diff options
Diffstat (limited to 'llvm/lib/Analysis/AliasAnalysis.cpp')
-rw-r--r-- | llvm/lib/Analysis/AliasAnalysis.cpp | 907 |
1 files changed, 907 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/AliasAnalysis.cpp b/llvm/lib/Analysis/AliasAnalysis.cpp new file mode 100644 index 000000000000..55dd9a4cda08 --- /dev/null +++ b/llvm/lib/Analysis/AliasAnalysis.cpp @@ -0,0 +1,907 @@ +//==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the generic AliasAnalysis interface which is used as the +// common interface used by all clients and implementations of alias analysis. +// +// This file also implements the default version of the AliasAnalysis interface +// that is to be used when no other implementation is specified. This does some +// simple tests that detect obvious cases: two different global pointers cannot +// alias, a global cannot alias a malloc, two different mallocs cannot alias, +// etc. +// +// This alias analysis implementation really isn't very good for anything, but +// it is very fast, and makes a nice clean default implementation. Because it +// handles lots of little corner cases, other, more complex, alias analysis +// implementations may choose to rely on this pass to resolve these simple and +// easy cases. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/BasicAliasAnalysis.h" +#include "llvm/Analysis/CFLAndersAliasAnalysis.h" +#include "llvm/Analysis/CFLSteensAliasAnalysis.h" +#include "llvm/Analysis/CaptureTracking.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/MemoryLocation.h" +#include "llvm/Analysis/ObjCARCAliasAnalysis.h" +#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" +#include "llvm/Analysis/ScopedNoAliasAA.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/TypeBasedAliasAnalysis.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" +#include "llvm/Pass.h" +#include "llvm/Support/AtomicOrdering.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include <algorithm> +#include <cassert> +#include <functional> +#include <iterator> + +using namespace llvm; + +/// Allow disabling BasicAA from the AA results. This is particularly useful +/// when testing to isolate a single AA implementation. +static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden, + cl::init(false)); + +AAResults::AAResults(AAResults &&Arg) + : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) { + for (auto &AA : AAs) + AA->setAAResults(this); +} + +AAResults::~AAResults() { +// FIXME; It would be nice to at least clear out the pointers back to this +// aggregation here, but we end up with non-nesting lifetimes in the legacy +// pass manager that prevent this from working. In the legacy pass manager +// we'll end up with dangling references here in some cases. +#if 0 + for (auto &AA : AAs) + AA->setAAResults(nullptr); +#endif +} + +bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA, + FunctionAnalysisManager::Invalidator &Inv) { + // AAResults preserves the AAManager by default, due to the stateless nature + // of AliasAnalysis. There is no need to check whether it has been preserved + // explicitly. Check if any module dependency was invalidated and caused the + // AAManager to be invalidated. Invalidate ourselves in that case. + auto PAC = PA.getChecker<AAManager>(); + if (!PAC.preservedWhenStateless()) + return true; + + // Check if any of the function dependencies were invalidated, and invalidate + // ourselves in that case. + for (AnalysisKey *ID : AADeps) + if (Inv.invalidate(ID, F, PA)) + return true; + + // Everything we depend on is still fine, so are we. Nothing to invalidate. + return false; +} + +//===----------------------------------------------------------------------===// +// Default chaining methods +//===----------------------------------------------------------------------===// + +AliasResult AAResults::alias(const MemoryLocation &LocA, + const MemoryLocation &LocB) { + AAQueryInfo AAQIP; + return alias(LocA, LocB, AAQIP); +} + +AliasResult AAResults::alias(const MemoryLocation &LocA, + const MemoryLocation &LocB, AAQueryInfo &AAQI) { + for (const auto &AA : AAs) { + auto Result = AA->alias(LocA, LocB, AAQI); + if (Result != MayAlias) + return Result; + } + return MayAlias; +} + +bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc, + bool OrLocal) { + AAQueryInfo