summaryrefslogtreecommitdiff
path: root/lib/lsan/lsan_common.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/lsan/lsan_common.cpp')
-rw-r--r--lib/lsan/lsan_common.cpp900
1 files changed, 900 insertions, 0 deletions
diff --git a/lib/lsan/lsan_common.cpp b/lib/lsan/lsan_common.cpp
new file mode 100644
index 000000000000..9ff9f4c5d1c9
--- /dev/null
+++ b/lib/lsan/lsan_common.cpp
@@ -0,0 +1,900 @@
+//=-- lsan_common.cpp -----------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is a part of LeakSanitizer.
+// Implementation of common leak checking functionality.
+//
+//===----------------------------------------------------------------------===//
+
+#include "lsan_common.h"
+
+#include "sanitizer_common/sanitizer_common.h"
+#include "sanitizer_common/sanitizer_flag_parser.h"
+#include "sanitizer_common/sanitizer_flags.h"
+#include "sanitizer_common/sanitizer_placement_new.h"
+#include "sanitizer_common/sanitizer_procmaps.h"
+#include "sanitizer_common/sanitizer_report_decorator.h"
+#include "sanitizer_common/sanitizer_stackdepot.h"
+#include "sanitizer_common/sanitizer_stacktrace.h"
+#include "sanitizer_common/sanitizer_suppressions.h"
+#include "sanitizer_common/sanitizer_thread_registry.h"
+#include "sanitizer_common/sanitizer_tls_get_addr.h"
+
+#if CAN_SANITIZE_LEAKS
+namespace __lsan {
+
+// This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and
+// also to protect the global list of root regions.
+BlockingMutex global_mutex(LINKER_INITIALIZED);
+
+Flags lsan_flags;
+
+void DisableCounterUnderflow() {
+ if (common_flags()->detect_leaks) {
+ Report("Unmatched call to __lsan_enable().\n");
+ Die();
+ }
+}
+
+void Flags::SetDefaults() {
+#define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
+#include "lsan_flags.inc"
+#undef LSAN_FLAG
+}
+
+void RegisterLsanFlags(FlagParser *parser, Flags *f) {
+#define LSAN_FLAG(Type, Name, DefaultValue, Description) \
+ RegisterFlag(parser, #Name, Description, &f->Name);
+#include "lsan_flags.inc"
+#undef LSAN_FLAG
+}
+
+#define LOG_POINTERS(...) \
+ do { \
+ if (flags()->log_pointers) Report(__VA_ARGS__); \
+ } while (0)
+
+#define LOG_THREADS(...) \
+ do { \
+ if (flags()->log_threads) Report(__VA_ARGS__); \
+ } while (0)
+
+ALIGNED(64) static char suppression_placeholder[sizeof(SuppressionContext)];
+static SuppressionContext *suppression_ctx = nullptr;
+static const char kSuppressionLeak[] = "leak";
+static const char *kSuppressionTypes[] = { kSuppressionLeak };
+static const char kStdSuppressions[] =
+#if SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
+ // For more details refer to the SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
+ // definition.
+ "leak:*pthread_exit*\n"
+#endif // SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
+#if SANITIZER_MAC
+ // For Darwin and os_log/os_trace: https://reviews.llvm.org/D35173
+ "leak:*_os_trace*\n"
+#endif
+ // TLS leak in some glibc versions, described in
+ // https://sourceware.org/bugzilla/show_bug.cgi?id=12650.
+ "leak:*tls_get_addr*\n";
+
+void InitializeSuppressions() {
+ CHECK_EQ(nullptr, suppression_ctx);
+ suppression_ctx = new (suppression_placeholder)
+ SuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes));
+ suppression_ctx->ParseFromFile(flags()->suppressions);
+ if (&__lsan_default_suppressions)
+ suppression_ctx->Parse(__lsan_default_suppressions());
+ suppression_ctx->Parse(kStdSuppressions);
+}
+
+static SuppressionContext *GetSuppressionContext() {
+ CHECK(suppression_ctx);
+ return suppression_ctx;
+}
+
+static InternalMmapVector<RootRegion> *root_regions;
+
+InternalMmapVector<RootRegion> const *GetRootRegions() { return root_regions; }
+
+void InitializeRootRegions() {
+ CHECK(!root_regions);
+ ALIGNED(64) static char placeholder[sizeof(InternalMmapVector<RootRegion>)];
+ root_regions = new (placeholder) InternalMmapVector<RootRegion>();
+}
+
+const char *MaybeCallLsanDefaultOptions() {
+ return (&__lsan_default_options) ? __lsan_default_options() : "";
+}
+
+void InitCommonLsan() {
+ InitializeRootRegions();
+ if (common_flags()->detect_leaks) {
+ // Initialization which can fail or print warnings should only be done if
+ // LSan is actually enabled.
