diff options
Diffstat (limited to 'lib/libm/common_source/log.c')
| -rw-r--r-- | lib/libm/common_source/log.c | 486 | 
1 files changed, 486 insertions, 0 deletions
| diff --git a/lib/libm/common_source/log.c b/lib/libm/common_source/log.c new file mode 100644 index 000000000000..ae186722f8df --- /dev/null +++ b/lib/libm/common_source/log.c @@ -0,0 +1,486 @@ +/* + * Copyright (c) 1992, 1993 + *	The Regents of the University of California.  All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + *    notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + *    notice, this list of conditions and the following disclaimer in the + *    documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + *    must display the following acknowledgement: + *	This product includes software developed by the University of + *	California, Berkeley and its contributors. + * 4. Neither the name of the University nor the names of its contributors + *    may be used to endorse or promote products derived from this software + *    without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +#ifndef lint +static char sccsid[] = "@(#)log.c	8.2 (Berkeley) 11/30/93"; +#endif /* not lint */ + +#include <math.h> +#include <errno.h> + +#include "mathimpl.h" + +/* Table-driven natural logarithm. + * + * This code was derived, with minor modifications, from: + *	Peter Tang, "Table-Driven Implementation of the + *	Logarithm in IEEE Floating-Point arithmetic." ACM Trans. + *	Math Software, vol 16. no 4, pp 378-400, Dec 1990). + * + * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256, + * where F = j/128 for j an integer in [0, 128]. + * + * log(2^m) = log2_hi*m + log2_tail*m + * since m is an integer, the dominant term is exact. + * m has at most 10 digits (for subnormal numbers), + * and log2_hi has 11 trailing zero bits. + * + * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h + * logF_hi[] + 512 is exact. + * + * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ... + * the leading term is calculated to extra precision in two + * parts, the larger of which adds exactly to the dominant + * m and F terms. + * There are two cases: + *	1. when m, j are non-zero (m | j), use absolute + *	   precision for the leading term. + *	2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1). + *	   In this case, use a relative precision of 24 bits. + * (This is done differently in the original paper) + * + * Special cases: + *	0	return signalling -Inf + *	neg	return signalling NaN + *	+Inf	return +Inf +*/ + +#if defined(vax) || defined(tahoe) +#define _IEEE		0 +#define TRUNC(x)	x = (double) (float) (x) +#else +#define _IEEE		1 +#define endian		(((*(int *) &one)) ? 1 : 0) +#define TRUNC(x)	*(((int *) &x) + endian) &= 0xf8000000 +#define infnan(x)	0.0 +#endif + +#define N 128 + +/* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128. + * Used for generation of extend precision logarithms. + * The constant 35184372088832 is 2^45, so the divide is exact. + * It ensures correct reading of logF_head, even for inaccurate + * decimal-to-binary conversion routines.  (Everybody gets the + * right answer for integers less than 2^53.) + * Values for log(F) were generated using error < 10^-57 absolute + * with the bc -l package. +*/ +static double	A1 = 	  .08333333333333178827; +static double	A2 = 	  .01250000000377174923; +static double	A3 =	 .002232139987919447809; +static double	A4 =	.0004348877777076145742; + +static double logF_head[N+1] = { +	0., +	.007782140442060381246, +	.015504186535963526694, +	.023167059281547608406, +	.030771658666765233647, +	.038318864302141264488, +	.045809536031242714670, +	.053244514518837604555, +	.060624621816486978786, +	.067950661908525944454, +	.075223421237524235039, +	.082443669210988446138, +	.089612158689760690322, +	.096729626458454731618, +	.103796793681567578460, +	.110814366340264314203, +	.117783035656430001836, +	.124703478501032805070, +	.131576357788617315236, +	.138402322859292326029, +	.145182009844575077295, +	.151916042025732167530, +	.158605030176659056451, +	.165249572895390883786, +	.171850256926518341060, +	.178407657472689606947, +	.184922338493834104156, +	.191394852999565046047, +	.197825743329758552135, +	.204215541428766300668, +	.210564769107350002741, +	.216873938300523150246, +	.223143551314024080056, +	.229374101064877322642, +	.235566071312860003672, +	.241719936886966024758, +	.247836163904594286577, +	.253915209980732470285, +	.259957524436686071567, +	.265963548496984003577, +	.271933715484010463114, +	.277868451003087102435, +	.283768173130738432519, +	.289633292582948342896, +	.295464212893421063199, +	.301261330578199704177, +	.307025035294827830512, +	.312755710004239517729, +	.318453731118097493890, +	