summaryrefslogtreecommitdiff
path: root/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Vectorize/LoopVectorizationLegality.cpp')
-rw-r--r--lib/Transforms/Vectorize/LoopVectorizationLegality.cpp1072
1 files changed, 1072 insertions, 0 deletions
diff --git a/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp b/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp
new file mode 100644
index 000000000000..697bc1b448d7
--- /dev/null
+++ b/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp
@@ -0,0 +1,1072 @@
+//===- LoopVectorizationLegality.cpp --------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides loop vectorization legality analysis. Original code
+// resided in LoopVectorize.cpp for a long time.
+//
+// At this point, it is implemented as a utility class, not as an analysis
+// pass. It should be easy to create an analysis pass around it if there
+// is a need (but D45420 needs to happen first).
+//
+#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
+#include "llvm/Analysis/VectorUtils.h"
+#include "llvm/IR/IntrinsicInst.h"
+
+using namespace llvm;
+
+#define LV_NAME "loop-vectorize"
+#define DEBUG_TYPE LV_NAME
+
+static cl::opt<bool>
+ EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
+ cl::desc("Enable if-conversion during vectorization."));
+
+static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
+ "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
+ cl::desc("The maximum allowed number of runtime memory checks with a "
+ "vectorize(enable) pragma."));
+
+static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
+ "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
+ cl::desc("The maximum number of SCEV checks allowed."));
+
+static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
+ "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
+ cl::desc("The maximum number of SCEV checks allowed with a "
+ "vectorize(enable) pragma"));
+
+/// Maximum vectorization interleave count.
+static const unsigned MaxInterleaveFactor = 16;
+
+namespace llvm {
+
+OptimizationRemarkAnalysis createLVMissedAnalysis(const char *PassName,
+ StringRef RemarkName,
+ Loop *TheLoop,
+ Instruction *I) {
+ Value *CodeRegion = TheLoop->getHeader();
+ DebugLoc DL = TheLoop->getStartLoc();
+
+ if (I) {
+ CodeRegion = I->getParent();
+ // If there is no debug location attached to the instruction, revert back to
+ // using the loop's.
+ if (I->getDebugLoc())
+ DL = I->getDebugLoc();
+ }
+
+ OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
+ R << "loop not vectorized: ";
+ return R;
+}
+
+bool LoopVectorizeHints::Hint::validate(unsigned Val) {
+ switch (Kind) {
+ case HK_WIDTH:
+ return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
+ case HK_UNROLL:
+ return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
+ case HK_FORCE:
+ return (Val <= 1);
+ case HK_ISVECTORIZED:
+ return (Val == 0 || Val == 1);
+ }
+ return false;
+}
+
+LoopVectorizeHints::LoopVectorizeHints(const Loop *L, bool DisableInterleaving,
+ OptimizationRemarkEmitter &ORE)
+ : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
+ Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
+ Force("vectorize.enable", FK_Undefined, HK_FORCE),
+ IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) {
+ // Populate values with existing loop metadata.
+ getHintsFromMetadata();
+
+ // force-vector-interleave overrides DisableInterleaving.
+ if (VectorizerParams::isInterleaveForced())
+ Interleave.Value = VectorizerParams::VectorizationInterleave;
+
+ if (IsVectorized.Value != 1)
+ // If the vectorization width and interleaving count are both 1 then
+ // consider the loop to have been already vectorized because there's
+ // nothing more that we can do.
+ IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1;
+ LLVM_DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
+ << "LV: Interleaving disabled by the pass manager\n");
+}
+
+bool LoopVectorizeHints::allowVectorization(Function *F, Loop *L,
+ bool AlwaysVectorize) const {
+ if (getForce() == LoopVectorizeHints::FK_Disabled) {
+ LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
+ emitRemarkWithHints();
+ return false;
+ }
+
+ if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) {
+ LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
+ emitRemarkWithHints();
+ return false;
+ }
+
+ if (getIsVectorized() == 1) {
+ LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
+ // FIXME: Add interleave.disable metadata. This will allow
+ // vectorize.disable to be used without disabling the pass and errors
+ // to differentiate between disabled vectorization and a width of 1.