AAQIP; + return pointsToConstantMemory(Loc, AAQIP, OrLocal); +} + +bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc, + AAQueryInfo &AAQI, bool OrLocal) { + for (const auto &AA : AAs) + if (AA->pointsToConstantMemory(Loc, AAQI, OrLocal)) + return true; + + return false; +} + +ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) { + ModRefInfo Result = ModRefInfo::ModRef; + + for (const auto &AA : AAs) { + Result = intersectModRef(Result, AA->getArgModRefInfo(Call, ArgIdx)); + + // Early-exit the moment we reach the bottom of the lattice. + if (isNoModRef(Result)) + return ModRefInfo::NoModRef; + } + + return Result; +} + +ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2) { + AAQueryInfo AAQIP; + return getModRefInfo(I, Call2, AAQIP); +} + +ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2, + AAQueryInfo &AAQI) { + // We may have two calls. + if (const auto *Call1 = dyn_cast<CallBase>(I)) { + // Check if the two calls modify the same memory. + return getModRefInfo(Call1, Call2, AAQI); + } else if (I->isFenceLike()) { + // If this is a fence, just return ModRef. + return ModRefInfo::ModRef; + } else { + // Otherwise, check if the call modifies or references the + // location this memory access defines. The best we can say + // is that if the call references what this instruction + // defines, it must be clobbered by this location. + const MemoryLocation DefLoc = MemoryLocation::get(I); + ModRefInfo MR = getModRefInfo(Call2, DefLoc, AAQI); + if (isModOrRefSet(MR)) + return setModAndRef(MR); + } + return ModRefInfo::NoModRef; +} + +ModRefInfo AAResults::getModRefInfo(const CallBase *Call, + const MemoryLocation &Loc) { + AAQueryInfo AAQIP; + return getModRefInfo(Call, Loc, AAQIP); +} + +ModRefInfo AAResults::getModRefInfo(const CallBase *Call, + const MemoryLocation &Loc, + AAQueryInfo &AAQI) { + ModRefInfo Result = ModRefInfo::ModRef; + + for (const auto &AA : AAs) { + Result = intersectModRef(Result, AA->getModRefInfo(Call, Loc, AAQI)); + + // Early-exit the moment we reach the bottom of the lattice. + if (isNoModRef(Result)) + return ModRefInfo::NoModRef; + } + + // Try to refine the mod-ref info further using other API entry points to the + // aggregate set of AA results. + auto MRB = getModRefBehavior(Call); + if (MRB == FMRB_DoesNotAccessMemory || + MRB == FMRB_OnlyAccessesInaccessibleMem) + return ModRefInfo::NoModRef; + + if (onlyReadsMemory(MRB)) + Result = clearMod(Result); + else if (doesNotReadMemory(MRB)) + Result = clearRef(Result); + + if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) { + bool IsMustAlias = true; + ModRefInfo AllArgsMask = ModRefInfo::NoModRef; + if (doesAccessArgPointees(MRB)) { + for (auto AI = Call->arg_begin(), AE = Call->arg_end(); AI != AE; ++AI) { + const Value *Arg = *AI; + if (!Arg->getType()->isPointerTy()) + continue; + unsigned ArgIdx = std::distance(Call->arg_begin(), AI); + MemoryLocation ArgLoc = + MemoryLocation::getForArgument(Call, ArgIdx, TLI); + AliasResult ArgAlias = alias(ArgLoc, Loc); + if (ArgAlias != NoAlias) { + ModRefInfo ArgMask = getArgModRefInfo(Call, ArgIdx); + AllArgsMask = unionModRef(AllArgsMask, ArgMask); + } + // Conservatively clear IsMustAlias unless only MustAlias is found. + IsMustAlias &= (ArgAlias == MustAlias); + } + } + // Return NoModRef if no alias found with any argument. + if (isNoModRef(AllArgsMask)) + return ModRefInfo::NoModRef; + // Logical & between other AA analyses and argument analysis. + Result = intersectModRef(Result, AllArgsMask); + // If only MustAlias found above, set Must bit. + Result = IsMustAlias ? setMust(Result) : clearMust(Result); + } + + // If Loc is a constant memory location, the call definitely could not + // modify the memory location. + if (isModSet(Result) && pointsToConstantMemory(Loc, /*OrLocal*/ false)) + Result = clearMod(Result); + + return Result; +} + +ModRefInfo AAResults::getModRefInfo(const CallBase *Call1, + const CallBase *Call2) { + AAQueryInfo AAQIP; + return getModRefInfo(Call1, Call2, AAQIP); +} + +ModRefInfo AAResults::getModRefInfo(const CallBase *Call1, + const CallBase *Call2, AAQueryInfo &AAQI) { + ModRefInfo Result = ModRefInfo::ModRef; + + for (const auto &AA : AAs) { + Result = intersectModRef(Result, AA->getModRefInfo(Call1, Call2, AAQI)); + + // Early-exit the