summaryrefslogtreecommitdiff
path: root/lib/tsan/rtl/tsan_mman.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/tsan/rtl/tsan_mman.cpp')
-rw-r--r--lib/tsan/rtl/tsan_mman.cpp396
1 files changed, 396 insertions, 0 deletions
diff --git a/lib/tsan/rtl/tsan_mman.cpp b/lib/tsan/rtl/tsan_mman.cpp
new file mode 100644
index 000000000000..1b2c0549d399
--- /dev/null
+++ b/lib/tsan/rtl/tsan_mman.cpp
@@ -0,0 +1,396 @@
+//===-- tsan_mman.cpp -----------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is a part of ThreadSanitizer (TSan), a race detector.
+//
+//===----------------------------------------------------------------------===//
+#include "sanitizer_common/sanitizer_allocator_checks.h"
+#include "sanitizer_common/sanitizer_allocator_interface.h"
+#include "sanitizer_common/sanitizer_allocator_report.h"
+#include "sanitizer_common/sanitizer_common.h"
+#include "sanitizer_common/sanitizer_errno.h"
+#include "sanitizer_common/sanitizer_placement_new.h"
+#include "tsan_mman.h"
+#include "tsan_rtl.h"
+#include "tsan_report.h"
+#include "tsan_flags.h"
+
+// May be overriden by front-end.
+SANITIZER_WEAK_DEFAULT_IMPL
+void __sanitizer_malloc_hook(void *ptr, uptr size) {
+ (void)ptr;
+ (void)size;
+}
+
+SANITIZER_WEAK_DEFAULT_IMPL
+void __sanitizer_free_hook(void *ptr) {
+ (void)ptr;
+}
+
+namespace __tsan {
+
+struct MapUnmapCallback {
+ void OnMap(uptr p, uptr size) const { }
+ void OnUnmap(uptr p, uptr size) const {
+ // We are about to unmap a chunk of user memory.
+ // Mark the corresponding shadow memory as not needed.
+ DontNeedShadowFor(p, size);
+ // Mark the corresponding meta shadow memory as not needed.
+ // Note the block does not contain any meta info at this point
+ // (this happens after free).
+ const uptr kMetaRatio = kMetaShadowCell / kMetaShadowSize;
+ const uptr kPageSize = GetPageSizeCached() * kMetaRatio;
+ // Block came from LargeMmapAllocator, so must be large.
+ // We rely on this in the calculations below.
+ CHECK_GE(size, 2 * kPageSize);
+ uptr diff = RoundUp(p, kPageSize) - p;
+ if (diff != 0) {
+ p += diff;
+ size -= diff;
+ }
+ diff = p + size - RoundDown(p + size, kPageSize);
+ if (diff != 0)
+ size -= diff;
+ uptr p_meta = (uptr)MemToMeta(p);
+ ReleaseMemoryPagesToOS(p_meta, p_meta + size / kMetaRatio);
+ }
+};
+
+static char allocator_placeholder[sizeof(Allocator)] ALIGNED(64);
+Allocator *allocator() {
+ return reinterpret_cast<Allocator*>(&allocator_placeholder);
+}
+
+struct GlobalProc {
+ Mutex mtx;
+ Processor *proc;
+
+ GlobalProc()
+ : mtx(MutexTypeGlobalProc, StatMtxGlobalProc)
+ , proc(ProcCreate()) {
+ }
+};
+
+static char global_proc_placeholder[sizeof(GlobalProc)] ALIGNED(64);
+GlobalProc *global_proc() {
+ return reinterpret_cast<GlobalProc*>(&global_proc_placeholder);
+}
+
+ScopedGlobalProcessor::ScopedGlobalProcessor() {
+ GlobalProc *gp = global_proc();
+ ThreadState *thr = cur_thread();
+ if (thr->proc())
+ return;
+ // If we don't have a proc, use the global one.