+ ORE.emit([&]() {
+ return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
+ "AllDisabled", L->getStartLoc(),
+ L->getHeader())
+ << "loop not vectorized: vectorization and interleaving are "
+ "explicitly disabled, or the loop has already been "
+ "vectorized";
+ });
+ return false;
+ }
+
+ return true;
+}
+
+void LoopVectorizeHints::emitRemarkWithHints() const {
+ using namespace ore;
+
+ ORE.emit([&]() {
+ if (Force.Value == LoopVectorizeHints::FK_Disabled)
+ return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
+ TheLoop->getStartLoc(),
+ TheLoop->getHeader())
+ << "loop not vectorized: vectorization is explicitly disabled";
+ else {
+ OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
+ TheLoop->getStartLoc(), TheLoop->getHeader());
+ R << "loop not vectorized";
+ if (Force.Value == LoopVectorizeHints::FK_Enabled) {
+ R << " (Force=" << NV("Force", true);
+ if (Width.Value != 0)
+ R << ", Vector Width=" << NV("VectorWidth", Width.Value);
+ if (Interleave.Value != 0)
+ R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value);
+ R << ")";
+ }
+ return R;
+ }
+ });
+}
+
+const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
+ if (getWidth() == 1)
+ return LV_NAME;
+ if (getForce() == LoopVectorizeHints::FK_Disabled)
+ return LV_NAME;
+ if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
+ return LV_NAME;
+ return OptimizationRemarkAnalysis::AlwaysPrint;
+}
+
+void LoopVectorizeHints::getHintsFromMetadata() {
+ MDNode *LoopID = TheLoop->getLoopID();
+ if (!LoopID)
+ return;
+
+ // First operand should refer to the loop id itself.
+ assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
+ assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
+
+ for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
+ const MDString *S = nullptr;
+ SmallVector<Metadata *, 4> Args;
+
+ // The expected hint is either a MDString or a MDNode with the first
+ // operand a MDString.
+ if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
+ if (!MD || MD->getNumOperands() == 0)
+ continue;
+ S = dyn_cast<MDString>(MD->getOperand(0));
+ for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
+ Args.push_back(MD->getOperand(i));
+ } else {
+ S = dyn_cast<MDString>(LoopID->getOperand(i));
+ assert(Args.size() == 0 && "too many arguments for MDString");
+ }
+
+ if (!S)
+ continue;
+
+ // Check if the hint starts with the loop metadata prefix.
+ StringRef Name = S->getString();
+ if (Args.size() == 1)
+ setHint(Name, Args[0]);
+ }
+}
+
+void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
+ if (!Name.startswith(Prefix()))
+ return;
+ Name = Name.substr(Prefix().size(), StringRef::npos);
+
+ const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
+ if (!C)
+ return;
+ unsigned Val = C->getZExtValue();
+
+ Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized};
+ for (auto H : Hints) {
+ if (Name == H->Name) {
+ if (H->validate(Val))
+ H->Value = Val;
+ else
+ LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
+ break;
+ }
+ }
+}
+
+MDNode *LoopVectorizeHints::createHintMetadata(StringRef Name,
+ unsigned V) const {
+ LLVMContext &Context = TheLoop->getHeader()->getContext();
+ Metadata *MDs[] = {
+ MDString::get(Context, Name),
+ ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
+ return MDNode::get(Context, MDs);
+}
+
+bool LoopVectorizeHints::matchesHintMetadataName(MDNode *Node,
+ ArrayRef<Hint> HintTypes) {
+ MDString *Name = dyn_cast<MDString>(Node->getOperand(0));
+ if (!Name)
+ return false;
+
+ for (auto H : HintTypes)
+ if (Name->getString().endswith(H.Name))
+ return true;
+ return false;
+}
+
+void LoopVectorizeHints::writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
+ if (HintTypes.empty())
+ return;
+
+ // Reserve the first element to LoopID (see below).
+ SmallVector<Metadata *, 4> MDs(1);
+ // If the loop already has metadata, then ignore the existing operands.
+ MDNode *LoopID = TheLoop->getLoopID();
+ if (LoopID) {
+ for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
+ MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
+ // If node in update list, ignore old value.
+ if (!matchesHintMetadataName(Node, HintTypes))
+ MDs.push_back(Node);
+ }
+ }
+
+ // Now, add the missing hints.