moment we reach the bottom of the lattice. + if (isNoModRef(Result)) + return ModRefInfo::NoModRef; + } + + // Try to refine the mod-ref info further using other API entry points to the + // aggregate set of AA results. + + // If Call1 or Call2 are readnone, they don't interact. + auto Call1B = getModRefBehavior(Call1); + if (Call1B == FMRB_DoesNotAccessMemory) + return ModRefInfo::NoModRef; + + auto Call2B = getModRefBehavior(Call2); + if (Call2B == FMRB_DoesNotAccessMemory) + return ModRefInfo::NoModRef; + + // If they both only read from memory, there is no dependence. + if (onlyReadsMemory(Call1B) && onlyReadsMemory(Call2B)) + return ModRefInfo::NoModRef; + + // If Call1 only reads memory, the only dependence on Call2 can be + // from Call1 reading memory written by Call2. + if (onlyReadsMemory(Call1B)) + Result = clearMod(Result); + else if (doesNotReadMemory(Call1B)) + Result = clearRef(Result); + + // If Call2 only access memory through arguments, accumulate the mod/ref + // information from Call1's references to the memory referenced by + // Call2's arguments. + if (onlyAccessesArgPointees(Call2B)) { + if (!doesAccessArgPointees(Call2B)) + return ModRefInfo::NoModRef; + ModRefInfo R = ModRefInfo::NoModRef; + bool IsMustAlias = true; + for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) { + const Value *Arg = *I; + if (!Arg->getType()->isPointerTy()) + continue; + unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I); + auto Call2ArgLoc = + MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI); + + // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the + // dependence of Call1 on that location is the inverse: + // - If Call2 modifies location, dependence exists if Call1 reads or + // writes. + // - If Call2 only reads location, dependence exists if Call1 writes. + ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx); + ModRefInfo ArgMask = ModRefInfo::NoModRef; + if (isModSet(ArgModRefC2)) + ArgMask = ModRefInfo::ModRef; + else if (isRefSet(ArgModRefC2)) + ArgMask = ModRefInfo::Mod; + + // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use + // above ArgMask to update dependence info. + ModRefInfo ModRefC1 = getModRefInfo(Call1, Call2ArgLoc); + ArgMask = intersectModRef(ArgMask, ModRefC1); + + // Conservatively clear IsMustAlias unless only MustAlias is found. + IsMustAlias &= isMustSet(ModRefC1); + + R = intersectModRef(unionModRef(R, ArgMask), Result); + if (R == Result) { + // On early exit, not all args were checked, cannot set Must. + if (I + 1 != E) + IsMustAlias = false; + break; + } + } + + if (isNoModRef(R)) + return ModRefInfo::NoModRef; + + // If MustAlias found above, set Must bit. + return IsMustAlias ? setMust(R) : clearMust(R); + } + + // If Call1 only accesses memory through arguments, check if Call2 references + // any of the memory referenced by Call1's arguments. If not, return NoModRef. + if (onlyAccessesArgPointees(Call1B)) { + if (!doesAccessArgPointees(Call1B)) + return ModRefInfo::NoModRef; + ModRefInfo R = ModRefInfo::NoModRef; + bool IsMustAlias = true; + for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) { + const Value *Arg = *I; + if (!Arg->getType()->isPointerTy()) + continue; + unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I); + auto Call1ArgLoc = + MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI); + + // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1 + // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by + // Call2. If Call1 might Ref, then we care only about a Mod by Call2. + ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx); + ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc); + if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) || + (isRefSet(ArgModRefC1) && isModSet(ModRefC2))) + R = intersectModRef(unionModRef(R, ArgModRefC1), Result); + + // Conservatively clear IsMustAlias unless only MustAlias is found. + IsMustAlias &= isMustSet(ModRefC2); + + if (R == Result) { + // On early exit, not all args were checked, cannot set Must. + if (I + 1 != E) + IsMustAlias = false; + break; + } + } + + if (isNoModRef(R)) + return ModRefInfo::NoModRef; + + // If MustAlias found above, set Must bit. + return IsMustAlias ? setMust(R) : clearMust(R); + } + + return Result; +} + +FunctionModRefBehavior