summaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/InlineCost.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Analysis/InlineCost.cpp')
-rw-r--r--llvm/lib/Analysis/InlineCost.cpp2223
1 files changed, 2223 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/InlineCost.cpp b/llvm/lib/Analysis/InlineCost.cpp
new file mode 100644
index 000000000000..89811ec0e377
--- /dev/null
+++ b/llvm/lib/Analysis/InlineCost.cpp
@@ -0,0 +1,2223 @@
+//===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements inline cost analysis.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/InlineCost.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/BlockFrequencyInfo.h"
+#include "llvm/Analysis/CodeMetrics.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/CFG.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/ProfileSummaryInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/InstVisitor.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "inline-cost"
+
+STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
+
+static cl::opt<int> InlineThreshold(
+ "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
+ cl::desc("Control the amount of inlining to perform (default = 225)"));
+
+static cl::opt<int> HintThreshold(
+ "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore,
+ cl::desc("Threshold for inlining functions with inline hint"));
+
+static cl::opt<int>
+ ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden,
+ cl::init(45), cl::ZeroOrMore,
+ cl::desc("Threshold for inlining cold callsites"));
+
+// We introduce this threshold to help performance of instrumentation based
+// PGO before we actually hook up inliner with analysis passes such as BPI and
+// BFI.
+static cl::opt<int> ColdThreshold(
+ "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore,
+ cl::desc("Threshold for inlining functions with cold attribute"));
+
+static cl::opt<int>
+ HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000),
+ cl::ZeroOrMore,
+ cl::desc("Threshold for hot callsites "));
+
+static cl::opt<int> LocallyHotCallSiteThreshold(
+ "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore,
+ cl::desc("Threshold for locally hot callsites "));
+
+static cl::opt<int> ColdCallSiteRelFreq(
+ "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
+ cl::desc("Maximum block frequency, expressed as a percentage of caller's "
+ "entry frequency, for a callsite to be cold in the absence of "
+ "profile information."));
+
+static cl::opt<int> HotCallSiteRelFreq(
+ "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore,
+ cl::desc("Minimum block frequency, expressed as a multiple of caller's "
+ "entry frequency, for a callsite to be hot in the absence of "
+ "profile information."));
+
+static cl::opt<bool> OptComputeFullInlineCost(
+ "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore,
+ cl::desc("Compute the full inline cost of a call site even when the cost "
+ "exceeds the threshold."));
+
+namespace {
+
+class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
+ typedef InstVisitor<CallAnalyzer, bool> Base;
+ friend class InstVisitor<CallAnalyzer, bool>;
+
+ /// The TargetTransformInfo available for this compilation.
+ const TargetTransformInfo &TTI;
+
+ /// Getter for the cache of @llvm.assume intrinsics.
+ std::function<AssumptionCache &(Function &)> &GetAssumptionCache;
+
+ /// Getter for BlockFrequencyInfo
+ Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI;
+
+ /// Profile summary information.
+ ProfileSummaryInfo *PSI;
+
+ /// The called function.
+ Function &F;
+
+ // Cache the DataLayout since we use it a lot.
+ const DataLayout &DL;
+
+ /// The OptimizationRemarkEmitter available for this compilation.
+ OptimizationRemarkEmitter *ORE;
+
+ /// The candidate callsite being analyzed. Please do not use this to do
+ /// analysis in the caller function; we want the inline cost query to be
+ /// easily cacheable. Instead, use the cover function paramHasAttr.
+ CallBase &CandidateCall;
+
+ /// Tunable parameters that control the analysis.
+ const InlineParams &Params;
+
+ /// Upper bound for the inlining cost. Bonuses are being applied to account
+ /// for speculative "expected profit" of the inlining decision.
+ int Threshold;
+
+ /// Inlining cost measured in abstract units, accounts for all the
+ /// instructions expected to be executed for a given function invocation.
+ /// Instructions that are statically proven to be dead based on call-site
+ /// arguments are not counted here.
+ int Cost = 0;
+
+ bool ComputeFullInlineCost;
+
+ bool IsCallerRecursive = false;
+ bool IsRecursiveCall = false;
+ bool ExposesReturnsTwice = false;
+ bool HasDynamicAlloca = false;
+ bool ContainsNoDuplicateCall = false;
+ bool HasReturn = false;
+ bool HasIndirectBr = false;
+ bool HasUninlineableIntrinsic = false;
+ bool InitsVargArgs = false;
+
+ /// Number of bytes allocated statically by the callee.
+ uint64_t AllocatedSize = 0;
+ unsigned NumInstructions = 0;
+ unsigned NumVectorInstructions = 0;
+
+ /// Bonus to be applied when percentage of vector instructions in callee is
+ /// high (see more details in updateThreshold).
+ int VectorBonus = 0;
+ /// Bonus to be applied when the callee has only one reachable basic block.
+ int SingleBBBonus = 0;
+
+ /// While we walk the potentially-inlined instructions, we build up and
+ /// maintain a mapping of simplified values specific to this callsite. The
+ /// idea is to propagate any special information we have about arguments to
+ /// this call through the inlinable section of the function, and account for
+ /// likely simplifications post-inlining. The most important aspect we track
+ /// is CFG altering simplifications -- when we prove a basic block dead, that
+ /// can cause dramatic shifts in the cost of inlining a function.
+ DenseMap<Value *, Constant *> SimplifiedValues;
+
+ /// Keep track of the values which map back (through function arguments) to
+ /// allocas on the caller stack which could be simplified through SROA.
+ DenseMap<Value *, Value *> SROAArgValues;
+
+ /// The mapping of caller Alloca values to their accumulated cost savings. If
+ /// we have to disable SROA for one of the allocas, this tells us how much
+ /// cost must be added.
+ DenseMap<Value *, int> SROAArgCosts;
+
+ /// Keep track of values which map to a pointer base and constant offset.
+ DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs;
+
+ /// Keep track of dead blocks due to the constant arguments.
+ SetVector<BasicBlock *> DeadBlocks;
+
+ /// The mapping of the blocks to their known unique successors due to the
+ /// constant arguments.
+ DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors;
+
+ /// Model the elimination of repeated loads that is expected to happen
+ /// whenever we simplify away the stores that would otherwise cause them to be
+ /// loads.
+ bool EnableLoadElimination;
+ SmallPtrSet<Value *, 16> LoadAddrSet;
+ int LoadEliminationCost = 0;
+
+ // Custom simplification helper routines.
+ bool isAllocaDerivedArg(Value *V);
+ bool lookupSROAArgAndCost(Value *V, Value *&Arg,
+ DenseMap<Value *, int>::iterator &CostIt);
+ void disableSROA(DenseMap<Value *, int>::iterator CostIt);
+ void disableSROA(Value *V);
+ void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB);
+ void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
+ int InstructionCost);
+ void disableLoadElimination();
+ bool isGEPFree(GetElementPtrInst &GEP);
+ bool canFoldInboundsGEP(GetElementPtrInst &I);
+ bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
+ bool simplifyCallSite(Function *F, CallBase &Call);
+ template <typename Callable>
+ bool simplifyInstruction(Instruction &I, Callable Evaluate);
+ ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
+
+ /// Return true if the given argument to the function being considered for
+ /// inlining has the given attribute set either at the call site or the
+ /// function declaration. Primarily used to inspect call site specific
+ /// attributes since these can be more precise than the ones on the callee
+ /// itself.
+ bool paramHasAttr(Argument *A, Attribute::AttrKind Attr);
+
+ /// Return true if the given value is known non null within the callee if
+ /// inlined through this particular callsite.
+ bool isKnownNonNullInCallee(Value *V);
+
+ /// Update Threshold based on callsite properties such as callee
+ /// attributes and callee hotness for PGO builds. The Callee is explicitly
+ /// passed to support analyzing indirect calls whose target is inferred by
+ /// analysis.
+ void updateThreshold(CallBase &Call, Function &Callee);
+
+ /// Return true if size growth is allowed when inlining the callee at \p Call.
+ bool allowSizeGrowth(CallBase &Call);
+
+ /// Return true if \p Call is a cold callsite.
+ bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI);
+
+ /// Return a higher threshold if \p Call is a hot callsite.
+ Optional<int> getHotCallSiteThreshold(CallBase &Call,
+ BlockFrequencyInfo *CallerBFI);
+
+ // Custom analysis routines.
+ InlineResult analyzeBlock(BasicBlock *BB,
+ SmallPtrSetImpl<const Value *> &EphValues);
+
+ /// Handle a capped 'int' increment for Cost.
+ void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) {
+ assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound");
+ Cost = (int)std::min(UpperBound, Cost + Inc);
+ }
+
+ // Disable several entry points to the visitor so we don't accidentally use
+ // them by declaring but not defining them here.
+ void visit(Module *);
+ void visit(Module &);
+ void visit(Function *);
+ void visit(Function &);
+ void visit(BasicBlock *);
+ void visit(BasicBlock &);
+
+ // Provide base case for our instruction visit.
+ bool visitInstruction(Instruction &I);
+
+ // Our visit overrides.
+ bool visitAlloca(AllocaInst &I);
+ bool visitPHI(PHINode &I);
+ bool visitGetElementPtr(GetElementPtrInst &I);
+ bool visitBitCast(BitCastInst &I);
+ bool visitPtrToInt(PtrToIntInst &I);
+ bool visitIntToPtr(IntToPtrInst &I);
+ bool visitCastInst(CastInst &I);
+ bool visitUnaryInstruction(UnaryInstruction &I);
+ bool visitCmpInst(CmpInst &I);
+ bool visitSub(BinaryOperator &I);
+ bool visitBinaryOperator(BinaryOperator &I);
+ bool visitFNeg(UnaryOperator &I);
+ bool visitLoad(LoadInst &I);
+ bool visitStore(StoreInst &I);
+ bool visitExtractValue(ExtractValueInst &I);
+ bool visitInsertValue(InsertValueInst &I);
+ bool visitCallBase(CallBase &Call);
+ bool visitReturnInst(ReturnInst &RI);
+ bool visitBranchInst(BranchInst &BI);
+ bool visitSelectInst(SelectInst &SI);
+ bool visitSwitchInst(SwitchInst &SI);
+ bool visitIndirectBrInst(IndirectBrInst &IBI);
+ bool visitResumeInst(ResumeInst &RI);
+ bool visitCleanupReturnInst(CleanupReturnInst &RI);
+ bool visitCatchReturnInst(CatchReturnInst &RI);
+ bool visitUnreachableInst(UnreachableInst &I);
+
+public:
+ CallAnalyzer(const TargetTransformInfo &TTI,
+ std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
+ Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI,
+ ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE,
+ Function &Callee, CallBase &Call, const InlineParams &Params)
+ : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI),
+ PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE),
+ CandidateCall(Call), Params(Params), Threshold(Params.DefaultThreshold),
+ ComputeFullInlineCost(OptComputeFullInlineCost ||
+ Params.ComputeFullInlineCost || ORE),
+ EnableLoadElimination(true) {}
+
+ InlineResult analyzeCall(CallBase &Call);
+
+ int getThreshold() { return Threshold; }
+ int getCost() { return Cost; }
+
+ // Keep a bunch of stats about the cost savings found so we can print them
+ // out when debugging.
+ unsigned NumConstantArgs = 0;
+ unsigned NumConstantOffsetPtrArgs = 0;
+ unsigned NumAllocaArgs = 0;
+ unsigned NumConstantPtrCmps = 0;
+ unsigned NumConstantPtrDiffs = 0;
+ unsigned NumInstructionsSimplified = 0;
+ unsigned SROACostSavings = 0;
+ unsigned SROACostSavingsLost = 0;
+
+ void dump();
+};
+
+} // namespace
+
+/// Test whether the given value is an Alloca-derived function argument.
+bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
+ return SROAArgValues.count(V);
+}
+
+/// Lookup the SROA-candidate argument and cost iterator which V maps to.
+/// Returns false if V does not map to a SROA-candidate.
