. + LLVMContext &Context = TheLoop->getHeader()->getContext(); + MDNode *NewLoopID = MDNode::get(Context, MDs); + // Set operand 0 to refer to the loop id itself. + NewLoopID->replaceOperandWith(0, NewLoopID); + + TheLoop->setLoopID(NewLoopID); +} + +bool LoopVectorizationRequirements::doesNotMeet( + Function *F, Loop *L, const LoopVectorizeHints &Hints) { + const char *PassName = Hints.vectorizeAnalysisPassName(); + bool Failed = false; + if (UnsafeAlgebraInst && !Hints.allowReordering()) { + ORE.emit([&]() { + return OptimizationRemarkAnalysisFPCommute( + PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(), + UnsafeAlgebraInst->getParent()) + << "loop not vectorized: cannot prove it is safe to reorder " + "floating-point operations"; + }); + Failed = true; + } + + // Test if runtime memcheck thresholds are exceeded. + bool PragmaThresholdReached = + NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; + bool ThresholdReached = + NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; + if ((ThresholdReached && !Hints.allowReordering()) || + PragmaThresholdReached) { + ORE.emit([&]() { + return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", + L->getStartLoc(), + L->getHeader()) + << "loop not vectorized: cannot prove it is safe to reorder " + "memory operations"; + }); + LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); + Failed = true; + } + + return Failed; +} + +// Return true if the inner loop \p Lp is uniform with regard to the outer loop +// \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes +// executing the inner loop will execute the same iterations). This check is +// very constrained for now but it will be relaxed in the future. \p Lp is +// considered uniform if it meets all the following conditions: +// 1) it has a canonical IV (starting from 0 and with stride 1), +// 2) its latch terminator is a conditional branch and, +// 3) its latch condition is a compare instruction whose operands are the +// canonical IV and an OuterLp invariant. +// This check doesn't take into account the uniformity of other conditions not +// related to the loop latch because they don't affect the loop uniformity. +// +// NOTE: We decided to keep all these checks and its associated documentation +// together so that we can easily have a picture of the current supported loop +// nests. However, some of the current checks don't depend on \p OuterLp and +// would be redundantly executed for each \p Lp if we invoked this function for +// different candidate outer loops. This is not the case for now because we +// don't currently have the infrastructure to evaluate multiple candidate outer +// loops and \p OuterLp will be a fixed parameter while we only support explicit +// outer loop vectorization. It's also very likely that these checks go away +// before introducing the aforementioned infrastructure. However, if this is not +// the case, we should move the \p OuterLp independent checks to a separate +// function that is only executed once for each \p Lp. +static bool isUniformLoop(Loop *Lp, Loop *OuterLp) { + assert(Lp->getLoopLatch() && "Expected loop with a single latch."); + + // If Lp is the outer loop, it's uniform by definition. + if (Lp == OuterLp) + return true; + assert(OuterLp->contains(Lp) && "OuterLp must contain Lp."); + + // 1. + PHINode *IV = Lp->getCanonicalInductionVariable(); + if (!IV) { + LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n"); + return false; + } + + // 2. + BasicBlock *Latch = Lp->getLoopLatch(); + auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); + if (!LatchBr || LatchBr->isUnconditional()) { + LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n"); + return false; + } + + // 3. + auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition()); + if (!LatchCmp) { + LLVM_DEBUG( + dbgs() << "LV: Loop latch condition is not a compare instruction.\n"); + return false; + } + + Value *CondOp0 = LatchCmp->getOperand(0); + Value *CondOp1 = LatchCmp->getOperand(1); + Value *IVUpdate = IV->getIncomingValueForBlock(Latch); + if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) && + !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) { + LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n"); + return false; + } + + return true; +} + +// Return true if \p Lp and all its nested loops are uniform with regard to \p +// OuterLp. +static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) { + if (!isUniformLoop(Lp, OuterLp)) + return false; + + // Check if nested loops are uniform. + for (Loop *SubLp : *Lp) + if (!isUniformLoopNest(SubLp, OuterLp)) + return false; + + return true; +} + +/// Check whether it is safe to if-convert this phi node. +/// +/// Phi nodes with constant expressions that can trap are not safe to if +/// convert. +static bool canIfConvertPHINodes(BasicBlock *BB) { + for (PHINode &Phi : BB->phis()) { + for (Value *V : Phi.incoming_values()) + if (auto *C = dyn_cast<Constant>(V)) + if (C->canTrap()) + return false; + } + return true; +} + +static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { + if (Ty->isPointerTy()) + return DL.getIntPtrType(Ty); + + // It is possible that char's or short's overflow when we ask for the loop's + // trip count, work around this by changing the type size. + if (Ty->getScalarSizeInBits() < 32) + return Type::getInt32Ty(Ty->getContext()); + + return