diff options
Diffstat (limited to 'llvm/lib/Analysis/CGSCCPassManager.cpp')
| -rw-r--r-- | llvm/lib/Analysis/CGSCCPassManager.cpp | 709 | 
1 files changed, 709 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/CGSCCPassManager.cpp b/llvm/lib/Analysis/CGSCCPassManager.cpp new file mode 100644 index 000000000000..a0b3f83cca6a --- /dev/null +++ b/llvm/lib/Analysis/CGSCCPassManager.cpp @@ -0,0 +1,709 @@ +//===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/CGSCCPassManager.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/Analysis/LazyCallGraph.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/InstIterator.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/PassManager.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <iterator> + +#define DEBUG_TYPE "cgscc" + +using namespace llvm; + +// Explicit template instantiations and specialization definitions for core +// template typedefs. +namespace llvm { + +// Explicit instantiations for the core proxy templates. +template class AllAnalysesOn<LazyCallGraph::SCC>; +template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>; +template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, +                           LazyCallGraph &, CGSCCUpdateResult &>; +template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>; +template class OuterAnalysisManagerProxy<ModuleAnalysisManager, +                                         LazyCallGraph::SCC, LazyCallGraph &>; +template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>; + +/// Explicitly specialize the pass manager run method to handle call graph +/// updates. +template <> +PreservedAnalyses +PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, +            CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC, +                                      CGSCCAnalysisManager &AM, +                                      LazyCallGraph &G, CGSCCUpdateResult &UR) { +  // Request PassInstrumentation from analysis manager, will use it to run +  // instrumenting callbacks for the passes later. +  PassInstrumentation PI = +      AM.getResult<PassInstrumentationAnalysis>(InitialC, G); + +  PreservedAnalyses PA = PreservedAnalyses::all(); + +  if (DebugLogging) +    dbgs() << "Starting CGSCC pass manager run.\n"; + +  // The SCC may be refined while we are running passes over it, so set up +  // a pointer that we can update. +  LazyCallGraph::SCC *C = &InitialC; + +  for (auto &Pass : Passes) { +    if (DebugLogging) +      dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n"; + +    // Check the PassInstrumentation's BeforePass callbacks before running the +    // pass, skip its execution completely if asked to (callback returns false). +    if (!PI.runBeforePass(*Pass, *C)) +      continue; + +    PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR); + +    if (UR.InvalidatedSCCs.count(C)) +      PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass); +    else +      PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C); + +    // Update the SCC if necessary. +    C = UR.UpdatedC ? UR.UpdatedC : C; + +    // If the CGSCC pass wasn't able to provide a valid updated SCC, the +    // current SCC may simply need to be skipped if invalid. +    if (UR.InvalidatedSCCs.count(C)) { +      LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); +      break; +    } +    // Check that we didn't miss any update scenario. +    assert(C->begin() != C->end() && "Cannot have an empty SCC!"); + +    // Update the analysis manager as each pass runs and potentially +    // invalidates analyses. +    AM.invalidate(*C, PassPA); + +    // Finally, we intersect the final preserved analyses to compute the +    // aggregate preserved set for this pass manager. +    PA.intersect(std::move(PassPA)); + +    // FIXME: Historically, the pass managers all called the LLVM context's +    // yield function here. We don't have a generic way to acquire the +    // context and it isn't yet clear what the right pattern is for yielding +    // in the new pass manager so it is currently omitted. +    // ...getContext().yield(); +  } + +  // Before we mark all of *this* SCC's analyses as preserved below, intersect +  // this with the cross-SCC preserved analysis set. This is used to allow +  // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation +  // for them. +  UR.CrossSCCPA.intersect(PA); + +  // Invalidation was handled after each pass in the above loop for the current +  // SCC. Therefore, the remaining analysis results in the AnalysisManager are +  // preserved. We mark this with a set so that we don't need to inspect each +  // one individually. +  PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>(); + +  if (DebugLogging) +    dbgs() << "Finished CGSCC pass manager run.