summaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/BasicAliasAnalysis.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Analysis/BasicAliasAnalysis.cpp')
-rw-r--r--llvm/lib/Analysis/BasicAliasAnalysis.cpp2100
1 files changed, 2100 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/BasicAliasAnalysis.cpp b/llvm/lib/Analysis/BasicAliasAnalysis.cpp
new file mode 100644
index 000000000000..f3c30c258c19
--- /dev/null
+++ b/llvm/lib/Analysis/BasicAliasAnalysis.cpp
@@ -0,0 +1,2100 @@
+//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the primary stateless implementation of the
+// Alias Analysis interface that implements identities (two different
+// globals cannot alias, etc), but does no stateful analysis.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/BasicAliasAnalysis.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/CFG.h"
+#include "llvm/Analysis/CaptureTracking.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/MemoryLocation.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Analysis/PhiValues.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/KnownBits.h"
+#include <cassert>
+#include <cstdint>
+#include <cstdlib>
+#include <utility>
+
+#define DEBUG_TYPE "basicaa"
+
+using namespace llvm;
+
+/// Enable analysis of recursive PHI nodes.
+static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
+ cl::init(false));
+
+/// By default, even on 32-bit architectures we use 64-bit integers for
+/// calculations. This will allow us to more-aggressively decompose indexing
+/// expressions calculated using i64 values (e.g., long long in C) which is
+/// common enough to worry about.
+static cl::opt<bool> ForceAtLeast64Bits("basicaa-force-at-least-64b",
+ cl::Hidden, cl::init(true));
+static cl::opt<bool> DoubleCalcBits("basicaa-double-calc-bits",
+ cl::Hidden, cl::init(false));
+
+/// SearchLimitReached / SearchTimes shows how often the limit of
+/// to decompose GEPs is reached. It will affect the precision
+/// of basic alias analysis.
+STATISTIC(SearchLimitReached, "Number of times the limit to "
+ "decompose GEPs is reached");
+STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
+
+/// Cutoff after which to stop analysing a set of phi nodes potentially involved
+/// in a cycle. Because we are analysing 'through' phi nodes, we need to be
+/// careful with value equivalence. We use reachability to make sure a value
+/// cannot be involved in a cycle.
+const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
+
+// The max limit of the search depth in DecomposeGEPExpression() and
+// GetUnderlyingObject(), both functions need to use the same search
+// depth otherwise the algorithm in aliasGEP will assert.
+static const unsigned MaxLookupSearchDepth = 6;
+
+bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
+ FunctionAnalysisManager::Invalidator &Inv) {
+ // We don't care if this analysis itself is preserved, it has no state. But
+ // we need to check that the analyses it depends on have been. Note that we
+ // may be created without handles to some analyses and in that case don't
+ // depend on them.
+ if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
+ (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
+ (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) ||
+ (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
+ return true;
+
+ // Otherwise this analysis result remains valid.
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Useful predicates
+//===----------------------------------------------------------------------===//
+
+/// Returns true if the pointer is to a function-local object that never
+/// escapes from the function.
+static bool isNonEscapingLocalObject(
+ const Value *V,
+ SmallDenseMap<const Value *, bool, 8> *IsCapturedCache = nullptr) {
+ SmallDenseMap<const Value *, bool, 8>::iterator CacheIt;
+ if (IsCapturedCache) {
+ bool Inserted;
+ std::tie(CacheIt, Inserted) = IsCapturedCache->insert({V, false});
+ if (!Inserted)
+ // Found cached result, return it!
+ return CacheIt->second;
+ }
+
+ // If this is a local allocation, check to see if it escapes.
+ if (isa<AllocaInst>(V) || isNoAliasCall(V)) {
+ // Set StoreCaptures to True so that we can assume in our callers that the
+ // pointer is not the result of a load instruction. Currently
+ // PointerMayBeCaptured doesn't have any special analysis for the
+ // StoreCaptures=false case; if it did, our callers could be refined to be
+ // more precise.
+ auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
+ if (IsCapturedCache)
+ CacheIt->second = Ret;
+ return Ret;
+ }
+
+ // If this is an argument that corresponds to a byval or noalias argument,
+ // then it has not escaped before entering the function. Check if it escapes
+ // inside the function.
+ if (const Argument *A = dyn_cast<Argument>(V))
+ if (A->hasByValAttr() || A->hasNoAliasAttr()) {
+ // Note even if the argument is marked nocapture, we still need to check
+ // for copies made inside the function. The nocapture attribute only
+ // specifies that there are no copies made that outlive the function.
+ auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
+ if (IsCapturedCache)
+ CacheIt->second = Ret;
+ return Ret;
+ }
+
+ return false;
+}
+
+/// Returns true if the pointer is one which would have been considered an
+/// escape by isNonEscapingLocalObject.
+static bool isEscapeSource(const Value *V) {
+ if (isa<CallBase>(V))
+ return true;
+
+ if (isa<Argument>(V))
+ return true;
+
+ // The load case works because isNonEscapingLocalObject considers all
+ // stores to be escapes (it passes true for the StoreCaptures argument
+ // to PointerMayBeCaptured).
+ if (isa<LoadInst>(V))
+ return true;
+
+ return false;
+}
+
+/// Returns the size of the object specified by V or UnknownSize if unknown.
+static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
+ const TargetLibraryInfo &TLI,
+ bool NullIsValidLoc,
+ bool RoundToAlign = false) {
+ uint64_t Size;
+ ObjectSizeOpts Opts;
+ Opts.RoundToAlign = RoundToAlign;
+ Opts.NullIsUnknownSize = NullIsValidLoc;
+ if (getObjectSize(V, Size, DL, &TLI, Opts))
+ return Size;
+ return MemoryLocation::UnknownSize;
+}
+
+/// Returns true if we can prove that the object specified by V is smaller than
+/// Size.
+static bool isObjectSmallerThan(const Value *V, uint64_t Size,
+ const DataLayout &DL,
+ const TargetLibraryInfo &TLI,
+ bool NullIsValidLoc) {
+ // Note that the meanings of the "object" are slightly different in the
+ // following contexts:
+ // c1: llvm::getObjectSize()
+ // c2: llvm.objectsize() intrinsic
+ // c3: isObjectSmallerThan()
+ // c1 and c2 share the same meaning; however, the meaning of "object" in c3
+ // refers to the "entire object".
+ //
+ // Consider this example:
+ // char *p = (char*)malloc(100)
+ // char *q = p+80;
+ //
+ // In the context of c1 and c2, the "object" pointed by q refers to the
+ // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
+ //
+ // However, in the context of c3, the "object" refers to the chunk of memory
+ // being allocated. So, the "object" has 100 bytes, and q points to the middle
+ // the "object". In case q is passed to isObjectSmallerThan() as the 1st
+ // parameter, before the llvm::getObjectSize() is called to get the size of
+ // entire object, we should:
+ // - either rewind the pointer q to the base-address of the object in
+ // question (in this case rewind to p), or
+ // - just give up. It is up to caller to make sure the pointer is pointing
+ // to the base address the object.
+ //
+ // We go for 2nd option for simplicity.
+ if (!isIdentifiedObject(V))
+ return false;
+
+ // This function needs to use the aligned object size because we allow
+ // reads a bit past the end given sufficient alignment.
+ uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
+ /*RoundToAlign*/ true);
+
+ return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
+}
+
+/// Return the minimal extent from \p V to the end of the underlying object,
+/// assuming the result is used in an aliasing query. E.g., we do use the query
+/// location size and the fact that null pointers cannot alias here.
+static uint64_t getMinimalExtentFrom(const Value &V,
+ const LocationSize &LocSize,
+ const DataLayout &DL,
+ bool NullIsValidLoc) {
+ // If we have dereferenceability information we know a lower bound for the
+ // extent as accesses for a lower offset would be valid. We need to exclude
+ // the "or null" part if null is a valid pointer.
+ bool CanBeNull;
+ uint64_t DerefBytes = V.getPointerDereferenceableBytes(DL, CanBeNull);
+ DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
+ // If queried with a precise location size, we assume that location size to be
+ // accessed, thus valid.
+ if (LocSize.isPrecise())
+ DerefBytes = std::max(DerefBytes, LocSize.getValue());
+ return DerefBytes;
+}
+
+/// Returns true if we can prove that the object specified by V has size Size.
+static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
+ const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
+ uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
+ return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
+}
+
+//===----------------------------------------------------------------------===//
+// GetElementPtr Instruction Decomposition and Analysis
+//===----------------------------------------------------------------------===//
+
+/// Analyzes the specified value as a linear expression: "A*V + B", where A and
+/// B are constant integers.
+///
+/// Returns the scale and offset values as APInts and return V as a Value*, and
+/// return whether we looked through any sign or zero extends. The incoming
+/// Value is known to have IntegerType, and it may already be sign or zero
+/// extended.
+///
+/// Note that this looks through extends, so the high bits may not be
+/// represented in the result.
+/*static*/ const Value *BasicAAResult::GetLinearExpression(
+ const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
+ unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
+ AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
+ assert(V->getType()->isIntegerTy() && "Not an integer value");
+
+ // Limit our recursion depth.