+ InitializeSuppressions();
+ InitializePlatformSpecificModules();
+ }
+}
+
+class Decorator: public __sanitizer::SanitizerCommonDecorator {
+ public:
+ Decorator() : SanitizerCommonDecorator() { }
+ const char *Error() { return Red(); }
+ const char *Leak() { return Blue(); }
+};
+
+static inline bool CanBeAHeapPointer(uptr p) {
+ // Since our heap is located in mmap-ed memory, we can assume a sensible lower
+ // bound on heap addresses.
+ const uptr kMinAddress = 4 * 4096;
+ if (p < kMinAddress) return false;
+#if defined(__x86_64__)
+ // Accept only canonical form user-space addresses.
+ return ((p >> 47) == 0);
+#elif defined(__mips64)
+ return ((p >> 40) == 0);
+#elif defined(__aarch64__)
+ unsigned runtimeVMA =
+ (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
+ return ((p >> runtimeVMA) == 0);
+#else
+ return true;
+#endif
+}
+
+// Scans the memory range, looking for byte patterns that point into allocator
+// chunks. Marks those chunks with |tag| and adds them to |frontier|.
+// There are two usage modes for this function: finding reachable chunks
+// (|tag| = kReachable) and finding indirectly leaked chunks
+// (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
+// so |frontier| = 0.
+void ScanRangeForPointers(uptr begin, uptr end,
+ Frontier *frontier,
+ const char *region_type, ChunkTag tag) {
+ CHECK(tag == kReachable || tag == kIndirectlyLeaked);
+ const uptr alignment = flags()->pointer_alignment();
+ LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, begin, end);
+ uptr pp = begin;
+ if (pp % alignment)
+ pp = pp + alignment - pp % alignment;
+ for (; pp + sizeof(void *) <= end; pp += alignment) {
+ void *p = *reinterpret_cast<void **>(pp);
+ if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
+ uptr chunk = PointsIntoChunk(p);
+ if (!chunk) continue;
+ // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
+ if (chunk == begin) continue;
+ LsanMetadata m(chunk);
+ if (m.tag() == kReachable || m.tag() == kIgnored) continue;
+
+ // Do this check relatively late so we can log only the interesting cases.
+ if (!flags()->use_poisoned && WordIsPoisoned(pp)) {
+ LOG_POINTERS(
+ "%p is poisoned: ignoring %p pointing into chunk %p-%p of size "
+ "%zu.\n",
+ pp, p, chunk, chunk + m.requested_size(), m.requested_size());
+ continue;
+ }
+
+ m.set_tag(tag);
+ LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p,
+ chunk, chunk + m.requested_size(), m.requested_size());
+ if (frontier)
+ frontier->push_back(chunk);
+ }
+}
+
+// Scans a global range for pointers
+void ScanGlobalRange(uptr begin, uptr end, Frontier *frontier) {
+ uptr allocator_begin = 0, allocator_end = 0;
+ GetAllocatorGlobalRange(&allocator_begin, &allocator_end);
+ if (begin <= allocator_begin && allocator_begin < end) {
+ CHECK_LE(allocator_begin, allocator_end);
+ CHECK_LE(allocator_end, end);
+ if (begin < allocator_begin)
+ ScanRangeForPointers(begin, allocator_begin, frontier, "GLOBAL",
+ kReachable);
+ if (allocator_end < end)
+ ScanRangeForPointers(allocator_end, end, frontier, "GLOBAL", kReachable);
+ } else {
+ ScanRangeForPointers(begin, end, frontier, "GLOBAL", kReachable);
+ }
+}
+
+void ForEachExtraStackRangeCb(uptr begin, uptr end, void* arg) {
+ Frontier *frontier = reinterpret_cast<Frontier *>(arg);
+ ScanRangeForPointers(begin, end, frontier, "FAKE STACK", kReachable);
+}
+
+// Scans thread data (stacks and TLS) for heap pointers.
