summaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/AliasAnalysis.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Analysis/AliasAnalysis.cpp')
-rw-r--r--llvm/lib/Analysis/AliasAnalysis.cpp907
1 files changed, 907 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/AliasAnalysis.cpp b/llvm/lib/Analysis/AliasAnalysis.cpp
new file mode 100644
index 000000000000..55dd9a4cda08
--- /dev/null
+++ b/llvm/lib/Analysis/AliasAnalysis.cpp
@@ -0,0 +1,907 @@
+//==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the generic AliasAnalysis interface which is used as the
+// common interface used by all clients and implementations of alias analysis.
+//
+// This file also implements the default version of the AliasAnalysis interface
+// that is to be used when no other implementation is specified. This does some
+// simple tests that detect obvious cases: two different global pointers cannot
+// alias, a global cannot alias a malloc, two different mallocs cannot alias,
+// etc.
+//
+// This alias analysis implementation really isn't very good for anything, but
+// it is very fast, and makes a nice clean default implementation. Because it
+// handles lots of little corner cases, other, more complex, alias analysis
+// implementations may choose to rely on this pass to resolve these simple and
+// easy cases.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/BasicAliasAnalysis.h"
+#include "llvm/Analysis/CFLAndersAliasAnalysis.h"
+#include "llvm/Analysis/CFLSteensAliasAnalysis.h"
+#include "llvm/Analysis/CaptureTracking.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/MemoryLocation.h"
+#include "llvm/Analysis/ObjCARCAliasAnalysis.h"
+#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
+#include "llvm/Analysis/ScopedNoAliasAA.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/AtomicOrdering.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include <algorithm>
+#include <cassert>
+#include <functional>
+#include <iterator>
+
+using namespace llvm;
+
+/// Allow disabling BasicAA from the AA results. This is particularly useful
+/// when testing to isolate a single AA implementation.
+static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden,
+ cl::init(false));
+
+AAResults::AAResults(AAResults &&Arg)
+ : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {
+ for (auto &AA : AAs)
+ AA->setAAResults(this);
+}
+
+AAResults::~AAResults() {
+// FIXME; It would be nice to at least clear out the pointers back to this
+// aggregation here, but we end up with non-nesting lifetimes in the legacy
+// pass manager that prevent this from working. In the legacy pass manager
+// we'll end up with dangling references here in some cases.
+#if 0
+ for (auto &AA : AAs)
+ AA->setAAResults(nullptr);
+#endif
+}
+
+bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA,
+ FunctionAnalysisManager::Invalidator &Inv) {
+ // AAResults preserves the AAManager by default, due to the stateless nature
+ // of AliasAnalysis. There is no need to check whether it has been preserved
+ // explicitly. Check if any module dependency was invalidated and caused the
+ // AAManager to be invalidated. Invalidate ourselves in that case.
+ auto PAC = PA.getChecker<AAManager>();
+ if (!PAC.preservedWhenStateless())
+ return true;
+
+ // Check if any of the function dependencies were invalidated, and invalidate
+ // ourselves in that case.
+ for (AnalysisKey *ID : AADeps)
+ if (Inv.invalidate(ID, F, PA))
+ return true;
+
+ // Everything we depend on is still fine, so are we. Nothing to invalidate.
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Default chaining methods
+//===----------------------------------------------------------------------===//
+
+AliasResult AAResults::alias(const MemoryLocation &LocA,
+ const MemoryLocation &LocB) {
+ AAQueryInfo AAQIP;
+ return alias(LocA, LocB, AAQIP);
+}
+
+AliasResult AAResults::alias(const MemoryLocation &LocA,
+ const MemoryLocation &LocB, AAQueryInfo &AAQI) {
+ for (const auto &AA : AAs) {
+ auto Result = AA->alias(LocA, LocB, AAQI);
+ if (Result != MayAlias)
+ return Result;
+ }
+ return MayAlias;
+}
+
+bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
+ bool OrLocal) {
+ AAQueryInfo AAQIP;
+ return pointsToConstantMemory(Loc, AAQIP, OrLocal);
+}
+
+bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
+ AAQueryInfo &AAQI, bool OrLocal) {
+ for (const auto &AA : AAs)
+ if (AA->pointsToConstantMemory(Loc, AAQI, OrLocal))
+ return true;
+
+ return false;
+}
+
+ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
+ ModRefInfo Result = ModRefInfo::ModRef;
+
+ for (const auto &AA : AAs) {
+ Result = intersectModRef(Result, AA->getArgModRefInfo(Call, ArgIdx));
+
+ // Early-exit the moment we reach the bottom of the lattice.