+bool CallAnalyzer::lookupSROAArgAndCost(
+ Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) {
+ if (SROAArgValues.empty() || SROAArgCosts.empty())
+ return false;
+
+ DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V);
+ if (ArgIt == SROAArgValues.end())
+ return false;
+
+ Arg = ArgIt->second;
+ CostIt = SROAArgCosts.find(Arg);
+ return CostIt != SROAArgCosts.end();
+}
+
+/// Disable SROA for the candidate marked by this cost iterator.
+///
+/// This marks the candidate as no longer viable for SROA, and adds the cost
+/// savings associated with it back into the inline cost measurement.
+void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) {
+ // If we're no longer able to perform SROA we need to undo its cost savings
+ // and prevent subsequent analysis.
+ addCost(CostIt->second);
+ SROACostSavings -= CostIt->second;
+ SROACostSavingsLost += CostIt->second;
+ SROAArgCosts.erase(CostIt);
+ disableLoadElimination();
+}
+
+/// If 'V' maps to a SROA candidate, disable SROA for it.
+void CallAnalyzer::disableSROA(Value *V) {
+ Value *SROAArg;
+ DenseMap<Value *, int>::iterator CostIt;
+ if (lookupSROAArgAndCost(V, SROAArg, CostIt))
+ disableSROA(CostIt);
+}
+
+/// Accumulate the given cost for a particular SROA candidate.
+void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
+ int InstructionCost) {
+ CostIt->second += InstructionCost;
+ SROACostSavings += InstructionCost;
+}
+
+void CallAnalyzer::disableLoadElimination() {
+ if (EnableLoadElimination) {
+ addCost(LoadEliminationCost);
+ LoadEliminationCost = 0;
+ EnableLoadElimination = false;
+ }
+}
+
+/// Accumulate a constant GEP offset into an APInt if possible.
+///
+/// Returns false if unable to compute the offset for any reason. Respects any
+/// simplified values known during the analysis of this callsite.
+bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
+ unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType());
+ assert(IntPtrWidth == Offset.getBitWidth());
+
+ for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
+ GTI != GTE; ++GTI) {
+ ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
+ if (!OpC)
+ if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
+ OpC = dyn_cast<ConstantInt>(SimpleOp);
+ if (!OpC)
+ return false;
+ if (OpC->isZero())
+ continue;
+
+ // Handle a struct index, which adds its field offset to the pointer.
+ if (StructType *STy = GTI.getStructTypeOrNull()) {
+ unsigned ElementIdx = OpC->getZExtValue();
+ const StructLayout *SL = DL.getStructLayout(STy);
+ Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
+ continue;
+ }
+
+ APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType()));
+ Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
+ }
+ return true;
+}
+
+/// Use TTI to check whether a GEP is free.
+///
+/// Respects any simplified values known during the analysis of this callsite.
+bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) {
+ SmallVector<Value *, 4> Operands;
+ Operands.push_back(GEP.getOperand(0));
+ for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
+ if (Constant *SimpleOp = SimplifiedValues.lookup(*I))
+ Operands.push_back(SimpleOp);
+ else
+ Operands.push_back(*I);
+ return TargetTransformInfo::TCC_Free == TTI.getUserCost(&GEP, Operands);
+}
+
+bool CallAnalyzer::visitAlloca(AllocaInst &I) {
+ // Check whether inlining will turn a dynamic alloca into a static
+ // alloca and handle that case.
+ if (I.isArrayAllocation()) {
+ Constant *Size = SimplifiedValues.lookup(I.getArraySize());
+ if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) {
+ Type *Ty = I.getAllocatedType();
+ AllocatedSize = SaturatingMultiplyAdd(
+ AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty).getFixedSize(),
+ AllocatedSize);
+ return Base::visitAlloca(I);
+ }
+ }
+
+ // Accumulate the allocated size.
+ if (I.isStaticAlloca()) {
+ Type *Ty = I.getAllocatedType();
+ AllocatedSize = SaturatingAdd(DL.getTypeAllocSize(Ty).getFixedSize(),
+ AllocatedSize);
+ }
+
+ // We will happily inline static alloca instructions.
+ if (I.isStaticAlloca())
+ return Base::visitAlloca(I);
+
+ // FIXME: This is overly conservative. Dynamic allocas are inefficient for
+ // a variety of reasons, and so we would like to not inline them into
+ // functions which don't currently have a dynamic alloca. This simply
+ // disables inlining altogether in the presence of a dynamic alloca.
+ HasDynamicAlloca = true;
+ return false;
+}
+
+bool CallAnalyzer::visitPHI(PHINode &I) {
+ // FIXME: We need to propagate SROA *disabling* through phi nodes, even
+ // though we don't want to propagate it's bonuses. The idea is to disable
+ // SROA if it *might* be used in an inappropriate manner.
+
+ // Phi nodes are always zero-cost.
+ // FIXME: Pointer sizes may differ between different address spaces, so do we
+ // need to use correct address space in the call to getPointerSizeInBits here?
+ // Or could we skip the getPointerSizeInBits call completely? As far as I can
+ // see the ZeroOffset is used as a dummy value, so we can probably use any
+ // bit width for the ZeroOffset?
+ APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0));
+ bool CheckSROA = I.getType()->isPointerTy();
+
+ // Track the constant or pointer with constant offset we've seen so far.
+ Constant *FirstC = nullptr;
+ std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset};
+ Value *FirstV = nullptr;
+
+ for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) {
+ BasicBlock *Pred = I.getIncomingBlock(i);
+ // If the incoming block is dead, skip the incoming block.
+ if (DeadBlocks.count(Pred))
+ continue;
+ // If the parent block of phi is not the known successor of the incoming
+ // block, skip the incoming block.
+ BasicBlock *KnownSuccessor = KnownSuccessors[Pred];
+ if (KnownSuccessor && KnownSuccessor != I.getParent())
+ continue;
+
+ Value *V = I.getIncomingValue(i);
+ // If the incoming value is this phi itself, skip the incoming value.
+ if (&I == V)
+ continue;
+
+ Constant *C = dyn_cast<Constant>(V);
+ if (!C)
+ C = SimplifiedValues.lookup(V);
+
+ std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset};
+ if (!C && CheckSROA)
+ BaseAndOffset = ConstantOffsetPtrs.lookup(V);
+
+ if (!C && !BaseAndOffset.first)
+ // The incoming value is neither a constant nor a pointer with constant
+ // offset, exit early.
