diff options
Diffstat (limited to 'llvm/lib/Analysis/IVUsers.cpp')
-rw-r--r-- | llvm/lib/Analysis/IVUsers.cpp | 426 |
1 files changed, 426 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/IVUsers.cpp b/llvm/lib/Analysis/IVUsers.cpp new file mode 100644 index 000000000000..681a0cf7e981 --- /dev/null +++ b/llvm/lib/Analysis/IVUsers.cpp @@ -0,0 +1,426 @@ +//===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements bookkeeping for "interesting" users of expressions +// computed from induction variables. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/IVUsers.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/CodeMetrics.h" +#include "llvm/Analysis/LoopAnalysisManager.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Type.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +using namespace llvm; + +#define DEBUG_TYPE "iv-users" + +AnalysisKey IVUsersAnalysis::Key; + +IVUsers IVUsersAnalysis::run(Loop &L, LoopAnalysisManager &AM, + LoopStandardAnalysisResults &AR) { + return IVUsers(&L, &AR.AC, &AR.LI, &AR.DT, &AR.SE); +} + +char IVUsersWrapperPass::ID = 0; +INITIALIZE_PASS_BEGIN(IVUsersWrapperPass, "iv-users", + "Induction Variable Users", false, true) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) +INITIALIZE_PASS_END(IVUsersWrapperPass, "iv-users", "Induction Variable Users", + false, true) + +Pass *llvm::createIVUsersPass() { return new IVUsersWrapperPass(); } + +/// isInteresting - Test whether the given expression is "interesting" when +/// used by the given expression, within the context of analyzing the +/// given loop. +static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L, + ScalarEvolution *SE, LoopInfo *LI) { + // An addrec is interesting if it's affine or if it has an interesting start. + if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { + // Keep things simple. Don't touch loop-variant strides unless they're + // only used outside the loop and we can simplify them. + if (AR->getLoop() == L) + return AR->isAffine() || + (!L->contains(I) && + SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR); + // Otherwise recurse to see if the start value is interesting, and that + // the step value is not interesting, since we don't yet know how to + // do effective SCEV expansions for addrecs with interesting steps. + return isInteresting(AR->getStart(), I, L, SE, LI) && + !isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI); + } + + // An add is interesting if exactly one of its operands is interesting. + if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { + bool AnyInterestingYet = false; + for (const auto *Op : Add->operands()) + if (isInteresting(Op, I, L, SE, LI)) { + if (AnyInterestingYet) + return false; + AnyInterestingYet = true; + } + return AnyInterestingYet; + } + + // Nothing else is interesting here. + return false; +} + +/// Return true if all loop headers that dominate this block are in simplified +/// form. +static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT, + const LoopInfo *LI, + SmallPtrSetImpl<Loop*> &SimpleLoopNests) { + Loop *NearestLoop = nullptr; + for (DomTreeNode *Rung = DT->getNode(BB); + Rung; Rung = Rung->getIDom()) { + BasicBlock *DomBB = Rung->getBlock(); + Loop *DomLoop = LI->getLoopFor(DomBB); + if (DomLoop && DomLoop->getHeader() == DomBB) { + // If the domtree walk reaches a loop with no preheader, return false. + if (!DomLoop->isLoopSimplifyForm()) + return false; + // If we have already checked this loop nest, stop checking. + if (SimpleLoopNests.count(DomLoop)) + break; + // If we have not already checked this loop nest, remember the loop + // header nearest to BB. The nearest loop may not contain BB. + if (!NearestLoop) + NearestLoop = DomLoop; + } + } + if (NearestLoop) + SimpleLoopNests.insert(NearestLoop); + return true; +} + +/// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression +/// and now we need to decide whether the user should use the preinc or post-inc +/// value. If this user should use the post-inc version of the IV, return true. +/// +/// Choosing wrong here can break dominance properties (if we choose to use the +/// post-inc value when we cannot) or it can end up adding extra live-ranges to +/// the loop, resulting in reg-reg copies (if we use the pre-inc value when we +/// should use the post-inc value). +static bool IVUseShouldUsePostIncValue(Instruction *User, Value *Operand, + const Loop *L, DominatorTree *DT) { + // If the user is in the loop, use the preinc value. + if (L->contains(User)) + return false; + + BasicBlock *LatchBlock = L->getLoopLatch(); + if (!LatchBlock) + return false; + + // Ok, the user is outside of the loop. If it is dominated by the latch + // block, use the post-inc value. + if (DT->dominates(LatchBlock, User->getParent())) + return true; + + // There is one case we have to be careful of: PHI nodes. These little guys + // can live in blocks that are not dominated by the latch