+ for (auto H : HintTypes)
+ MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
+
+ // Replace current metadata node with new one.
+ LLVMContext &Context = TheLoop->getHeader()->getContext();
+ MDNode *NewLoopID = MDNode::get(Context, MDs);
+ // Set operand 0 to refer to the loop id itself.
+ NewLoopID->replaceOperandWith(0, NewLoopID);
+
+ TheLoop->setLoopID(NewLoopID);
+}
+
+bool LoopVectorizationRequirements::doesNotMeet(
+ Function *F, Loop *L, const LoopVectorizeHints &Hints) {
+ const char *PassName = Hints.vectorizeAnalysisPassName();
+ bool Failed = false;
+ if (UnsafeAlgebraInst && !Hints.allowReordering()) {
+ ORE.emit([&]() {
+ return OptimizationRemarkAnalysisFPCommute(
+ PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(),
+ UnsafeAlgebraInst->getParent())
+ << "loop not vectorized: cannot prove it is safe to reorder "
+ "floating-point operations";
+ });
+ Failed = true;
+ }
+
+ // Test if runtime memcheck thresholds are exceeded.
+ bool PragmaThresholdReached =
+ NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
+ bool ThresholdReached =
+ NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
+ if ((ThresholdReached && !Hints.allowReordering()) ||
+ PragmaThresholdReached) {
+ ORE.emit([&]() {
+ return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
+ L->getStartLoc(),
+ L->getHeader())
+ << "loop not vectorized: cannot prove it is safe to reorder "
+ "memory operations";
+ });
+ LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
+ Failed = true;
+ }
+
+ return Failed;
+}
+
+// Return true if the inner loop \p Lp is uniform with regard to the outer loop
+// \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
+// executing the inner loop will execute the same iterations). This check is
+// very constrained for now but it will be relaxed in the future. \p Lp is
+// considered uniform if it meets all the following conditions:
+// 1) it has a canonical IV (starting from 0 and with stride 1),
+// 2) its latch terminator is a conditional branch and,
+// 3) its latch condition is a compare instruction whose operands are the
+// canonical IV and an OuterLp invariant.
+// This check doesn't take into account the uniformity of other conditions not
+// related to the loop latch because they don't affect the loop uniformity.
+//
+// NOTE: We decided to keep all these checks and its associated documentation
+// together so that we can easily have a picture of the current supported loop
+// nests. However, some of the current checks don't depend on \p OuterLp and
+// would be redundantly executed for each \p Lp if we invoked this function for
+// different candidate outer loops. This is not the case for now because we
+// don't currently have the infrastructure to evaluate multiple candidate outer
+// loops and \p OuterLp will be a fixed parameter while we only support explicit
+// outer loop vectorization. It's also very likely that these checks go away
+// before introducing the aforementioned infrastructure. However, if this is not
+// the case, we should move the \p OuterLp independent checks to a separate
+// function that is only executed once for each \p Lp.
+static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
+ assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
+
+ // If Lp is the outer loop, it's uniform by definition.
+ if (Lp == OuterLp)
+ return true;
+ assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
+
+ // 1.
+ PHINode *IV = Lp->getCanonicalInductionVariable();
+ if (!IV) {
+ LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
+ return false;
+ }
+
+ // 2.
+ BasicBlock *Latch = Lp->getLoopLatch();
+ auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
+ if (!LatchBr || LatchBr->isUnconditional()) {
+ LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
+ return false;
+ }
+
+ // 3.
+ auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
+ if (!LatchCmp) {
+ LLVM_DEBUG(
+ dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
+ return false;
+ }
+
+ Value *CondOp0 = LatchCmp->getOperand(0);
+ Value *CondOp1 = LatchCmp->getOperand(1);
+ Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
+ if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
+ !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
+ LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
+ return false;
+ }
+
+ return true;
+}
+
+// Return true if \p Lp and all its nested loops are uniform with regard to \p
+// OuterLp.
+static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
+ if (!isUniformLoop(Lp, OuterLp))
+ return false;
+
+ // Check if nested loops are uniform.
+ for (Loop *SubLp : *Lp)
+ if (!isUniformLoopNest(SubLp, OuterLp))
+ return false;
+
+ return true;
+}
+
+/// Check whether it is safe to if-convert this phi node.