\n"; + +  return PA; +} + +bool CGSCCAnalysisManagerModuleProxy::Result::invalidate( +    Module &M, const PreservedAnalyses &PA, +    ModuleAnalysisManager::Invalidator &Inv) { +  // If literally everything is preserved, we're done. +  if (PA.areAllPreserved()) +    return false; // This is still a valid proxy. + +  // If this proxy or the call graph is going to be invalidated, we also need +  // to clear all the keys coming from that analysis. +  // +  // We also directly invalidate the FAM's module proxy if necessary, and if +  // that proxy isn't preserved we can't preserve this proxy either. We rely on +  // it to handle module -> function analysis invalidation in the face of +  // structural changes and so if it's unavailable we conservatively clear the +  // entire SCC layer as well rather than trying to do invalidation ourselves. +  auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>(); +  if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) || +      Inv.invalidate<LazyCallGraphAnalysis>(M, PA) || +      Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) { +    InnerAM->clear(); + +    // And the proxy itself should be marked as invalid so that we can observe +    // the new call graph. This isn't strictly necessary because we cheat +    // above, but is still useful. +    return true; +  } + +  // Directly check if the relevant set is preserved so we can short circuit +  // invalidating SCCs below. +  bool AreSCCAnalysesPreserved = +      PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>(); + +  // Ok, we have a graph, so we can propagate the invalidation down into it. +  G->buildRefSCCs(); +  for (auto &RC : G->postorder_ref_sccs()) +    for (auto &C : RC) { +      Optional<PreservedAnalyses> InnerPA; + +      // Check to see whether the preserved set needs to be adjusted based on +      // module-level analysis invalidation triggering deferred invalidation +      // for this SCC. +      if (auto *OuterProxy = +              InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C)) +        for (const auto &OuterInvalidationPair : +             OuterProxy->getOuterInvalidations()) { +          AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; +          const auto &InnerAnalysisIDs = OuterInvalidationPair.second; +          if (Inv.invalidate(OuterAnalysisID, M, PA)) { +            if (!InnerPA) +              InnerPA = PA; +            for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) +              InnerPA->abandon(InnerAnalysisID); +          } +        } + +      // Check if we needed a custom PA set. If so we'll need to run the inner +      // invalidation. +      if (InnerPA) { +        InnerAM->invalidate(C, *InnerPA); +        continue; +      } + +      // Otherwise we only need to do invalidation if the original PA set didn't +      // preserve all SCC analyses. +      if (!AreSCCAnalysesPreserved) +        InnerAM->invalidate(C, PA); +    } + +  // Return false to indicate that this result is still a valid proxy. +  return false; +} + +template <> +CGSCCAnalysisManagerModuleProxy::Result +CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) { +  // Force the Function analysis manager to also be available so that it can +  // be accessed in an SCC analysis and proxied onward to function passes. +  // FIXME: It is pretty awkward to just drop the result here and assert that +  // we can find it again later. +  (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M); + +  return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M)); +} + +AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key; + +FunctionAnalysisManagerCGSCCProxy::Result +FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C, +                                       CGSCCAnalysisManager &AM, +                                       LazyCallGraph &CG) { +  // Collect the FunctionAnalysisManager from the Module layer and use that to +  // build the proxy result. +  // +  // This allows us to rely on the FunctionAnalysisMangaerModuleProxy to +  // invalidate the function analyses. +  auto &MAM = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager(); +  Module &M = *C.begin()->getFunction().getParent(); +  auto *FAMProxy = MAM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M); +  assert(FAMProxy && "The CGSCC pass manager requires that the FAM module " +                     "proxy is run on the module prior to entering the CGSCC " +                     "walk."); + +  // Note that we special-case invalidation handling of this proxy in the CGSCC +  // analysis manager's Module proxy. This avoids the need to do anything +  // special here to recompute all of this if ever the FAM's module proxy goes +  // away. +  return Result(FAMProxy->getManager()); +} + +bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate( +    LazyCallGraph::SCC &C, const PreservedAnalyses &PA, +    CGSCCAnalysisManager::Invalidator &Inv) { +  // If literally everything is preserved, we're done. +  if (PA.areAllPreserved()) +    return false; // This is still a valid proxy. + +  // If this proxy isn't marked as preserved, then even if the result remains +  // valid, the key itself may no longer be valid, so we clear everything. +  // +  // Note that in order to preserve this proxy, a module pass must ensure that +  // the FAM has been completely updated to handle the deletion of functions. +  // Specifically, any FAM-cached results for those functions need to have been +  // forcibly cleared. When preserved, this proxy will only invalidate results +  // cached on functions *still in the module* at the end of the module pass. +  auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>(); +  if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) { +    for (LazyCallGraph::Node &N : C) +      FAM->clear(N.getFunction(), N.getFunction().getName()); + +    return true; +  } + +  // Directly check if the relevant set is preserved. +  bool AreFunctionAnalysesPreserved = +      PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>(); + +  // Now walk all the functions to see if any inner analysis invalidation is +  // necessary. +  for (LazyCallGraph::Node &N : C) { +    Function &F = N.getFunction(); +    Optional<PreservedAnalyses> FunctionPA; + +    // Check to see whether the preserved set needs to be pruned based on +    // SCC-level analysis invalidation that triggers deferred invalidation +    // registered with the outer analysis manager proxy for this function. +    if (auto *OuterProxy = +            FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F)) +      for (const auto &OuterInvalidationPair : +           OuterProxy->getOuterInvalidations()) { +        AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; +        const auto &InnerAnalysisIDs = OuterInvalidationPair.second; +        if (Inv.invalidate(OuterAnalysisID, C, PA)) { +          if (!FunctionPA) +            FunctionPA = PA; +          for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) +            FunctionPA->abandon(InnerAnalysisID); +        } +      } + +    // Check if we needed a custom PA set, and if so we'll need to run the +    // inner invalidation. +    if (FunctionPA) { +      FAM->invalidate(F, *FunctionPA); +      continue; +    } + +    // Otherwise we only need to do invalidation if the original PA set didn't +    // preserve all function analyses. +    if (!AreFunctionAnalysesPreserved) +      FAM->invalidate(F, PA); +  } + +  // Return false to indicate that this result is still a valid proxy. +  return false; +} + +} // end namespace llvm + +/// When a new SCC is created for the graph and there might be function +/// analysis results cached for the functions now in that SCC two forms of +/// updates are required. +/// +/// First, a proxy from the SCC to the FunctionAnalysisManager needs to be +/// created so that any subsequent invalidation events to the SCC are +/// propagated to the function analysis results cached for functions within it. +/// +/// Second, if any of the functions within the SCC have analysis results with +/// outer analysis dependencies, then those dependencies would point to the +/// *wrong* SCC's analysis result. We forcibly invalidate the necessary +/// function analyses so that they don't retain stale handles. +static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C, +                                         LazyCallGraph &G, +                                         CGSCCAnalysisManager &AM) { +  // Get the relevant function analysis manager. +  auto &FAM = +      AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).getManager(); + +  // Now walk the functions in this SCC and invalidate any function analysis +  // results that might have outer dependencies on an SCC analysis. +  for (LazyCallGraph::Node &N : C) { +    Function &F = N.getFunction(); + +    auto *OuterProxy = +        FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F); +    if (!OuterProxy) +      // No outer analyses were queried, nothing to do. +      continue; + +    // Forcibly abandon all the inner analyses with dependencies, but +    // invalidate nothing else. +    auto PA = PreservedAnalyses::all(); +    for (const auto &OuterInvalidationPair : +         OuterProxy->getOuterInvalidations()) { +      const auto &InnerAnalysisIDs = OuterInvalidationPair.second; +      for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) +        PA.abandon(InnerAnalysisID); +    } + +    // Now invalidate anything we found. +    FAM.invalidate(F, PA); +  } +} + +/// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c +/// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly +/// added SCCs. +/// +/// The range of new SCCs must be in postorder already. The SCC they were split +/// out of must be provided as \p C. The current node being mutated and +/// triggering updates must be passed as \p N. +/// +/// This function returns the SCC containing \p N. This will be either \p C if +/// no new SCCs have been split out, or it will be the new SCC containing \p N. +template <typename SCCRangeT> +static LazyCallGraph::SCC * +incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G, +                       LazyCallGraph::Node &N, LazyCallGraph::SCC *C, +                       CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { +  using SCC = LazyCallGraph::SCC; + +  if (NewSCCRange.begin() == NewSCCRange.end()) +    return C; + +  // Add the current SCC to the worklist as its shape has changed. +  UR.CWorklist.insert(C); +  LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C +                    << "\n"); + +  SCC *OldC = C; + +  // Update the current SCC. Note that if we have new SCCs, this must actually +  // change the SCC. +  assert(C != &*NewSCCRange.begin() && +         "Cannot insert new SCCs without changing current SCC!"); +  C = &*NewSCCRange.begin(); +  assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); + +  // If we had a cached FAM proxy originally, we will want to create more of +  // them for each SCC that was split off. +  bool NeedFAMProxy = +      AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC) != nullptr; + +  // We need to propagate an invalidation call to all but the newly current SCC +  // because the outer pass manager won't do that for us after splitting them. +  // FIXME: We should accept a PreservedAnalysis from the CG updater so that if +  // there are preserved analysis we can avoid invalidating them here for +  // split-off SCCs. +  // We know however that this will preserve any FAM proxy so go ahead and mark +  // that. +  PreservedAnalyses PA; +  PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); +  AM.invalidate(*OldC, PA); + +  // Ensure the now-current SCC's function analyses are updated. +  if (NeedFAMProxy) +    updateNewSCCFunctionAnalyses(*C, G, AM); + +  for (SCC &NewC : llvm::reverse(make_range(std::next(NewSCCRange.begin()), +                                            NewSCCRange.end()))) { +    assert(C != &NewC && "No need to re-visit the current SCC!"); +    assert(OldC != &NewC && "Already handled the original SCC!"); +    UR.CWorklist.insert(&NewC); +    LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n"); + +    // Ensure new SCCs' function analyses are updated. +    if (NeedFAMProxy) +      updateNewSCCFunctionAnalyses(NewC, G, AM); + +    // Also propagate a normal invalidation to the new SCC as only the current +    // will get one from the pass manager infrastructure. +    AM.invalidate(NewC, PA); +  } +  return C; +} + +LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass( +    LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, +    CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { +  using Node = LazyCallGraph::Node; +  using Edge = LazyCallGraph::Edge; +  using SCC = LazyCallGraph::SCC; +  using RefSCC = LazyCallGraph::RefSCC; + +  RefSCC &InitialRC = InitialC.getOuterRefSCC(); +  SCC *C = &InitialC; +  RefSCC *RC = &InitialRC; +  Function &F = N.getFunction(); + +  // Walk the function body and build up the set of retained, promoted, and +  // demoted edges. +  SmallVector<Constant *, 16> Worklist; +  SmallPtrSet<Constant *, 16> Visited; +  SmallPtrSet<Node *, 16> RetainedEdges; +  SmallSetVector<Node *, 4> PromotedRefTargets; +  SmallSetVector<Node *, 4> DemotedCallTargets; + +  // First walk the function and handle all called functions. We do this first +  // because if there is a single call edge, whether there are ref edges is +  // irrelevant. +  for (Instruction &I : instructions(F)) +    if (auto CS = CallSite(&I)) +      if (Function *Callee = CS.getCalledFunction()) +        if (Visited.insert(Callee).second && !Callee->isDeclaration()) { +          Node &CalleeN = *G.lookup(*Callee); +          Edge *E = N->lookup(CalleeN); +          // FIXME: We should really handle adding new calls. While it will +          // make downstream usage more complex, there is no fundamental +          // limitation and it will allow passes within the CGSCC to be a bit +          // more flexible in what transforms they can do. Until then, we +          // verify that new calls haven't been introduced. +          assert(E && "No function transformations should introduce *new* " +                      "call edges! Any new calls should be modeled as " +                      "promoted existing ref edges!"); +          bool Inserted = RetainedEdges.insert(&CalleeN).second; +          (void)Inserted; +          assert(Inserted && "We should never visit a function twice."); +          if (!E->isCall()) +            PromotedRefTargets.insert(&CalleeN); +        } + +  // Now walk all references. +  for (Instruction &I : instructions(F)) +    for (Value *Op : I.operand_values()) +      if (auto *C = dyn_cast<Constant>(Op)) +        if (Visited.insert(C).second) +          Worklist.push_back(C); + +  auto VisitRef = [&](Function &Referee) { +    Node &RefereeN = *G.lookup(Referee); +    Edge *E = N->lookup(RefereeN); +    // FIXME: Similarly to new calls, we also currently preclude +    // introducing new references. See above for details. +    assert(E && "No function transformations should introduce *new* ref " +                "edges! Any new