Ty; +} + +static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { + Ty0 = convertPointerToIntegerType(DL, Ty0); + Ty1 = convertPointerToIntegerType(DL, Ty1); + if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) + return Ty0; + return Ty1; +} + +/// Check that the instruction has outside loop users and is not an +/// identified reduction variable. +static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, + SmallPtrSetImpl<Value *> &AllowedExit) { + // Reduction and Induction instructions are allowed to have exit users. All + // other instructions must not have external users. + if (!AllowedExit.count(Inst)) + // Check that all of the users of the loop are inside the BB. + for (User *U : Inst->users()) { + Instruction *UI = cast<Instruction>(U); + // This user may be a reduction exit value. + if (!TheLoop->contains(UI)) { + LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); + return true; + } + } + return false; +} + +int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { + const ValueToValueMap &Strides = + getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap(); + + int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); + if (Stride == 1 || Stride == -1) + return Stride; + return 0; +} + +bool LoopVectorizationLegality::isUniform(Value *V) { + return LAI->isUniform(V); +} + +bool LoopVectorizationLegality::canVectorizeOuterLoop() { + assert(!TheLoop->empty() && "We are not vectorizing an outer loop."); + // Store the result and return it at the end instead of exiting early, in case + // allowExtraAnalysis is used to report multiple reasons for not vectorizing. + bool Result = true; + bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); + + for (BasicBlock *BB : TheLoop->blocks()) { + // Check whether the BB terminator is a BranchInst. Any other terminator is + // not supported yet. + auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); + if (!Br) { + LLVM_DEBUG(dbgs() << "LV: Unsupported basic block terminator.\n"); + ORE->emit(createMissedAnalysis("CFGNotUnderstood") + << "loop control flow is not understood by vectorizer"); + if (DoExtraAnalysis) + Result = false; + else + return false; + } + + // Check whether the BranchInst is a supported one. Only unconditional + // branches, conditional branches with an outer loop invariant condition or + // backedges are supported. + if (Br && Br->isConditional() && + !TheLoop->isLoopInvariant(Br->getCondition()) && + !LI->isLoopHeader(Br->getSuccessor(0)) && + !LI->isLoopHeader(Br->getSuccessor(1))) { + LLVM_DEBUG(dbgs() << "LV: Unsupported conditional branch.\n"); + ORE->emit(createMissedAnalysis("CFGNotUnderstood") + << "loop control flow is not understood by vectorizer"); + if (DoExtraAnalysis) + Result = false; + else + return false; + } + } + + // Check whether inner loops are uniform. At this point, we only support + // simple outer loops scenarios with uniform nested loops. + if (!isUniformLoopNest(TheLoop /*loop nest*/, + TheLoop /*context outer loop*/)) { + LLVM_DEBUG( + dbgs() + << "LV: Not vectorizing: Outer loop contains divergent loops.\n"); + ORE->emit(createMissedAnalysis("CFGNotUnderstood") + << "loop control flow is not understood by vectorizer"); + if (DoExtraAnalysis) + Result = false; + else + return false; + } + + return Result; +} + +void LoopVectorizationLegality::addInductionPhi( + PHINode *Phi, const InductionDescriptor &ID, + SmallPtrSetImpl<Value *> &AllowedExit) { + Inductions[Phi] = ID; + + // In case this induction also comes with casts that we know we can ignore + // in the vectorized loop body, record them here. All casts could be recorded + // here for ignoring, but suffices to record only the first (as it is the + // only one that may bw used outside the cast sequence). + const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); + if (!Casts.empty()) + InductionCastsToIgnore.insert(*Casts.begin()); + + Type *PhiTy = Phi->getType(); + const DataLayout &DL = Phi->getModule()->getDataLayout(); + + // Get the widest type. + if (!PhiTy->isFloatingPointTy()) { + if (!WidestIndTy) + WidestIndTy = convertPointerToIntegerType(DL, PhiTy); + else + WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); + } + + // Int inductions are special because we only allow one IV. + if (ID.getKind() == InductionDescriptor::IK_IntInduction && + ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && + isa<Constant>(ID.getStartValue()) && + cast<Constant>(ID.getStartValue())->isNullValue()) { + + // Use the phi node with the widest type as induction. Use the last + // one if there are multiple (no good reason for doing this other + // than it is expedient). We've checked that it begins at zero and + // steps by one, so this is a canonical induction variable. + if (!PrimaryInduction || PhiTy == WidestIndTy) + PrimaryInduction = Phi; + } + + // Both the PHI node itself, and the "post-increment" value feeding + // back into the PHI node may have external users. + // We can allow those uses, except if the SCEVs we have for them rely + // on predicates that only hold within the loop, since allowing the exit + // currently means re-using this SCEV outside the loop. + if (PSE.getUnionPredicate().isAlwaysTrue()) { + AllowedExit.insert(Phi); + AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); + } + + LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n"); +} + +bool