+ if (isNoModRef(Result))
+ return ModRefInfo::NoModRef;
+ }
+
+ return Result;
+}
+
+ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2) {
+ AAQueryInfo AAQIP;
+ return getModRefInfo(I, Call2, AAQIP);
+}
+
+ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2,
+ AAQueryInfo &AAQI) {
+ // We may have two calls.
+ if (const auto *Call1 = dyn_cast<CallBase>(I)) {
+ // Check if the two calls modify the same memory.
+ return getModRefInfo(Call1, Call2, AAQI);
+ } else if (I->isFenceLike()) {
+ // If this is a fence, just return ModRef.
+ return ModRefInfo::ModRef;
+ } else {
+ // Otherwise, check if the call modifies or references the
+ // location this memory access defines. The best we can say
+ // is that if the call references what this instruction
+ // defines, it must be clobbered by this location.
+ const MemoryLocation DefLoc = MemoryLocation::get(I);
+ ModRefInfo MR = getModRefInfo(Call2, DefLoc, AAQI);
+ if (isModOrRefSet(MR))
+ return setModAndRef(MR);
+ }
+ return ModRefInfo::NoModRef;
+}
+
+ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
+ const MemoryLocation &Loc) {
+ AAQueryInfo AAQIP;
+ return getModRefInfo(Call, Loc, AAQIP);
+}
+
+ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
+ const MemoryLocation &Loc,
+ AAQueryInfo &AAQI) {
+ ModRefInfo Result = ModRefInfo::ModRef;
+
+ for (const auto &AA : AAs) {
+ Result = intersectModRef(Result, AA->getModRefInfo(Call, Loc, AAQI));
+
+ // Early-exit the moment we reach the bottom of the lattice.
+ if (isNoModRef(Result))
+ return ModRefInfo::NoModRef;
+ }
+
+ // Try to refine the mod-ref info further using other API entry points to the
+ // aggregate set of AA results.
+ auto MRB = getModRefBehavior(Call);
+ if (MRB == FMRB_DoesNotAccessMemory ||
+ MRB == FMRB_OnlyAccessesInaccessibleMem)
+ return ModRefInfo::NoModRef;
+
+ if (onlyReadsMemory(MRB))
+ Result = clearMod(Result);
+ else if (doesNotReadMemory(MRB))
+ Result = clearRef(Result);
+
+ if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) {
+ bool IsMustAlias = true;
+ ModRefInfo AllArgsMask = ModRefInfo::NoModRef;
+ if (doesAccessArgPointees(MRB)) {
+ for (auto AI = Call->arg_begin(), AE = Call->arg_end(); AI != AE; ++AI) {
+ const Value *Arg = *AI;
+ if (!Arg->getType()->isPointerTy())
+ continue;
+ unsigned ArgIdx = std::distance(Call->arg_begin(), AI);
+ MemoryLocation ArgLoc =
+ MemoryLocation::getForArgument(Call, ArgIdx, TLI);
+ AliasResult ArgAlias = alias(ArgLoc, Loc);
+ if (ArgAlias != NoAlias) {
+ ModRefInfo ArgMask = getArgModRefInfo(Call, ArgIdx);
+ AllArgsMask = unionModRef(AllArgsMask, ArgMask);
+ }
+ // Conservatively clear IsMustAlias unless only MustAlias is found.
+ IsMustAlias &= (ArgAlias == MustAlias);
+ }
+ }
+ // Return NoModRef if no alias found with any argument.
+ if (isNoModRef(AllArgsMask))
+ return ModRefInfo::NoModRef;
+ // Logical & between other AA analyses and argument analysis.
+ Result = intersectModRef(Result, AllArgsMask);
+ // If only MustAlias found above, set Must bit.
+ Result = IsMustAlias ? setMust(Result) : clearMust(Result);
+ }
+
+ // If Loc is a constant memory location, the call definitely could not
+ // modify the memory location.