+///
+/// Phi nodes with constant expressions that can trap are not safe to if
+/// convert.
+static bool canIfConvertPHINodes(BasicBlock *BB) {
+ for (PHINode &Phi : BB->phis()) {
+ for (Value *V : Phi.incoming_values())
+ if (auto *C = dyn_cast<Constant>(V))
+ if (C->canTrap())
+ return false;
+ }
+ return true;
+}
+
+static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
+ if (Ty->isPointerTy())
+ return DL.getIntPtrType(Ty);
+
+ // It is possible that char's or short's overflow when we ask for the loop's
+ // trip count, work around this by changing the type size.
+ if (Ty->getScalarSizeInBits() < 32)
+ return Type::getInt32Ty(Ty->getContext());
+
+ return Ty;
+}
+
+static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
+ Ty0 = convertPointerToIntegerType(DL, Ty0);
+ Ty1 = convertPointerToIntegerType(DL, Ty1);
+ if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
+ return Ty0;
+ return Ty1;
+}
+
+/// Check that the instruction has outside loop users and is not an
+/// identified reduction variable.
+static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
+ SmallPtrSetImpl<Value *> &AllowedExit) {
+ // Reduction and Induction instructions are allowed to have exit users. All
+ // other instructions must not have external users.
+ if (!AllowedExit.count(Inst))
+ // Check that all of the users of the loop are inside the BB.
+ for (User *U : Inst->users()) {
+ Instruction *UI = cast<Instruction>(U);
+ // This user may be a reduction exit value.
+ if (!TheLoop->contains(UI)) {
+ LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
+ return true;
+ }
+ }
+ return false;
+}
+
+int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
+ const ValueToValueMap &Strides =
+ getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
+
+ int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false);
+ if (Stride == 1 || Stride == -1)
+ return Stride;
+ return 0;
+}
+
+bool LoopVectorizationLegality::isUniform(Value *V) {
+ return LAI->isUniform(V);
+}
+
+bool LoopVectorizationLegality::canVectorizeOuterLoop() {
+ assert(!TheLoop->empty() && "We are not vectorizing an outer loop.");
+ // Store the result and return it at the end instead of exiting early, in case
+ // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
+ bool Result = true;
+ bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
+
+ for (BasicBlock *BB : TheLoop->blocks()) {
+ // Check whether the BB terminator is a BranchInst. Any other terminator is
+ // not supported yet.
+ auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
+ if (!Br) {
+ LLVM_DEBUG(dbgs() << "LV: Unsupported basic block terminator.\n");
+ ORE->emit(createMissedAnalysis("CFGNotUnderstood")
+ << "loop control flow is not understood by vectorizer");
+ if (DoExtraAnalysis)
+ Result = false;
+ else
+ return false;
+ }
+
+ // Check whether the BranchInst is a supported one. Only unconditional
+ // branches, conditional branches with an outer loop invariant condition or
+ // backedges are supported.
+ if (Br && Br->isConditional() &&
+ !TheLoop->isLoopInvariant(Br->getCondition()) &&
+ !LI->isLoopHeader(Br->getSuccessor(0)) &&
+ !LI->isLoopHeader(Br->getSuccessor(1))) {
+ LLVM_DEBUG(dbgs() << "LV: Unsupported conditional branch.\n");
+ ORE->emit(createMissedAnalysis("CFGNotUnderstood")
+ << "loop control flow is not understood by vectorizer");
+ if (DoExtraAnalysis)
+ Result = false;
+ else
+ return false;
+ }
+ }
+
+ // Check whether inner loops are uniform. At this point, we only support
+ // simple outer loops scenarios with uniform nested loops.