AAResults::getModRefBehavior(const CallBase *Call) { + FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; + + for (const auto &AA : AAs) { + Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(Call)); + + // Early-exit the moment we reach the bottom of the lattice. + if (Result == FMRB_DoesNotAccessMemory) + return Result; + } + + return Result; +} + +FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) { + FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; + + for (const auto &AA : AAs) { + Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F)); + + // Early-exit the moment we reach the bottom of the lattice. + if (Result == FMRB_DoesNotAccessMemory) + return Result; + } + + return Result; +} + +raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) { + switch (AR) { + case NoAlias: + OS << "NoAlias"; + break; + case MustAlias: + OS << "MustAlias"; + break; + case MayAlias: + OS << "MayAlias"; + break; + case PartialAlias: + OS << "PartialAlias"; + break; + } + return OS; +} + +//===----------------------------------------------------------------------===// +// Helper method implementation +//===----------------------------------------------------------------------===// + +ModRefInfo AAResults::getModRefInfo(const LoadInst *L, + const MemoryLocation &Loc) { + AAQueryInfo AAQIP; + return getModRefInfo(L, Loc, AAQIP); +} +ModRefInfo AAResults::getModRefInfo(const LoadInst *L, + const MemoryLocation &Loc, + AAQueryInfo &AAQI) { + // Be conservative in the face of atomic. + if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered)) + return ModRefInfo::ModRef; + + // If the load address doesn't alias the given address, it doesn't read + // or write the specified memory. + if (Loc.Ptr) { + AliasResult AR = alias(MemoryLocation::get(L), Loc, AAQI); + if (AR == NoAlias) + return ModRefInfo::NoModRef; + if (AR == MustAlias) + return ModRefInfo::MustRef; + } + // Otherwise, a load just reads. + return ModRefInfo::Ref; +} + +ModRefInfo AAResults::getModRefInfo(const StoreInst *S, + const MemoryLocation &Loc) { + AAQueryInfo AAQIP; + return getModRefInfo(S, Loc, AAQIP); +} +ModRefInfo AAResults::getModRefInfo(const StoreInst *S, + const MemoryLocation &Loc, + AAQueryInfo &AAQI) { + // Be conservative in the face of atomic. + if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered)) + return ModRefInfo::ModRef; + + if (Loc.Ptr) { + AliasResult AR = alias(MemoryLocation::get(S), Loc, AAQI); + // If the store address cannot alias the pointer in question, then the + // specified memory cannot be modified by the store. + if (AR == NoAlias) + return ModRefInfo::NoModRef; + + // If the pointer is a pointer to constant memory, then it could not have + // been modified by this store. + if (pointsToConstantMemory(Loc, AAQI)) + return ModRefInfo::NoModRef; + + // If the store address aliases the pointer as must alias, set Must. + if (AR == MustAlias) + return ModRefInfo::MustMod; + } + + // Otherwise, a store just writes. + return ModRefInfo::Mod; +} + +ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) { + AAQueryInfo AAQIP; + return getModRefInfo(S, Loc, AAQIP); +} + +ModRefInfo AAResults::getModRefInfo(const FenceInst *S, + const MemoryLocation &Loc, + AAQueryInfo &AAQI) { + // If we know that the location is a constant memory location, the fence + // cannot modify this location. + if (Loc.Ptr && pointsToConstantMemory(Loc, AAQI)) + return ModRefInfo::Ref; + return ModRefInfo::ModRef; +} + +ModRefInfo AAResults::getModRefInfo(const VAArgInst *V, + const MemoryLocation &Loc) { + AAQueryInfo AAQIP; + return getModRefInfo(V, Loc, AAQIP); +} + +ModRefInfo AAResults::getModRefInfo(const VAArgInst *V, + const MemoryLocation &Loc, + AAQueryInfo &AAQI) { + if (Loc.Ptr) { + AliasResult AR = alias(MemoryLocation::get(V), Loc, AAQI); + // If the va_arg address cannot alias the pointer in question, then the + // specified memory cannot be accessed by the va_arg. + if (AR == NoAlias) + return ModRefInfo::NoModRef; + + // If the pointer is a pointer to constant memory, then it could not have + // been modified by this va_arg. + if (pointsToConstantMemory(Loc, AAQI)) + return ModRefInfo::NoModRef; + + // If the va_arg aliases the pointer as must alias, set Must. + if (AR == MustAlias) + return ModRefInfo::MustModRef; + } + + // Otherwise, a