+ if (isModSet(Result) && pointsToConstantMemory(Loc, /*OrLocal*/ false))
+ Result = clearMod(Result);
+
+ return Result;
+}
+
+ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
+ const CallBase *Call2) {
+ AAQueryInfo AAQIP;
+ return getModRefInfo(Call1, Call2, AAQIP);
+}
+
+ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
+ const CallBase *Call2, AAQueryInfo &AAQI) {
+ ModRefInfo Result = ModRefInfo::ModRef;
+
+ for (const auto &AA : AAs) {
+ Result = intersectModRef(Result, AA->getModRefInfo(Call1, Call2, AAQI));
+
+ // Early-exit the moment we reach the bottom of the lattice.
+ if (isNoModRef(Result))
+ return ModRefInfo::NoModRef;
+ }
+
+ // Try to refine the mod-ref info further using other API entry points to the
+ // aggregate set of AA results.
+
+ // If Call1 or Call2 are readnone, they don't interact.
+ auto Call1B = getModRefBehavior(Call1);
+ if (Call1B == FMRB_DoesNotAccessMemory)
+ return ModRefInfo::NoModRef;
+
+ auto Call2B = getModRefBehavior(Call2);
+ if (Call2B == FMRB_DoesNotAccessMemory)
+ return ModRefInfo::NoModRef;
+
+ // If they both only read from memory, there is no dependence.
+ if (onlyReadsMemory(Call1B) && onlyReadsMemory(Call2B))
+ return ModRefInfo::NoModRef;
+
+ // If Call1 only reads memory, the only dependence on Call2 can be
+ // from Call1 reading memory written by Call2.
+ if (onlyReadsMemory(Call1B))
+ Result = clearMod(Result);
+ else if (doesNotReadMemory(Call1B))
+ Result = clearRef(Result);
+
+ // If Call2 only access memory through arguments, accumulate the mod/ref
+ // information from Call1's references to the memory referenced by
+ // Call2's arguments.
+ if (onlyAccessesArgPointees(Call2B)) {
+ if (!doesAccessArgPointees(Call2B))
+ return ModRefInfo::NoModRef;
+ ModRefInfo R = ModRefInfo::NoModRef;
+ bool IsMustAlias = true;
+ for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) {
+ const Value *Arg = *I;
+ if (!Arg->getType()->isPointerTy())
+ continue;
+ unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I);
+ auto Call2ArgLoc =
+ MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI);
+
+ // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the
+ // dependence of Call1 on that location is the inverse:
+ // - If Call2 modifies location, dependence exists if Call1 reads or
+ // writes.
+ // - If Call2 only reads location, dependence exists if Call1 writes.
+ ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx);
+ ModRefInfo ArgMask = ModRefInfo::NoModRef;
+ if (isModSet(ArgModRefC2))
+ ArgMask = ModRefInfo::ModRef;
+ else if (isRefSet(ArgModRefC2))
+ ArgMask = ModRefInfo::Mod;
+
+ // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use
+ // above ArgMask to update dependence info.
+ ModRefInfo ModRefC1 = getModRefInfo(Call1, Call2ArgLoc);
+ ArgMask = intersectModRef(ArgMask, ModRefC1);
+
+ // Conservatively clear IsMustAlias unless only MustAlias is found.
+ IsMustAlias &= isMustSet(ModRefC1);
+
+ R = intersectModRef(unionModRef(R, ArgMask), Result);
+ if (R == Result) {
+ // On early exit, not all args were checked, cannot set Must.
+ if (I + 1 != E)
+ IsMustAlias = false;
+ break;
+ }
+ }
+
+ if (isNoModRef(R))
+ return ModRefInfo::NoModRef;
+
+ // If MustAlias found above, set Must bit.
+ return IsMustAlias ? setMust(R) : clearMust(R);
+ }
+
+ // If Call1 only accesses memory through arguments, check if Call2 references
+ // any of the memory referenced by Call1's arguments. If not, return NoModRef.
+ if (onlyAccessesArgPointees(Call1B)) {
+ if (!doesAccessArgPointees(Call1B))
+ return ModRefInfo::NoModRef;
+ ModRefInfo R = ModRefInfo::NoModRef;
+ bool IsMustAlias = true;
+ for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) {
+ const Value *Arg = *I;
+ if (!Arg->getType()->isPointerTy())
+ continue;
+ unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I);
+ auto Call1ArgLoc =
+ MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI);
+
+ // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1
+ // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by
+ // Call2. If Call1 might Ref, then we care only about a Mod by Call2.
+ ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx);
+ ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc);
+ if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) ||
+ (isRefSet(ArgModRefC1) && isModSet(ModRefC2)))
+ R = intersectModRef(unionModRef(R, ArgModRefC1), Result);
+
+ // Conservatively clear IsMustAlias unless only MustAlias is found.