+static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
+ Frontier *frontier) {
+ InternalMmapVector<uptr> registers(suspended_threads.RegisterCount());
+ uptr registers_begin = reinterpret_cast<uptr>(registers.data());
+ uptr registers_end =
+ reinterpret_cast<uptr>(registers.data() + registers.size());
+ for (uptr i = 0; i < suspended_threads.ThreadCount(); i++) {
+ tid_t os_id = static_cast<tid_t>(suspended_threads.GetThreadID(i));
+ LOG_THREADS("Processing thread %d.\n", os_id);
+ uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
+ DTLS *dtls;
+ bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end,
+ &tls_begin, &tls_end,
+ &cache_begin, &cache_end, &dtls);
+ if (!thread_found) {
+ // If a thread can't be found in the thread registry, it's probably in the
+ // process of destruction. Log this event and move on.
+ LOG_THREADS("Thread %d not found in registry.\n", os_id);
+ continue;
+ }
+ uptr sp;
+ PtraceRegistersStatus have_registers =
+ suspended_threads.GetRegistersAndSP(i, registers.data(), &sp);
+ if (have_registers != REGISTERS_AVAILABLE) {
+ Report("Unable to get registers from thread %d.\n", os_id);
+ // If unable to get SP, consider the entire stack to be reachable unless
+ // GetRegistersAndSP failed with ESRCH.
+ if (have_registers == REGISTERS_UNAVAILABLE_FATAL) continue;
+ sp = stack_begin;
+ }
+
+ if (flags()->use_registers && have_registers)
+ ScanRangeForPointers(registers_begin, registers_end, frontier,
+ "REGISTERS", kReachable);
+
+ if (flags()->use_stacks) {
+ LOG_THREADS("Stack at %p-%p (SP = %p).\n", stack_begin, stack_end, sp);
+ if (sp < stack_begin || sp >= stack_end) {
+ // SP is outside the recorded stack range (e.g. the thread is running a
+ // signal handler on alternate stack, or swapcontext was used).
+ // Again, consider the entire stack range to be reachable.
+ LOG_THREADS("WARNING: stack pointer not in stack range.\n");
+ uptr page_size = GetPageSizeCached();
+ int skipped = 0;
+ while (stack_begin < stack_end &&
+ !IsAccessibleMemoryRange(stack_begin, 1)) {
+ skipped++;
+ stack_begin += page_size;
+ }
+ LOG_THREADS("Skipped %d guard page(s) to obtain stack %p-%p.\n",
+ skipped, stack_begin, stack_end);
+ } else {
+ // Shrink the stack range to ignore out-of-scope values.
+ stack_begin = sp;
+ }
+ ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
+ kReachable);
+ ForEachExtraStackRange(os_id, ForEachExtraStackRangeCb, frontier);
+ }
+
+ if (flags()->use_tls) {
+ if (tls_begin) {
+ LOG_THREADS("TLS at %p-%p.\n", tls_begin, tls_end);
+ // If the tls and cache ranges don't overlap, scan full tls range,
+ // otherwise, only scan the non-overlapping portions
+ if (cache_begin == cache_end || tls_end < cache_begin ||
+ tls_begin > cache_end) {
+ ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
+ } else {
+ if (tls_begin < cache_begin)
+ ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
+ kReachable);
+ if (tls_end > cache_end)
+ ScanRangeForPointers(cache_end, tls_end, frontier, "TLS",
+ kReachable);
+ }
+ }
+ if (dtls && !DTLSInDestruction(dtls)) {
+ for (uptr j = 0; j < dtls->dtv_size; ++j) {
+ uptr dtls_beg = dtls->dtv[j].beg;
+ uptr dtls_end = dtls_beg + dtls->dtv[j].size;
+ if (dtls_beg < dtls_end) {
+ LOG_THREADS("DTLS %zu at %p-%p.\n", j, dtls_beg, dtls_end);
+ ScanRangeForPointers(dtls_beg, dtls_end, frontier, "DTLS",
+ kReachable);
+ }
+ }
+ } else {
+ // We are handling a thread with DTLS under destruction. Log about
+ // this and continue.
+ LOG_THREADS("Thread %d has DTLS under destruction.\n", os_id);
+ }
+ }
+ }
+}
+
+void ScanRootRegion(Frontier *frontier, const RootRegion &root_region,
+ uptr region_begin, uptr region_end, bool is_readable) {
+ uptr intersection_begin = Max(root_region.begin, region_begin);
+ uptr intersection_end = Min(region_end, root_region.begin + root_region.size);
+ if (intersection_begin >= intersection_end) return;
+ LOG_POINTERS("Root region %p-%p intersects with mapped region %p-%p (%s)\n",
+ root_region.begin, root_region.begin + root_region.size,
+ region_begin, region_end,
+ is_readable ? "readable" : "unreadable");
+ if (is_readable)
+ ScanRangeForPointers(intersection_begin, intersection_end, frontier, "ROOT",
+ kReachable);
+}
+
+static void ProcessRootRegion(Frontier *frontier,
+ const RootRegion &root_region) {
+ MemoryMappingLayout proc_maps(/*cache_enabled*/ true);
+ MemoryMappedSegment segment;
+ while (proc_maps.Next(&segment)) {
+ ScanRootRegion(frontier, root_region, segment.start, segment.end,
+ segment.IsReadable());
+ }
+}
+
+// Scans root regions for heap pointers.
