diff options
Diffstat (limited to 'llvm/lib/Analysis/CaptureTracking.cpp')
| -rw-r--r-- | llvm/lib/Analysis/CaptureTracking.cpp | 389 | 
1 files changed, 389 insertions, 0 deletions
| diff --git a/llvm/lib/Analysis/CaptureTracking.cpp b/llvm/lib/Analysis/CaptureTracking.cpp new file mode 100644 index 000000000000..20e2f06540a3 --- /dev/null +++ b/llvm/lib/Analysis/CaptureTracking.cpp @@ -0,0 +1,389 @@ +//===--- CaptureTracking.cpp - Determine whether a pointer is captured ----===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file contains routines that help determine which pointers are captured. +// A pointer value is captured if the function makes a copy of any part of the +// pointer that outlives the call.  Not being captured means, more or less, that +// the pointer is only dereferenced and not stored in a global.  Returning part +// of the pointer as the function return value may or may not count as capturing +// the pointer, depending on the context. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/CaptureTracking.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/CFG.h" +#include "llvm/Analysis/OrderedBasicBlock.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" + +using namespace llvm; + +CaptureTracker::~CaptureTracker() {} + +bool CaptureTracker::shouldExplore(const Use *U) { return true; } + +bool CaptureTracker::isDereferenceableOrNull(Value *O, const DataLayout &DL) { +  // An inbounds GEP can either be a valid pointer (pointing into +  // or to the end of an allocation), or be null in the default +  // address space. So for an inbounds GEP there is no way to let +  // the pointer escape using clever GEP hacking because doing so +  // would make the pointer point outside of the allocated object +  // and thus make the GEP result a poison value. Similarly, other +  // dereferenceable pointers cannot be manipulated without producing +  // poison. +  if (auto *GEP = dyn_cast<GetElementPtrInst>(O)) +    if (GEP->isInBounds()) +      return true; +  bool CanBeNull; +  return O->getPointerDereferenceableBytes(DL, CanBeNull); +} + +namespace { +  struct SimpleCaptureTracker : public CaptureTracker { +    explicit SimpleCaptureTracker(bool ReturnCaptures) +      : ReturnCaptures(ReturnCaptures), Captured(false) {} + +    void tooManyUses() override { Captured = true; } + +    bool captured(const Use *U) override { +      if (isa<ReturnInst>(U->getUser()) && !ReturnCaptures) +        return false; + +      Captured = true; +      return true; +    } + +    bool ReturnCaptures; + +    bool Captured; +  }; + +  /// Only find pointer captures which happen before the given instruction. Uses +  /// the dominator tree to determine whether one instruction is before another. +  /// Only support the case where the Value is defined in the same basic block +  /// as the given instruction and the use. +  struct CapturesBefore : public CaptureTracker { + +    CapturesBefore(bool ReturnCaptures, const Instruction *I, const DominatorTree *DT, +                   bool IncludeI, OrderedBasicBlock *IC) +      : OrderedBB(IC), BeforeHere(I), DT(DT), +        ReturnCaptures(ReturnCaptures), IncludeI(IncludeI), Captured(false) {} + +    void tooManyUses() override { Captured = true; } + +    bool isSafeToPrune(Instruction *I) { +      BasicBlock *BB = I->getParent(); +      // We explore this usage only if the usage can reach "BeforeHere". +      // If use is not reachable from entry, there is no need to explore. +      if (BeforeHere != I && !DT->isReachableFromEntry(BB)) +        return true; + +      // Compute the case where both instructions are inside the same basic +      // block. Since instructions in the same BB as BeforeHere are numbered in +      // 'OrderedBB', avoid using 'dominates' and 'isPotentiallyReachable' +      // which are very expensive for large basic blocks. +      if (BB == BeforeHere->getParent()) { +        // 'I' dominates 'BeforeHere' => not safe to prune. +        // +        // The value defined by an invoke dominates an instruction only +        // if it dominates every instruction in UseBB. A PHI is dominated only +        // if the instruction dominates every possible use in the UseBB. Since +        // UseBB == BB, avoid pruning. +        if (isa<InvokeInst>(BeforeHere) || isa<PHINode>(I) || I == BeforeHere) +          return false; +        if (!OrderedBB->dominates(BeforeHere, I)) +          return false; + +        // 'BeforeHere' comes before 'I', it's safe to prune if we also +        // guarantee that 'I' never reaches 'BeforeHere' through a back-edge or +        // by its successors, i.e, prune if: +        // +        //  (1) BB is an entry block or have no successors. +        //  (2) There's no path coming back through BB successors. +        if (BB == &BB->getParent()->getEntryBlock() || +            !BB->getTerminator()->getNumSuccessors()) +          return true; + +        SmallVector<BasicBlock*, 32> Worklist; +        Worklist.append(succ_begin(BB), succ_end(BB)); +        return !isPotentiallyReachableFromMany(Worklist, BB, nullptr, DT); +      } + +      // If the value is defined in the same basic block as use and BeforeHere, +      // there is no need to explore the use if BeforeHere dominates use. +      // Check whether