+ if (Depth == 6) {
+ Scale = 1;
+ Offset = 0;
+ return V;
+ }
+
+ if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
+ // If it's a constant, just convert it to an offset and remove the variable.
+ // If we've been called recursively, the Offset bit width will be greater
+ // than the constant's (the Offset's always as wide as the outermost call),
+ // so we'll zext here and process any extension in the isa<SExtInst> &
+ // isa<ZExtInst> cases below.
+ Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
+ assert(Scale == 0 && "Constant values don't have a scale");
+ return V;
+ }
+
+ if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
+ if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
+ // If we've been called recursively, then Offset and Scale will be wider
+ // than the BOp operands. We'll always zext it here as we'll process sign
+ // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
+ APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
+
+ switch (BOp->getOpcode()) {
+ default:
+ // We don't understand this instruction, so we can't decompose it any
+ // further.
+ Scale = 1;
+ Offset = 0;
+ return V;
+ case Instruction::Or:
+ // X|C == X+C if all the bits in C are unset in X. Otherwise we can't
+ // analyze it.
+ if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
+ BOp, DT)) {
+ Scale = 1;
+ Offset = 0;
+ return V;
+ }
+ LLVM_FALLTHROUGH;
+ case Instruction::Add:
+ V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
+ SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
+ Offset += RHS;
+ break;
+ case Instruction::Sub:
+ V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
+ SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
+ Offset -= RHS;
+ break;
+ case Instruction::Mul:
+ V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
+ SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
+ Offset *= RHS;
+ Scale *= RHS;
+ break;
+ case Instruction::Shl:
+ V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
+ SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
+
+ // We're trying to linearize an expression of the kind:
+ // shl i8 -128, 36
+ // where the shift count exceeds the bitwidth of the type.
+ // We can't decompose this further (the expression would return
+ // a poison value).
+ if (Offset.getBitWidth() < RHS.getLimitedValue() ||
+ Scale.getBitWidth() < RHS.getLimitedValue()) {
+ Scale = 1;
+ Offset = 0;
+ return V;
+ }
+
+ Offset <<= RHS.getLimitedValue();
+ Scale <<= RHS.getLimitedValue();
+ // the semantics of nsw and nuw for left shifts don't match those of
+ // multiplications, so we won't propagate them.
+ NSW = NUW = false;
+ return V;
+ }
+
+ if (isa<OverflowingBinaryOperator>(BOp)) {
+ NUW &= BOp->hasNoUnsignedWrap();
+ NSW &= BOp->hasNoSignedWrap();
+ }
+ return V;
+ }
+ }
+
+ // Since GEP indices are sign extended anyway, we don't care about the high
+ // bits of a sign or zero extended value - just scales and offsets. The
+ // extensions have to be consistent though.
+ if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
+ Value *CastOp = cast<CastInst>(V)->getOperand(0);
+ unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
+ unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
+ unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
+ const Value *Result =
+ GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
+ Depth + 1, AC, DT, NSW, NUW);
+
+ // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
+ // by just incrementing the number of bits we've extended by.
+ unsigned ExtendedBy = NewWidth - SmallWidth;
+
+ if (isa<SExtInst>(V) && ZExtBits == 0) {
+ // sext(sext(%x, a), b) == sext(%x, a + b)
+
+ if (NSW) {
+ // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
+ // into sext(%x) + sext(c). We'll sext the Offset ourselves:
+ unsigned OldWidth = Offset.getBitWidth();
+ Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
+ } else {
+ // We may have signed-wrapped, so don't decompose sext(%x + c) into
+ // sext(%x) + sext(c)
+ Scale = 1;
+ Offset = 0;
+ Result = CastOp;
+ ZExtBits = OldZExtBits;
+ SExtBits = OldSExtBits;
+ }
+ SExtBits += ExtendedBy;
+ } else {
+ // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
+
+ if (!NUW) {
+ // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
+ // zext(%x) + zext(c)
+ Scale = 1;
+ Offset = 0;
+ Result = CastOp;
+ ZExtBits = OldZExtBits;
+ SExtBits = OldSExtBits;
+ }
+ ZExtBits += ExtendedBy;
+ }
+
+ return Result;
+ }
+
+ Scale = 1;
+ Offset = 0;
+ return V;
+}
+
+/// To ensure a pointer offset fits in an integer of size PointerSize
+/// (in bits) when that size is smaller than the maximum pointer size. This is
+/// an issue, for example, in particular for 32b pointers with negative indices
+/// that rely on two's complement wrap-arounds for precise alias information
+/// where the maximum pointer size is 64b.
+static APInt adjustToPointerSize(APInt Offset, unsigned PointerSize) {
+ assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!");
+ unsigned ShiftBits = Offset.getBitWidth() - PointerSize;
+ return (Offset << ShiftBits).ashr(ShiftBits);
+}
+
+static unsigned getMaxPointerSize(const DataLayout &DL) {
+ unsigned MaxPointerSize = DL.getMaxPointerSizeInBits();
+ if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64;
+ if (DoubleCalcBits) MaxPointerSize *= 2;
+
+ return MaxPointerSize;
+}
+
+/// If V is a symbolic pointer expression, decompose it into a base pointer
+/// with a constant offset and a number of scaled symbolic offsets.
+///
+/// The scaled symbolic offsets (represented by pairs of a Value* and a scale
+/// in the VarIndices vector) are Value*'s that are known to be scaled by the
+/// specified amount, but which may have other unrepresented high bits. As
+/// such, the gep cannot necessarily be reconstructed from its decomposed form.
+///
+/// When DataLayout is around, this function is capable of analyzing everything
+/// that GetUnderlyingObject can look through. To be able to do that
+/// GetUnderlyingObject and DecomposeGEPExpression must use the same search
+/// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
+/// through pointer casts.
+bool BasicAAResult::DecomposeGEPExpression(const Value *V,
+ DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC,
+ DominatorTree *DT) {
+ // Limit recursion depth to limit compile time in crazy cases.
+ unsigned MaxLookup = MaxLookupSearchDepth;
+ SearchTimes++;
+
+ unsigned MaxPointerSize = getMaxPointerSize(DL);
+ Decomposed.VarIndices.clear();
+ do {
+ // See if this is a bitcast or GEP.
+ const Operator *Op = dyn_cast<Operator>(V);
+ if (!Op) {
+ // The only non-operator case we can handle are GlobalAliases.
+ if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
+ if (!GA->isInterposable()) {
+ V = GA->getAliasee();
+ continue;
+ }
+ }
+ Decomposed.Base = V;
+ return false;
+ }
+
+ if (Op->getOpcode() == Instruction::BitCast ||
+ Op->getOpcode() == Instruction::AddrSpaceCast) {
+ V = Op->getOperand(0);
+ continue;
+ }
+
+ const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
+ if (!GEPOp) {
+ if (const auto *Call = dyn_cast<CallBase>(V)) {
+ // CaptureTracking can know about special capturing properties of some
+ // intrinsics like launder.invariant.group, that can't be expressed with
+ // the attributes, but have properties like returning aliasing pointer.
+ // Because some analysis may assume that nocaptured pointer is not
+ // returned from some special intrinsic (because function would have to
+ // be marked with returns attribute), it is crucial to use this function
+ // because it should be in sync with CaptureTracking. Not using it may
+ // cause weird miscompilations where 2 aliasing pointers are assumed to
+ // noalias.
+ if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
+ V = RP;
+ continue;
+ }
+ }
+
+ // If it's not a GEP, hand it off to SimplifyInstruction to see if it
+ // can come up with something. This matches what GetUnderlyingObject does.
+ if (const Instruction *I = dyn_cast<Instruction>(V))
+ // TODO: Get a DominatorTree and AssumptionCache and use them here
+ // (these are both now available in this function, but this should be
+ // updated when GetUnderlyingObject is updated). TLI should be
+ // provided also.
+ if (const Value *Simplified =
+ SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
+ V = Simplified;
+ continue;
+ }
+
+ Decomposed.Base = V;
+ return false;
+ }
+
+ // Don't attempt to analyze GEPs over unsized objects.
+ if (!GEPOp->getSourceElementType()->isSized()) {
+ Decomposed.Base = V;
+ return false;
+ }
+
+ unsigned AS = GEPOp->getPointerAddressSpace();
+ // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
+ gep_type_iterator GTI = gep_type_begin(GEPOp);
+ unsigned PointerSize = DL.getPointerSizeInBits(AS);
+ // Assume all GEP operands are constants until proven otherwise.
+ bool GepHasConstantOffset = true;
+ for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
+ I != E; ++I, ++GTI) {
+ const Value *Index = *I;
+ // Compute the (potentially symbolic) offset in bytes for this index.
+ if (StructType *STy = GTI.getStructTypeOrNull()) {
+ // For a struct, add the member offset.
+ unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
+ if (FieldNo == 0)
+ continue;
+
+ Decomposed.StructOffset +=
+ DL.getStructLayout(STy)->getElementOffset(FieldNo);
+ continue;
+ }
+
+ // For an array/pointer, add the element offset, explicitly scaled.