LoopVectorizationLegality::canVectorizeInstrs() { + BasicBlock *Header = TheLoop->getHeader(); + + // Look for the attribute signaling the absence of NaNs. + Function &F = *Header->getParent(); + HasFunNoNaNAttr = + F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; + + // For each block in the loop. + for (BasicBlock *BB : TheLoop->blocks()) { + // Scan the instructions in the block and look for hazards. + for (Instruction &I : *BB) { + if (auto *Phi = dyn_cast<PHINode>(&I)) { + Type *PhiTy = Phi->getType(); + // Check that this PHI type is allowed. + if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && + !PhiTy->isPointerTy()) { + ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) + << "loop control flow is not understood by vectorizer"); + LLVM_DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); + return false; + } + + // If this PHINode is not in the header block, then we know that we + // can convert it to select during if-conversion. No need to check if + // the PHIs in this block are induction or reduction variables. + if (BB != Header) { + // Check that this instruction has no outside users or is an + // identified reduction value with an outside user. + if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) + continue; + ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) + << "value could not be identified as " + "an induction or reduction variable"); + return false; + } + + // We only allow if-converted PHIs with exactly two incoming values. + if (Phi->getNumIncomingValues() != 2) { + ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) + << "control flow not understood by vectorizer"); + LLVM_DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); + return false; + } + + RecurrenceDescriptor RedDes; + if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, + DT)) { + if (RedDes.hasUnsafeAlgebra()) + Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); + AllowedExit.insert(RedDes.getLoopExitInstr()); + Reductions[Phi] = RedDes; + continue; + } + + InductionDescriptor ID; + if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { + addInductionPhi(Phi, ID, AllowedExit); + if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) + Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); + continue; + } + + if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, + SinkAfter, DT)) { + FirstOrderRecurrences.insert(Phi); + continue; + } + + // As a last resort, coerce the PHI to a AddRec expression + // and re-try classifying it a an induction PHI. + if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { + addInductionPhi(Phi, ID, AllowedExit); + continue; + } + + ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) + << "value that could not be identified as " + "reduction is used outside the loop"); + LLVM_DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); + return false; + } // end of PHI handling + + // We handle calls that: + // * Are debug info intrinsics. + // * Have a mapping to an IR intrinsic. + // * Have a vector version available. + auto *CI = dyn_cast<CallInst>(&I); + if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && + !isa<DbgInfoIntrinsic>(CI) && + !(CI->getCalledFunction() && TLI && + TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { + ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) + << "call instruction cannot be vectorized"); + LLVM_DEBUG( + dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); + return false; + } + + // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the + // second argument is the same (i.e. loop invariant) + if (CI && hasVectorInstrinsicScalarOpd( + getVectorIntrinsicIDForCall(CI, TLI), 1)) { + auto *SE = PSE.getSE(); + if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { + ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) + << "intrinsic instruction cannot be vectorized"); + LLVM_DEBUG(dbgs() + << "LV: Found unvectorizable intrinsic " << *CI << "\n"); + return false; + } + } + + // Check that the instruction return type is vectorizable. + // Also, we can't vectorize extractelement instructions. + if ((!VectorType::isValidElementType(I.getType()) && + !I.getType()->isVoidTy()) || + isa<ExtractElementInst>(I)) { + ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) + << "instruction return type cannot be vectorized"); + LLVM_DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); + return false; + } + + // Check that the stored type is vectorizable. + if (auto *ST = dyn_cast<StoreInst>(&I)) { + Type *T = ST->getValueOperand()->getType(); + if (!VectorType::isValidElementType(T)) { + ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) + << "store instruction cannot be vectorized"); + return false; + } + + // FP instructions can allow unsafe algebra, thus vectorizable by + // non-IEEE-754 compliant SIMD units. + // This applies to floating-point math operations and calls, not memory + // operations, shuffles, or casts, as they don't change precision or + // semantics. + } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && + !I.isFast()) { + LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); + Hints->setPotentiallyUnsafe(); + } + + // Reduction instructions are allowed to have exit users. + // All other instructions must not have external users. + if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { + ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) + << "value