va_arg reads and writes. + return ModRefInfo::ModRef; +} + +ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad, + const MemoryLocation &Loc) { + AAQueryInfo AAQIP; + return getModRefInfo(CatchPad, Loc, AAQIP); +} + +ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad, + const MemoryLocation &Loc, + AAQueryInfo &AAQI) { + if (Loc.Ptr) { + // If the pointer is a pointer to constant memory, + // then it could not have been modified by this catchpad. + if (pointsToConstantMemory(Loc, AAQI)) + return ModRefInfo::NoModRef; + } + + // Otherwise, a catchpad reads and writes. + return ModRefInfo::ModRef; +} + +ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet, + const MemoryLocation &Loc) { + AAQueryInfo AAQIP; + return getModRefInfo(CatchRet, Loc, AAQIP); +} + +ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet, + const MemoryLocation &Loc, + AAQueryInfo &AAQI) { + if (Loc.Ptr) { + // If the pointer is a pointer to constant memory, + // then it could not have been modified by this catchpad. + if (pointsToConstantMemory(Loc, AAQI)) + return ModRefInfo::NoModRef; + } + + // Otherwise, a catchret reads and writes. + return ModRefInfo::ModRef; +} + +ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX, + const MemoryLocation &Loc) { + AAQueryInfo AAQIP; + return getModRefInfo(CX, Loc, AAQIP); +} + +ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX, + const MemoryLocation &Loc, + AAQueryInfo &AAQI) { + // Acquire/Release cmpxchg has properties that matter for arbitrary addresses. + if (isStrongerThanMonotonic(CX->getSuccessOrdering())) + return ModRefInfo::ModRef; + + if (Loc.Ptr) { + AliasResult AR = alias(MemoryLocation::get(CX), Loc, AAQI); + // If the cmpxchg address does not alias the location, it does not access + // it. + if (AR == NoAlias) + return ModRefInfo::NoModRef; + + // If the cmpxchg address aliases the pointer as must alias, set Must. + if (AR == MustAlias) + return ModRefInfo::MustModRef; + } + + return ModRefInfo::ModRef; +} + +ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW, + const MemoryLocation &Loc) { + AAQueryInfo AAQIP; + return getModRefInfo(RMW, Loc, AAQIP); +} + +ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW, + const MemoryLocation &Loc, + AAQueryInfo &AAQI) { + // Acquire/Release atomicrmw has properties that matter for arbitrary addresses. + if (isStrongerThanMonotonic(RMW->getOrdering())) + return ModRefInfo::ModRef; + + if (Loc.Ptr) { + AliasResult AR = alias(MemoryLocation::get(RMW), Loc, AAQI); + // If the atomicrmw address does not alias the location, it does not access + // it. + if (AR == NoAlias) + return ModRefInfo::NoModRef; + + // If the atomicrmw address aliases the pointer as must alias, set Must. + if (AR == MustAlias) + return ModRefInfo::MustModRef; + } + + return ModRefInfo::ModRef; +} + +/// Return information about whether a particular call site modifies +/// or reads the specified memory location \p MemLoc before instruction \p I +/// in a BasicBlock. An ordered basic block \p OBB can be used to speed up +/// instruction-ordering queries inside the BasicBlock containing \p I. +/// FIXME: this is really just shoring-up a deficiency in alias analysis. +/// BasicAA isn't willing to spend linear time determining whether an alloca +/// was captured before or after this particular call, while we are. However, +/// with a smarter AA in place, this test is just wasting compile time. +ModRefInfo AAResults::callCapturesBefore(const Instruction *I, + const MemoryLocation &MemLoc, + DominatorTree *DT, + OrderedBasicBlock *OBB) { + if (!DT) + return ModRefInfo::ModRef; + + const Value *Object = + GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout()); + if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) || + isa<Constant>(Object)) + return ModRefInfo::ModRef; + + const auto *Call = dyn_cast<CallBase>(I); + if (!Call || Call == Object) + return ModRefInfo::ModRef; + + if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true, + /* StoreCaptures */ true, I, DT, + /* include Object */ true, + /* OrderedBasicBlock */ OBB)) + return ModRefInfo::ModRef; + + unsigned ArgNo = 0; + ModRefInfo R = ModRefInfo::NoModRef; + bool IsMustAlias = true; + // Set flag only if no May found and all operands processed. + for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); + CI != CE; ++CI, ++ArgNo) { + // Only look at the no-capture or byval pointer arguments. If this + // pointer were passed to arguments that were neither of these, then it + // couldn't be no-capture. + if (!