+ if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
+ if (CIdx->isZero())
+ continue;
+ Decomposed.OtherOffset +=
+ (DL.getTypeAllocSize(GTI.getIndexedType()) *
+ CIdx->getValue().sextOrSelf(MaxPointerSize))
+ .sextOrTrunc(MaxPointerSize);
+ continue;
+ }
+
+ GepHasConstantOffset = false;
+
+ APInt Scale(MaxPointerSize, DL.getTypeAllocSize(GTI.getIndexedType()));
+ unsigned ZExtBits = 0, SExtBits = 0;
+
+ // If the integer type is smaller than the pointer size, it is implicitly
+ // sign extended to pointer size.
+ unsigned Width = Index->getType()->getIntegerBitWidth();
+ if (PointerSize > Width)
+ SExtBits += PointerSize - Width;
+
+ // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
+ APInt IndexScale(Width, 0), IndexOffset(Width, 0);
+ bool NSW = true, NUW = true;
+ const Value *OrigIndex = Index;
+ Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
+ SExtBits, DL, 0, AC, DT, NSW, NUW);
+
+ // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
+ // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
+
+ // It can be the case that, even through C1*V+C2 does not overflow for
+ // relevant values of V, (C2*Scale) can overflow. In that case, we cannot
+ // decompose the expression in this way.
+ //
+ // FIXME: C1*Scale and the other operations in the decomposed
+ // (C1*Scale)*V+C2*Scale can also overflow. We should check for this
+ // possibility.
+ APInt WideScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize*2) *
+ Scale.sext(MaxPointerSize*2);
+ if (WideScaledOffset.getMinSignedBits() > MaxPointerSize) {
+ Index = OrigIndex;
+ IndexScale = 1;
+ IndexOffset = 0;
+
+ ZExtBits = SExtBits = 0;
+ if (PointerSize > Width)
+ SExtBits += PointerSize - Width;
+ } else {
+ Decomposed.OtherOffset += IndexOffset.sextOrTrunc(MaxPointerSize) * Scale;
+ Scale *= IndexScale.sextOrTrunc(MaxPointerSize);
+ }
+
+ // If we already had an occurrence of this index variable, merge this
+ // scale into it. For example, we want to handle:
+ // A[x][x] -> x*16 + x*4 -> x*20
+ // This also ensures that 'x' only appears in the index list once.
+ for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
+ if (Decomposed.VarIndices[i].V == Index &&
+ Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
+ Decomposed.VarIndices[i].SExtBits == SExtBits) {
+ Scale += Decomposed.VarIndices[i].Scale;
+ Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
+ break;
+ }
+ }
+
+ // Make sure that we have a scale that makes sense for this target's
+ // pointer size.
+ Scale = adjustToPointerSize(Scale, PointerSize);
+
+ if (!!Scale) {
+ VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale};
+ Decomposed.VarIndices.push_back(Entry);
+ }
+ }
+
+ // Take care of wrap-arounds
+ if (GepHasConstantOffset) {
+ Decomposed.StructOffset =
+ adjustToPointerSize(Decomposed.StructOffset, PointerSize);
+ Decomposed.OtherOffset =
+ adjustToPointerSize(Decomposed.OtherOffset, PointerSize);
+ }
+
+ // Analyze the base pointer next.
+ V = GEPOp->getOperand(0);
+ } while (--MaxLookup);
+
+ // If the chain of expressions is too deep, just return early.
+ Decomposed.Base = V;
+ SearchLimitReached++;
+ return true;
+}
+
+/// Returns whether the given pointer value points to memory that is local to
+/// the function, with global constants being considered local to all
+/// functions.
+bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
+ AAQueryInfo &AAQI, bool OrLocal) {
+ assert(Visited.empty() && "Visited must be cleared after use!");
+
+ unsigned MaxLookup = 8;
+ SmallVector<const Value *, 16> Worklist;
+ Worklist.push_back(Loc.Ptr);
+ do {
+ const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
+ if (!Visited.insert(V).second) {
+ Visited.clear();
+ return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
+ }
+
+ // An alloca instruction defines local memory.
+ if (OrLocal && isa<AllocaInst>(V))
+ continue;
+
+ // A global constant counts as local memory for our purposes.
+ if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
+ // Note: this doesn't require GV to be "ODR" because it isn't legal for a
+ // global to be marked constant in some modules and non-constant in
+ // others. GV may even be a declaration, not a definition.
+ if (!GV->isConstant()) {
+ Visited.clear();
+ return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
+ }
+ continue;
+ }
+
+ // If both select values point to local memory, then so does the select.
+ if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
+ Worklist.push_back(SI->getTrueValue());
+ Worklist.push_back(SI->getFalseValue());
+ continue;
+ }
+
+ // If all values incoming to a phi node point to local memory, then so does
+ // the phi.
+ if (const PHINode *PN = dyn_cast<PHINode>(V)) {
+ // Don't bother inspecting phi nodes with many operands.
+ if (PN->getNumIncomingValues() > MaxLookup) {
+ Visited.clear();
+ return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
+ }
+ for (Value *IncValue : PN->incoming_values())
+ Worklist.push_back(IncValue);
+ continue;
+ }
+
+ // Otherwise be conservative.
+ Visited.clear();
+ return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
+ } while (!Worklist.empty() && --MaxLookup);
+
+ Visited.clear();
+ return Worklist.empty();
+}
+
+/// Returns the behavior when calling the given call site.
+FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
+ if (Call->doesNotAccessMemory())
+ // Can't do better than this.
+ return FMRB_DoesNotAccessMemory;
+
+ FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
+
+ // If the callsite knows it only reads memory, don't return worse
+ // than that.
+ if (Call->onlyReadsMemory())
+ Min = FMRB_OnlyReadsMemory;
+ else if (Call->doesNotReadMemory())
+ Min = FMRB_DoesNotReadMemory;
+
+ if (Call->onlyAccessesArgMemory())
+ Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
+ else if (Call->onlyAccessesInaccessibleMemory())
+ Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
+ else if (Call->onlyAccessesInaccessibleMemOrArgMem())
+ Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
+
+ // If the call has operand bundles then aliasing attributes from the function
+ // it calls do not directly apply to the call. This can be made more precise
+ // in the future.
+ if (!Call->hasOperandBundles())
+ if (const Function *F = Call->getCalledFunction())
+ Min =
+ FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
+
+ return Min;
+}
+
+/// Returns the behavior when calling the given function. For use when the call
+/// site is not known.
+FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
+ // If the function declares it doesn't access memory, we can't do better.
+ if (F->doesNotAccessMemory())
+ return FMRB_DoesNotAccessMemory;
+
+ FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
+
+ // If the function declares it only reads memory, go with that.
+ if (F->onlyReadsMemory())
+ Min = FMRB_OnlyReadsMemory;
+ else if (F->doesNotReadMemory())
+ Min = FMRB_DoesNotReadMemory;
+
+ if (F->onlyAccessesArgMemory())
+ Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
+ else if (F->onlyAccessesInaccessibleMemory())
+ Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
+ else if (F->onlyAccessesInaccessibleMemOrArgMem())
+ Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
+
+ return Min;
+}
+
+/// Returns true if this is a writeonly (i.e Mod only) parameter.
+static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
+ const TargetLibraryInfo &TLI) {
+ if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
+ return true;
+
+ // We can bound the aliasing properties of memset_pattern16 just as we can
+ // for memcpy/memset. This is particularly important because the
+ // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
+ // whenever possible.
+ // FIXME Consider handling this in InferFunctionAttr.cpp together with other
+ // attributes.
+ LibFunc F;
+ if (Call->getCalledFunction() &&
+ TLI.getLibFunc(*Call->getCalledFunction(), F) &&
+ F == LibFunc_memset_pattern16 && TLI.has(F))
+ if (ArgIdx == 0)
+ return true;
+
+ // TODO: memset_pattern4, memset_pattern8
+ // TODO: _chk variants
+ // TODO: strcmp, strcpy
+
+ return false;
+}
+
+ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
+ unsigned ArgIdx) {
+ // Checking for known builtin intrinsics and target library functions.
+ if (isWriteOnlyParam(Call, ArgIdx, TLI))
+ return ModRefInfo::Mod;
+
+ if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
+ return ModRefInfo::Ref;
+
+ if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
+ return ModRefInfo::NoModRef;
+
+ return AAResultBase::getArgModRefInfo(Call, ArgIdx);
+}
+
+static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
+ const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
+ return II && II->getIntrinsicID() == IID;
+}
+
+#ifndef NDEBUG
+static const Function *getParent(const Value *V) {
+ if (const Instruction *inst = dyn_cast<Instruction>(V)) {
+ if (!inst->getParent())
+ return nullptr;
+ return inst->getParent()->getParent();
+ }
+
+ if (const Argument *arg = dyn_cast<Argument>(V))
+ return arg->getParent();
+
+ return nullptr;
+}
+
+static bool notDifferentParent(const Value *O1, const Value *O2) {
+
+ const Function *F1 = getParent(O1);
+ const Function *F2 = getParent(O2);
+
+ return !F1 || !F2 || F1 == F2;
+}
+#endif
+
+AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
+ const MemoryLocation &LocB,
+ AAQueryInfo &AAQI) {
+ assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
+ "BasicAliasAnalysis doesn't support interprocedural queries.");
+
+ // If we have a directly cached entry for these locations, we have recursed
+ // through this once, so just return the cached results. Notably, when this
+ // happens, we don't clear the cache.