there is a path from I to BeforeHere. +      if (BeforeHere != I && DT->dominates(BeforeHere, I) && +          !isPotentiallyReachable(I, BeforeHere, nullptr, DT)) +        return true; + +      return false; +    } + +    bool shouldExplore(const Use *U) override { +      Instruction *I = cast<Instruction>(U->getUser()); + +      if (BeforeHere == I && !IncludeI) +        return false; + +      if (isSafeToPrune(I)) +        return false; + +      return true; +    } + +    bool captured(const Use *U) override { +      if (isa<ReturnInst>(U->getUser()) && !ReturnCaptures) +        return false; + +      if (!shouldExplore(U)) +        return false; + +      Captured = true; +      return true; +    } + +    OrderedBasicBlock *OrderedBB; +    const Instruction *BeforeHere; +    const DominatorTree *DT; + +    bool ReturnCaptures; +    bool IncludeI; + +    bool Captured; +  }; +} + +/// PointerMayBeCaptured - Return true if this pointer value may be captured +/// by the enclosing function (which is required to exist).  This routine can +/// be expensive, so consider caching the results.  The boolean ReturnCaptures +/// specifies whether returning the value (or part of it) from the function +/// counts as capturing it or not.  The boolean StoreCaptures specified whether +/// storing the value (or part of it) into memory anywhere automatically +/// counts as capturing it or not. +bool llvm::PointerMayBeCaptured(const Value *V, +                                bool ReturnCaptures, bool StoreCaptures, +                                unsigned MaxUsesToExplore) { +  assert(!isa<GlobalValue>(V) && +         "It doesn't make sense to ask whether a global is captured."); + +  // TODO: If StoreCaptures is not true, we could do Fancy analysis +  // to determine whether this store is not actually an escape point. +  // In that case, BasicAliasAnalysis should be updated as well to +  // take advantage of this. +  (void)StoreCaptures; + +  SimpleCaptureTracker SCT(ReturnCaptures); +  PointerMayBeCaptured(V, &SCT, MaxUsesToExplore); +  return SCT.Captured; +} + +/// PointerMayBeCapturedBefore - Return true if this pointer value may be +/// captured by the enclosing function (which is required to exist). If a +/// DominatorTree is provided, only captures which happen before the given +/// instruction are considered. This routine can be expensive, so consider +/// caching the results.  The boolean ReturnCaptures specifies whether +/// returning the value (or part of it) from the function counts as capturing +/// it or not.  The boolean StoreCaptures specified whether storing the value +/// (or part of it) into memory anywhere automatically counts as capturing it +/// or not. A ordered basic block \p OBB can be used in order to speed up +/// queries about relative order among instructions in the same basic block. +bool llvm::PointerMayBeCapturedBefore(const Value *V, bool ReturnCaptures, +                                      bool StoreCaptures, const Instruction *I, +                                      const DominatorTree *DT, bool IncludeI, +                                      OrderedBasicBlock *OBB, +                                      unsigned MaxUsesToExplore) { +  assert(!isa<GlobalValue>(V) && +         "It doesn't make sense to ask whether a global is captured."); +  bool UseNewOBB = OBB == nullptr; + +  if (!DT) +    return PointerMayBeCaptured(V, ReturnCaptures, StoreCaptures, +                                MaxUsesToExplore); +  if (UseNewOBB) +    OBB = new OrderedBasicBlock(I->getParent()); + +  // TODO: See comment in PointerMayBeCaptured regarding what could be done +  // with StoreCaptures. + +  CapturesBefore CB(ReturnCaptures, I, DT, IncludeI, OBB); +  PointerMayBeCaptured(V, &CB, MaxUsesToExplore); + +  if (UseNewOBB) +    delete OBB; +  return CB.Captured; +} + +void llvm::PointerMayBeCaptured(const Value *V, CaptureTracker *Tracker, +                                unsigned MaxUsesToExplore) { +  assert(V->getType()->isPointerTy() && "Capture is for pointers only!"); +  SmallVector<const Use *, DefaultMaxUsesToExplore> Worklist; +  SmallSet<const Use *, DefaultMaxUsesToExplore> Visited; + +  auto AddUses = [&](const Value *V) { +    unsigned Count = 0; +    for (const Use &U : V->uses()) { +      // If there are lots of uses, conservatively say that the value +      // is captured to avoid taking too much compile time. +      if (Count++ >= MaxUsesToExplore) +        return Tracker->tooManyUses(); +      if (!Visited.insert(&U).second) +        continue; +      if (!Tracker->shouldExplore(&U)) +        continue; +      Worklist.push_back(&U); +    } +  }; +  AddUses(V); + +  while (!Worklist.empty()) { +    const Use *U = Worklist.pop_back_val(); +    Instruction *I = cast<Instruction>(U->getUser()); +    V = U->get(); + +    switch (I->getOpcode()) { +    case Instruction::Call: +    case Instruction::Invoke: { +      auto *Call = cast<CallBase>(I); +      // Not captured if the callee is readonly, doesn't return a copy through +      // its return value and doesn't unwind (a readonly function can leak bits +      // by throwing an exception or not depending on the input value). +      if (Call->onlyReadsMemory() && Call->doesNotThrow() && +          Call->getType()->isVoidTy()) +        