diff options
Diffstat (limited to 'lib/libm/common_source/jn.c')
| -rw-r--r-- | lib/libm/common_source/jn.c | 44 | 
1 files changed, 22 insertions, 22 deletions
| diff --git a/lib/libm/common_source/jn.c b/lib/libm/common_source/jn.c index 85a54012ecae..28d9687a51b1 100644 --- a/lib/libm/common_source/jn.c +++ b/lib/libm/common_source/jn.c @@ -46,18 +46,18 @@ static char sccsid[] = "@(#)jn.c	8.2 (Berkeley) 11/30/93";   *   * Developed at SunPro, a Sun Microsystems, Inc. business.   * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice  + * software is freely granted, provided that this notice   * is preserved.   * ====================================================   *   * ******************* WARNING ********************   * This is an alpha version of SunPro's FDLIBM (Freely - * Distributable Math Library) for IEEE double precision  + * Distributable Math Library) for IEEE double precision   * arithmetic. FDLIBM is a basic math library written - * in C that runs on machines that conform to IEEE  - * Standard 754/854. This alpha version is distributed  - * for testing purpose. Those who use this software  - * should report any bugs to  + * in C that runs on machines that conform to IEEE + * Standard 754/854. This alpha version is distributed + * for testing purpose. Those who use this software + * should report any bugs to   *   *		fdlibm-comments@sunpro.eng.sun.com   * @@ -69,7 +69,7 @@ static char sccsid[] = "@(#)jn.c	8.2 (Berkeley) 11/30/93";   * jn(int n, double x), yn(int n, double x)   * floating point Bessel's function of the 1st and 2nd kind   * of order n - *           + *   * Special cases:   *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;   *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. @@ -88,7 +88,7 @@ static char sccsid[] = "@(#)jn.c	8.2 (Berkeley) 11/30/93";   *	yn(n,x) is similar in all respects, except   *	that forward recursion is used for all   *	values of n>1. - *	 + *   */  #include <math.h> @@ -120,7 +120,7 @@ double jn(n,x)       */      /* if J(n,NaN) is NaN */  	if (_IEEE && isnan(x)) return x+x; -	if (n<0){		 +	if (n<0){  		n = -n;  		x = -x;  	} @@ -134,10 +134,10 @@ double jn(n,x)  			/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */  	    if (_IEEE && x >= 8.148143905337944345e+090) {  					/* x >= 2**302 */ -    /* (x >> n**2)  +    /* (x >> n**2)       *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)       *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) -     *	    Let s=sin(x), c=cos(x),  +     *	    Let s=sin(x), c=cos(x),       *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then       *       *		   n	sin(xn)*sqt2	cos(xn)*sqt2 @@ -154,7 +154,7 @@ double jn(n,x)  		    case 3: temp =  cos(x)-sin(x); break;  		}  		b = invsqrtpi*temp/sqrt(x); -	    } else {	 +	    } else {  	        a = j0(x);  	        b = j1(x);  	        for(i=1;i<n;i++){ @@ -165,7 +165,7 @@ double jn(n,x)  	    }  	} else {  	    if (x < 1.86264514923095703125e-009) { /* x < 2**-29 */ -    /* x is tiny, return the first Taylor expansion of J(n,x)  +    /* x is tiny, return the first Taylor expansion of J(n,x)       * J(n,x) = 1/n!*(x/2)^n  - ...       */  		if (n > 33)	/* underflow */ @@ -180,14 +180,14 @@ double jn(n,x)  		}  	    } else {  		/* use backward recurrence */ -		/* 			x      x^2      x^2        +		/* 			x      x^2      x^2  		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....  		 *			2n  - 2(n+1) - 2(n+2)  		 * -		 * 			1      1        1        +		 * 			1      1        1  		 *  (for large x)   =  ----  ------   ------   .....  		 *			2n   2(n+1)   2(n+2) -		 *			-- - ------ - ------ -  +		 *			-- - ------ - ------ -  		 *			 x     x         x  		 *  		 * Let w = 2n/x and h=2/x, then the above quotient @@ -203,9 +203,9 @@ double jn(n,x)  		 * To determine how many terms needed, let  		 * Q(0) = w, Q(1) = w(w+h) - 1,  		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), -		 * When Q(k) > 1e4	good for single  -		 * When Q(k) > 1e9	good for double  -		 * When Q(k) > 1e17	good for quadruple  +		 * When Q(k) > 1e4	good for single +		 * When Q(k) > 1e9	good for double +		 * When Q(k) > 1e17	good for quadruple  		 */  	    /* determine k */  		double t,v; @@ -254,7 +254,7 @@ double jn(n,x)  	}  	return ((sgn == 1) ? -b : b);  } -double yn(n,x)  +double yn(n,x)  	int n; double x;  {  	int i, sign; @@ -275,10 +275,10 @@ double yn(n,x)  	if (n == 0) return(y0(x));  	if (n == 1) return(sign*y1(x));  	if(_IEEE && x >= 8.148143905337944345e+090) { /* x > 2**302 */ -    /* (x >> n**2)  +    /* (x >> n**2)       *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)       *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) -     *	    Let s=sin(x), c=cos(x),  +     *	    Let s=sin(x), c=cos(x),       *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then       *       *		   n	sin(xn)*sqt2	cos(xn)*sqt2 | 