(*CI)->getType()->isPointerTy() || + (!Call->doesNotCapture(ArgNo) && ArgNo < Call->getNumArgOperands() && + !Call->isByValArgument(ArgNo))) + continue; + + AliasResult AR = alias(MemoryLocation(*CI), MemoryLocation(Object)); + // If this is a no-capture pointer argument, see if we can tell that it + // is impossible to alias the pointer we're checking. If not, we have to + // assume that the call could touch the pointer, even though it doesn't + // escape. + if (AR != MustAlias) + IsMustAlias = false; + if (AR == NoAlias) + continue; + if (Call->doesNotAccessMemory(ArgNo)) + continue; + if (Call->onlyReadsMemory(ArgNo)) { + R = ModRefInfo::Ref; + continue; + } + // Not returning MustModRef since we have not seen all the arguments. + return ModRefInfo::ModRef; + } + return IsMustAlias ? setMust(R) : clearMust(R); +} + +/// canBasicBlockModify - Return true if it is possible for execution of the +/// specified basic block to modify the location Loc. +/// +bool AAResults::canBasicBlockModify(const BasicBlock &BB, + const MemoryLocation &Loc) { + return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod); +} + +/// canInstructionRangeModRef - Return true if it is possible for the +/// execution of the specified instructions to mod\ref (according to the +/// mode) the location Loc. The instructions to consider are all +/// of the instructions in the range of [I1,I2] INCLUSIVE. +/// I1 and I2 must be in the same basic block. +bool AAResults::canInstructionRangeModRef(const Instruction &I1, + const Instruction &I2, + const MemoryLocation &Loc, + const ModRefInfo Mode) { + assert(I1.getParent() == I2.getParent() && + "Instructions not in same basic block!"); + BasicBlock::const_iterator I = I1.getIterator(); + BasicBlock::const_iterator E = I2.getIterator(); + ++E; // Convert from inclusive to exclusive range. + + for (; I != E; ++I) // Check every instruction in range + if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode))) + return true; + return false; +} + +// Provide a definition for the root virtual destructor. +AAResults::Concept::~Concept() = default; + +// Provide a definition for the static object used to identify passes. +AnalysisKey AAManager::Key; + +namespace { + + +} // end anonymous namespace + +char ExternalAAWrapperPass::ID = 0; + +INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis", + false, true) + +ImmutablePass * +llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) { + return new ExternalAAWrapperPass(std::move(Callback)); +} + +AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) { + initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); +} + +char AAResultsWrapperPass::ID = 0; + +INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa", + "Function Alias Analysis Results", false, true) +INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass) +INITIALIZE_PASS_END(AAResultsWrapperPass, "aa", + "Function Alias Analysis Results", false, true) + +FunctionPass *llvm::createAAResultsWrapperPass() { + return new AAResultsWrapperPass(); +} + +/// Run the wrapper pass to rebuild an aggregation over known AA passes. +/// +/// This is the legacy pass manager's interface to the new-style AA results +/// aggregation object. Because this is somewhat shoe-horned into the legacy +/// pass manager, we hard code all the specific alias analyses available into +/// it. While the particular set enabled is configured via commandline flags, +/// adding a new alias analysis to LLVM will require adding support for it to +/// this list. +bool AAResultsWrapperPass::runOnFunction(Function &F) { + // NB! This *must* be reset before adding new AA results to the new + // AAResults object because in the legacy pass manager, each instance + // of these will refer to the *same* immutable analyses, registering and + // unregistering themselves with them. We need to carefully tear down the + // previous object first, in this case replacing it with an empty one, before + // registering new results. + AAR.reset( + new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F))); + + // BasicAA