+ auto CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocA, LocB));
+ if (CacheIt != AAQI.AliasCache.end())
+ return CacheIt->second;
+
+ CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocB, LocA));
+ if (CacheIt != AAQI.AliasCache.end())
+ return CacheIt->second;
+
+ AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
+ LocB.Size, LocB.AATags, AAQI);
+
+ VisitedPhiBBs.clear();
+ return Alias;
+}
+
+/// Checks to see if the specified callsite can clobber the specified memory
+/// object.
+///
+/// Since we only look at local properties of this function, we really can't
+/// say much about this query. We do, however, use simple "address taken"
+/// analysis on local objects.
+ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
+ const MemoryLocation &Loc,
+ AAQueryInfo &AAQI) {
+ assert(notDifferentParent(Call, Loc.Ptr) &&
+ "AliasAnalysis query involving multiple functions!");
+
+ const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
+
+ // Calls marked 'tail' cannot read or write allocas from the current frame
+ // because the current frame might be destroyed by the time they run. However,
+ // a tail call may use an alloca with byval. Calling with byval copies the
+ // contents of the alloca into argument registers or stack slots, so there is
+ // no lifetime issue.
+ if (isa<AllocaInst>(Object))
+ if (const CallInst *CI = dyn_cast<CallInst>(Call))
+ if (CI->isTailCall() &&
+ !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
+ return ModRefInfo::NoModRef;
+
+ // Stack restore is able to modify unescaped dynamic allocas. Assume it may
+ // modify them even though the alloca is not escaped.
+ if (auto *AI = dyn_cast<AllocaInst>(Object))
+ if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
+ return ModRefInfo::Mod;
+
+ // If the pointer is to a locally allocated object that does not escape,
+ // then the call can not mod/ref the pointer unless the call takes the pointer
+ // as an argument, and itself doesn't capture it.
+ if (!isa<Constant>(Object) && Call != Object &&
+ isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) {
+
+ // Optimistically assume that call doesn't touch Object and check this
+ // assumption in the following loop.
+ ModRefInfo Result = ModRefInfo::NoModRef;
+ bool IsMustAlias = true;
+
+ unsigned OperandNo = 0;
+ for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
+ CI != CE; ++CI, ++OperandNo) {
+ // Only look at the no-capture or byval pointer arguments. If this
+ // pointer were passed to arguments that were neither of these, then it
+ // couldn't be no-capture.
+ if (!(*CI)->getType()->isPointerTy() ||
+ (!Call->doesNotCapture(OperandNo) &&
+ OperandNo < Call->getNumArgOperands() &&
+ !Call->isByValArgument(OperandNo)))
+ continue;
+
+ // Call doesn't access memory through this operand, so we don't care
+ // if it aliases with Object.
+ if (Call->doesNotAccessMemory(OperandNo))
+ continue;
+
+ // If this is a no-capture pointer argument, see if we can tell that it
+ // is impossible to alias the pointer we're checking.
+ AliasResult AR = getBestAAResults().alias(MemoryLocation(*CI),
+ MemoryLocation(Object), AAQI);
+ if (AR != MustAlias)
+ IsMustAlias = false;
+ // Operand doesn't alias 'Object', continue looking for other aliases
+ if (AR == NoAlias)
+ continue;
+ // Operand aliases 'Object', but call doesn't modify it. Strengthen
+ // initial assumption and keep looking in case if there are more aliases.
+ if (Call->onlyReadsMemory(OperandNo)) {
+ Result = setRef(Result);
+ continue;
+ }
+ // Operand aliases 'Object' but call only writes into it.
+ if (Call->doesNotReadMemory(OperandNo)) {
+ Result = setMod(Result);
+ continue;
+ }
+ // This operand aliases 'Object' and call reads and writes into it.
+ // Setting ModRef will not yield an early return below, MustAlias is not
+ // used further.
+ Result = ModRefInfo::ModRef;
+ break;
+ }
+
+ // No operand aliases, reset Must bit. Add below if at least one aliases
+ // and all aliases found are MustAlias.
+ if (isNoModRef(Result))
+ IsMustAlias = false;
+
+ // Early return if we improved mod ref information
+ if (!isModAndRefSet(Result)) {
+ if (isNoModRef(Result))
+ return ModRefInfo::NoModRef;
+ return IsMustAlias ? setMust(Result) : clearMust(Result);
+ }
+ }
+
+ // If the call is to malloc or calloc, we can assume that it doesn't
+ // modify any IR visible value. This is only valid because we assume these
+ // routines do not read values visible in the IR. TODO: Consider special
+ // casing realloc and strdup routines which access only their arguments as
+ // well. Or alternatively, replace all of this with inaccessiblememonly once
+ // that's implemented fully.
+ if (isMallocOrCallocLikeFn(Call, &TLI)) {
+ // Be conservative if the accessed pointer may alias the allocation -
+ // fallback to the generic handling below.
+ if (getBestAAResults().alias(MemoryLocation(Call), Loc, AAQI) == NoAlias)
+ return ModRefInfo::NoModRef;
+ }
+
+ // The semantics of memcpy intrinsics forbid overlap between their respective
+ // operands, i.e., source and destination of any given memcpy must no-alias.
+ // If Loc must-aliases either one of these two locations, then it necessarily
+ // no-aliases the other.
+ if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) {
+ AliasResult SrcAA, DestAA;
+
+ if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst),
+ Loc, AAQI)) == MustAlias)
+ // Loc is exactly the memcpy source thus disjoint from memcpy dest.
+ return ModRefInfo::Ref;
+ if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst),
+ Loc, AAQI)) == MustAlias)
+ // The converse case.
+ return ModRefInfo::Mod;
+
+ // It's also possible for Loc to alias both src and dest, or neither.
+ ModRefInfo rv = ModRefInfo::NoModRef;
+ if (SrcAA != NoAlias)
+ rv = setRef(rv);
+ if (DestAA != NoAlias)
+ rv = setMod(rv);
+ return rv;
+ }
+
+ // While the assume intrinsic is marked as arbitrarily writing so that
+ // proper control dependencies will be maintained, it never aliases any
+ // particular memory location.
+ if (isIntrinsicCall(Call, Intrinsic::assume))
+ return ModRefInfo::NoModRef;
+
+ // Like assumes, guard intrinsics are also marked as arbitrarily writing so
+ // that proper control dependencies are maintained but they never mods any
+ // particular memory location.
+ //
+ // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
+ // heap state at the point the guard is issued needs to be consistent in case
+ // the guard invokes the "deopt" continuation.
+ if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
+ return ModRefInfo::Ref;
+
+ // Like assumes, invariant.start intrinsics were also marked as arbitrarily
+ // writing so that proper control dependencies are maintained but they never
+ // mod any particular memory location visible to the IR.
+ // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
+ // intrinsic is now modeled as reading memory. This prevents hoisting the
+ // invariant.start intrinsic over stores. Consider:
+ // *ptr = 40;
+ // *ptr = 50;
+ // invariant_start(ptr)
+ // int val = *ptr;
+ // print(val);
+ //
+ // This cannot be transformed to:
+ //
+ // *ptr = 40;
+ // invariant_start(ptr)
+ // *ptr = 50;
+ // int val = *ptr;
+ // print(val);
+ //
+ // The transformation will cause the second store to be ignored (based on
+ // rules of invariant.start) and print 40, while the first program always
+ // prints 50.
+ if (isIntrinsicCall(Call, Intrinsic::invariant_start))
+ return ModRefInfo::Ref;
+
+ // The AAResultBase base class has some smarts, lets use them.
+ return AAResultBase::getModRefInfo(Call, Loc, AAQI);
+}
+
+ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
+ const CallBase *Call2,
+ AAQueryInfo &AAQI) {
+ // While the assume intrinsic is marked as arbitrarily writing so that
+ // proper control dependencies will be maintained, it never aliases any
+ // particular memory location.
+ if (isIntrinsicCall(Call1, Intrinsic::assume) ||
+ isIntrinsicCall(Call2, Intrinsic::assume))
+ return ModRefInfo::NoModRef;
+
+ // Like assumes, guard intrinsics are also marked as arbitrarily writing so
+ // that proper control dependencies are maintained but they never mod any
+ // particular memory location.
+ //
+ // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
+ // heap state at the point the guard is issued needs to be consistent in case
+ // the guard invokes the "deopt" continuation.
+
+ // NB! This function is *not* commutative, so we special case two
+ // possibilities for guard intrinsics.
+
+ if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
+ return isModSet(createModRefInfo(getModRefBehavior(Call2)))
+ ? ModRefInfo::Ref
+ : ModRefInfo::NoModRef;
+
+ if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
+ return isModSet(createModRefInfo(getModRefBehavior(Call1)))
+ ? ModRefInfo::Mod
+ : ModRefInfo::NoModRef;
+
+ // The AAResultBase base class has some smarts, lets use them.