+ // There are currently only two known case where this path is triggered:
+ // __interceptor_free
+ // __nptl_deallocate_tsd
+ // start_thread
+ // clone
+ // and:
+ // ResetRange
+ // __interceptor_munmap
+ // __deallocate_stack
+ // start_thread
+ // clone
+ // Ideally, we destroy thread state (and unwire proc) when a thread actually
+ // exits (i.e. when we join/wait it). Then we would not need the global proc
+ gp->mtx.Lock();
+ ProcWire(gp->proc, thr);
+}
+
+ScopedGlobalProcessor::~ScopedGlobalProcessor() {
+ GlobalProc *gp = global_proc();
+ ThreadState *thr = cur_thread();
+ if (thr->proc() != gp->proc)
+ return;
+ ProcUnwire(gp->proc, thr);
+ gp->mtx.Unlock();
+}
+
+void InitializeAllocator() {
+ SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
+ allocator()->Init(common_flags()->allocator_release_to_os_interval_ms);
+}
+
+void InitializeAllocatorLate() {
+ new(global_proc()) GlobalProc();
+}
+
+void AllocatorProcStart(Processor *proc) {
+ allocator()->InitCache(&proc->alloc_cache);
+ internal_allocator()->InitCache(&proc->internal_alloc_cache);
+}
+
+void AllocatorProcFinish(Processor *proc) {
+ allocator()->DestroyCache(&proc->alloc_cache);
+ internal_allocator()->DestroyCache(&proc->internal_alloc_cache);
+}
+
+void AllocatorPrintStats() {
+ allocator()->PrintStats();
+}
+
+static void SignalUnsafeCall(ThreadState *thr, uptr pc) {
+ if (atomic_load_relaxed(&thr->in_signal_handler) == 0 ||
+ !flags()->report_signal_unsafe)
+ return;
+ VarSizeStackTrace stack;
+ ObtainCurrentStack(thr, pc, &stack);
+ if (IsFiredSuppression(ctx, ReportTypeSignalUnsafe, stack))
+ return;
+ ThreadRegistryLock l(ctx->thread_registry);
+ ScopedReport rep(ReportTypeSignalUnsafe);
+ rep.AddStack(stack, true);
+ OutputReport(thr, rep);
+}
+
+static constexpr uptr kMaxAllowedMallocSize = 1ull << 40;
+
+void *user_alloc_internal(ThreadState *thr, uptr pc, uptr sz, uptr align,
+ bool signal) {
+ if (sz >= kMaxAllowedMallocSize || align >= kMaxAllowedMallocSize) {
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ GET_STACK_TRACE_FATAL(thr, pc);
+ ReportAllocationSizeTooBig(sz, kMaxAllowedMallocSize, &stack);
+ }
+ void *p = allocator()->Allocate(&thr->proc()->alloc_cache, sz, align);
+ if (UNLIKELY(!p)) {
+ SetAllocatorOutOfMemory();
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ GET_STACK_TRACE_FATAL(thr, pc);
+ ReportOutOfMemory(sz, &stack);
+ }
+ if (ctx && ctx->initialized)
+ OnUserAlloc(thr, pc, (uptr)p, sz, true);
+ if (signal)
+ SignalUnsafeCall(thr, pc);
+ return p;
+}
+
+void user_free(ThreadState *thr, uptr pc, void *p, bool signal) {
+ ScopedGlobalProcessor sgp;
+ if (ctx && ctx->initialized)
+ OnUserFree(thr, pc, (uptr)p, true);
+ allocator()->Deallocate(&thr->proc()->alloc_cache, p);
+ if (signal)
+ SignalUnsafeCall(thr, pc);
+}