+ return true;
+
+ if (FirstC) {
+ if (FirstC == C)
+ // If we've seen a constant incoming value before and it is the same
+ // constant we see this time, continue checking the next incoming value.
+ continue;
+ // Otherwise early exit because we either see a different constant or saw
+ // a constant before but we have a pointer with constant offset this time.
+ return true;
+ }
+
+ if (FirstV) {
+ // The same logic as above, but check pointer with constant offset here.
+ if (FirstBaseAndOffset == BaseAndOffset)
+ continue;
+ return true;
+ }
+
+ if (C) {
+ // This is the 1st time we've seen a constant, record it.
+ FirstC = C;
+ continue;
+ }
+
+ // The remaining case is that this is the 1st time we've seen a pointer with
+ // constant offset, record it.
+ FirstV = V;
+ FirstBaseAndOffset = BaseAndOffset;
+ }
+
+ // Check if we can map phi to a constant.
+ if (FirstC) {
+ SimplifiedValues[&I] = FirstC;
+ return true;
+ }
+
+ // Check if we can map phi to a pointer with constant offset.
+ if (FirstBaseAndOffset.first) {
+ ConstantOffsetPtrs[&I] = FirstBaseAndOffset;
+
+ Value *SROAArg;
+ DenseMap<Value *, int>::iterator CostIt;
+ if (lookupSROAArgAndCost(FirstV, SROAArg, CostIt))
+ SROAArgValues[&I] = SROAArg;
+ }
+
+ return true;
+}
+
+/// Check we can fold GEPs of constant-offset call site argument pointers.
+/// This requires target data and inbounds GEPs.
+///
+/// \return true if the specified GEP can be folded.
+bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) {
+ // Check if we have a base + offset for the pointer.
+ std::pair<Value *, APInt> BaseAndOffset =
+ ConstantOffsetPtrs.lookup(I.getPointerOperand());
+ if (!BaseAndOffset.first)
+ return false;
+
+ // Check if the offset of this GEP is constant, and if so accumulate it
+ // into Offset.
+ if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second))
+ return false;
+
+ // Add the result as a new mapping to Base + Offset.
+ ConstantOffsetPtrs[&I] = BaseAndOffset;
+
+ return true;
+}
+
+bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
+ Value *SROAArg;
+ DenseMap<Value *, int>::iterator CostIt;
+ bool SROACandidate =
+ lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt);
+
+ // Lambda to check whether a GEP's indices are all constant.
+ auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) {
+ for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
+ if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I))
+ return false;
+ return true;
+ };
+
+ if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) {
+ if (SROACandidate)
+ SROAArgValues[&I] = SROAArg;
+
+ // Constant GEPs are modeled as free.
+ return true;
+ }
+
+ // Variable GEPs will require math and will disable SROA.
+ if (SROACandidate)
+ disableSROA(CostIt);
+ return isGEPFree(I);
+}
+
+/// Simplify \p I if its operands are constants and update SimplifiedValues.
+/// \p Evaluate is a callable specific to instruction type that evaluates the
+/// instruction when all the operands are constants.
+template <typename Callable>
+bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) {
+ SmallVector<Constant *, 2> COps;
+ for (Value *Op : I.operands()) {
+ Constant *COp = dyn_cast<Constant>(Op);
+ if (!COp)
+ COp = SimplifiedValues.lookup(Op);
+ if (!COp)
+ return false;
+ COps.push_back(COp);
+ }
+ auto *C = Evaluate(COps);
+ if (!C)
+ return false;
+ SimplifiedValues[&I] = C;
+ return true;
+}
+
+bool CallAnalyzer::visitBitCast(BitCastInst &I) {
+ // Propagate constants through bitcasts.
+ if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
+ return ConstantExpr::getBitCast(COps[0], I.getType());
+ }))
+ return true;
+
+ // Track base/offsets through casts
+ std::pair<Value *, APInt> BaseAndOffset =
+ ConstantOffsetPtrs.lookup(I.getOperand(0));
+ // Casts don't change the offset, just wrap it up.
+ if (BaseAndOffset.first)
+ ConstantOffsetPtrs[&I] = BaseAndOffset;
+
+ // Also look for SROA candidates here.
+ Value *SROAArg;
+ DenseMap<Value *, int>::iterator CostIt;
+ if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
+ SROAArgValues[&I] = SROAArg;
+
+ // Bitcasts are always zero cost.
+ return true;
+}
+
+bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
+ // Propagate constants through ptrtoint.
+ if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
+ return ConstantExpr::getPtrToInt(COps[0], I.getType());
+ }))
+ return true;
+
+ // Track base/offset pairs when converted to a plain integer provided the
+ // integer is large enough to represent the pointer.
+ unsigned IntegerSize = I.getType()->getScalarSizeInBits();
+ unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace();
+ if (IntegerSize >= DL.getPointerSizeInBits(AS)) {
+ std::pair<Value *, APInt> BaseAndOffset =
+ ConstantOffsetPtrs.lookup(I.getOperand(0));
+ if (BaseAndOffset.first)
+ ConstantOffsetPtrs[&I] = BaseAndOffset;
+ }
+
+ // This is really weird. Technically, ptrtoint will disable SROA. However,
+ // unless that ptrtoint is *used* somewhere in the live basic blocks after
+ // inlining, it will be nuked, and SROA should proceed. All of the uses which
+ // would block SROA would also block SROA if applied directly to a pointer,
+ // and so we can just add the integer in here. The only places where SROA is
+ // preserved either cannot fire on an integer, or won't in-and-of themselves
+ // disable SROA (ext) w/o some later use that we would see and disable.
+ Value *SROAArg;
+ DenseMap<Value *, int>::iterator CostIt;
+ if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
+ SROAArgValues[&I] = SROAArg;
+
+ return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
+}
+
+bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
+ // Propagate constants through ptrtoint.