+ return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
+}
+
+/// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
+/// both having the exact same pointer operand.
+static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
+ LocationSize MaybeV1Size,
+ const GEPOperator *GEP2,
+ LocationSize MaybeV2Size,
+ const DataLayout &DL) {
+ assert(GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
+ GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
+ GEP1->getPointerOperandType() == GEP2->getPointerOperandType() &&
+ "Expected GEPs with the same pointer operand");
+
+ // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
+ // such that the struct field accesses provably cannot alias.
+ // We also need at least two indices (the pointer, and the struct field).
+ if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
+ GEP1->getNumIndices() < 2)
+ return MayAlias;
+
+ // If we don't know the size of the accesses through both GEPs, we can't
+ // determine whether the struct fields accessed can't alias.
+ if (MaybeV1Size == LocationSize::unknown() ||
+ MaybeV2Size == LocationSize::unknown())
+ return MayAlias;
+
+ const uint64_t V1Size = MaybeV1Size.getValue();
+ const uint64_t V2Size = MaybeV2Size.getValue();
+
+ ConstantInt *C1 =
+ dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
+ ConstantInt *C2 =
+ dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
+
+ // If the last (struct) indices are constants and are equal, the other indices
+ // might be also be dynamically equal, so the GEPs can alias.
+ if (C1 && C2) {
+ unsigned BitWidth = std::max(C1->getBitWidth(), C2->getBitWidth());
+ if (C1->getValue().sextOrSelf(BitWidth) ==
+ C2->getValue().sextOrSelf(BitWidth))
+ return MayAlias;
+ }
+
+ // Find the last-indexed type of the GEP, i.e., the type you'd get if
+ // you stripped the last index.
+ // On the way, look at each indexed type. If there's something other
+ // than an array, different indices can lead to different final types.
+ SmallVector<Value *, 8> IntermediateIndices;
+
+ // Insert the first index; we don't need to check the type indexed
+ // through it as it only drops the pointer indirection.
+ assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
+ IntermediateIndices.push_back(GEP1->getOperand(1));
+
+ // Insert all the remaining indices but the last one.
+ // Also, check that they all index through arrays.
+ for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
+ if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
+ GEP1->getSourceElementType(), IntermediateIndices)))
+ return MayAlias;
+ IntermediateIndices.push_back(GEP1->getOperand(i + 1));
+ }
+
+ auto *Ty = GetElementPtrInst::getIndexedType(
+ GEP1->getSourceElementType(), IntermediateIndices);
+ StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
+
+ if (isa<SequentialType>(Ty)) {
+ // We know that:
+ // - both GEPs begin indexing from the exact same pointer;
+ // - the last indices in both GEPs are constants, indexing into a sequential
+ // type (array or pointer);
+ // - both GEPs only index through arrays prior to that.
+ //
+ // Because array indices greater than the number of elements are valid in
+ // GEPs, unless we know the intermediate indices are identical between
+ // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
+ // partially overlap. We also need to check that the loaded size matches
+ // the element size, otherwise we could still have overlap.
+ const uint64_t ElementSize =
+ DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
+ if (V1Size != ElementSize || V2Size != ElementSize)
+ return MayAlias;
+
+ for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
+ if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
+ return MayAlias;
+
+ // Now we know that the array/pointer that GEP1 indexes into and that
+ // that GEP2 indexes into must either precisely overlap or be disjoint.
+ // Because they cannot partially overlap and because fields in an array
+ // cannot overlap, if we can prove the final indices are different between
+ // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
+
+ // If the last indices are constants, we've already checked they don't
+ // equal each other so we can exit early.
+ if (C1 && C2)
+ return NoAlias;
+ {
+ Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1);
+ Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1);
+ if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) {
+ // If one of the indices is a PHI node, be safe and only use
+ // computeKnownBits so we don't make any assumptions about the
+ // relationships between the two indices. This is important if we're
+ // asking about values from different loop iterations. See PR32314.
+ // TODO: We may be able to change the check so we only do this when
+ // we definitely looked through a PHINode.
+ if (GEP1LastIdx != GEP2LastIdx &&
+ GEP1LastIdx->getType() == GEP2LastIdx->getType()) {
+ KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL);
+ KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL);
+ if (Known1.Zero.intersects(Known2.One) ||
+ Known1.One.intersects(Known2.Zero))
+ return NoAlias;
+ }
+ } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL))
+ return NoAlias;
+ }
+ return MayAlias;
+ } else if (!LastIndexedStruct || !C1 || !C2) {
+ return MayAlias;
+ }
+
+ if (C1->getValue().getActiveBits() > 64 ||
+ C2->getValue().getActiveBits() > 64)
+ return MayAlias;
+
+ // We know that:
+ // - both GEPs begin indexing from the exact same pointer;
+ // - the last indices in both GEPs are constants, indexing into a struct;
+ // - said indices are different, hence, the pointed-to fields are different;
+ // - both GEPs only index through arrays prior to that.
+ //
+ // This lets us determine that the struct that GEP1 indexes into and the
+ // struct that GEP2 indexes into must either precisely overlap or be
+ // completely disjoint. Because they cannot partially overlap, indexing into
+ // different non-overlapping fields of the struct will never alias.
+
+ // Therefore, the only remaining thing needed to show that both GEPs can't
+ // alias is that the fields are not overlapping.
+ const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
+ const uint64_t StructSize = SL->getSizeInBytes();
+ const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
+ const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
+
+ auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
+ uint64_t V2Off, uint64_t V2Size) {
+ return V1Off < V2Off && V1Off + V1Size <= V2Off &&
+ ((V2Off + V2Size <= StructSize) ||
+ (V2Off + V2Size - StructSize <= V1Off));
+ };
+
+ if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
+ EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
+ return NoAlias;
+
+ return MayAlias;
+}
+
+// If a we have (a) a GEP and (b) a pointer based on an alloca, and the
+// beginning of the object the GEP points would have a negative offset with
+// repsect to the alloca, that means the GEP can not alias pointer (b).
+// Note that the pointer based on the alloca may not be a GEP. For
+// example, it may be the alloca itself.
+// The same applies if (b) is based on a GlobalVariable. Note that just being
+// based on isIdentifiedObject() is not enough - we need an identified object
+// that does not permit access to negative offsets. For example, a negative
+// offset from a noalias argument or call can be inbounds w.r.t the actual
+// underlying object.
+//
+// For example, consider:
+//
+// struct { int f0, int f1, ...} foo;
+// foo alloca;
+// foo* random = bar(alloca);
+// int *f0 = &alloca.f0
+// int *f1 = &random->f1;
+//
+// Which is lowered, approximately, to:
+//
+// %alloca = alloca %struct.foo
+// %random = call %struct.foo* @random(%struct.foo* %alloca)
+// %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
+// %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
+//
+// Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
+// by %alloca. Since the %f1 GEP is inbounds, that means %random must also
+// point into the same object. But since %f0 points to the beginning of %alloca,
+// the highest %f1 can be is (%alloca + 3). This means %random can not be higher
+// than (%alloca - 1), and so is not inbounds, a contradiction.
+bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
+ const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
+ LocationSize MaybeObjectAccessSize) {
+ // If the object access size is unknown, or the GEP isn't inbounds, bail.
+ if (MaybeObjectAccessSize == LocationSize::unknown() || !GEPOp->isInBounds())
+ return false;
+
+ const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue();
+
+ // We need the object to be an alloca or a globalvariable, and want to know
+ // the offset of the pointer from the object precisely, so no variable
+ // indices are allowed.
+ if (!(isa<AllocaInst>(DecompObject.Base) ||
+ isa<GlobalVariable>(DecompObject.Base)) ||
+ !DecompObject.VarIndices.empty())
+ return false;
+
+ APInt ObjectBaseOffset = DecompObject.StructOffset +
+ DecompObject.OtherOffset;
+
+ // If the GEP has no variable indices, we know the precise offset
+ // from the base, then use it. If the GEP has variable indices,
+ // we can't get exact GEP offset to identify pointer alias. So return
+ // false in that case.
+ if (!DecompGEP.VarIndices.empty())
+ return false;
+
+ APInt GEPBaseOffset = DecompGEP.StructOffset;
+ GEPBaseOffset += DecompGEP.OtherOffset;
+
+ return GEPBaseOffset.sge(ObjectBaseOffset + (int64_t)ObjectAccessSize);
+}
+
+/// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
+/// another pointer.
+///
+/// We know that V1 is a GEP, but we don't know anything about V2.
+/// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
+/// V2.
+AliasResult BasicAAResult::aliasGEP(
+ const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
+ const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
+ const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
+ DecomposedGEP DecompGEP1, DecompGEP2;
+ unsigned MaxPointerSize = getMaxPointerSize(DL);
+ DecompGEP1.StructOffset = DecompGEP1.OtherOffset = APInt(MaxPointerSize, 0);
+ DecompGEP2.StructOffset = DecompGEP2.OtherOffset = APInt(MaxPointerSize, 0);
+
+ bool GEP1MaxLookupReached =
+ DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT);
+ bool GEP2MaxLookupReached =
+ DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT);
+
+ APInt GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset;
+ APInt GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset;
+
+ assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
+ "DecomposeGEPExpression returned a result different from "
+ "GetUnderlyingObject");
+
+ // If the GEP's offset relative to its base is such that the base would
+ // fall below the start of the object underlying V2, then the GEP and V2
+ // cannot alias.