+
+void *user_alloc(ThreadState *thr, uptr pc, uptr sz) {
+ return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, kDefaultAlignment));
+}
+
+void *user_calloc(ThreadState *thr, uptr pc, uptr size, uptr n) {
+ if (UNLIKELY(CheckForCallocOverflow(size, n))) {
+ if (AllocatorMayReturnNull())
+ return SetErrnoOnNull(nullptr);
+ GET_STACK_TRACE_FATAL(thr, pc);
+ ReportCallocOverflow(n, size, &stack);
+ }
+ void *p = user_alloc_internal(thr, pc, n * size);
+ if (p)
+ internal_memset(p, 0, n * size);
+ return SetErrnoOnNull(p);
+}
+
+void *user_reallocarray(ThreadState *thr, uptr pc, void *p, uptr size, uptr n) {
+ if (UNLIKELY(CheckForCallocOverflow(size, n))) {
+ if (AllocatorMayReturnNull())
+ return SetErrnoOnNull(nullptr);
+ GET_STACK_TRACE_FATAL(thr, pc);
+ ReportReallocArrayOverflow(size, n, &stack);
+ }
+ return user_realloc(thr, pc, p, size * n);
+}
+
+void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write) {
+ DPrintf("#%d: alloc(%zu) = %p\n", thr->tid, sz, p);
+ ctx->metamap.AllocBlock(thr, pc, p, sz);
+ if (write && thr->ignore_reads_and_writes == 0)
+ MemoryRangeImitateWrite(thr, pc, (uptr)p, sz);
+ else
+ MemoryResetRange(thr, pc, (uptr)p, sz);
+}
+
+void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write) {
+ CHECK_NE(p, (void*)0);
+ uptr sz = ctx->metamap.FreeBlock(thr->proc(), p);
+ DPrintf("#%d: free(%p, %zu)\n", thr->tid, p, sz);
+ if (write && thr->ignore_reads_and_writes == 0)
+ MemoryRangeFreed(thr, pc, (uptr)p, sz);
+}
+
+void *user_realloc(ThreadState *thr, uptr pc, void *p, uptr sz) {
+ // FIXME: Handle "shrinking" more efficiently,
+ // it seems that some software actually does this.
+ if (!p)
+ return SetErrnoOnNull(user_alloc_internal(thr, pc, sz));
+ if (!sz) {
+ user_free(thr, pc, p);
+ return nullptr;
+ }
+ void *new_p = user_alloc_internal(thr, pc, sz);
+ if (new_p) {
+ uptr old_sz = user_alloc_usable_size(p);
+ internal_memcpy(new_p, p, min(old_sz, sz));
+ user_free(thr, pc, p);
+ }
+ return SetErrnoOnNull(new_p);
+}
+
+void *user_memalign(ThreadState *thr, uptr pc, uptr align, uptr sz) {
+ if (UNLIKELY(!IsPowerOfTwo(align))) {
+ errno = errno_EINVAL;
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ GET_STACK_TRACE_FATAL(thr, pc);
+ ReportInvalidAllocationAlignment(align, &stack);
+ }
+ return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, align));
+}
+
+int user_posix_memalign(ThreadState *thr, uptr pc, void **memptr, uptr align,
+ uptr sz) {
+ if (UNLIKELY(!CheckPosixMemalignAlignment(align))) {
+ if (AllocatorMayReturnNull())
+ return errno_EINVAL;
+ GET_STACK_TRACE_FATAL(thr, pc);
+ ReportInvalidPosixMemalignAlignment(align, &stack);
+ }
+ void *ptr = user_alloc_internal(thr, pc, sz, align);
+ if (UNLIKELY(!ptr))
+ // OOM error is already taken care of by user_alloc_internal.