ref edges would require IPO which " +                "function passes aren't allowed to do!"); +    bool Inserted = RetainedEdges.insert(&RefereeN).second; +    (void)Inserted; +    assert(Inserted && "We should never visit a function twice."); +    if (E->isCall()) +      DemotedCallTargets.insert(&RefereeN); +  }; +  LazyCallGraph::visitReferences(Worklist, Visited, VisitRef); + +  // Include synthetic reference edges to known, defined lib functions. +  for (auto *F : G.getLibFunctions()) +    // While the list of lib functions doesn't have repeats, don't re-visit +    // anything handled above. +    if (!Visited.count(F)) +      VisitRef(*F); + +  // First remove all of the edges that are no longer present in this function. +  // The first step makes these edges uniformly ref edges and accumulates them +  // into a separate data structure so removal doesn't invalidate anything. +  SmallVector<Node *, 4> DeadTargets; +  for (Edge &E : *N) { +    if (RetainedEdges.count(&E.getNode())) +      continue; + +    SCC &TargetC = *G.lookupSCC(E.getNode()); +    RefSCC &TargetRC = TargetC.getOuterRefSCC(); +    if (&TargetRC == RC && E.isCall()) { +      if (C != &TargetC) { +        // For separate SCCs this is trivial. +        RC->switchTrivialInternalEdgeToRef(N, E.getNode()); +      } else { +        // Now update the call graph. +        C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()), +                                   G, N, C, AM, UR); +      } +    } + +    // Now that this is ready for actual removal, put it into our list. +    DeadTargets.push_back(&E.getNode()); +  } +  // Remove the easy cases quickly and actually pull them out of our list. +  DeadTargets.erase( +      llvm::remove_if(DeadTargets, +                      [&](Node *TargetN) { +                        SCC &TargetC = *G.lookupSCC(*TargetN); +                        RefSCC &TargetRC = TargetC.getOuterRefSCC(); + +                        // We can't trivially remove internal targets, so skip +                        // those. +                        if (&TargetRC == RC) +                          return false; + +                        RC->removeOutgoingEdge(N, *TargetN); +                        LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" +                                          << N << "' to '" << TargetN << "'\n"); +                        return true; +                      }), +      DeadTargets.end()); + +  // Now do a batch removal of the internal ref edges left. +  auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets); +  if (!NewRefSCCs.empty()) { +    // The old RefSCC is dead, mark it as such. +    UR.InvalidatedRefSCCs.insert(RC); + +    // Note that we don't bother to invalidate analyses as ref-edge +    // connectivity is not really observable in any way and is intended +    // exclusively to be used for ordering of transforms rather than for +    // analysis conclusions. + +    // Update RC to the "bottom". +    assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!"); +    RC = &C->getOuterRefSCC(); +    assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!"); + +    // The RC worklist is in reverse postorder, so we enqueue the new ones in +    // RPO except for the one which contains the source node as that is the +    // "bottom" we will continue processing in the bottom-up walk. +    assert(NewRefSCCs.front() == RC && +           "New current RefSCC not first in the returned list!"); +    for (RefSCC *NewRC : llvm::reverse(make_range(std::next(NewRefSCCs.begin()), +                                                  NewRefSCCs.end()))) { +      assert(NewRC != RC && "Should not encounter the current RefSCC further " +                            "in the postorder list of new RefSCCs."); +      UR.RCWorklist.insert(NewRC); +      LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: " +                        << *NewRC << "\n"); +    } +  } + +  // Next demote all the call edges that are now ref edges. This helps make +  // the SCCs small which should minimize the work below as we don't want to +  // form cycles that this would break. +  for (Node *RefTarget : DemotedCallTargets) { +    SCC &TargetC = *G.lookupSCC(*RefTarget); +    RefSCC &TargetRC = TargetC.getOuterRefSCC(); + +    // The easy case is when the target RefSCC is not this RefSCC. This is +    // only supported when the target RefSCC is a child of this RefSCC. +    if (&TargetRC != RC) { +      assert(RC->isAncestorOf(TargetRC) && +             "Cannot potentially form RefSCC cycles here!"); +      RC->switchOutgoingEdgeToRef(N, *RefTarget); +      LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N +                        << "' to '" << *RefTarget << "'\n"); +      continue; +    } + +    // We are switching an internal call edge to a ref edge. This may split up +    // some SCCs. +    if (C != &TargetC) { +      // For separate SCCs this is trivial. +      RC->switchTrivialInternalEdgeToRef(N, *RefTarget); +      