+ if (!isUniformLoopNest(TheLoop /*loop nest*/,
+ TheLoop /*context outer loop*/)) {
+ LLVM_DEBUG(
+ dbgs()
+ << "LV: Not vectorizing: Outer loop contains divergent loops.\n");
+ ORE->emit(createMissedAnalysis("CFGNotUnderstood")
+ << "loop control flow is not understood by vectorizer");
+ if (DoExtraAnalysis)
+ Result = false;
+ else
+ return false;
+ }
+
+ return Result;
+}
+
+void LoopVectorizationLegality::addInductionPhi(
+ PHINode *Phi, const InductionDescriptor &ID,
+ SmallPtrSetImpl<Value *> &AllowedExit) {
+ Inductions[Phi] = ID;
+
+ // In case this induction also comes with casts that we know we can ignore
+ // in the vectorized loop body, record them here. All casts could be recorded
+ // here for ignoring, but suffices to record only the first (as it is the
+ // only one that may bw used outside the cast sequence).
+ const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
+ if (!Casts.empty())
+ InductionCastsToIgnore.insert(*Casts.begin());
+
+ Type *PhiTy = Phi->getType();
+ const DataLayout &DL = Phi->getModule()->getDataLayout();
+
+ // Get the widest type.
+ if (!PhiTy->isFloatingPointTy()) {
+ if (!WidestIndTy)
+ WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
+ else
+ WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
+ }
+
+ // Int inductions are special because we only allow one IV.
+ if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
+ ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
+ isa<Constant>(ID.getStartValue()) &&
+ cast<Constant>(ID.getStartValue())->isNullValue()) {
+
+ // Use the phi node with the widest type as induction. Use the last
+ // one if there are multiple (no good reason for doing this other
+ // than it is expedient). We've checked that it begins at zero and
+ // steps by one, so this is a canonical induction variable.
+ if (!PrimaryInduction || PhiTy == WidestIndTy)
+ PrimaryInduction = Phi;
+ }
+
+ // Both the PHI node itself, and the "post-increment" value feeding
+ // back into the PHI node may have external users.
+ // We can allow those uses, except if the SCEVs we have for them rely
+ // on predicates that only hold within the loop, since allowing the exit
+ // currently means re-using this SCEV outside the loop.
+ if (PSE.getUnionPredicate().isAlwaysTrue()) {
+ AllowedExit.insert(Phi);
+ AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
+ }
+
+ LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
+}
+
+bool LoopVectorizationLegality::canVectorizeInstrs() {
+ BasicBlock *Header = TheLoop->getHeader();
+
+ // Look for the attribute signaling the absence of NaNs.
+ Function &F = *Header->getParent();
+ HasFunNoNaNAttr =
+ F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
+
+ // For each block in the loop.
+ for (BasicBlock *BB : TheLoop->blocks()) {
+ // Scan the instructions in the block and look for hazards.
+ for (Instruction &I : *BB) {
+ if (auto *Phi = dyn_cast<PHINode>(&I)) {
+ Type *PhiTy = Phi->getType();
+ // Check that this PHI type is allowed.
+ if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
+ !PhiTy->isPointerTy()) {
+ ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
+ << "loop control flow is not understood by vectorizer");
+ LLVM_DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
+ return false;
+ }
+
+ // If this PHINode is not in the header block, then we know that we
+ // can convert it to select during if-conversion. No need to check if
+ // the PHIs in this block are induction or reduction variables.
+ if (BB != Header) {
+ // Check that this instruction has no outside users or is an
+ // identified reduction value with an outside user.
+ if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit))
+ continue;
+ ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi)
+ << "value could not be identified as "
+ "an induction or reduction variable");
+ return false;
+ }
+
+ // We only allow if-converted PHIs with exactly two incoming values.
+ if (Phi->getNumIncomingValues() != 2) {
+ ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
+ << "control flow not understood by vectorizer");
+ LLVM_DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
+ return false;
+ }
+
+ RecurrenceDescriptor RedDes;
+ if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
+ DT)) {
+ if (RedDes.hasUnsafeAlgebra())
+ Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
+ AllowedExit.insert(RedDes.getLoopExitInstr());
+ Reductions[Phi] = RedDes;
+ continue;
+ }
+
+ InductionDescriptor ID;
+ if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
+ addInductionPhi(Phi, ID, AllowedExit);
+ if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
+ Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
+ continue;
+ }
+
+ if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
+ SinkAfter, DT)) {
+ FirstOrderRecurrences.insert(Phi);
+ continue;
+ }
+
+ // As a last resort, coerce the PHI to a AddRec expression
+ // and re-try classifying it a an induction PHI.