.324119468654316733591, +	.329753286372579168528, +	.335355541920762334484, +	.340926586970454081892, +	.346466767346100823488, +	.351976423156884266063, +	.357455888922231679316, +	.362905493689140712376, +	.368325561158599157352, +	.373716409793814818840, +	.379078352934811846353, +	.384411698910298582632, +	.389716751140440464951, +	.394993808240542421117, +	.400243164127459749579, +	.405465108107819105498, +	.410659924985338875558, +	.415827895143593195825, +	.420969294644237379543, +	.426084395310681429691, +	.431173464818130014464, +	.436236766774527495726, +	.441274560805140936281, +	.446287102628048160113, +	.451274644139630254358, +	.456237433481874177232, +	.461175715122408291790, +	.466089729924533457960, +	.470979715219073113985, +	.475845904869856894947, +	.480688529345570714212, +	.485507815781602403149, +	.490303988045525329653, +	.495077266798034543171, +	.499827869556611403822, +	.504556010751912253908, +	.509261901790523552335, +	.513945751101346104405, +	.518607764208354637958, +	.523248143765158602036, +	.527867089620485785417, +	.532464798869114019908, +	.537041465897345915436, +	.541597282432121573947, +	.546132437597407260909, +	.550647117952394182793, +	.555141507540611200965, +	.559615787935399566777, +	.564070138285387656651, +	.568504735352689749561, +	.572919753562018740922, +	.577315365035246941260, +	.581691739635061821900, +	.586049045003164792433, +	.590387446602107957005, +	.594707107746216934174, +	.599008189645246602594, +	.603290851438941899687, +	.607555250224322662688, +	.611801541106615331955, +	.616029877215623855590, +	.620240409751204424537, +	.624433288012369303032, +	.628608659422752680256, +	.632766669570628437213, +	.636907462236194987781, +	.641031179420679109171, +	.645137961373620782978, +	.649227946625615004450, +	.653301272011958644725, +	.657358072709030238911, +	.661398482245203922502, +	.665422632544505177065, +	.669430653942981734871, +	.673422675212350441142, +	.677398823590920073911, +	.681359224807238206267, +	.685304003098281100392, +	.689233281238557538017, +	.693147180560117703862 +}; + +static double logF_tail[N+1] = { +	0., +	-.00000000000000543229938420049, +	 .00000000000000172745674997061, +	-.00000000000001323017818229233, +	-.00000000000001154527628289872, +	-.00000000000000466529469958300, +	 .00000000000005148849572685810, +	-.00000000000002532168943117445, +	-.00000000000005213620639136504, +	-.00000000000001819506003016881, +	 .00000000000006329065958724544, +	 .00000000000008614512936087814, +	-.00000000000007355770219435028, +	 .00000000000009638067658552277, +	 .00000000000007598636597194141, +	 .00000000000002579999128306990, +	-.00000000000004654729747598444, +	-.00000000000007556920687451336, +	 .00000000000010195735223708472, +	-.00000000000017319034406422306, +	-.00000000000007718001336828098, +	 .00000000000010980754099855238, +	-.00000000000002047235780046195, +	-.00000000000008372091099235912, +	 .00000000000014088127937111135, +	 .00000000000012869017157588257, +	 .00000000000017788850778198106, +	 .00000000000006440856150696891, +	 .00000000000016132822667240822, +	-.00000000000007540916511956188, +	-.00000000000000036507188831790, +	 .00000000000009120937249914984, +	 .00000000000018567570959796010, +	-.00000000000003149265065191483, +	-.00000000000009309459495196889, +	 .00000000000017914338601329117, +	-.00000000000001302979717330866, +	 .00000000000023097385217586939, +	 .00000000000023999540484211737, +	 .00000000000015393776174455408, +	-.00000000000036870428315837678, +	 .00000000000036920375082080089, +	-.00000000000009383417223663699, +	 .00000000000009433398189512690, +	 .00000000000041481318704258568, +	-.00000000000003792316480209314, +	 .00000000000008403156304792424, +	-.00000000000034262934348285429, +	 .00000000000043712191957429145, +	-.00000000000010475750058776541, +	-.00000000000011118671389559323, +	 .00000000000037549577257259853, +	 .00000000000013912841212197565, +	 .00000000000010775743037572640, +	 .00000000000029391859187648000, +	-.00000000000042790509060060774, +	 .00000000000022774076114039555, +	 .00000000000010849569622967912, +	-.00000000000023073801945705758, +	 .00000000000015761203773969435, +	 .00000000000003345710269544082, +	-.00000000000041525158063436123, +	 .00000000000032655698896907146, +	-.00000000000044704265010452446, +	 .00000000000034527647952039772, +	-.00000000000007048962392109746, +	 .00000000000011776978751369214, +	-.00000000000010774341461609578, +	 .00000000000021863343293215910, +	 .00000000000024132639491333131, +	 .00000000000039057462209830700, +	-.00000000000026570679203560751, +	 .00000000000037135141919592021, +	-.00000000000017166921336082431, +	-.00000000000028658285157914353, +	