break; + +      // The pointer is not captured if returned pointer is not captured. +      // NOTE: CaptureTracking users should not assume that only functions +      // marked with nocapture do not capture. This means that places like +      // GetUnderlyingObject in ValueTracking or DecomposeGEPExpression +      // in BasicAA also need to know about this property. +      if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(Call, +                                                                      true)) { +        AddUses(Call); +        break; +      } + +      // Volatile operations effectively capture the memory location that they +      // load and store to. +      if (auto *MI = dyn_cast<MemIntrinsic>(Call)) +        if (MI->isVolatile()) +          if (Tracker->captured(U)) +            return; + +      // Not captured if only passed via 'nocapture' arguments.  Note that +      // calling a function pointer does not in itself cause the pointer to +      // be captured.  This is a subtle point considering that (for example) +      // the callee might return its own address.  It is analogous to saying +      // that loading a value from a pointer does not cause the pointer to be +      // captured, even though the loaded value might be the pointer itself +      // (think of self-referential objects). +      for (auto IdxOpPair : enumerate(Call->data_ops())) { +        int Idx = IdxOpPair.index(); +        Value *A = IdxOpPair.value(); +        if (A == V && !Call->doesNotCapture(Idx)) +          // The parameter is not marked 'nocapture' - captured. +          if (Tracker->captured(U)) +            return; +      } +      break; +    } +    case Instruction::Load: +      // Volatile loads make the address observable. +      if (cast<LoadInst>(I)->isVolatile()) +        if (Tracker->captured(U)) +          return; +      break; +    case Instruction::VAArg: +      // "va-arg" from a pointer does not cause it to be captured. +      break; +    case Instruction::Store: +        // Stored the pointer - conservatively assume it may be captured. +        // Volatile stores make the address observable. +      if (V == I->getOperand(0) || cast<StoreInst>(I)->isVolatile()) +        if (Tracker->captured(U)) +          return; +      break; +    case Instruction::AtomicRMW: { +      // atomicrmw conceptually includes both a load and store from +      // the same location. +      // As with a store, the location being accessed is not captured, +      // but the value being stored is. +      // Volatile stores make the address observable. +      auto *ARMWI = cast<AtomicRMWInst>(I); +      if (ARMWI->getValOperand() == V || ARMWI->isVolatile()) +        if (Tracker->captured(U)) +          return; +      break; +    } +    case Instruction::AtomicCmpXchg: { +      // cmpxchg conceptually includes both a load and store from +      // the same location. +      // As with a store, the location being accessed is not captured, +      // but the value being stored is. +      // Volatile stores make the address observable. +      auto *ACXI = cast<AtomicCmpXchgInst>(I); +      if (ACXI->getCompareOperand() == V || ACXI->getNewValOperand() == V || +          ACXI->isVolatile()) +        if (Tracker->captured(U)) +          return; +      break; +    } +    case Instruction::BitCast: +    case Instruction::GetElementPtr: +    case Instruction::PHI: +    case Instruction::Select: +    case Instruction::AddrSpaceCast: +      // The original value is not captured via this if the new value isn't. +      AddUses(I); +      break; +    case Instruction::ICmp: { +      unsigned Idx = (I->getOperand(0) == V) ? 0 : 1; +      unsigned OtherIdx = 1 - Idx; +      if (auto *CPN = dyn_cast<ConstantPointerNull>(I->getOperand(OtherIdx))) { +        // Don't count comparisons of a no-alias return value against null as +        // captures. This allows us to ignore comparisons of malloc results +        // with null, for example. +        if (CPN->getType()->getAddressSpace() == 0) +          if (isNoAliasCall(V->stripPointerCasts())) +            break; +        if (!I->getFunction()->nullPointerIsDefined()) { +          auto *O = I->getOperand(Idx)->stripPointerCastsSameRepresentation(); +          // Comparing a dereferenceable_or_null pointer against null cannot +          // lead to pointer escapes, because if it is not null it must be a +          // valid (in-bounds) pointer. +          if (Tracker->isDereferenceableOrNull(O, I->getModule()->getDataLayout())) +            break; +        } +      } +      // Comparison against value stored in global variable. Given the pointer +      // does not escape, its value cannot be guessed and stored separately in a +      // global variable. +      auto *LI = dyn_cast<LoadInst>(I->getOperand(OtherIdx)); +      if (LI && isa<GlobalVariable>(LI->getPointerOperand())) +        break; +      // Otherwise, be conservative. There are crazy ways to capture pointers +      // using comparisons. +      if (Tracker->captured(U)) +        return; +      break; +    } +    default: +      // Something else - be conservative and say it is captured. +      if (Tracker->captured(U)) +        return; +      break; +    } +  } + +  // All uses examined. +} | 