+ if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
+ isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
+ return NoAlias;
+ // If we have two gep instructions with must-alias or not-alias'ing base
+ // pointers, figure out if the indexes to the GEP tell us anything about the
+ // derived pointer.
+ if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
+ // Check for the GEP base being at a negative offset, this time in the other
+ // direction.
+ if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
+ isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
+ return NoAlias;
+ // Do the base pointers alias?
+ AliasResult BaseAlias =
+ aliasCheck(UnderlyingV1, LocationSize::unknown(), AAMDNodes(),
+ UnderlyingV2, LocationSize::unknown(), AAMDNodes(), AAQI);
+
+ // Check for geps of non-aliasing underlying pointers where the offsets are
+ // identical.
+ if ((BaseAlias == MayAlias) && V1Size == V2Size) {
+ // Do the base pointers alias assuming type and size.
+ AliasResult PreciseBaseAlias = aliasCheck(
+ UnderlyingV1, V1Size, V1AAInfo, UnderlyingV2, V2Size, V2AAInfo, AAQI);
+ if (PreciseBaseAlias == NoAlias) {
+ // See if the computed offset from the common pointer tells us about the
+ // relation of the resulting pointer.
+ // If the max search depth is reached the result is undefined
+ if (GEP2MaxLookupReached || GEP1MaxLookupReached)
+ return MayAlias;
+
+ // Same offsets.
+ if (GEP1BaseOffset == GEP2BaseOffset &&
+ DecompGEP1.VarIndices == DecompGEP2.VarIndices)
+ return NoAlias;
+ }
+ }
+
+ // If we get a No or May, then return it immediately, no amount of analysis
+ // will improve this situation.
+ if (BaseAlias != MustAlias) {
+ assert(BaseAlias == NoAlias || BaseAlias == MayAlias);
+ return BaseAlias;
+ }
+
+ // Otherwise, we have a MustAlias. Since the base pointers alias each other
+ // exactly, see if the computed offset from the common pointer tells us
+ // about the relation of the resulting pointer.
+ // If we know the two GEPs are based off of the exact same pointer (and not
+ // just the same underlying object), see if that tells us anything about
+ // the resulting pointers.
+ if (GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
+ GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
+ GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) {
+ AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
+ // If we couldn't find anything interesting, don't abandon just yet.
+ if (R != MayAlias)
+ return R;
+ }
+
+ // If the max search depth is reached, the result is undefined
+ if (GEP2MaxLookupReached || GEP1MaxLookupReached)
+ return MayAlias;
+
+ // Subtract the GEP2 pointer from the GEP1 pointer to find out their
+ // symbolic difference.
+ GEP1BaseOffset -= GEP2BaseOffset;
+ GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
+
+ } else {
+ // Check to see if these two pointers are related by the getelementptr
+ // instruction. If one pointer is a GEP with a non-zero index of the other
+ // pointer, we know they cannot alias.
+
+ // If both accesses are unknown size, we can't do anything useful here.
+ if (V1Size == LocationSize::unknown() && V2Size == LocationSize::unknown())
+ return MayAlias;
+
+ AliasResult R = aliasCheck(UnderlyingV1, LocationSize::unknown(),
+ AAMDNodes(), V2, LocationSize::unknown(),
+ V2AAInfo, AAQI, nullptr, UnderlyingV2);
+ if (R != MustAlias) {
+ // If V2 may alias GEP base pointer, conservatively returns MayAlias.
+ // If V2 is known not to alias GEP base pointer, then the two values
+ // cannot alias per GEP semantics: "Any memory access must be done through
+ // a pointer value associated with an address range of the memory access,
+ // otherwise the behavior is undefined.".
+ assert(R == NoAlias || R == MayAlias);
+ return R;
+ }
+
+ // If the max search depth is reached the result is undefined
+ if (GEP1MaxLookupReached)
+ return MayAlias;
+ }
+
+ // In the two GEP Case, if there is no difference in the offsets of the
+ // computed pointers, the resultant pointers are a must alias. This
+ // happens when we have two lexically identical GEP's (for example).
+ //
+ // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
+ // must aliases the GEP, the end result is a must alias also.
+ if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty())
+ return MustAlias;
+
+ // If there is a constant difference between the pointers, but the difference
+ // is less than the size of the associated memory object, then we know
+ // that the objects are partially overlapping. If the difference is
+ // greater, we know they do not overlap.
+ if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) {
+ if (GEP1BaseOffset.sge(0)) {
+ if (V2Size != LocationSize::unknown()) {
+ if (GEP1BaseOffset.ult(V2Size.getValue()))
+ return PartialAlias;
+ return NoAlias;
+ }
+ } else {
+ // We have the situation where:
+ // + +
+ // | BaseOffset |
+ // ---------------->|
+ // |-->V1Size |-------> V2Size
+ // GEP1 V2
+ // We need to know that V2Size is not unknown, otherwise we might have
+ // stripped a gep with negative index ('gep <ptr>, -1, ...).
+ if (V1Size != LocationSize::unknown() &&
+ V2Size != LocationSize::unknown()) {
+ if ((-GEP1BaseOffset).ult(V1Size.getValue()))
+ return PartialAlias;
+ return NoAlias;
+ }
+ }
+ }
+
+ if (!DecompGEP1.VarIndices.empty()) {
+ APInt Modulo(MaxPointerSize, 0);
+ bool AllPositive = true;
+ for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
+
+ // Try to distinguish something like &A[i][1] against &A[42][0].
+ // Grab the least significant bit set in any of the scales. We
+ // don't need std::abs here (even if the scale's negative) as we'll
+ // be ^'ing Modulo with itself later.
+ Modulo |= DecompGEP1.VarIndices[i].Scale;
+
+ if (AllPositive) {
+ // If the Value could change between cycles, then any reasoning about
+ // the Value this cycle may not hold in the next cycle. We'll just
+ // give up if we can't determine conditions that hold for every cycle:
+ const Value *V = DecompGEP1.VarIndices[i].V;
+
+ KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, DT);
+ bool SignKnownZero = Known.isNonNegative();
+ bool SignKnownOne = Known.isNegative();
+
+ // Zero-extension widens the variable, and so forces the sign
+ // bit to zero.
+ bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
+ SignKnownZero |= IsZExt;
+ SignKnownOne &= !IsZExt;
+
+ // If the variable begins with a zero then we know it's
+ // positive, regardless of whether the value is signed or
+ // unsigned.
+ APInt Scale = DecompGEP1.VarIndices[i].Scale;
+ AllPositive =
+ (SignKnownZero && Scale.sge(0)) || (SignKnownOne && Scale.slt(0));
+ }
+ }
+
+ Modulo = Modulo ^ (Modulo & (Modulo - 1));
+
+ // We can compute the difference between the two addresses
+ // mod Modulo. Check whether that difference guarantees that the
+ // two locations do not alias.
+ APInt ModOffset = GEP1BaseOffset & (Modulo - 1);
+ if (V1Size != LocationSize::unknown() &&
+ V2Size != LocationSize::unknown() && ModOffset.uge(V2Size.getValue()) &&
+ (Modulo - ModOffset).uge(V1Size.getValue()))
+ return NoAlias;
+
+ // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
+ // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
+ // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
+ if (AllPositive && GEP1BaseOffset.sgt(0) &&
+ V2Size != LocationSize::unknown() &&
+ GEP1BaseOffset.uge(V2Size.getValue()))
+ return NoAlias;
+
+ if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
+ GEP1BaseOffset, &AC, DT))
+ return NoAlias;
+ }
+
+ // Statically, we can see that the base objects are the same, but the
+ // pointers have dynamic offsets which we can't resolve. And none of our
+ // little tricks above worked.
+ return MayAlias;
+}
+
+static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
+ // If the results agree, take it.
+ if (A == B)
+ return A;
+ // A mix of PartialAlias and MustAlias is PartialAlias.
+ if ((A == PartialAlias && B == MustAlias) ||
+ (B == PartialAlias && A == MustAlias))
+ return PartialAlias;
+ // Otherwise, we don't know anything.
+ return MayAlias;
+}
+
+/// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
+/// against another.
+AliasResult
+BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
+ const AAMDNodes &SIAAInfo, const Value *V2,
+ LocationSize V2Size, const AAMDNodes &V2AAInfo,
+ const Value *UnderV2, AAQueryInfo &AAQI) {
+ // If the values are Selects with the same condition, we can do a more precise
+ // check: just check for aliases between the values on corresponding arms.