+ IsMustAlias &= isMustSet(ModRefC2);
+
+ if (R == Result) {
+ // On early exit, not all args were checked, cannot set Must.
+ if (I + 1 != E)
+ IsMustAlias = false;
+ break;
+ }
+ }
+
+ if (isNoModRef(R))
+ return ModRefInfo::NoModRef;
+
+ // If MustAlias found above, set Must bit.
+ return IsMustAlias ? setMust(R) : clearMust(R);
+ }
+
+ return Result;
+}
+
+FunctionModRefBehavior AAResults::getModRefBehavior(const CallBase *Call) {
+ FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
+
+ for (const auto &AA : AAs) {
+ Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(Call));
+
+ // Early-exit the moment we reach the bottom of the lattice.
+ if (Result == FMRB_DoesNotAccessMemory)
+ return Result;
+ }
+
+ return Result;
+}
+
+FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
+ FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
+
+ for (const auto &AA : AAs) {
+ Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
+
+ // Early-exit the moment we reach the bottom of the lattice.
+ if (Result == FMRB_DoesNotAccessMemory)
+ return Result;
+ }
+
+ return Result;
+}
+
+raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) {
+ switch (AR) {
+ case NoAlias:
+ OS << "NoAlias";
+ break;
+ case MustAlias:
+ OS << "MustAlias";
+ break;
+ case MayAlias:
+ OS << "MayAlias";
+ break;
+ case PartialAlias:
+ OS << "PartialAlias";
+ break;
+ }
+ return OS;
+}
+
+//===----------------------------------------------------------------------===//
+// Helper method implementation
+//===----------------------------------------------------------------------===//
+
+ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
+ const MemoryLocation &Loc) {
+ AAQueryInfo AAQIP;
+ return getModRefInfo(L, Loc, AAQIP);
+}
+ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
+ const MemoryLocation &Loc,
+ AAQueryInfo &AAQI) {
+ // Be conservative in the face of atomic.
+ if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered))
+ return ModRefInfo::ModRef;
+
+ // If the load address doesn't alias the given address, it doesn't read
+ // or write the specified memory.
+ if (Loc.Ptr) {
+ AliasResult AR = alias(MemoryLocation::get(L), Loc, AAQI);
+ if (AR == NoAlias)
+ return ModRefInfo::NoModRef;
+ if (AR == MustAlias)
+ return ModRefInfo::MustRef;
+ }
+ // Otherwise, a load just reads.
+ return ModRefInfo::Ref;
+}
+
+ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
+ const MemoryLocation &Loc) {
+ AAQueryInfo AAQIP;
+ return getModRefInfo(S, Loc, AAQIP);
+}
+ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
+ const MemoryLocation &Loc,
+ AAQueryInfo &AAQI) {
+ // Be conservative in the face of atomic.
+ if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered))
+ return ModRefInfo::ModRef;
+
+ if (Loc.Ptr) {
+ AliasResult AR = alias(MemoryLocation::get(S), Loc, AAQI);
+ // If the store address cannot alias the pointer in question, then the
+ // specified memory cannot be modified by the store.
+ if (AR == NoAlias)
+ return ModRefInfo::NoModRef;
+
+ // If the pointer is a pointer to constant memory, then it could not have
+ // been modified by this store.
+ if (pointsToConstantMemory(Loc, AAQI))
+ return ModRefInfo::NoModRef;
+
+ // If the store address aliases the pointer as must alias, set Must.
+ if (AR == MustAlias)
+ return ModRefInfo::MustMod;
+ }
+
+ // Otherwise, a store just writes.
+ return ModRefInfo::Mod;
+}
+
+ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
+ AAQueryInfo AAQIP;
+ return getModRefInfo(S, Loc, AAQIP);
+}
+
+ModRefInfo AAResults::getModRefInfo(const FenceInst *S,
+ const MemoryLocation &Loc,
+ AAQueryInfo &AAQI) {
+ // If we know that the location is a constant memory location, the fence
+ // cannot modify this location.