+static void ProcessRootRegions(Frontier *frontier) {
+ if (!flags()->use_root_regions) return;
+ CHECK(root_regions);
+ for (uptr i = 0; i < root_regions->size(); i++) {
+ ProcessRootRegion(frontier, (*root_regions)[i]);
+ }
+}
+
+static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
+ while (frontier->size()) {
+ uptr next_chunk = frontier->back();
+ frontier->pop_back();
+ LsanMetadata m(next_chunk);
+ ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
+ "HEAP", tag);
+ }
+}
+
+// ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
+// which are reachable from it as indirectly leaked.
+static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
+ chunk = GetUserBegin(chunk);
+ LsanMetadata m(chunk);
+ if (m.allocated() && m.tag() != kReachable) {
+ ScanRangeForPointers(chunk, chunk + m.requested_size(),
+ /* frontier */ nullptr, "HEAP", kIndirectlyLeaked);
+ }
+}
+
+// ForEachChunk callback. If chunk is marked as ignored, adds its address to
+// frontier.
+static void CollectIgnoredCb(uptr chunk, void *arg) {
+ CHECK(arg);
+ chunk = GetUserBegin(chunk);
+ LsanMetadata m(chunk);
+ if (m.allocated() && m.tag() == kIgnored) {
+ LOG_POINTERS("Ignored: chunk %p-%p of size %zu.\n",
+ chunk, chunk + m.requested_size(), m.requested_size());
+ reinterpret_cast<Frontier *>(arg)->push_back(chunk);
+ }
+}
+
+static uptr GetCallerPC(u32 stack_id, StackDepotReverseMap *map) {
+ CHECK(stack_id);
+ StackTrace stack = map->Get(stack_id);
+ // The top frame is our malloc/calloc/etc. The next frame is the caller.
+ if (stack.size >= 2)
+ return stack.trace[1];
+ return 0;
+}
+
+struct InvalidPCParam {
+ Frontier *frontier;
+ StackDepotReverseMap *stack_depot_reverse_map;
+ bool skip_linker_allocations;
+};
+
+// ForEachChunk callback. If the caller pc is invalid or is within the linker,
+// mark as reachable. Called by ProcessPlatformSpecificAllocations.
+static void MarkInvalidPCCb(uptr chunk, void *arg) {
+ CHECK(arg);
+ InvalidPCParam *param = reinterpret_cast<InvalidPCParam *>(arg);
+ chunk = GetUserBegin(chunk);
+ LsanMetadata m(chunk);
+ if (m.allocated() && m.tag() != kReachable && m.tag() != kIgnored) {
+ u32 stack_id = m.stack_trace_id();
+ uptr caller_pc = 0;
+ if (stack_id > 0)
+ caller_pc = GetCallerPC(stack_id, param->stack_depot_reverse_map);
+ // If caller_pc is unknown, this chunk may be allocated in a coroutine. Mark
+ // it as reachable, as we can't properly report its allocation stack anyway.
+ if (caller_pc == 0 || (param->skip_linker_allocations &&
+ GetLinker()->containsAddress(caller_pc))) {
+ m.set_tag(kReachable);
+ param->frontier->push_back(chunk);
+ }
+ }
+}
+
+// On Linux, treats all chunks allocated from ld-linux.so as reachable, which
+// covers dynamically allocated TLS blocks, internal dynamic loader's loaded
+// modules accounting etc.
+// Dynamic TLS blocks contain the TLS variables of dynamically loaded modules.
+// They are allocated with a __libc_memalign() call in allocate_and_init()
+// (elf/dl-tls.c). Glibc won't tell us the address ranges occupied by those
+// blocks, but we can make sure they come from our own allocator by intercepting
+// __libc_memalign(). On top of that, there is no easy way to reach them. Their
+// addresses are stored in a dynamically allocated array (the DTV) which is
+// referenced from the static TLS. Unfortunately, we can't just rely on the DTV
+// being reachable from the static TLS, and the dynamic TLS being reachable from
+// the DTV. This is because the initial DTV is allocated before our interception
+// mechanism kicks in, and thus we don't recognize it as allocated memory. We
+// can't special-case it either, since we don't know its size.