+ if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
+ addInductionPhi(Phi, ID, AllowedExit);
+ continue;
+ }
+
+ ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi)
+ << "value that could not be identified as "
+ "reduction is used outside the loop");
+ LLVM_DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n");
+ return false;
+ } // end of PHI handling
+
+ // We handle calls that:
+ // * Are debug info intrinsics.
+ // * Have a mapping to an IR intrinsic.
+ // * Have a vector version available.
+ auto *CI = dyn_cast<CallInst>(&I);
+ if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
+ !isa<DbgInfoIntrinsic>(CI) &&
+ !(CI->getCalledFunction() && TLI &&
+ TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
+ ORE->emit(createMissedAnalysis("CantVectorizeCall", CI)
+ << "call instruction cannot be vectorized");
+ LLVM_DEBUG(
+ dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n");
+ return false;
+ }
+
+ // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
+ // second argument is the same (i.e. loop invariant)
+ if (CI && hasVectorInstrinsicScalarOpd(
+ getVectorIntrinsicIDForCall(CI, TLI), 1)) {
+ auto *SE = PSE.getSE();
+ if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) {
+ ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI)
+ << "intrinsic instruction cannot be vectorized");
+ LLVM_DEBUG(dbgs()
+ << "LV: Found unvectorizable intrinsic " << *CI << "\n");
+ return false;
+ }
+ }
+
+ // Check that the instruction return type is vectorizable.
+ // Also, we can't vectorize extractelement instructions.
+ if ((!VectorType::isValidElementType(I.getType()) &&
+ !I.getType()->isVoidTy()) ||
+ isa<ExtractElementInst>(I)) {
+ ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I)
+ << "instruction return type cannot be vectorized");
+ LLVM_DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
+ return false;
+ }
+
+ // Check that the stored type is vectorizable.
+ if (auto *ST = dyn_cast<StoreInst>(&I)) {
+ Type *T = ST->getValueOperand()->getType();
+ if (!VectorType::isValidElementType(T)) {
+ ORE->emit(createMissedAnalysis("CantVectorizeStore", ST)
+ << "store instruction cannot be vectorized");
+ return false;
+ }
+
+ // FP instructions can allow unsafe algebra, thus vectorizable by
+ // non-IEEE-754 compliant SIMD units.
+ // This applies to floating-point math operations and calls, not memory
+ // operations, shuffles, or casts, as they don't change precision or
+ // semantics.
+ } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
+ !I.isFast()) {
+ LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
+ Hints->setPotentiallyUnsafe();
+ }
+
+ // Reduction instructions are allowed to have exit users.
+ // All other instructions must not have external users.
+ if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
+ ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I)
+ << "value cannot be used outside the loop");
+ return false;
+ }
+ } // next instr.
+ }
+
+ if (!PrimaryInduction) {
+ LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
+ if (Inductions.empty()) {
+ ORE->emit(createMissedAnalysis("NoInductionVariable")
+ << "loop induction variable could not be identified");
+ return false;
+ }
+ }
+
+ // Now we know the widest induction type, check if our found induction
+ // is the same size. If it's not, unset it here and InnerLoopVectorizer
+ // will create another.
+ if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
+ PrimaryInduction = nullptr;
+
+ return true;
+}
+
+bool LoopVectorizationLegality::canVectorizeMemory() {
+ LAI = &(*GetLAA)(*TheLoop);
+ const OptimizationRemarkAnalysis *LAR = LAI->getReport();
+ if (LAR) {
+ ORE->emit([&]() {
+ return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
+ "loop not vectorized: ", *LAR);
+ });
+ }
+ if (!LAI->canVectorizeMemory())
+ return false;
+
+ if (LAI->hasStoreToLoopInvariantAddress()) {
+ ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress")
+ << "write to a loop invariant address could not be vectorized");
+ LLVM_DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
+ return false;
+ }
+
+ Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
+ PSE.addPredicate(LAI->getPSE().getUnionPredicate());
+
+ return true;
+}
+
+bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
+ Value *In0 = const_cast<Value *>(V);
+ PHINode *PN = dyn_cast_or_null<PHINode>(In0);
+ if (!PN)
+ return false;
+
+ return Inductions.count(PN);
+}
+
+bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
+ auto *Inst = dyn_cast<Instruction>(V);
+ return (Inst && InductionCastsToIgnore.count(Inst));
+}
+
+bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
+ return isInductionPhi(V) || isCastedInductionVariable(V);
+}
+
+bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
+ return FirstOrderRecurrences.count(Phi);
+}
+
+bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
+ return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
+}
+
+bool LoopVectorizationLegality::blockCanBePredicated(
+ BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) {
+ const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
+
+ for (Instruction &I : *BB) {
+ // Check that we don't have a constant expression that can trap as operand.