-.00000000000023812542263446809, +	 .00000000000006576659768580062, +	-.00000000000028210143846181267, +	 .00000000000010701931762114254, +	 .00000000000018119346366441110, +	 .00000000000009840465278232627, +	-.00000000000033149150282752542, +	-.00000000000018302857356041668, +	-.00000000000016207400156744949, +	 .00000000000048303314949553201, +	-.00000000000071560553172382115, +	 .00000000000088821239518571855, +	-.00000000000030900580513238244, +	-.00000000000061076551972851496, +	 .00000000000035659969663347830, +	 .00000000000035782396591276383, +	-.00000000000046226087001544578, +	 .00000000000062279762917225156, +	 .00000000000072838947272065741, +	 .00000000000026809646615211673, +	-.00000000000010960825046059278, +	 .00000000000002311949383800537, +	-.00000000000058469058005299247, +	-.00000000000002103748251144494, +	-.00000000000023323182945587408, +	-.00000000000042333694288141916, +	-.00000000000043933937969737844, +	 .00000000000041341647073835565, +	 .00000000000006841763641591466, +	 .00000000000047585534004430641, +	 .00000000000083679678674757695, +	-.00000000000085763734646658640, +	 .00000000000021913281229340092, +	-.00000000000062242842536431148, +	-.00000000000010983594325438430, +	 .00000000000065310431377633651, +	-.00000000000047580199021710769, +	-.00000000000037854251265457040, +	 .00000000000040939233218678664, +	 .00000000000087424383914858291, +	 .00000000000025218188456842882, +	-.00000000000003608131360422557, +	-.00000000000050518555924280902, +	 .00000000000078699403323355317, +	-.00000000000067020876961949060, +	 .00000000000016108575753932458, +	 .00000000000058527188436251509, +	-.00000000000035246757297904791, +	-.00000000000018372084495629058, +	 .00000000000088606689813494916, +	 .00000000000066486268071468700, +	 .00000000000063831615170646519, +	 .00000000000025144230728376072, +	-.00000000000017239444525614834 +}; + +double +#ifdef _ANSI_SOURCE +log(double x) +#else +log(x) double x; +#endif +{ +	int m, j; +	double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0; +	volatile double u1; + +	/* Catch special cases */ +	if (x <= 0) +		if (_IEEE && x == zero)	/* log(0) = -Inf */ +			return (-one/zero); +		else if (_IEEE)		/* log(neg) = NaN */ +			return (zero/zero); +		else if (x == zero)	/* NOT REACHED IF _IEEE */ +			return (infnan(-ERANGE)); +		else +			return (infnan(EDOM)); +	else if (!finite(x)) +		if (_IEEE)		/* x = NaN, Inf */ +			return (x+x); +		else +			return (infnan(ERANGE)); +	 +	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/ +	/* y = F*(1 + f/F) for |f| <= 2^-8		*/ + +	m = logb(x); +	g = ldexp(x, -m); +	if (_IEEE && m == -1022) { +		j = logb(g), m += j; +		g = ldexp(g, -j); +	} +	j = N*(g-1) + .5; +	F = (1.0/N) * j + 1;	/* F*128 is an integer in [128, 512] */ +	f = g - F; + +	/* Approximate expansion for log(1+f/F) ~= u + q */ +	g = 1/(2*F+f); +	u = 2*f*g; +	v = u*u; +	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4))); + +    /* case 1: u1 = u rounded to 2^-43 absolute.  Since u < 2^-8, +     * 	       u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits. +     *         It also adds exactly to |m*log2_hi + log_F_head[j] | < 750 +    */ +	if (m | j) +		u1 = u + 513, u1 -= 513; + +    /* case 2:	|1-x| < 1/256. The m- and j- dependent terms are zero; +     * 		u1 = u to 24 bits. +    */ +	else +		u1 = u, TRUNC(u1); +	u2 = (2.0*(f - F*u1) - u1*f) * g; +			/* u1 + u2 = 2f/(2F+f) to extra precision.	*/ + +	/* log(x) = log(2^m*F*(1+f/F)) =				*/ +	/* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q);	*/ +	/* (exact) + (tiny)						*/ + +	u1 += m*logF_head[N] + logF_head[j];		/* exact */ +	u2 = (u2 + logF_tail[j]) + q;			/* tiny */ +	u2 += logF_tail[N]*m; +	return (u1 + u2); +} + +/* + * Extra precision variant, returning struct {double a, b;}; + * log(x) = a+b to 63 bits, with a is rounded to 26 bits. + */ +struct Double +#ifdef _ANSI_SOURCE +__log__D(double x) +#else +__log__D(x) double x; +#endif +{ +	int m, j; +	double F, f, g, q, u, v, u2, one = 1.0; +	volatile double u1; +	struct Double r; + +	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/ +	/* y = F*(1 + f/F) for |f| <= 2^-8		*/ + +	m = logb(x); +	g = ldexp(x, -m); +	if (_IEEE && m == -1022) { +		j = logb(g), m += j; +		g = ldexp(g, -j); +	} +	j = N*(g-1) + .5; +	F = (1.0/N) * j + 1; +	f = g - F; + +	g = 1/(2*F+f); +	u = 2*f*g; +	v = u*u; +	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4))); +	if (m | j) +		u1 = u + 513, u1 -= 513; +	else +		u1 = u, TRUNC(u1); +	u2 = (2.0*(f - F*u1) - u1*f) * g; + +	u1 += m*logF_head[N] + logF_head[j]; + +	u2 +=  logF_tail[j]; u2 += q; +	u2 += logF_tail[N]*m; +	r.a = u1 + u2;			/* Only difference is here */ +	TRUNC(r.a); +	r.b = (u1 - r.a) + u2; +	return (r); +} | 
