diff options
Diffstat (limited to 'lib/builtins/comparedf2.c')
| -rw-r--r-- | lib/builtins/comparedf2.c | 141 | 
1 files changed, 141 insertions, 0 deletions
diff --git a/lib/builtins/comparedf2.c b/lib/builtins/comparedf2.c new file mode 100644 index 000000000000..64eea1249055 --- /dev/null +++ b/lib/builtins/comparedf2.c @@ -0,0 +1,141 @@ +//===-- lib/comparedf2.c - Double-precision comparisons -----------*- C -*-===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is dual licensed under the MIT and the University of Illinois Open +// Source Licenses. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// // This file implements the following soft-float comparison routines: +// +//   __eqdf2   __gedf2   __unorddf2 +//   __ledf2   __gtdf2 +//   __ltdf2 +//   __nedf2 +// +// The semantics of the routines grouped in each column are identical, so there +// is a single implementation for each, and wrappers to provide the other names. +// +// The main routines behave as follows: +// +//   __ledf2(a,b) returns -1 if a < b +//                         0 if a == b +//                         1 if a > b +//                         1 if either a or b is NaN +// +//   __gedf2(a,b) returns -1 if a < b +//                         0 if a == b +//                         1 if a > b +//                        -1 if either a or b is NaN +// +//   __unorddf2(a,b) returns 0 if both a and b are numbers +//                           1 if either a or b is NaN +// +// Note that __ledf2( ) and __gedf2( ) are identical except in their handling of +// NaN values. +// +//===----------------------------------------------------------------------===// + +#define DOUBLE_PRECISION +#include "fp_lib.h" + +enum LE_RESULT { +    LE_LESS      = -1, +    LE_EQUAL     =  0, +    LE_GREATER   =  1, +    LE_UNORDERED =  1 +}; + +COMPILER_RT_ABI enum LE_RESULT +__ledf2(fp_t a, fp_t b) { +     +    const srep_t aInt = toRep(a); +    const srep_t bInt = toRep(b); +    const rep_t aAbs = aInt & absMask; +    const rep_t bAbs = bInt & absMask; +     +    // If either a or b is NaN, they are unordered. +    if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED; +     +    // If a and b are both zeros, they are equal. +    if ((aAbs | bAbs) == 0) return LE_EQUAL; +     +    // If at least one of a and b is positive, we get the same result comparing +    // a and b as signed integers as we would with a floating-point compare. +    if ((aInt & bInt) >= 0) { +        if (aInt < bInt) return LE_LESS; +        else if (aInt == bInt) return LE_EQUAL; +        else return LE_GREATER; +    } +     +    // Otherwise, both are negative, so we need to flip the sense of the +    // comparison to get the correct result.  (This assumes a twos- or ones- +    // complement integer representation; if integers are represented in a +    // sign-magnitude representation, then this flip is incorrect). +    else { +        if (aInt > bInt) return LE_LESS; +        else if (aInt == bInt) return LE_EQUAL; +        else return LE_GREATER; +    } +} + +enum GE_RESULT { +    GE_LESS      = -1, +    GE_EQUAL     =  0, +    GE_GREATER   =  1, +    GE_UNORDERED = -1   // Note: different from LE_UNORDERED +}; + +COMPILER_RT_ABI enum GE_RESULT +__gedf2(fp_t a, fp_t b) { +     +    const srep_t aInt = toRep(a); +    const srep_t bInt = toRep(b); +    const rep_t aAbs = aInt & absMask; +    const rep_t bAbs = bInt & absMask; +     +    if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED; +    if ((aAbs | bAbs) == 0) return GE_EQUAL; +    if ((aInt & bInt) >= 0) { +        if (aInt < bInt) return GE_LESS; +        else if (aInt == bInt) return GE_EQUAL; +        else return GE_GREATER; +    } else { +        if (aInt > bInt) return GE_LESS; +        else if (aInt == bInt) return GE_EQUAL; +        else return GE_GREATER; +    } +} + +ARM_EABI_FNALIAS(dcmpun, unorddf2) + +COMPILER_RT_ABI int +__unorddf2(fp_t a, fp_t b) { +    const rep_t aAbs = toRep(a) & absMask; +    const rep_t bAbs = toRep(b) & absMask; +    return aAbs > infRep || bAbs > infRep; +} + +// The following are alternative names for the preceding routines. + +COMPILER_RT_ABI enum LE_RESULT +__eqdf2(fp_t a, fp_t b) { +    return __ledf2(a, b); +} + +COMPILER_RT_ABI enum LE_RESULT +__ltdf2(fp_t a, fp_t b) { +    return __ledf2(a, b); +} + +COMPILER_RT_ABI enum LE_RESULT +__nedf2(fp_t a, fp_t b) { +    return __ledf2(a, b); +} + +COMPILER_RT_ABI enum GE_RESULT +__gtdf2(fp_t a, fp_t b) { +    return __gedf2(a, b); +} +  | 