block, but (since + // their uses occur in the predecessor block, not the block the PHI lives in) + // should still use the post-inc value. Check for this case now. + PHINode *PN = dyn_cast<PHINode>(User); + if (!PN || !Operand) + return false; // not a phi, not dominated by latch block. + + // Look at all of the uses of Operand by the PHI node. If any use corresponds + // to a block that is not dominated by the latch block, give up and use the + // preincremented value. + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) + if (PN->getIncomingValue(i) == Operand && + !DT->dominates(LatchBlock, PN->getIncomingBlock(i))) + return false; + + // Okay, all uses of Operand by PN are in predecessor blocks that really are + // dominated by the latch block. Use the post-incremented value. + return true; +} + +/// AddUsersImpl - Inspect the specified instruction. If it is a +/// reducible SCEV, recursively add its users to the IVUsesByStride set and +/// return true. Otherwise, return false. +bool IVUsers::AddUsersImpl(Instruction *I, + SmallPtrSetImpl<Loop*> &SimpleLoopNests) { + const DataLayout &DL = I->getModule()->getDataLayout(); + + // Add this IV user to the Processed set before returning false to ensure that + // all IV users are members of the set. See IVUsers::isIVUserOrOperand. + if (!Processed.insert(I).second) + return true; // Instruction already handled. + + if (!SE->isSCEVable(I->getType())) + return false; // Void and FP expressions cannot be reduced. + + // IVUsers is used by LSR which assumes that all SCEV expressions are safe to + // pass to SCEVExpander. Expressions are not safe to expand if they represent + // operations that are not safe to speculate, namely integer division. + if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I)) + return false; + + // LSR is not APInt clean, do not touch integers bigger than 64-bits. + // Also avoid creating IVs of non-native types. For example, we don't want a + // 64-bit IV in 32-bit code just because the loop has one 64-bit cast. + uint64_t Width = SE->getTypeSizeInBits(I->getType()); + if (Width > 64 || !DL.isLegalInteger(Width)) + return false; + + // Don't attempt to promote ephemeral values to indvars. They will be removed + // later anyway. + if (EphValues.count(I)) + return false; + + // Get the symbolic expression for this instruction. + const SCEV *ISE = SE->getSCEV(I); + + // If we've come to an uninteresting expression, stop the traversal and + // call this a user. + if (!isInteresting(ISE, I, L, SE, LI)) + return false; + + SmallPtrSet<Instruction *, 4> UniqueUsers; + for (Use &U : I->uses()) { + Instruction *User = cast<Instruction>(U.getUser()); + if (!UniqueUsers.insert(User).second) + continue; + + // Do not infinitely recurse on PHI nodes. + if (isa<PHINode>(User) && Processed.count(User)) + continue; + + // Only consider IVUsers that are dominated by simplified loop + // headers. Otherwise, SCEVExpander will crash. + BasicBlock *UseBB = User->getParent(); + // A phi's use is live out of its predecessor block. + if (PHINode *PHI = dyn_cast<PHINode>(User)) { + unsigned OperandNo = U.getOperandNo(); + unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo); + UseBB = PHI->getIncomingBlock(ValNo); + } + if (!isSimplifiedLoopNest(UseBB, DT, LI, SimpleLoopNests)) + return false; + + // Descend recursively, but not into PHI nodes outside the current loop. + // It's important to see the entire expression outside the loop to get + // choices that depend on addressing mode use right, although we won't + // consider references outside the loop in all cases. + // If User is already in Processed, we don't want to recurse into it again, + // but do want to record a second reference in the same instruction. + bool AddUserToIVUsers = false; + if (LI->getLoopFor(User->getParent()) != L) { + if (isa<PHINode>(User) || Processed.count(User) || + !AddUsersImpl(User, SimpleLoopNests)) { + LLVM_DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n' + << " OF SCEV: " << *ISE << '\n'); + AddUserToIVUsers = true; + } + } else if (Processed.count(User) || !AddUsersImpl(User, SimpleLoopNests)) { + LLVM_DEBUG(dbgs() << "FOUND USER: " << *User << '\n' + << " OF SCEV: " << *ISE << '\n'); + AddUserToIVUsers = true; + } + + if (AddUserToIVUsers) { + // Okay, we found a user that we cannot reduce. + IVStrideUse &NewUse = AddUser(User, I); + // Autodetect the post-inc loop set, populating NewUse.PostIncLoops. + // The regular return value here is discarded; instead of recording + // it, we just recompute it when we need it. + const SCEV *OriginalISE = ISE; + + auto NormalizePred = [&](const SCEVAddRecExpr *AR) { + auto *L = AR->getLoop(); + bool Result = IVUseShouldUsePostIncValue(User, I, L, DT); + if (Result) + NewUse.PostIncLoops.insert(L); + return Result; + }; + + ISE = normalizeForPostIncUseIf(ISE, NormalizePred, *SE); + + // PostIncNormalization effectively simplifies the expression