+ for (Value *Operand : I.operands()) {
+ if (auto *C = dyn_cast<Constant>(Operand))
+ if (C->canTrap())
+ return false;
+ }
+ // We might be able to hoist the load.
+ if (I.mayReadFromMemory()) {
+ auto *LI = dyn_cast<LoadInst>(&I);
+ if (!LI)
+ return false;
+ if (!SafePtrs.count(LI->getPointerOperand())) {
+ // !llvm.mem.parallel_loop_access implies if-conversion safety.
+ // Otherwise, record that the load needs (real or emulated) masking
+ // and let the cost model decide.
+ if (!IsAnnotatedParallel)
+ MaskedOp.insert(LI);
+ continue;
+ }
+ }
+
+ if (I.mayWriteToMemory()) {
+ auto *SI = dyn_cast<StoreInst>(&I);
+ if (!SI)
+ return false;
+ // Predicated store requires some form of masking:
+ // 1) masked store HW instruction,
+ // 2) emulation via load-blend-store (only if safe and legal to do so,
+ // be aware on the race conditions), or
+ // 3) element-by-element predicate check and scalar store.
+ MaskedOp.insert(SI);
+ continue;
+ }
+ if (I.mayThrow())
+ return false;
+ }
+
+ return true;
+}
+
+bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
+ if (!EnableIfConversion) {
+ ORE->emit(createMissedAnalysis("IfConversionDisabled")
+ << "if-conversion is disabled");
+ return false;
+ }
+
+ assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
+
+ // A list of pointers that we can safely read and write to.
+ SmallPtrSet<Value *, 8> SafePointes;
+
+ // Collect safe addresses.
+ for (BasicBlock *BB : TheLoop->blocks()) {
+ if (blockNeedsPredication(BB))
+ continue;
+
+ for (Instruction &I : *BB)
+ if (auto *Ptr = getLoadStorePointerOperand(&I))
+ SafePointes.insert(Ptr);
+ }
+
+ // Collect the blocks that need predication.
+ BasicBlock *Header = TheLoop->getHeader();
+ for (BasicBlock *BB : TheLoop->blocks()) {
+ // We don't support switch statements inside loops.
+ if (!isa<BranchInst>(BB->getTerminator())) {
+ ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator())
+ << "loop contains a switch statement");
+ return false;
+ }
+
+ // We must be able to predicate all blocks that need to be predicated.
+ if (blockNeedsPredication(BB)) {
+ if (!blockCanBePredicated(BB, SafePointes)) {
+ ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
+ << "control flow cannot be substituted for a select");
+ return false;
+ }
+ } else if (BB != Header && !canIfConvertPHINodes(BB)) {
+ ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
+ << "control flow cannot be substituted for a select");
+ return false;
+ }
+ }
+
+ // We can if-convert this loop.
+ return true;
+}
+
+// Helper function to canVectorizeLoopNestCFG.
+bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
+ bool UseVPlanNativePath) {
+ assert((UseVPlanNativePath || Lp->empty()) &&
+ "VPlan-native path is not enabled.");
+
+ // TODO: ORE should be improved to show more accurate information when an
+ // outer loop can't be vectorized because a nested loop is not understood or
+ // legal. Something like: "outer_loop_location: loop not vectorized:
+ // (inner_loop_location) loop control flow is not understood by vectorizer".
+
+ // Store the result and return it at the end instead of exiting early, in case
+ // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
+ bool Result = true;
+ bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
+
+ // We must have a loop in canonical form. Loops with indirectbr in them cannot
+ // be canonicalized.