+ if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
+ return ConstantExpr::getIntToPtr(COps[0], I.getType());
+ }))
+ return true;
+
+ // Track base/offset pairs when round-tripped through a pointer without
+ // modifications provided the integer is not too large.
+ Value *Op = I.getOperand(0);
+ unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
+ if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) {
+ std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
+ if (BaseAndOffset.first)
+ ConstantOffsetPtrs[&I] = BaseAndOffset;
+ }
+
+ // "Propagate" SROA here in the same manner as we do for ptrtoint above.
+ Value *SROAArg;
+ DenseMap<Value *, int>::iterator CostIt;
+ if (lookupSROAArgAndCost(Op, SROAArg, CostIt))
+ SROAArgValues[&I] = SROAArg;
+
+ return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
+}
+
+bool CallAnalyzer::visitCastInst(CastInst &I) {
+ // Propagate constants through casts.
+ if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
+ return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType());
+ }))
+ return true;
+
+ // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere.
+ disableSROA(I.getOperand(0));
+
+ // If this is a floating-point cast, and the target says this operation
+ // is expensive, this may eventually become a library call. Treat the cost
+ // as such.
+ switch (I.getOpcode()) {
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive)
+ addCost(InlineConstants::CallPenalty);
+ break;
+ default:
+ break;
+ }
+
+ return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
+}
+
+bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
+ Value *Operand = I.getOperand(0);
+ if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
+ return ConstantFoldInstOperands(&I, COps[0], DL);
+ }))
+ return true;
+
+ // Disable any SROA on the argument to arbitrary unary instructions.
+ disableSROA(Operand);
+
+ return false;
+}
+
+bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) {
+ return CandidateCall.paramHasAttr(A->getArgNo(), Attr);
+}
+
+bool CallAnalyzer::isKnownNonNullInCallee(Value *V) {
+ // Does the *call site* have the NonNull attribute set on an argument? We
+ // use the attribute on the call site to memoize any analysis done in the
+ // caller. This will also trip if the callee function has a non-null
+ // parameter attribute, but that's a less interesting case because hopefully
+ // the callee would already have been simplified based on that.
+ if (Argument *A = dyn_cast<Argument>(V))
+ if (paramHasAttr(A, Attribute::NonNull))
+ return true;
+
+ // Is this an alloca in the caller? This is distinct from the attribute case
+ // above because attributes aren't updated within the inliner itself and we
+ // always want to catch the alloca derived case.
+ if (isAllocaDerivedArg(V))
+ // We can actually predict the result of comparisons between an
+ // alloca-derived value and null. Note that this fires regardless of
+ // SROA firing.
+ return true;
+
+ return false;
+}
+
+bool CallAnalyzer::allowSizeGrowth(CallBase &Call) {
+ // If the normal destination of the invoke or the parent block of the call
+ // site is unreachable-terminated, there is little point in inlining this
+ // unless there is literally zero cost.
+ // FIXME: Note that it is possible that an unreachable-terminated block has a
+ // hot entry. For example, in below scenario inlining hot_call_X() may be
+ // beneficial :
+ // main() {
+ // hot_call_1();
+ // ...
+ // hot_call_N()
+ // exit(0);
+ // }
+ // For now, we are not handling this corner case here as it is rare in real
+ // code. In future, we should elaborate this based on BPI and BFI in more
+ // general threshold adjusting heuristics in updateThreshold().
+ if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
+ if (isa<UnreachableInst>(II->getNormalDest()->getTerminator()))
+ return false;
+ } else if (isa<UnreachableInst>(Call.getParent()->getTerminator()))
+ return false;
+
+ return true;
+}
+
+bool CallAnalyzer::isColdCallSite(CallBase &Call,
+ BlockFrequencyInfo *CallerBFI) {
+ // If global profile summary is available, then callsite's coldness is
+ // determined based on that.
+ if (PSI && PSI->hasProfileSummary())
+ return PSI->isColdCallSite(CallSite(&Call), CallerBFI);
+
+ // Otherwise we need BFI to be available.
+ if (!CallerBFI)
+ return false;
+
+ // Determine if the callsite is cold relative to caller's entry. We could
+ // potentially cache the computation of scaled entry frequency, but the added
+ // complexity is not worth it unless this scaling shows up high in the
+ // profiles.
+ const BranchProbability ColdProb(ColdCallSiteRelFreq, 100);
+ auto CallSiteBB = Call.getParent();
+ auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB);
+ auto CallerEntryFreq =
+ CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock()));
+ return CallSiteFreq < CallerEntryFreq * ColdProb;
+}
+
+Optional<int>
+CallAnalyzer::getHotCallSiteThreshold(CallBase &Call,
+ BlockFrequencyInfo *CallerBFI) {
+
+ // If global profile summary is available, then callsite's hotness is
+ // determined based on that.
+ if (PSI && PSI->hasProfileSummary() &&
+ PSI->isHotCallSite(CallSite(&Call), CallerBFI))
+ return Params.HotCallSiteThreshold;
+
+ // Otherwise we need BFI to be available and to have a locally hot callsite
+ // threshold.
+ if (!CallerBFI || !Params.LocallyHotCallSiteThreshold)
+ return None;
+
+ // Determine if the callsite is hot relative to caller's entry. We could
+ // potentially cache the computation of scaled entry frequency, but the added
+ // complexity is not worth it unless this scaling shows up high in the
+ // profiles.
+ auto CallSiteBB = Call.getParent();
+ auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency();
+ auto CallerEntryFreq = CallerBFI->getEntryFreq();
+ if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq)
+ return Params.LocallyHotCallSiteThreshold;
+
+ // Otherwise treat it normally.
+ return None;
+}
+
+void CallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) {
+ // If no size growth is allowed for this inlining, set Threshold to 0.
+ if (!allowSizeGrowth(Call)) {
+ Threshold = 0;
+ return;
+ }
+
+ Function *Caller = Call.getCaller();
+
+ // return min(A, B) if B is valid.
+ auto MinIfValid = [](int A, Optional<int> B) {
+ return B ? std::min(A, B.getValue()) : A;
+ };
+
+ // return max(A, B) if B is valid.