cannot be used outside the loop"); + return false; + } + } // next instr. + } + + if (!PrimaryInduction) { + LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); + if (Inductions.empty()) { + ORE->emit(createMissedAnalysis("NoInductionVariable") + << "loop induction variable could not be identified"); + return false; + } + } + + // Now we know the widest induction type, check if our found induction + // is the same size. If it's not, unset it here and InnerLoopVectorizer + // will create another. + if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) + PrimaryInduction = nullptr; + + return true; +} + +bool LoopVectorizationLegality::canVectorizeMemory() { + LAI = &(*GetLAA)(*TheLoop); + const OptimizationRemarkAnalysis *LAR = LAI->getReport(); + if (LAR) { + ORE->emit([&]() { + return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), + "loop not vectorized: ", *LAR); + }); + } + if (!LAI->canVectorizeMemory()) + return false; + + if (LAI->hasStoreToLoopInvariantAddress()) { + ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") + << "write to a loop invariant address could not be vectorized"); + LLVM_DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); + return false; + } + + Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); + PSE.addPredicate(LAI->getPSE().getUnionPredicate()); + + return true; +} + +bool LoopVectorizationLegality::isInductionPhi(const Value *V) { + Value *In0 = const_cast<Value *>(V); + PHINode *PN = dyn_cast_or_null<PHINode>(In0); + if (!PN) + return false; + + return Inductions.count(PN); +} + +bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) { + auto *Inst = dyn_cast<Instruction>(V); + return (Inst && InductionCastsToIgnore.count(Inst)); +} + +bool LoopVectorizationLegality::isInductionVariable(const Value *V) { + return isInductionPhi(V) || isCastedInductionVariable(V); +} + +bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { + return FirstOrderRecurrences.count(Phi); +} + +bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { + return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); +} + +bool LoopVectorizationLegality::blockCanBePredicated( + BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { + const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); + + for (Instruction &I : *BB) { + // Check that we don't have a constant expression that can trap as operand. + for (Value *Operand : I.operands()) { + if (auto *C = dyn_cast<Constant>(Operand)) + if (C->canTrap()) + return false; + } + // We might be able to hoist the load. + if (I.mayReadFromMemory()) { + auto *LI = dyn_cast<LoadInst>(&I); + if (!LI) + return false; + if (!SafePtrs.count(LI->getPointerOperand())) { + // !llvm.mem.parallel_loop_access implies if-conversion safety. + // Otherwise, record that the load needs (real or emulated) masking + // and let the cost model decide. + if (!IsAnnotatedParallel) + MaskedOp.insert(LI); + continue; + } + } + + if (I.mayWriteToMemory()) { + auto *SI = dyn_cast<StoreInst>(&I); + if (!SI) + return false; + // Predicated store requires some form of masking: + // 1) masked store HW instruction, + // 2) emulation via load-blend-store (only if safe and legal to do so, + // be aware on the race conditions), or + // 3) element-by-element predicate check and scalar store. + MaskedOp.insert(SI); + continue; + } + if (I.mayThrow()) + return false; + } + + return true; +} + +bool LoopVectorizationLegality::canVectorizeWithIfConvert() { + if (!EnableIfConversion) { + ORE->emit(createMissedAnalysis("IfConversionDisabled") + << "if-conversion is disabled"); + return false; + } + + assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); + + // A list of pointers that we can safely read and write to. + SmallPtrSet<Value *, 8> SafePointes; + + // Collect safe addresses. + for (BasicBlock *BB : TheLoop->blocks()) { + if (blockNeedsPredication(BB)) + continue; + + for (Instruction &I : *BB) + if (auto *Ptr = getLoadStorePointerOperand(&I)) + SafePointes.insert(Ptr); + } + + // Collect the blocks that need predication. + BasicBlock *Header = TheLoop->getHeader(); + for (BasicBlock *BB : TheLoop->blocks()) { + // We don't support switch statements inside loops. + if (!isa<BranchInst>(BB->getTerminator())) { + ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) + << "loop contains a switch statement"); + return false; + } + + // We must be able to predicate all blocks that need to be predicated. + if (blockNeedsPredication(BB)) { + if (!blockCanBePredicated(BB, SafePointes)) { + ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) + << "control flow cannot be substituted for a select"); + return false; + } + } else if (BB != Header && !canIfConvertPHINodes(BB)) { + ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) + << "control flow cannot be substituted for a select"); + return false; + } + } + + // We can if-convert this loop. + return true; +} + +// Helper function to canVectorizeLoopNestCFG. +bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp, + bool UseVPlanNativePath) { + assert((UseVPlanNativePath || Lp->empty()) && + "VPlan-native path is not enabled."); + + // TODO: ORE should be improved to show more accurate information when an + // outer loop can't be vectorized because a nested loop is not understood or + // legal. Something like: "outer_loop_location: loop not vectorized: + // (inner_loop_location) loop