+ if (!Lp->getLoopPreheader()) {
+ LLVM_DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n");
+ ORE->emit(createMissedAnalysis("CFGNotUnderstood")
+ << "loop control flow is not understood by vectorizer");
+ if (DoExtraAnalysis)
+ Result = false;
+ else
+ return false;
+ }
+
+ // We must have a single backedge.
+ if (Lp->getNumBackEdges() != 1) {
+ ORE->emit(createMissedAnalysis("CFGNotUnderstood")
+ << "loop control flow is not understood by vectorizer");
+ if (DoExtraAnalysis)
+ Result = false;
+ else
+ return false;
+ }
+
+ // We must have a single exiting block.
+ if (!Lp->getExitingBlock()) {
+ ORE->emit(createMissedAnalysis("CFGNotUnderstood")
+ << "loop control flow is not understood by vectorizer");
+ if (DoExtraAnalysis)
+ Result = false;
+ else
+ return false;
+ }
+
+ // We only handle bottom-tested loops, i.e. loop in which the condition is
+ // checked at the end of each iteration. With that we can assume that all
+ // instructions in the loop are executed the same number of times.
+ if (Lp->getExitingBlock() != Lp->getLoopLatch()) {
+ ORE->emit(createMissedAnalysis("CFGNotUnderstood")
+ << "loop control flow is not understood by vectorizer");
+ if (DoExtraAnalysis)
+ Result = false;
+ else
+ return false;
+ }
+
+ return Result;
+}
+
+bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
+ Loop *Lp, bool UseVPlanNativePath) {
+ // Store the result and return it at the end instead of exiting early, in case
+ // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
+ bool Result = true;
+ bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
+ if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
+ if (DoExtraAnalysis)
+ Result = false;
+ else
+ return false;
+ }
+
+ // Recursively check whether the loop control flow of nested loops is
+ // understood.
+ for (Loop *SubLp : *Lp)
+ if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
+ if (DoExtraAnalysis)
+ Result = false;
+ else
+ return false;
+ }
+
+ return Result;
+}
+
+bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
+ // Store the result and return it at the end instead of exiting early, in case
+ // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
+ bool Result = true;
+
+ bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
+ // Check whether the loop-related control flow in the loop nest is expected by
+ // vectorizer.
+ if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
+ if (DoExtraAnalysis)
+ Result = false;
+ else
+ return false;
+ }
+
+ // We need to have a loop header.
+ LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
+ << '\n');
+
+ // Specific checks for outer loops. We skip the remaining legal checks at this
+ // point because they don't support outer loops.
+ if (!TheLoop->empty()) {
+ assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
+
+ if (!canVectorizeOuterLoop()) {
+ LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Unsupported outer loop.\n");
+ // TODO: Implement DoExtraAnalysis when subsequent legal checks support
+ // outer loops.
+ return false;
+ }
+
+ LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
+ return Result;
+ }
+
+ assert(TheLoop->empty() && "Inner loop expected.");
+ // Check if we can if-convert non-single-bb loops.
+ unsigned NumBlocks = TheLoop->getNumBlocks();
+ if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
+ LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
+ if (DoExtraAnalysis)
+ Result = false;
+ else
+ return false;
+ }
+
+ // Check if we can vectorize the instructions and CFG in this loop.
+ if (!canVectorizeInstrs()) {
+ LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
+ if (DoExtraAnalysis)
+ Result = false;
+ else
+ return false;
+ }
+
+ // Go over each instruction and look at memory deps.
+ if (!canVectorizeMemory()) {
+ LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
+ if (DoExtraAnalysis)
+ Result = false;
+ else
+ return false;
+ }
+
+ LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
+ << (LAI->getRuntimePointerChecking()->Need
+ ? " (with a runtime bound check)"
+ : "")
+ << "!\n");
+
+ unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
+ if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
+ SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
+
+ if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
+ ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks")
+ << "Too many SCEV assumptions need to be made and checked "
+ << "at runtime");
+ LLVM_DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n");
+ if (DoExtraAnalysis)
+ Result = false;
+ else
+ return false;
+ }
+
+ // Okay! We've done all the tests. If any have failed, return false. Otherwise
+ // we can vectorize, and at this point we don't have any other mem analysis
+ // which may limit our maximum vectorization factor, so just return true with
+ // no restrictions.
+ return Result;
+}
+
+} // namespace llvm