+ auto MaxIfValid = [](int A, Optional<int> B) {
+ return B ? std::max(A, B.getValue()) : A;
+ };
+
+ // Various bonus percentages. These are multiplied by Threshold to get the
+ // bonus values.
+ // SingleBBBonus: This bonus is applied if the callee has a single reachable
+ // basic block at the given callsite context. This is speculatively applied
+ // and withdrawn if more than one basic block is seen.
+ //
+ // LstCallToStaticBonus: This large bonus is applied to ensure the inlining
+ // of the last call to a static function as inlining such functions is
+ // guaranteed to reduce code size.
+ //
+ // These bonus percentages may be set to 0 based on properties of the caller
+ // and the callsite.
+ int SingleBBBonusPercent = 50;
+ int VectorBonusPercent = TTI.getInlinerVectorBonusPercent();
+ int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus;
+
+ // Lambda to set all the above bonus and bonus percentages to 0.
+ auto DisallowAllBonuses = [&]() {
+ SingleBBBonusPercent = 0;
+ VectorBonusPercent = 0;
+ LastCallToStaticBonus = 0;
+ };
+
+ // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available
+ // and reduce the threshold if the caller has the necessary attribute.
+ if (Caller->hasMinSize()) {
+ Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold);
+ // For minsize, we want to disable the single BB bonus and the vector
+ // bonuses, but not the last-call-to-static bonus. Inlining the last call to
+ // a static function will, at the minimum, eliminate the parameter setup and
+ // call/return instructions.
+ SingleBBBonusPercent = 0;
+ VectorBonusPercent = 0;
+ } else if (Caller->hasOptSize())
+ Threshold = MinIfValid(Threshold, Params.OptSizeThreshold);
+
+ // Adjust the threshold based on inlinehint attribute and profile based
+ // hotness information if the caller does not have MinSize attribute.
+ if (!Caller->hasMinSize()) {
+ if (Callee.hasFnAttribute(Attribute::InlineHint))
+ Threshold = MaxIfValid(Threshold, Params.HintThreshold);
+
+ // FIXME: After switching to the new passmanager, simplify the logic below
+ // by checking only the callsite hotness/coldness as we will reliably
+ // have local profile information.
+ //
+ // Callsite hotness and coldness can be determined if sample profile is
+ // used (which adds hotness metadata to calls) or if caller's
+ // BlockFrequencyInfo is available.
+ BlockFrequencyInfo *CallerBFI = GetBFI ? &((*GetBFI)(*Caller)) : nullptr;
+ auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI);
+ if (!Caller->hasOptSize() && HotCallSiteThreshold) {
+ LLVM_DEBUG(dbgs() << "Hot callsite.\n");
+ // FIXME: This should update the threshold only if it exceeds the
+ // current threshold, but AutoFDO + ThinLTO currently relies on this
+ // behavior to prevent inlining of hot callsites during ThinLTO
+ // compile phase.
+ Threshold = HotCallSiteThreshold.getValue();
+ } else if (isColdCallSite(Call, CallerBFI)) {
+ LLVM_DEBUG(dbgs() << "Cold callsite.\n");
+ // Do not apply bonuses for a cold callsite including the
+ // LastCallToStatic bonus. While this bonus might result in code size
+ // reduction, it can cause the size of a non-cold caller to increase
+ // preventing it from being inlined.
+ DisallowAllBonuses();
+ Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold);
+ } else if (PSI) {
+ // Use callee's global profile information only if we have no way of
+ // determining this via callsite information.
+ if (PSI->isFunctionEntryHot(&Callee)) {
+ LLVM_DEBUG(dbgs() << "Hot callee.\n");
+ // If callsite hotness can not be determined, we may still know
+ // that the callee is hot and treat it as a weaker hint for threshold
+ // increase.
+ Threshold = MaxIfValid(Threshold, Params.HintThreshold);
+ } else if (PSI->isFunctionEntryCold(&Callee)) {
+ LLVM_DEBUG(dbgs() << "Cold callee.\n");
+ // Do not apply bonuses for a cold callee including the
+ // LastCallToStatic bonus. While this bonus might result in code size
+ // reduction, it can cause the size of a non-cold caller to increase
+ // preventing it from being inlined.
+ DisallowAllBonuses();
+ Threshold = MinIfValid(Threshold, Params.ColdThreshold);
+ }
+ }
+ }
+
+ // Finally, take the target-specific inlining threshold multiplier into
+ // account.
+ Threshold *= TTI.getInliningThresholdMultiplier();
+
+ SingleBBBonus = Threshold * SingleBBBonusPercent / 100;
+ VectorBonus = Threshold * VectorBonusPercent / 100;
+
+ bool OnlyOneCallAndLocalLinkage =
+ F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction();
+ // If there is only one call of the function, and it has internal linkage,
+ // the cost of inlining it drops dramatically. It may seem odd to update
+ // Cost in updateThreshold, but the bonus depends on the logic in this method.
+ if (OnlyOneCallAndLocalLinkage)
+ Cost -= LastCallToStaticBonus;
+}
+
+bool CallAnalyzer::visitCmpInst(CmpInst &I) {
+ Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+ // First try to handle simplified comparisons.
+ if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
+ return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]);
+ }))
+ return true;
+
+ if (I.getOpcode() == Instruction::FCmp)
+ return false;
+
+ // Otherwise look for a comparison between constant offset pointers with
+ // a common base.
+ Value *LHSBase, *RHSBase;
+ APInt LHSOffset, RHSOffset;
+ std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
+ if (LHSBase) {
+ std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
+ if (RHSBase && LHSBase == RHSBase) {
+ // We have common bases, fold the icmp to a constant based on the
+ // offsets.
+ Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
+ Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
+ if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
+ SimplifiedValues[&I] = C;
+ ++NumConstantPtrCmps;
+ return true;
+ }
+ }
+ }
+
+ // If the comparison is an equality comparison with null, we can simplify it
+ // if we know the value (argument) can't be null
+ if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) &&
+ isKnownNonNullInCallee(I.getOperand(0))) {
+ bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
+ SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
+ : ConstantInt::getFalse(I.getType());
+ return true;
+ }
+ // Finally check for SROA candidates in comparisons.