+ if (Loc.Ptr && pointsToConstantMemory(Loc, AAQI))
+ return ModRefInfo::Ref;
+ return ModRefInfo::ModRef;
+}
+
+ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
+ const MemoryLocation &Loc) {
+ AAQueryInfo AAQIP;
+ return getModRefInfo(V, Loc, AAQIP);
+}
+
+ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
+ const MemoryLocation &Loc,
+ AAQueryInfo &AAQI) {
+ if (Loc.Ptr) {
+ AliasResult AR = alias(MemoryLocation::get(V), Loc, AAQI);
+ // If the va_arg address cannot alias the pointer in question, then the
+ // specified memory cannot be accessed by the va_arg.
+ if (AR == NoAlias)
+ return ModRefInfo::NoModRef;
+
+ // If the pointer is a pointer to constant memory, then it could not have
+ // been modified by this va_arg.
+ if (pointsToConstantMemory(Loc, AAQI))
+ return ModRefInfo::NoModRef;
+
+ // If the va_arg aliases the pointer as must alias, set Must.
+ if (AR == MustAlias)
+ return ModRefInfo::MustModRef;
+ }
+
+ // Otherwise, a va_arg reads and writes.
+ return ModRefInfo::ModRef;
+}
+
+ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
+ const MemoryLocation &Loc) {
+ AAQueryInfo AAQIP;
+ return getModRefInfo(CatchPad, Loc, AAQIP);
+}
+
+ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
+ const MemoryLocation &Loc,
+ AAQueryInfo &AAQI) {
+ if (Loc.Ptr) {
+ // If the pointer is a pointer to constant memory,
+ // then it could not have been modified by this catchpad.
+ if (pointsToConstantMemory(Loc, AAQI))
+ return ModRefInfo::NoModRef;
+ }
+
+ // Otherwise, a catchpad reads and writes.
+ return ModRefInfo::ModRef;
+}
+
+ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
+ const MemoryLocation &Loc) {
+ AAQueryInfo AAQIP;
+ return getModRefInfo(CatchRet, Loc, AAQIP);
+}
+
+ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
+ const MemoryLocation &Loc,
+ AAQueryInfo &AAQI) {
+ if (Loc.Ptr) {
+ // If the pointer is a pointer to constant memory,
+ // then it could not have been modified by this catchpad.
+ if (pointsToConstantMemory(Loc, AAQI))
+ return ModRefInfo::NoModRef;
+ }
+
+ // Otherwise, a catchret reads and writes.
+ return ModRefInfo::ModRef;
+}
+
+ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
+ const MemoryLocation &Loc) {
+ AAQueryInfo AAQIP;
+ return getModRefInfo(CX, Loc, AAQIP);
+}
+
+ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
+ const MemoryLocation &Loc,
+ AAQueryInfo &AAQI) {
+ // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
+ if (isStrongerThanMonotonic(CX->getSuccessOrdering()))
+ return ModRefInfo::ModRef;
+
+ if (Loc.Ptr) {
+ AliasResult AR = alias(MemoryLocation::get(CX), Loc, AAQI);
+ // If the cmpxchg address does not alias the location, it does not access
+ // it.
+ if (AR == NoAlias)
+ return ModRefInfo::NoModRef;
+
+ // If the cmpxchg address aliases the pointer as must alias, set Must.
+ if (AR == MustAlias)
+ return ModRefInfo::MustModRef;
+ }
+
+ return ModRefInfo::ModRef;
+}
+
+ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
+ const MemoryLocation &Loc) {
+ AAQueryInfo AAQIP;
+ return getModRefInfo(RMW, Loc, AAQIP);
+}
+
+ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
+ const MemoryLocation &Loc,
+ AAQueryInfo &AAQI) {
+ // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
+ if (isStrongerThanMonotonic(RMW->getOrdering()))
+ return ModRefInfo::ModRef;
+
+ if (Loc.Ptr) {
+ AliasResult AR = alias(MemoryLocation::get(RMW), Loc, AAQI);
+ // If the atomicrmw address does not alias the location, it does not access
+ // it.
+ if (AR == NoAlias)
+ return ModRefInfo::NoModRef;
+
+ // If the atomicrmw address aliases the pointer as must alias, set Must.
+ if (AR == MustAlias)
+ return ModRefInfo::MustModRef;
+ }
+
+ return ModRefInfo::ModRef;
+}
+
+/// Return information about whether a particular call site modifies
+/// or reads the specified memory location \p MemLoc before instruction \p I
+/// in a BasicBlock. An ordered basic block \p OBB can be used to speed up
+/// instruction-ordering queries inside the BasicBlock containing \p I.
+/// FIXME: this is really just shoring-up a deficiency in alias analysis.