continue; +    } + +    // Now update the call graph. +    C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N, +                               C, AM, UR); +  } + +  // Now promote ref edges into call edges. +  for (Node *CallTarget : PromotedRefTargets) { +    SCC &TargetC = *G.lookupSCC(*CallTarget); +    RefSCC &TargetRC = TargetC.getOuterRefSCC(); + +    // The easy case is when the target RefSCC is not this RefSCC. This is +    // only supported when the target RefSCC is a child of this RefSCC. +    if (&TargetRC != RC) { +      assert(RC->isAncestorOf(TargetRC) && +             "Cannot potentially form RefSCC cycles here!"); +      RC->switchOutgoingEdgeToCall(N, *CallTarget); +      LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N +                        << "' to '" << *CallTarget << "'\n"); +      continue; +    } +    LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '" +                      << N << "' to '" << *CallTarget << "'\n"); + +    // Otherwise we are switching an internal ref edge to a call edge. This +    // may merge away some SCCs, and we add those to the UpdateResult. We also +    // need to make sure to update the worklist in the event SCCs have moved +    // before the current one in the post-order sequence +    bool HasFunctionAnalysisProxy = false; +    auto InitialSCCIndex = RC->find(*C) - RC->begin(); +    bool FormedCycle = RC->switchInternalEdgeToCall( +        N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) { +          for (SCC *MergedC : MergedSCCs) { +            assert(MergedC != &TargetC && "Cannot merge away the target SCC!"); + +            HasFunctionAnalysisProxy |= +                AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>( +                    *MergedC) != nullptr; + +            // Mark that this SCC will no longer be valid. +            UR.InvalidatedSCCs.insert(MergedC); + +            // FIXME: We should really do a 'clear' here to forcibly release +            // memory, but we don't have a good way of doing that and +            // preserving the function analyses. +            auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); +            PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); +            AM.invalidate(*MergedC, PA); +          } +        }); + +    // If we formed a cycle by creating this call, we need to update more data +    // structures. +    if (FormedCycle) { +      C = &TargetC; +      assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); + +      // If one of the invalidated SCCs had a cached proxy to a function +      // analysis manager, we need to create a proxy in the new current SCC as +      // the invalidated SCCs had their functions moved. +      if (HasFunctionAnalysisProxy) +        AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G); + +      // Any analyses cached for this SCC are no longer precise as the shape +      // has changed by introducing this cycle. However, we have taken care to +      // update the proxies so it remains valide. +      auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); +      PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); +      AM.invalidate(*C, PA); +    } +    auto NewSCCIndex = RC->find(*C) - RC->begin(); +    // If we have actually moved an SCC to be topologically "below" the current +    // one due to merging, we will need to revisit the current SCC after +    // visiting those moved SCCs. +    // +    // It is critical that we *do not* revisit the current SCC unless we +    // actually move SCCs in the process of merging because otherwise we may +    // form a cycle where an SCC is split apart, merged, split, merged and so +    // on infinitely. +    if (InitialSCCIndex < NewSCCIndex) { +      // Put our current SCC back onto the worklist as we'll visit other SCCs +      // that are now definitively ordered prior to the current one in the +      // post-order sequence, and may end up observing more precise context to +      // optimize the current SCC. +      UR.CWorklist.insert(C); +      LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C +                        << "\n"); +      // Enqueue in reverse order as we pop off the back of the worklist. +      for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex, +                                                  RC->begin() + NewSCCIndex))) { +        UR.CWorklist.insert(&MovedC); +        LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: " +                          << MovedC << "\n"); +      } +    } +  } + +  assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!"); +  assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!"); +  assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!"); + +  // Record the current RefSCC and SCC for higher layers of the CGSCC pass +  // manager now that all the updates have been applied. +  if (RC != &InitialRC) +    UR.UpdatedRC = RC; +  if (C != &InitialC) +    UR.UpdatedC = C; + +  return *C; +}  | 