under + // pre-increment assumptions. Those assumptions (no wrapping) might not + // hold for the post-inc value. Catch such cases by making sure the + // transformation is invertible. + if (OriginalISE != ISE) { + const SCEV *DenormalizedISE = + denormalizeForPostIncUse(ISE, NewUse.PostIncLoops, *SE); + + // If we normalized the expression, but denormalization doesn't give the + // original one, discard this user. + if (OriginalISE != DenormalizedISE) { + LLVM_DEBUG(dbgs() + << " DISCARDING (NORMALIZATION ISN'T INVERTIBLE): " + << *ISE << '\n'); + IVUses.pop_back(); + return false; + } + } + LLVM_DEBUG(if (SE->getSCEV(I) != ISE) dbgs() + << " NORMALIZED TO: " << *ISE << '\n'); + } + } + return true; +} + +bool IVUsers::AddUsersIfInteresting(Instruction *I) { + // SCEVExpander can only handle users that are dominated by simplified loop + // entries. Keep track of all loops that are only dominated by other simple + // loops so we don't traverse the domtree for each user. + SmallPtrSet<Loop*,16> SimpleLoopNests; + + return AddUsersImpl(I, SimpleLoopNests); +} + +IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) { + IVUses.push_back(new IVStrideUse(this, User, Operand)); + return IVUses.back(); +} + +IVUsers::IVUsers(Loop *L, AssumptionCache *AC, LoopInfo *LI, DominatorTree *DT, + ScalarEvolution *SE) + : L(L), AC(AC), LI(LI), DT(DT), SE(SE), IVUses() { + // Collect ephemeral values so that AddUsersIfInteresting skips them. + EphValues.clear(); + CodeMetrics::collectEphemeralValues(L, AC, EphValues); + + // Find all uses of induction variables in this loop, and categorize + // them by stride. Start by finding all of the PHI nodes in the header for + // this loop. If they are induction variables, inspect their uses. + for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) + (void)AddUsersIfInteresting(&*I); +} + +void IVUsers::print(raw_ostream &OS, const Module *M) const { + OS << "IV Users for loop "; + L->getHeader()->printAsOperand(OS, false); + if (SE->hasLoopInvariantBackedgeTakenCount(L)) { + OS << " with backedge-taken count " << *SE->getBackedgeTakenCount(L); + } + OS << ":\n"; + + for (const IVStrideUse &IVUse : IVUses) { + OS << " "; + IVUse.getOperandValToReplace()->printAsOperand(OS, false); + OS << " = " << *getReplacementExpr(IVUse); + for (auto PostIncLoop : IVUse.PostIncLoops) { + OS << " (post-inc with loop "; + PostIncLoop->getHeader()->printAsOperand(OS, false); + OS << ")"; + } + OS << " in "; + if (IVUse.getUser()) + IVUse.getUser()->print(OS); + else + OS << "Printing <null> User"; + OS << '\n'; + } +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void IVUsers::dump() const { print(dbgs()); } +#endif + +void IVUsers::releaseMemory() { + Processed.clear(); + IVUses.clear(); +} + +IVUsersWrapperPass::IVUsersWrapperPass() : LoopPass(ID) { + initializeIVUsersWrapperPassPass(*PassRegistry::getPassRegistry()); +} + +void IVUsersWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<AssumptionCacheTracker>(); + AU.addRequired<LoopInfoWrapperPass>(); + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<ScalarEvolutionWrapperPass>(); + AU.setPreservesAll(); +} + +bool IVUsersWrapperPass::runOnLoop(Loop *L, LPPassManager &LPM) { + auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache( + *L->getHeader()->getParent()); + auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); + + IU.reset(new IVUsers(L, AC, LI, DT, SE)); + return false; +} + +void IVUsersWrapperPass::print(raw_ostream &OS, const Module *M) const { + IU->print(OS, M); +} + +void IVUsersWrapperPass::releaseMemory() { IU->releaseMemory(); } + +/// getReplacementExpr - Return a SCEV expression which computes the +/// value of the OperandValToReplace. +const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const { + return SE->getSCEV(IU.getOperandValToReplace()); +} + +/// getExpr - Return the expression for the use. +const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const { + return normalizeForPostIncUse(getReplacementExpr(IU), IU.getPostIncLoops(), + *SE); +} + +static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) { + if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { + if (AR->getLoop() == L) + return AR; + return findAddRecForLoop(AR->getStart(), L); + } + + if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { + for (const auto *Op : Add->operands()) + if (const SCEVAddRecExpr *AR = findAddRecForLoop(Op, L)) + return AR; + return nullptr; + } + + return nullptr; +} + +const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const { + if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L)) + return AR->getStepRecurrence(*SE); + return nullptr; +} + +void IVStrideUse::transformToPostInc(const Loop *L) { + PostIncLoops.insert(L); +} + +void IVStrideUse::deleted() { + // Remove this user from the list. + Parent->Processed.erase(this->getUser()); + Parent->IVUses.erase(this); + // this now dangles! +} |