+ return errno_ENOMEM;
+ CHECK(IsAligned((uptr)ptr, align));
+ *memptr = ptr;
+ return 0;
+}
+
+void *user_aligned_alloc(ThreadState *thr, uptr pc, uptr align, uptr sz) {
+ if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(align, sz))) {
+ errno = errno_EINVAL;
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ GET_STACK_TRACE_FATAL(thr, pc);
+ ReportInvalidAlignedAllocAlignment(sz, align, &stack);
+ }
+ return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, align));
+}
+
+void *user_valloc(ThreadState *thr, uptr pc, uptr sz) {
+ return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, GetPageSizeCached()));
+}
+
+void *user_pvalloc(ThreadState *thr, uptr pc, uptr sz) {
+ uptr PageSize = GetPageSizeCached();
+ if (UNLIKELY(CheckForPvallocOverflow(sz, PageSize))) {
+ errno = errno_ENOMEM;
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ GET_STACK_TRACE_FATAL(thr, pc);
+ ReportPvallocOverflow(sz, &stack);
+ }
+ // pvalloc(0) should allocate one page.
+ sz = sz ? RoundUpTo(sz, PageSize) : PageSize;
+ return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, PageSize));
+}
+
+uptr user_alloc_usable_size(const void *p) {
+ if (p == 0)
+ return 0;
+ MBlock *b = ctx->metamap.GetBlock((uptr)p);
+ if (!b)
+ return 0; // Not a valid pointer.
+ if (b->siz == 0)
+ return 1; // Zero-sized allocations are actually 1 byte.
+ return b->siz;
+}
+
+void invoke_malloc_hook(void *ptr, uptr size) {
+ ThreadState *thr = cur_thread();
+ if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
+ return;
+ __sanitizer_malloc_hook(ptr, size);
+ RunMallocHooks(ptr, size);
+}
+
+void invoke_free_hook(void *ptr) {
+ ThreadState *thr = cur_thread();
+ if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
+ return;
+ __sanitizer_free_hook(ptr);
+ RunFreeHooks(ptr);
+}
+
+void *internal_alloc(MBlockType typ, uptr sz) {
+ ThreadState *thr = cur_thread();
+ if (thr->nomalloc) {
+ thr->nomalloc = 0; // CHECK calls internal_malloc().
+ CHECK(0);
+ }
+ return InternalAlloc(sz, &thr->proc()->internal_alloc_cache);
+}
+
+void internal_free(void *p) {
+ ThreadState *thr = cur_thread();
+ if (thr->nomalloc) {
+ thr->nomalloc = 0; // CHECK calls internal_malloc().
+ CHECK(0);
+ }
+ InternalFree(p, &thr->proc()->internal_alloc_cache);
+}
+
+} // namespace __tsan
+
+using namespace __tsan;
+
+extern "C" {
+uptr __sanitizer_get_current_allocated_bytes() {
+ uptr stats[AllocatorStatCount];
+ allocator()->GetStats(stats);
+ return stats[AllocatorStatAllocated];
+}
+
+uptr __sanitizer_get_heap_size() {
+ uptr stats[AllocatorStatCount];
+ allocator()->GetStats(stats);
+ return stats[AllocatorStatMapped];
+}
+
+uptr __sanitizer_get_free_bytes() {
+ return 1;
+}
+
+uptr __sanitizer_get_unmapped_bytes() {
+ return 1;
+}
+
+uptr __sanitizer_get_estimated_allocated_size(uptr size) {
+ return size;
+}
+
+int __sanitizer_get_ownership(const void *p) {
+ return allocator()->GetBlockBegin(p) != 0;
+}
+
+uptr __sanitizer_get_allocated_size(const void *p) {
+ return user_alloc_usable_size(p);
+}
+
+void __tsan_on_thread_idle() {
+ ThreadState *thr = cur_thread();
+ thr->clock.ResetCached(&thr->proc()->clock_cache);
+ thr->last_sleep_clock.ResetCached(&thr->proc()->clock_cache);
+ allocator()->SwallowCache(&thr->proc()->alloc_cache);
+ internal_allocator()->SwallowCache(&thr->proc()->internal_alloc_cache);
+ ctx->metamap.OnProcIdle(thr->proc());
+}
+} // extern "C"