+ Value *SROAArg;
+ DenseMap<Value *, int>::iterator CostIt;
+ if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
+ if (isa<ConstantPointerNull>(I.getOperand(1))) {
+ accumulateSROACost(CostIt, InlineConstants::InstrCost);
+ return true;
+ }
+
+ disableSROA(CostIt);
+ }
+
+ return false;
+}
+
+bool CallAnalyzer::visitSub(BinaryOperator &I) {
+ // Try to handle a special case: we can fold computing the difference of two
+ // constant-related pointers.
+ Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+ Value *LHSBase, *RHSBase;
+ APInt LHSOffset, RHSOffset;
+ std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
+ if (LHSBase) {
+ std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
+ if (RHSBase && LHSBase == RHSBase) {
+ // We have common bases, fold the subtract to a constant based on the
+ // offsets.
+ Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
+ Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
+ if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
+ SimplifiedValues[&I] = C;
+ ++NumConstantPtrDiffs;
+ return true;
+ }
+ }
+ }
+
+ // Otherwise, fall back to the generic logic for simplifying and handling
+ // instructions.
+ return Base::visitSub(I);
+}
+
+bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
+ Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+ Constant *CLHS = dyn_cast<Constant>(LHS);
+ if (!CLHS)
+ CLHS = SimplifiedValues.lookup(LHS);
+ Constant *CRHS = dyn_cast<Constant>(RHS);
+ if (!CRHS)
+ CRHS = SimplifiedValues.lookup(RHS);
+
+ Value *SimpleV = nullptr;
+ if (auto FI = dyn_cast<FPMathOperator>(&I))
+ SimpleV = SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS,
+ CRHS ? CRHS : RHS, FI->getFastMathFlags(), DL);
+ else
+ SimpleV =
+ SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL);
+
+ if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
+ SimplifiedValues[&I] = C;
+
+ if (SimpleV)
+ return true;
+
+ // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
+ disableSROA(LHS);
+ disableSROA(RHS);
+
+ // If the instruction is floating point, and the target says this operation
+ // is expensive, this may eventually become a library call. Treat the cost
+ // as such. Unless it's fneg which can be implemented with an xor.
+ using namespace llvm::PatternMatch;
+ if (I.getType()->isFloatingPointTy() &&
+ TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive &&
+ !match(&I, m_FNeg(m_Value())))
+ addCost(InlineConstants::CallPenalty);
+
+ return false;
+}
+
+bool CallAnalyzer::visitFNeg(UnaryOperator &I) {
+ Value *Op = I.getOperand(0);
+ Constant *COp = dyn_cast<Constant>(Op);
+ if (!COp)
+ COp = SimplifiedValues.lookup(Op);
+
+ Value *SimpleV = SimplifyFNegInst(COp ? COp : Op,
+ cast<FPMathOperator>(I).getFastMathFlags(),
+ DL);
+
+ if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
+ SimplifiedValues[&I] = C;
+
+ if (SimpleV)
+ return true;
+
+ // Disable any SROA on arguments to arbitrary, unsimplified fneg.
+ disableSROA(Op);
+
+ return false;
+}
+
+bool CallAnalyzer::visitLoad(LoadInst &I) {
+ Value *SROAArg;
+ DenseMap<Value *, int>::iterator CostIt;
+ if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) {
+ if (I.isSimple()) {
+ accumulateSROACost(CostIt, InlineConstants::InstrCost);
+ return true;
+ }
+
+ disableSROA(CostIt);
+ }
+
+ // If the data is already loaded from this address and hasn't been clobbered
+ // by any stores or calls, this load is likely to be redundant and can be
+ // eliminated.
+ if (EnableLoadElimination &&
+ !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) {
+ LoadEliminationCost += InlineConstants::InstrCost;
+ return true;
+ }
+
+ return false;
+}
+
+bool CallAnalyzer::visitStore(StoreInst &I) {
+ Value *SROAArg;
+ DenseMap<Value *, int>::iterator CostIt;
+ if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) {
+ if (I.isSimple()) {
+ accumulateSROACost(CostIt, InlineConstants::InstrCost);
+ return true;
+ }
+
+ disableSROA(CostIt);
+ }
+
+ // The store can potentially clobber loads and prevent repeated loads from
+ // being eliminated.
+ // FIXME:
+ // 1. We can probably keep an initial set of eliminatable loads substracted
+ // from the cost even when we finally see a store. We just need to disable
+ // *further* accumulation of elimination savings.
+ // 2. We should probably at some point thread MemorySSA for the callee into
+ // this and then use that to actually compute *really* precise savings.
+ disableLoadElimination();
+ return false;
+}
+
+bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
+ // Constant folding for extract value is trivial.
+ if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
+ return ConstantExpr::getExtractValue(COps[0], I.getIndices());
+ }))
+ return true;
+
+ // SROA can look through these but give them a cost.
+ return false;
+}
+
+bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
+ // Constant folding for insert value is trivial.
+ if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
+ return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0],
+ /*InsertedValueOperand*/ COps[1],
+ I.getIndices());
+ }))
+ return true;
+
+ // SROA can look through these but give them a cost.
+ return false;
+}
+
+/// Try to simplify a call site.
+///
+/// Takes a concrete function and callsite and tries to actually simplify it by
+/// analyzing the arguments and call itself with instsimplify. Returns true if
+/// it has simplified the callsite to some other entity (a constant), making it
+/// free.
+bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) {
+ // FIXME: Using the instsimplify logic directly for this is inefficient
+ // because we have to continually rebuild the argument list even when no
+ // simplifications can be performed. Until that is fixed with remapping
+ // inside of instsimplify, directly constant fold calls here.
+ if (!canConstantFoldCallTo(&Call, F))
+ return false;
+
+ // Try to re-map the arguments to constants.
+ SmallVector<Constant *, 4> ConstantArgs;
+ ConstantArgs.reserve(Call.arg_size());
+ for (Value *I : Call.args()) {
+ Constant *C = dyn_cast<Constant>(I);
+ if (!C)
+ C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I));
+ if (!C)
+ return false; // This argument doesn't map to a constant.