+/// BasicAA isn't willing to spend linear time determining whether an alloca
+/// was captured before or after this particular call, while we are. However,
+/// with a smarter AA in place, this test is just wasting compile time.
+ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
+ const MemoryLocation &MemLoc,
+ DominatorTree *DT,
+ OrderedBasicBlock *OBB) {
+ if (!DT)
+ return ModRefInfo::ModRef;
+
+ const Value *Object =
+ GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout());
+ if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
+ isa<Constant>(Object))
+ return ModRefInfo::ModRef;
+
+ const auto *Call = dyn_cast<CallBase>(I);
+ if (!Call || Call == Object)
+ return ModRefInfo::ModRef;
+
+ if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
+ /* StoreCaptures */ true, I, DT,
+ /* include Object */ true,
+ /* OrderedBasicBlock */ OBB))
+ return ModRefInfo::ModRef;
+
+ unsigned ArgNo = 0;
+ ModRefInfo R = ModRefInfo::NoModRef;
+ bool IsMustAlias = true;
+ // Set flag only if no May found and all operands processed.
+ for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
+ CI != CE; ++CI, ++ArgNo) {
+ // Only look at the no-capture or byval pointer arguments. If this
+ // pointer were passed to arguments that were neither of these, then it
+ // couldn't be no-capture.
+ if (!(*CI)->getType()->isPointerTy() ||
+ (!Call->doesNotCapture(ArgNo) && ArgNo < Call->getNumArgOperands() &&
+ !Call->isByValArgument(ArgNo)))
+ continue;
+
+ AliasResult AR = alias(MemoryLocation(*CI), MemoryLocation(Object));
+ // If this is a no-capture pointer argument, see if we can tell that it
+ // is impossible to alias the pointer we're checking. If not, we have to
+ // assume that the call could touch the pointer, even though it doesn't
+ // escape.
+ if (AR != MustAlias)
+ IsMustAlias = false;
+ if (AR == NoAlias)
+ continue;
+ if (Call->doesNotAccessMemory(ArgNo))
+ continue;
+ if (Call->onlyReadsMemory(ArgNo)) {
+ R = ModRefInfo::Ref;
+ continue;
+ }
+ // Not returning MustModRef since we have not seen all the arguments.
+ return ModRefInfo::ModRef;
+ }
+ return IsMustAlias ? setMust(R) : clearMust(R);
+}
+
+/// canBasicBlockModify - Return true if it is possible for execution of the
+/// specified basic block to modify the location Loc.
+///
+bool AAResults::canBasicBlockModify(const BasicBlock &BB,
+ const MemoryLocation &Loc) {
+ return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod);
+}
+
+/// canInstructionRangeModRef - Return true if it is possible for the
+/// execution of the specified instructions to mod\ref (according to the
+/// mode) the location Loc. The instructions to consider are all
+/// of the instructions in the range of [I1,I2] INCLUSIVE.
+/// I1 and I2 must be in the same basic block.
+bool AAResults::canInstructionRangeModRef(const Instruction &I1,
+ const Instruction &I2,
+ const MemoryLocation &Loc,
+ const ModRefInfo Mode) {
+ assert(I1.getParent() == I2.getParent() &&
+ "Instructions not in same basic block!");
+ BasicBlock::const_iterator I = I1.getIterator();
+ BasicBlock::const_iterator E = I2.getIterator();
+ ++E; // Convert from inclusive to exclusive range.
+
+ for (; I != E; ++I) // Check every instruction in range
+ if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode)))
+ return true;
+ return false;
+}
+
+// Provide a definition for the root virtual destructor.
+AAResults::Concept::~Concept() = default;
+
+// Provide a definition for the static object used to identify passes.
+AnalysisKey AAManager::Key;
+
+namespace {
+
+
+} // end anonymous namespace
+
+char ExternalAAWrapperPass::ID = 0;
+
+INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
+ false, true)
+
+ImmutablePass *
+llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
+ return new ExternalAAWrapperPass(std::move(Callback));
+}
+
+AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
+ initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
+}
+
+char AAResultsWrapperPass::ID = 0;
+
+INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
+ "Function Alias Analysis Results", false, true)
+INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
+INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
+ "Function Alias Analysis Results", false, true)
+
+FunctionPass *llvm::createAAResultsWrapperPass() {
+ return new AAResultsWrapperPass();
+}
+
+/// Run the wrapper pass to rebuild an aggregation over known AA passes.