+// Our solution is to include in the root set all allocations made from
+// ld-linux.so (which is where allocate_and_init() is implemented). This is
+// guaranteed to include all dynamic TLS blocks (and possibly other allocations
+// which we don't care about).
+// On all other platforms, this simply checks to ensure that the caller pc is
+// valid before reporting chunks as leaked.
+void ProcessPC(Frontier *frontier) {
+ StackDepotReverseMap stack_depot_reverse_map;
+ InvalidPCParam arg;
+ arg.frontier = frontier;
+ arg.stack_depot_reverse_map = &stack_depot_reverse_map;
+ arg.skip_linker_allocations =
+ flags()->use_tls && flags()->use_ld_allocations && GetLinker() != nullptr;
+ ForEachChunk(MarkInvalidPCCb, &arg);
+}
+
+// Sets the appropriate tag on each chunk.
+static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
+ // Holds the flood fill frontier.
+ Frontier frontier;
+
+ ForEachChunk(CollectIgnoredCb, &frontier);
+ ProcessGlobalRegions(&frontier);
+ ProcessThreads(suspended_threads, &frontier);
+ ProcessRootRegions(&frontier);
+ FloodFillTag(&frontier, kReachable);
+
+ CHECK_EQ(0, frontier.size());
+ ProcessPC(&frontier);
+
+ // The check here is relatively expensive, so we do this in a separate flood
+ // fill. That way we can skip the check for chunks that are reachable
+ // otherwise.
+ LOG_POINTERS("Processing platform-specific allocations.\n");
+ ProcessPlatformSpecificAllocations(&frontier);
+ FloodFillTag(&frontier, kReachable);
+
+ // Iterate over leaked chunks and mark those that are reachable from other
+ // leaked chunks.
+ LOG_POINTERS("Scanning leaked chunks.\n");
+ ForEachChunk(MarkIndirectlyLeakedCb, nullptr);
+}
+
+// ForEachChunk callback. Resets the tags to pre-leak-check state.
+static void ResetTagsCb(uptr chunk, void *arg) {
+ (void)arg;
+ chunk = GetUserBegin(chunk);
+ LsanMetadata m(chunk);
+ if (m.allocated() && m.tag() != kIgnored)
+ m.set_tag(kDirectlyLeaked);
+}
+
+static void PrintStackTraceById(u32 stack_trace_id) {
+ CHECK(stack_trace_id);
+ StackDepotGet(stack_trace_id).Print();
+}
+
+// ForEachChunk callback. Aggregates information about unreachable chunks into
+// a LeakReport.
+static void CollectLeaksCb(uptr chunk, void *arg) {
+ CHECK(arg);
+ LeakReport *leak_report = reinterpret_cast<LeakReport *>(arg);
+ chunk = GetUserBegin(chunk);
+ LsanMetadata m(chunk);
+ if (!m.allocated()) return;
+ if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
+ u32 resolution = flags()->resolution;
+ u32 stack_trace_id = 0;
+ if (resolution > 0) {
+ StackTrace stack = StackDepotGet(m.stack_trace_id());
+ stack.size = Min(stack.size, resolution);
+ stack_trace_id = StackDepotPut(stack);
+ } else {
+ stack_trace_id = m.stack_trace_id();
+ }
+ leak_report->AddLeakedChunk(chunk, stack_trace_id, m.requested_size(),
+ m.tag());
+ }
+}
+
+static void PrintMatchedSuppressions() {
+ InternalMmapVector<Suppression *> matched;
+ GetSuppressionContext()->GetMatched(&matched);
+ if (!matched.size())
+ return;
+ const char *line = "-----------------------------------------------------";
+ Printf("%s\n", line);
+ Printf("Suppressions used:\n");
+ Printf(" count bytes template\n");
+ for (uptr i = 0; i < matched.size(); i++)
+ Printf("%7zu %10zu %s\n", static_cast<uptr>(atomic_load_relaxed(
+ &matched[i]->hit_count)), matched[i]->weight, matched[i]->templ);
+ Printf("%s\n\n", line);
+}
+
+struct CheckForLeaksParam {
+ bool success;
+ LeakReport leak_report;
+};
+
+static void ReportIfNotSuspended(ThreadContextBase *tctx, void *arg) {
+ const InternalMmapVector<tid_t> &suspended_threads =
+ *(const InternalMmapVector<tid_t> *)arg;
+ if (tctx->status == ThreadStatusRunning) {
+ uptr i = InternalLowerBound(suspended_threads, 0, suspended_threads.size(),
+ tctx->os_id, CompareLess<int>());
+ if (i >= suspended_threads.size() || suspended_threads[i] != tctx->os_id)
+ Report("Running thread %d was not suspended. False leaks are possible.\n",
+ tctx->os_id);
+ }
+}
+
+static void ReportUnsuspendedThreads(
+ const SuspendedThreadsList &suspended_threads) {
+ InternalMmapVector<tid_t> threads(suspended_threads.ThreadCount());
+ for (uptr i = 0; i < suspended_threads.ThreadCount(); ++i)
+ threads[i] = suspended_threads.GetThreadID(i);
+
+ Sort(threads.data(), threads.size());
+
+ GetThreadRegistryLocked()->RunCallbackForEachThreadLocked(
+ &ReportIfNotSuspended, &threads);
+}
+
+static void CheckForLeaksCallback(const SuspendedThreadsList &suspended_threads,
+ void *arg) {
+ CheckForLeaksParam *param = reinterpret_cast<CheckForLeaksParam *>(arg);
+ CHECK(param);
+ CHECK(!param->success);
+ ReportUnsuspendedThreads(suspended_threads);
+ ClassifyAllChunks(suspended_threads);
+ ForEachChunk(CollectLeaksCb, &param->leak_report);
+ // Clean up for subsequent leak checks. This assumes we did not overwrite any
+ // kIgnored tags.