+ if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
+ if (SI->getCondition() == SI2->getCondition()) {
+ AliasResult Alias =
+ aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, SI2->getTrueValue(),
+ V2Size, V2AAInfo, AAQI);
+ if (Alias == MayAlias)
+ return MayAlias;
+ AliasResult ThisAlias =
+ aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
+ SI2->getFalseValue(), V2Size, V2AAInfo, AAQI);
+ return MergeAliasResults(ThisAlias, Alias);
+ }
+
+ // If both arms of the Select node NoAlias or MustAlias V2, then returns
+ // NoAlias / MustAlias. Otherwise, returns MayAlias.
+ AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(),
+ SISize, SIAAInfo, AAQI, UnderV2);
+ if (Alias == MayAlias)
+ return MayAlias;
+
+ AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(),
+ SISize, SIAAInfo, AAQI, UnderV2);
+ return MergeAliasResults(ThisAlias, Alias);
+}
+
+/// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
+/// another.
+AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
+ const AAMDNodes &PNAAInfo, const Value *V2,
+ LocationSize V2Size,
+ const AAMDNodes &V2AAInfo,
+ const Value *UnderV2, AAQueryInfo &AAQI) {
+ // Track phi nodes we have visited. We use this information when we determine
+ // value equivalence.
+ VisitedPhiBBs.insert(PN->getParent());
+
+ // If the values are PHIs in the same block, we can do a more precise
+ // as well as efficient check: just check for aliases between the values
+ // on corresponding edges.
+ if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
+ if (PN2->getParent() == PN->getParent()) {
+ AAQueryInfo::LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
+ MemoryLocation(V2, V2Size, V2AAInfo));
+ if (PN > V2)
+ std::swap(Locs.first, Locs.second);
+ // Analyse the PHIs' inputs under the assumption that the PHIs are
+ // NoAlias.
+ // If the PHIs are May/MustAlias there must be (recursively) an input
+ // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
+ // there must be an operation on the PHIs within the PHIs' value cycle
+ // that causes a MayAlias.
+ // Pretend the phis do not alias.
+ AliasResult Alias = NoAlias;
+ AliasResult OrigAliasResult;
+ {
+ // Limited lifetime iterator invalidated by the aliasCheck call below.
+ auto CacheIt = AAQI.AliasCache.find(Locs);
+ assert((CacheIt != AAQI.AliasCache.end()) &&
+ "There must exist an entry for the phi node");
+ OrigAliasResult = CacheIt->second;
+ CacheIt->second = NoAlias;
+ }
+
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ AliasResult ThisAlias =
+ aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
+ PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
+ V2Size, V2AAInfo, AAQI);
+ Alias = MergeAliasResults(ThisAlias, Alias);
+ if (Alias == MayAlias)
+ break;
+ }
+
+ // Reset if speculation failed.
+ if (Alias != NoAlias) {
+ auto Pair =
+ AAQI.AliasCache.insert(std::make_pair(Locs, OrigAliasResult));
+ assert(!Pair.second && "Entry must have existed");
+ Pair.first->second = OrigAliasResult;
+ }
+ return Alias;
+ }
+
+ SmallVector<Value *, 4> V1Srcs;
+ bool isRecursive = false;
+ if (PV) {
+ // If we have PhiValues then use it to get the underlying phi values.
+ const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
+ // If we have more phi values than the search depth then return MayAlias
+ // conservatively to avoid compile time explosion. The worst possible case
+ // is if both sides are PHI nodes. In which case, this is O(m x n) time
+ // where 'm' and 'n' are the number of PHI sources.
+ if (PhiValueSet.size() > MaxLookupSearchDepth)
+ return MayAlias;
+ // Add the values to V1Srcs
+ for (Value *PV1 : PhiValueSet) {
+ if (EnableRecPhiAnalysis) {
+ if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
+ // Check whether the incoming value is a GEP that advances the pointer
+ // result of this PHI node (e.g. in a loop). If this is the case, we
+ // would recurse and always get a MayAlias. Handle this case specially
+ // below.
+ if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
+ isa<ConstantInt>(PV1GEP->idx_begin())) {
+ isRecursive = true;
+ continue;
+ }
+ }
+ }
+ V1Srcs.push_back(PV1);
+ }
+ } else {
+ // If we don't have PhiInfo then just look at the operands of the phi itself
+ // FIXME: Remove this once we can guarantee that we have PhiInfo always
+ SmallPtrSet<Value *, 4> UniqueSrc;
+ for (Value *PV1 : PN->incoming_values()) {
+ if (isa<PHINode>(PV1))
+ // If any of the source itself is a PHI, return MayAlias conservatively
+ // to avoid compile time explosion. The worst possible case is if both
+ // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
+ // and 'n' are the number of PHI sources.
+ return MayAlias;
+
+ if (EnableRecPhiAnalysis)
+ if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
+ // Check whether the incoming value is a GEP that advances the pointer
+ // result of this PHI node (e.g. in a loop). If this is the case, we
+ // would recurse and always get a MayAlias. Handle this case specially
+ // below.
+ if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
+ isa<ConstantInt>(PV1GEP->idx_begin())) {
+ isRecursive = true;
+ continue;
+ }
+ }
+
+ if (UniqueSrc.insert(PV1).second)
+ V1Srcs.push_back(PV1);
+ }
+ }
+
+ // If V1Srcs is empty then that means that the phi has no underlying non-phi
+ // value. This should only be possible in blocks unreachable from the entry
+ // block, but return MayAlias just in case.
+ if (V1Srcs.empty())
+ return MayAlias;
+
+ // If this PHI node is recursive, set the size of the accessed memory to
+ // unknown to represent all the possible values the GEP could advance the
+ // pointer to.
+ if (isRecursive)
+ PNSize = LocationSize::unknown();
+
+ AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize,
+ PNAAInfo, AAQI, UnderV2);
+
+ // Early exit if the check of the first PHI source against V2 is MayAlias.
+ // Other results are not possible.
+ if (Alias == MayAlias)
+ return MayAlias;
+
+ // If all sources of the PHI node NoAlias or MustAlias V2, then returns
+ // NoAlias / MustAlias. Otherwise, returns MayAlias.
+ for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
+ Value *V = V1Srcs[i];
+
+ AliasResult ThisAlias =
+ aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, AAQI, UnderV2);
+ Alias = MergeAliasResults(ThisAlias, Alias);
+ if (Alias == MayAlias)
+ break;
+ }
+
+ return Alias;
+}
+
+/// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
+/// array references.
+AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
+ AAMDNodes V1AAInfo, const Value *V2,
+ LocationSize V2Size, AAMDNodes V2AAInfo,
+ AAQueryInfo &AAQI, const Value *O1,
+ const Value *O2) {
+ // If either of the memory references is empty, it doesn't matter what the
+ // pointer values are.
+ if (V1Size.isZero() || V2Size.isZero())
+ return NoAlias;
+
+ // Strip off any casts if they exist.
+ V1 = V1->stripPointerCastsAndInvariantGroups();
+ V2 = V2->stripPointerCastsAndInvariantGroups();
+
+ // If V1 or V2 is undef, the result is NoAlias because we can always pick a
+ // value for undef that aliases nothing in the program.
+ if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
+ return NoAlias;
+
+ // Are we checking for alias of the same value?
+ // Because we look 'through' phi nodes, we could look at "Value" pointers from
+ // different iterations. We must therefore make sure that this is not the
+ // case. The function isValueEqualInPotentialCycles ensures that this cannot
+ // happen by looking at the visited phi nodes and making sure they cannot
+ // reach the value.
+ if (isValueEqualInPotentialCycles(V1, V2))
+ return MustAlias;
+
+ if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
+ return NoAlias; // Scalars cannot alias each other
+
+ // Figure out what objects these things are pointing to if we can.
+ if (O1 == nullptr)
+ O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
+
+ if (O2 == nullptr)
+ O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
+
+ // Null values in the default address space don't point to any object, so they
+ // don't alias any other pointer.
+ if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
+ if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
+ return NoAlias;
+ if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
+ if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
+ return NoAlias;
+
+ if (O1 != O2) {
+ // If V1/V2 point to two different objects, we know that we have no alias.
+ if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
+ return NoAlias;
+
+ // Constant pointers can't alias with non-const isIdentifiedObject objects.
+ if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
+ (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
+ return NoAlias;
+
+ // Function arguments can't alias with things that are known to be
+ // unambigously identified at the function level.
+ if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
+ (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
+ return NoAlias;
+
+ // If one pointer is the result of a call/invoke or load and the other is a
+ // non-escaping local object within the same function, then we know the
+ // object couldn't escape to a point where the call could return it.
+ //
+ // Note that if the pointers are in different functions, there are a
+ // variety of complications. A call with a nocapture argument may still
+ // temporary store the nocapture argument's value in a temporary memory
+ // location if that memory location doesn't escape. Or it may pass a
+ // nocapture value to other functions as long as they don't capture it.
+ if (isEscapeSource(O1) &&
+ isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache))
+ return NoAlias;
+ if (isEscapeSource(O2) &&
+ isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache))
+ return NoAlias;
+ }
+
+ // If the size of one access is larger than the entire object on the other
+ // side, then we know such behavior is undefined and can assume no alias.