is always available for function analyses. Also, we add it first + // so that it can trump TBAA results when it proves MustAlias. + // FIXME: TBAA should have an explicit mode to support this and then we + // should reconsider the ordering here. + if (!DisableBasicAA) + AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult()); + + // Populate the results with the currently available AAs. + if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) + AAR->addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) + AAR->addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = + getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) + AAR->addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>()) + AAR->addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>()) + AAR->addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>()) + AAR->addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>()) + AAR->addAAResult(WrapperPass->getResult()); + + // If available, run an external AA providing callback over the results as + // well. + if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>()) + if (WrapperPass->CB) + WrapperPass->CB(*this, F, *AAR); + + // Analyses don't mutate the IR, so return false. + return false; +} + +void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequired<BasicAAWrapperPass>(); + AU.addRequired<TargetLibraryInfoWrapperPass>(); + + // We also need to mark all the alias analysis passes we will potentially + // probe in runOnFunction as used here to ensure the legacy pass manager + // preserves them. This hard coding of lists of alias analyses is specific to + // the legacy pass manager. + AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); + AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); + AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>(); + AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); + AU.addUsedIfAvailable<SCEVAAWrapperPass>(); + AU.addUsedIfAvailable<CFLAndersAAWrapperPass>(); + AU.addUsedIfAvailable<CFLSteensAAWrapperPass>(); +} + +AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F, + BasicAAResult &BAR) { + AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); + + // Add in our explicitly constructed BasicAA results. + if (!DisableBasicAA) + AAR.addAAResult(BAR); + + // Populate the results with the other currently available AAs. + if (auto *WrapperPass = + P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) + AAR.addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) + AAR.addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = + P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) + AAR.addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>()) + AAR.addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>()) + AAR.addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>()) + AAR.addAAResult(WrapperPass->getResult()); + + return AAR; +} + +bool llvm::isNoAliasCall(const Value *V) { + if (const auto *Call = dyn_cast<CallBase>(V)) + return Call->hasRetAttr(Attribute::NoAlias); + return false; +} + +bool llvm::isNoAliasArgument(const Value *V) { + if (const Argument *A = dyn_cast<Argument>(V)) + return A->hasNoAliasAttr(); + return false; +} + +bool llvm::isIdentifiedObject(const Value *V) { + if (isa<AllocaInst>(V)) + return true; + if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V)) + return true; + if (isNoAliasCall(V)) + return true; + if (const Argument *A = dyn_cast<Argument>(V)) + return A->hasNoAliasAttr() || A->hasByValAttr(); + return false; +} + +bool llvm::isIdentifiedFunctionLocal(const Value *V) { + return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V); +} + +void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) { + // This function needs to be in sync with llvm::createLegacyPMAAResults -- if + // more alias analyses are added to llvm::createLegacyPMAAResults, they need + // to be added here also. + AU.addRequired<TargetLibraryInfoWrapperPass>(); + AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); + AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); + AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>(); + AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); + AU.addUsedIfAvailable<CFLAndersAAWrapperPass>(); + AU.addUsedIfAvailable<CFLSteensAAWrapperPass>(); +} |