+ ForEachChunk(ResetTagsCb, nullptr);
+ param->success = true;
+}
+
+static bool CheckForLeaks() {
+ if (&__lsan_is_turned_off && __lsan_is_turned_off())
+ return false;
+ EnsureMainThreadIDIsCorrect();
+ CheckForLeaksParam param;
+ param.success = false;
+ LockStuffAndStopTheWorld(CheckForLeaksCallback, &param);
+
+ if (!param.success) {
+ Report("LeakSanitizer has encountered a fatal error.\n");
+ Report(
+ "HINT: For debugging, try setting environment variable "
+ "LSAN_OPTIONS=verbosity=1:log_threads=1\n");
+ Report(
+ "HINT: LeakSanitizer does not work under ptrace (strace, gdb, etc)\n");
+ Die();
+ }
+ param.leak_report.ApplySuppressions();
+ uptr unsuppressed_count = param.leak_report.UnsuppressedLeakCount();
+ if (unsuppressed_count > 0) {
+ Decorator d;
+ Printf("\n"
+ "================================================================="
+ "\n");
+ Printf("%s", d.Error());
+ Report("ERROR: LeakSanitizer: detected memory leaks\n");
+ Printf("%s", d.Default());
+ param.leak_report.ReportTopLeaks(flags()->max_leaks);
+ }
+ if (common_flags()->print_suppressions)
+ PrintMatchedSuppressions();
+ if (unsuppressed_count > 0) {
+ param.leak_report.PrintSummary();
+ return true;
+ }
+ return false;
+}
+
+static bool has_reported_leaks = false;
+bool HasReportedLeaks() { return has_reported_leaks; }
+
+void DoLeakCheck() {
+ BlockingMutexLock l(&global_mutex);
+ static bool already_done;
+ if (already_done) return;
+ already_done = true;
+ has_reported_leaks = CheckForLeaks();
+ if (has_reported_leaks) HandleLeaks();
+}
+
+static int DoRecoverableLeakCheck() {
+ BlockingMutexLock l(&global_mutex);
+ bool have_leaks = CheckForLeaks();
+ return have_leaks ? 1 : 0;
+}
+
+void DoRecoverableLeakCheckVoid() { DoRecoverableLeakCheck(); }
+
+static Suppression *GetSuppressionForAddr(uptr addr) {
+ Suppression *s = nullptr;
+
+ // Suppress by module name.
+ SuppressionContext *suppressions = GetSuppressionContext();
+ if (const char *module_name =
+ Symbolizer::GetOrInit()->GetModuleNameForPc(addr))
+ if (suppressions->Match(module_name, kSuppressionLeak, &s))
+ return s;
+
+ // Suppress by file or function name.
+ SymbolizedStack *frames = Symbolizer::GetOrInit()->SymbolizePC(addr);
+ for (SymbolizedStack *cur = frames; cur; cur = cur->next) {
+ if (suppressions->Match(cur->info.function, kSuppressionLeak, &s) ||
+ suppressions->Match(cur->info.file, kSuppressionLeak, &s)) {
+ break;
+ }
+ }
+ frames->ClearAll();
+ return s;
+}
+
+static Suppression *GetSuppressionForStack(u32 stack_trace_id) {
+ StackTrace stack = StackDepotGet(stack_trace_id);
+ for (uptr i = 0; i < stack.size; i++) {
+ Suppression *s = GetSuppressionForAddr(
+ StackTrace::GetPreviousInstructionPc(stack.trace[i]));
+ if (s) return s;
+ }
+ return nullptr;
+}
+
+///// LeakReport implementation. /////
+
+// A hard limit on the number of distinct leaks, to avoid quadratic complexity
+// in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks
+// in real-world applications.