+ bool NullIsValidLocation = NullPointerIsDefined(&F);
+ if ((isObjectSmallerThan(
+ O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
+ TLI, NullIsValidLocation)) ||
+ (isObjectSmallerThan(
+ O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
+ TLI, NullIsValidLocation)))
+ return NoAlias;
+
+ // Check the cache before climbing up use-def chains. This also terminates
+ // otherwise infinitely recursive queries.
+ AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
+ MemoryLocation(V2, V2Size, V2AAInfo));
+ if (V1 > V2)
+ std::swap(Locs.first, Locs.second);
+ std::pair<AAQueryInfo::AliasCacheT::iterator, bool> Pair =
+ AAQI.AliasCache.try_emplace(Locs, MayAlias);
+ if (!Pair.second)
+ return Pair.first->second;
+
+ // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
+ // GEP can't simplify, we don't even look at the PHI cases.
+ if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
+ std::swap(V1, V2);
+ std::swap(V1Size, V2Size);
+ std::swap(O1, O2);
+ std::swap(V1AAInfo, V2AAInfo);
+ }
+ if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
+ AliasResult Result =
+ aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI);
+ if (Result != MayAlias) {
+ auto ItInsPair = AAQI.AliasCache.insert(std::make_pair(Locs, Result));
+ assert(!ItInsPair.second && "Entry must have existed");
+ ItInsPair.first->second = Result;
+ return Result;
+ }
+ }
+
+ if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
+ std::swap(V1, V2);
+ std::swap(O1, O2);
+ std::swap(V1Size, V2Size);
+ std::swap(V1AAInfo, V2AAInfo);
+ }
+ if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
+ AliasResult Result =
+ aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
+ if (Result != MayAlias) {
+ Pair = AAQI.AliasCache.try_emplace(Locs, Result);
+ assert(!Pair.second && "Entry must have existed");
+ return Pair.first->second = Result;
+ }
+ }
+
+ if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
+ std::swap(V1, V2);
+ std::swap(O1, O2);
+ std::swap(V1Size, V2Size);
+ std::swap(V1AAInfo, V2AAInfo);
+ }
+ if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
+ AliasResult Result =
+ aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
+ if (Result != MayAlias) {
+ Pair = AAQI.AliasCache.try_emplace(Locs, Result);
+ assert(!Pair.second && "Entry must have existed");
+ return Pair.first->second = Result;
+ }
+ }
+
+ // If both pointers are pointing into the same object and one of them
+ // accesses the entire object, then the accesses must overlap in some way.
+ if (O1 == O2)
+ if (V1Size.isPrecise() && V2Size.isPrecise() &&
+ (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
+ isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) {
+ Pair = AAQI.AliasCache.try_emplace(Locs, PartialAlias);
+ assert(!Pair.second && "Entry must have existed");
+ return Pair.first->second = PartialAlias;
+ }
+
+ // Recurse back into the best AA results we have, potentially with refined
+ // memory locations. We have already ensured that BasicAA has a MayAlias
+ // cache result for these, so any recursion back into BasicAA won't loop.
+ AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second, AAQI);
+ Pair = AAQI.AliasCache.try_emplace(Locs, Result);
+ assert(!Pair.second && "Entry must have existed");
+ return Pair.first->second = Result;
+}
+
+/// Check whether two Values can be considered equivalent.
+///
+/// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
+/// they can not be part of a cycle in the value graph by looking at all
+/// visited phi nodes an making sure that the phis cannot reach the value. We
+/// have to do this because we are looking through phi nodes (That is we say
+/// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
+bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
+ const Value *V2) {
+ if (V != V2)
+ return false;
+
+ const Instruction *Inst = dyn_cast<Instruction>(V);
+ if (!Inst)
+ return true;
+
+ if (VisitedPhiBBs.empty())
+ return true;
+
+ if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
+ return false;
+
+ // Make sure that the visited phis cannot reach the Value. This ensures that
+ // the Values cannot come from different iterations of a potential cycle the
+ // phi nodes could be involved in.
+ for (auto *P : VisitedPhiBBs)
+ if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT, LI))
+ return false;
+
+ return true;
+}
+
+/// Computes the symbolic difference between two de-composed GEPs.
+///
+/// Dest and Src are the variable indices from two decomposed GetElementPtr
+/// instructions GEP1 and GEP2 which have common base pointers.
+void BasicAAResult::GetIndexDifference(
+ SmallVectorImpl<VariableGEPIndex> &Dest,
+ const SmallVectorImpl<VariableGEPIndex> &Src) {
+ if (Src.empty())
+ return;
+
+ for (unsigned i = 0, e = Src.size(); i != e; ++i) {
+ const Value *V = Src[i].V;
+ unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
+ APInt Scale = Src[i].Scale;
+
+ // Find V in Dest. This is N^2, but pointer indices almost never have more
+ // than a few variable indexes.
+ for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
+ if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
+ Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
+ continue;
+
+ // If we found it, subtract off Scale V's from the entry in Dest. If it
+ // goes to zero, remove the entry.
+ if (Dest[j].Scale != Scale)
+ Dest[j].Scale -= Scale;
+ else
+ Dest.erase(Dest.begin() + j);
+ Scale = 0;
+ break;
+ }
+
+ // If we didn't consume this entry, add it to the end of the Dest list.
+ if (!!Scale) {
+ VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
+ Dest.push_back(Entry);
+ }
+ }
+}
+
+bool BasicAAResult::constantOffsetHeuristic(
+ const SmallVectorImpl<VariableGEPIndex> &VarIndices,
+ LocationSize MaybeV1Size, LocationSize MaybeV2Size, APInt BaseOffset,
+ AssumptionCache *AC, DominatorTree *DT) {
+ if (VarIndices.size() != 2 || MaybeV1Size == LocationSize::unknown() ||
+ MaybeV2Size == LocationSize::unknown())
+ return false;
+
+ const uint64_t V1Size = MaybeV1Size.getValue();
+ const uint64_t V2Size = MaybeV2Size.getValue();
+
+ const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
+
+ if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
+ Var0.Scale != -Var1.Scale)
+ return false;
+
+ unsigned Width = Var1.V->getType()->getIntegerBitWidth();
+
+ // We'll strip off the Extensions of Var0 and Var1 and do another round
+ // of GetLinearExpression decomposition. In the example above, if Var0
+ // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
+
+ APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
+ V1Offset(Width, 0);
+ bool NSW = true, NUW = true;
+ unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
+ const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
+ V0SExtBits, DL, 0, AC, DT, NSW, NUW);
+ NSW = true;
+ NUW = true;
+ const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
+ V1SExtBits, DL, 0, AC, DT, NSW, NUW);
+
+ if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
+ V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
+ return false;
+
+ // We have a hit - Var0 and Var1 only differ by a constant offset!
+
+ // If we've been sext'ed then zext'd the maximum difference between Var0 and
+ // Var1 is possible to calculate, but we're just interested in the absolute
+ // minimum difference between the two. The minimum distance may occur due to
+ // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
+ // the minimum distance between %i and %i + 5 is 3.
+ APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
+ MinDiff = APIntOps::umin(MinDiff, Wrapped);
+ APInt MinDiffBytes =
+ MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
+
+ // We can't definitely say whether GEP1 is before or after V2 due to wrapping
+ // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
+ // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
+ // V2Size can fit in the MinDiffBytes gap.
+ return MinDiffBytes.uge(V1Size + BaseOffset.abs()) &&
+ MinDiffBytes.uge(V2Size + BaseOffset.abs());
+}
+
+//===----------------------------------------------------------------------===//
+// BasicAliasAnalysis Pass
+//===----------------------------------------------------------------------===//
+
+AnalysisKey BasicAA::Key;
+
+BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
+ return BasicAAResult(F.getParent()->getDataLayout(),
+ F,
+ AM.getResult<TargetLibraryAnalysis>(F),
+ AM.getResult<AssumptionAnalysis>(F),
+ &AM.getResult<DominatorTreeAnalysis>(F),
+ AM.getCachedResult<LoopAnalysis>(F),
+ AM.getCachedResult<PhiValuesAnalysis>(F));
+}
+
+BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
+ initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
+}
+
+char BasicAAWrapperPass::ID = 0;
+
+void BasicAAWrapperPass::anchor() {}
+
+INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
+ "Basic Alias Analysis (stateless AA impl)", false, true)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
+ "Basic Alias Analysis (stateless AA impl)", false, true)
+
+FunctionPass *llvm::createBasicAAWrapperPass() {
+ return new BasicAAWrapperPass();
+}
+
+bool BasicAAWrapperPass::runOnFunction(Function &F) {
+ auto &ACT = getAnalysis<AssumptionCacheTracker>();
+ auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
+ auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
+ auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
+ auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
+
+ Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
+ TLIWP.getTLI(F), ACT.getAssumptionCache(F),
+ &DTWP.getDomTree(),
+ LIWP ? &LIWP->getLoopInfo() : nullptr,
+ PVWP ? &PVWP->getResult() : nullptr));
+
+ return false;
+}
+
+void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ AU.addUsedIfAvailable<PhiValuesWrapperPass>();
+}
+
+BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
+ return BasicAAResult(
+ F.getParent()->getDataLayout(), F,
+ P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
+ P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
+}