control flow is not understood by vectorizer". + + // Store the result and return it at the end instead of exiting early, in case + // allowExtraAnalysis is used to report multiple reasons for not vectorizing. + bool Result = true; + bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); + + // We must have a loop in canonical form. Loops with indirectbr in them cannot + // be canonicalized. + if (!Lp->getLoopPreheader()) { + LLVM_DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n"); + ORE->emit(createMissedAnalysis("CFGNotUnderstood") + << "loop control flow is not understood by vectorizer"); + if (DoExtraAnalysis) + Result = false; + else + return false; + } + + // We must have a single backedge. + if (Lp->getNumBackEdges() != 1) { + ORE->emit(createMissedAnalysis("CFGNotUnderstood") + << "loop control flow is not understood by vectorizer"); + if (DoExtraAnalysis) + Result = false; + else + return false; + } + + // We must have a single exiting block. + if (!Lp->getExitingBlock()) { + ORE->emit(createMissedAnalysis("CFGNotUnderstood") + << "loop control flow is not understood by vectorizer"); + if (DoExtraAnalysis) + Result = false; + else + return false; + } + + // We only handle bottom-tested loops, i.e. loop in which the condition is + // checked at the end of each iteration. With that we can assume that all + // instructions in the loop are executed the same number of times. + if (Lp->getExitingBlock() != Lp->getLoopLatch()) { + ORE->emit(createMissedAnalysis("CFGNotUnderstood") + << "loop control flow is not understood by vectorizer"); + if (DoExtraAnalysis) + Result = false; + else + return false; + } + + return Result; +} + +bool LoopVectorizationLegality::canVectorizeLoopNestCFG( + Loop *Lp, bool UseVPlanNativePath) { + // Store the result and return it at the end instead of exiting early, in case + // allowExtraAnalysis is used to report multiple reasons for not vectorizing. + bool Result = true; + bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); + if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) { + if (DoExtraAnalysis) + Result = false; + else + return false; + } + + // Recursively check whether the loop control flow of nested loops is + // understood. + for (Loop *SubLp : *Lp) + if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) { + if (DoExtraAnalysis) + Result = false; + else + return false; + } + + return Result; +} + +bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) { + // Store the result and return it at the end instead of exiting early, in case + // allowExtraAnalysis is used to report multiple reasons for not vectorizing. + bool Result = true; + + bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); + // Check whether the loop-related control flow in the loop nest is expected by + // vectorizer. + if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) { + if (DoExtraAnalysis) + Result = false; + else + return false; + } + + // We need to have a loop header. + LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() + << '\n'); + + // Specific checks for outer loops. We skip the remaining legal checks at this + // point because they don't support outer loops. + if (!TheLoop->empty()) { + assert(UseVPlanNativePath && "VPlan-native path is not enabled."); + + if (!canVectorizeOuterLoop()) { + LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Unsupported outer loop.\n"); + // TODO: Implement DoExtraAnalysis when subsequent legal checks support + // outer loops. + return false; + } + + LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n"); + return Result; + } + + assert(TheLoop->empty() && "Inner loop expected."); + // Check if we can if-convert non-single-bb loops. + unsigned NumBlocks = TheLoop->getNumBlocks(); + if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { + LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); + if (DoExtraAnalysis) + Result = false; + else + return false; + } + + // Check if we can vectorize the instructions and CFG in this loop. + if (!canVectorizeInstrs()) { + LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); + if (DoExtraAnalysis) + Result = false; + else + return false; + } + + // Go over each instruction and look at memory deps. + if (!canVectorizeMemory()) { + LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); + if (DoExtraAnalysis) + Result = false; + else + return false; + } + + LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop" + << (LAI->getRuntimePointerChecking()->Need + ? " (with a runtime bound check)" + : "") + << "!\n"); + + unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; + if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) + SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; + + if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { + ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") + << "Too many SCEV assumptions need to be made and checked " + << "at runtime"); + LLVM_DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); + if (DoExtraAnalysis) + Result = false; + else + return false; + } + + // Okay! We've done all the tests. If any have failed, return false. Otherwise + // we can vectorize, and at this point we don't have any other mem analysis + // which may limit our maximum vectorization factor, so just return true with + // no restrictions. + return Result; +} + +} // namespace llvm |