+// FIXME: Get rid of this limit by changing the implementation of LeakReport to
+// use a hash table.
+const uptr kMaxLeaksConsidered = 5000;
+
+void LeakReport::AddLeakedChunk(uptr chunk, u32 stack_trace_id,
+ uptr leaked_size, ChunkTag tag) {
+ CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
+ bool is_directly_leaked = (tag == kDirectlyLeaked);
+ uptr i;
+ for (i = 0; i < leaks_.size(); i++) {
+ if (leaks_[i].stack_trace_id == stack_trace_id &&
+ leaks_[i].is_directly_leaked == is_directly_leaked) {
+ leaks_[i].hit_count++;
+ leaks_[i].total_size += leaked_size;
+ break;
+ }
+ }
+ if (i == leaks_.size()) {
+ if (leaks_.size() == kMaxLeaksConsidered) return;
+ Leak leak = { next_id_++, /* hit_count */ 1, leaked_size, stack_trace_id,
+ is_directly_leaked, /* is_suppressed */ false };
+ leaks_.push_back(leak);
+ }
+ if (flags()->report_objects) {
+ LeakedObject obj = {leaks_[i].id, chunk, leaked_size};
+ leaked_objects_.push_back(obj);
+ }
+}
+
+static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
+ if (leak1.is_directly_leaked == leak2.is_directly_leaked)
+ return leak1.total_size > leak2.total_size;
+ else
+ return leak1.is_directly_leaked;
+}
+
+void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) {
+ CHECK(leaks_.size() <= kMaxLeaksConsidered);
+ Printf("\n");
+ if (leaks_.size() == kMaxLeaksConsidered)
+ Printf("Too many leaks! Only the first %zu leaks encountered will be "
+ "reported.\n",
+ kMaxLeaksConsidered);
+
+ uptr unsuppressed_count = UnsuppressedLeakCount();
+ if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count)
+ Printf("The %zu top leak(s):\n", num_leaks_to_report);
+ Sort(leaks_.data(), leaks_.size(), &LeakComparator);
+ uptr leaks_reported = 0;
+ for (uptr i = 0; i < leaks_.size(); i++) {
+ if (leaks_[i].is_suppressed) continue;
+ PrintReportForLeak(i);
+ leaks_reported++;
+ if (leaks_reported == num_leaks_to_report) break;
+ }
+ if (leaks_reported < unsuppressed_count) {
+ uptr remaining = unsuppressed_count - leaks_reported;
+ Printf("Omitting %zu more leak(s).\n", remaining);
+ }
+}
+
+void LeakReport::PrintReportForLeak(uptr index) {
+ Decorator d;
+ Printf("%s", d.Leak());
+ Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
+ leaks_[index].is_directly_leaked ? "Direct" : "Indirect",
+ leaks_[index].total_size, leaks_[index].hit_count);
+ Printf("%s", d.Default());
+
+ PrintStackTraceById(leaks_[index].stack_trace_id);
+
+ if (flags()->report_objects) {
+ Printf("Objects leaked above:\n");
+ PrintLeakedObjectsForLeak(index);
+ Printf("\n");
+ }
+}
+
+void LeakReport::PrintLeakedObjectsForLeak(uptr index) {
+ u32 leak_id = leaks_[index].id;
+ for (uptr j = 0; j < leaked_objects_.size(); j++) {
+ if (leaked_objects_[j].leak_id == leak_id)
+ Printf("%p (%zu bytes)\n", leaked_objects_[j].addr,
+ leaked_objects_[j].size);
+ }
+}
+
+void LeakReport::PrintSummary() {
+ CHECK(leaks_.size() <= kMaxLeaksConsidered);
+ uptr bytes = 0, allocations = 0;
+ for (uptr i = 0; i < leaks_.size(); i++) {
+ if (leaks_[i].is_suppressed) continue;
+ bytes += leaks_[i].total_size;
+ allocations += leaks_[i].hit_count;
+ }
+ InternalScopedString summary(kMaxSummaryLength);
+ summary.append("%zu byte(s) leaked in %zu allocation(s).", bytes,
+ allocations);
+ ReportErrorSummary(summary.data());
+}
+
+void LeakReport::ApplySuppressions() {
+ for (uptr i = 0; i < leaks_.size(); i++) {
+ Suppression *s = GetSuppressionForStack(leaks_[i].stack_trace_id);
+ if (s) {
+ s->weight += leaks_[i].total_size;
+ atomic_store_relaxed(&s->hit_count, atomic_load_relaxed(&s->hit_count) +