+///
+/// This is the legacy pass manager's interface to the new-style AA results
+/// aggregation object. Because this is somewhat shoe-horned into the legacy
+/// pass manager, we hard code all the specific alias analyses available into
+/// it. While the particular set enabled is configured via commandline flags,
+/// adding a new alias analysis to LLVM will require adding support for it to
+/// this list.
+bool AAResultsWrapperPass::runOnFunction(Function &F) {
+ // NB! This *must* be reset before adding new AA results to the new
+ // AAResults object because in the legacy pass manager, each instance
+ // of these will refer to the *same* immutable analyses, registering and
+ // unregistering themselves with them. We need to carefully tear down the
+ // previous object first, in this case replacing it with an empty one, before
+ // registering new results.
+ AAR.reset(
+ new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)));
+
+ // BasicAA is always available for function analyses. Also, we add it first
+ // so that it can trump TBAA results when it proves MustAlias.
+ // FIXME: TBAA should have an explicit mode to support this and then we
+ // should reconsider the ordering here.
+ if (!DisableBasicAA)
+ AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
+
+ // Populate the results with the currently available AAs.
+ if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
+ AAR->addAAResult(WrapperPass->getResult());
+ if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
+ AAR->addAAResult(WrapperPass->getResult());
+ if (auto *WrapperPass =
+ getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
+ AAR->addAAResult(WrapperPass->getResult());
+ if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
+ AAR->addAAResult(WrapperPass->getResult());
+ if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
+ AAR->addAAResult(WrapperPass->getResult());
+ if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
+ AAR->addAAResult(WrapperPass->getResult());
+ if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
+ AAR->addAAResult(WrapperPass->getResult());
+
+ // If available, run an external AA providing callback over the results as
+ // well.
+ if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
+ if (WrapperPass->CB)
+ WrapperPass->CB(*this, F, *AAR);
+
+ // Analyses don't mutate the IR, so return false.
+ return false;
+}
+
+void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ AU.addRequired<BasicAAWrapperPass>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+
+ // We also need to mark all the alias analysis passes we will potentially
+ // probe in runOnFunction as used here to ensure the legacy pass manager
+ // preserves them. This hard coding of lists of alias analyses is specific to
+ // the legacy pass manager.
+ AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
+ AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
+ AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
+ AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
+ AU.addUsedIfAvailable<SCEVAAWrapperPass>();
+ AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
+ AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
+}
+
+AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
+ BasicAAResult &BAR) {
+ AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F));
+
+ // Add in our explicitly constructed BasicAA results.
+ if (!DisableBasicAA)
+ AAR.addAAResult(BAR);
+
+ // Populate the results with the other currently available AAs.
+ if (auto *WrapperPass =
+ P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
+ AAR.addAAResult(WrapperPass->getResult());
+ if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
+ AAR.addAAResult(WrapperPass->getResult());
+ if (auto *WrapperPass =
+ P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
+ AAR.addAAResult(WrapperPass->getResult());
+ if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
+ AAR.addAAResult(WrapperPass->getResult());
+ if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
+ AAR.addAAResult(WrapperPass->getResult());
+ if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
+ AAR.addAAResult(WrapperPass->getResult());
+
+ return AAR;
+}
+
+bool llvm::isNoAliasCall(const Value *V) {
+ if (const auto *Call = dyn_cast<CallBase>(V))
+ return Call->hasRetAttr(Attribute::NoAlias);
+ return false;
+}
+
+bool llvm::isNoAliasArgument(const Value *V) {
+ if (const Argument *A = dyn_cast<Argument>(V))
+ return A->hasNoAliasAttr();
+ return false;
+}
+
+bool llvm::isIdentifiedObject(const Value *V) {
+ if (isa<AllocaInst>(V))
+ return true;
+ if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
+ return true;
+ if (isNoAliasCall(V))
+ return true;
+ if (const Argument *A = dyn_cast<Argument>(V))
+ return A->hasNoAliasAttr() || A->hasByValAttr();
+ return false;
+}
+
+bool llvm::isIdentifiedFunctionLocal(const Value *V) {
+ return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
+}
+
+void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) {
+ // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
+ // more alias analyses are added to llvm::createLegacyPMAAResults, they need
+ // to be added here also.
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
+ AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
+ AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
+ AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
+ AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
+ AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
+}