+ leaks_[i].hit_count);
+ leaks_[i].is_suppressed = true;
+ }
+ }
+}
+
+uptr LeakReport::UnsuppressedLeakCount() {
+ uptr result = 0;
+ for (uptr i = 0; i < leaks_.size(); i++)
+ if (!leaks_[i].is_suppressed) result++;
+ return result;
+}
+
+} // namespace __lsan
+#else // CAN_SANITIZE_LEAKS
+namespace __lsan {
+void InitCommonLsan() { }
+void DoLeakCheck() { }
+void DoRecoverableLeakCheckVoid() { }
+void DisableInThisThread() { }
+void EnableInThisThread() { }
+}
+#endif // CAN_SANITIZE_LEAKS
+
+using namespace __lsan;
+
+extern "C" {
+SANITIZER_INTERFACE_ATTRIBUTE
+void __lsan_ignore_object(const void *p) {
+#if CAN_SANITIZE_LEAKS
+ if (!common_flags()->detect_leaks)
+ return;
+ // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
+ // locked.
+ BlockingMutexLock l(&global_mutex);
+ IgnoreObjectResult res = IgnoreObjectLocked(p);
+ if (res == kIgnoreObjectInvalid)
+ VReport(1, "__lsan_ignore_object(): no heap object found at %p", p);
+ if (res == kIgnoreObjectAlreadyIgnored)
+ VReport(1, "__lsan_ignore_object(): "
+ "heap object at %p is already being ignored\n", p);
+ if (res == kIgnoreObjectSuccess)
+ VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p);
+#endif // CAN_SANITIZE_LEAKS
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+void __lsan_register_root_region(const void *begin, uptr size) {
+#if CAN_SANITIZE_LEAKS
+ BlockingMutexLock l(&global_mutex);
+ CHECK(root_regions);
+ RootRegion region = {reinterpret_cast<uptr>(begin), size};
+ root_regions->push_back(region);
+ VReport(1, "Registered root region at %p of size %llu\n", begin, size);
+#endif // CAN_SANITIZE_LEAKS
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+void __lsan_unregister_root_region(const void *begin, uptr size) {
+#if CAN_SANITIZE_LEAKS
+ BlockingMutexLock l(&global_mutex);
+ CHECK(root_regions);
+ bool removed = false;
+ for (uptr i = 0; i < root_regions->size(); i++) {
+ RootRegion region = (*root_regions)[i];
+ if (region.begin == reinterpret_cast<uptr>(begin) && region.size == size) {
+ removed = true;
+ uptr last_index = root_regions->size() - 1;
+ (*root_regions)[i] = (*root_regions)[last_index];
+ root_regions->pop_back();
+ VReport(1, "Unregistered root region at %p of size %llu\n", begin, size);
+ break;
+ }
+ }
+ if (!removed) {
+ Report(
+ "__lsan_unregister_root_region(): region at %p of size %llu has not "
+ "been registered.\n",
+ begin, size);
+ Die();
+ }
+#endif // CAN_SANITIZE_LEAKS
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+void __lsan_disable() {
+#if CAN_SANITIZE_LEAKS
+ __lsan::DisableInThisThread();
+#endif
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+void __lsan_enable() {
+#if CAN_SANITIZE_LEAKS
+ __lsan::EnableInThisThread();
+#endif
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+void __lsan_do_leak_check() {
+#if CAN_SANITIZE_LEAKS
+ if (common_flags()->detect_leaks)
+ __lsan::DoLeakCheck();
+#endif // CAN_SANITIZE_LEAKS
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+int __lsan_do_recoverable_leak_check() {
+#if CAN_SANITIZE_LEAKS
+ if (common_flags()->detect_leaks)
+ return __lsan::DoRecoverableLeakCheck();
+#endif // CAN_SANITIZE_LEAKS
+ return 0;
+}
+
+#if !SANITIZER_SUPPORTS_WEAK_HOOKS
+SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
+const char * __lsan_default_options() {
+ return "";
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
+int __lsan_is_turned_off() {
+ return 0;
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
+const char *__lsan_default_suppressions() {
+ return "";
+}
+#endif
+} // extern "C"