+
+ ConstantArgs.push_back(C);
+ }
+ if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) {
+ SimplifiedValues[&Call] = C;
+ return true;
+ }
+
+ return false;
+}
+
+bool CallAnalyzer::visitCallBase(CallBase &Call) {
+ if (Call.hasFnAttr(Attribute::ReturnsTwice) &&
+ !F.hasFnAttribute(Attribute::ReturnsTwice)) {
+ // This aborts the entire analysis.
+ ExposesReturnsTwice = true;
+ return false;
+ }
+ if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate())
+ ContainsNoDuplicateCall = true;
+
+ if (Function *F = Call.getCalledFunction()) {
+ // When we have a concrete function, first try to simplify it directly.
+ if (simplifyCallSite(F, Call))
+ return true;
+
+ // Next check if it is an intrinsic we know about.
+ // FIXME: Lift this into part of the InstVisitor.
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) {
+ switch (II->getIntrinsicID()) {
+ default:
+ if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II))
+ disableLoadElimination();
+ return Base::visitCallBase(Call);
+
+ case Intrinsic::load_relative:
+ // This is normally lowered to 4 LLVM instructions.
+ addCost(3 * InlineConstants::InstrCost);
+ return false;
+
+ case Intrinsic::memset:
+ case Intrinsic::memcpy:
+ case Intrinsic::memmove:
+ disableLoadElimination();
+ // SROA can usually chew through these intrinsics, but they aren't free.
+ return false;
+ case Intrinsic::icall_branch_funnel:
+ case Intrinsic::localescape:
+ HasUninlineableIntrinsic = true;
+ return false;
+ case Intrinsic::vastart:
+ InitsVargArgs = true;
+ return false;
+ }
+ }
+
+ if (F == Call.getFunction()) {
+ // This flag will fully abort the analysis, so don't bother with anything
+ // else.
+ IsRecursiveCall = true;
+ return false;
+ }
+
+ if (TTI.isLoweredToCall(F)) {
+ // We account for the average 1 instruction per call argument setup
+ // here.
+ addCost(Call.arg_size() * InlineConstants::InstrCost);
+
+ // Everything other than inline ASM will also have a significant cost
+ // merely from making the call.
+ if (!isa<InlineAsm>(Call.getCalledValue()))
+ addCost(InlineConstants::CallPenalty);
+ }
+
+ if (!Call.onlyReadsMemory())
+ disableLoadElimination();
+ return Base::visitCallBase(Call);
+ }
+
+ // Otherwise we're in a very special case -- an indirect function call. See
+ // if we can be particularly clever about this.
+ Value *Callee = Call.getCalledValue();
+
+ // First, pay the price of the argument setup. We account for the average
+ // 1 instruction per call argument setup here.
+ addCost(Call.arg_size() * InlineConstants::InstrCost);
+
+ // Next, check if this happens to be an indirect function call to a known
+ // function in this inline context. If not, we've done all we can.
+ Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
+ if (!F) {
+ if (!Call.onlyReadsMemory())
+ disableLoadElimination();
+ return Base::visitCallBase(Call);
+ }
+
+ // If we have a constant that we are calling as a function, we can peer
+ // through it and see the function target. This happens not infrequently
+ // during devirtualization and so we want to give it a hefty bonus for
+ // inlining, but cap that bonus in the event that inlining wouldn't pan
+ // out. Pretend to inline the function, with a custom threshold.
+ auto IndirectCallParams = Params;
+ IndirectCallParams.DefaultThreshold = InlineConstants::IndirectCallThreshold;
+ CallAnalyzer CA(TTI, GetAssumptionCache, GetBFI, PSI, ORE, *F, Call,
+ IndirectCallParams);
+ if (CA.analyzeCall(Call)) {
+ // We were able to inline the indirect call! Subtract the cost from the
+ // threshold to get the bonus we want to apply, but don't go below zero.
+ Cost -= std::max(0, CA.getThreshold() - CA.getCost());
+ }
+
+ if (!F->onlyReadsMemory())
+ disableLoadElimination();
+ return Base::visitCallBase(Call);
+}
+
+bool CallAnalyzer::visitReturnInst(ReturnInst &RI) {
+ // At least one return instruction will be free after inlining.
+ bool Free = !HasReturn;
+ HasReturn = true;
+ return Free;
+}
+
+bool CallAnalyzer::visitBranchInst(BranchInst &BI) {
+ // We model unconditional branches as essentially free -- they really
+ // shouldn't exist at all, but handling them makes the behavior of the
+ // inliner more regular and predictable. Interestingly, conditional branches
+ // which will fold away are also free.
+ return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) ||
+ dyn_cast_or_null<ConstantInt>(
+ SimplifiedValues.lookup(BI.getCondition()));
+}
+
+bool CallAnalyzer::visitSelectInst(SelectInst &SI) {
+ bool CheckSROA = SI.getType()->isPointerTy();
+ Value *TrueVal = SI.getTrueValue();
+ Value *FalseVal = SI.getFalseValue();
+
+ Constant *TrueC = dyn_cast<Constant>(TrueVal);
+ if (!TrueC)
+ TrueC = SimplifiedValues.lookup(TrueVal);
+ Constant *FalseC = dyn_cast<Constant>(FalseVal);
+ if (!FalseC)
+ FalseC = SimplifiedValues.lookup(FalseVal);
+ Constant *CondC =
+ dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition()));
+
+ if (!CondC) {
+ // Select C, X, X => X
+ if (TrueC == FalseC && TrueC) {
+ SimplifiedValues[&SI] = TrueC;
+ return true;
+ }
+
+ if (!CheckSROA)
+ return Base::visitSelectInst(SI);
+
+ std::pair<Value *, APInt> TrueBaseAndOffset =
+ ConstantOffsetPtrs.lookup(TrueVal);
+ std::pair<Value *, APInt> FalseBaseAndOffset =
+ ConstantOffsetPtrs.lookup(FalseVal);
+ if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) {
+ ConstantOffsetPtrs[&SI] = TrueBaseAndOffset;
+
+ Value *SROAArg;
+ DenseMap<Value *, int>::iterator CostIt;
+ if (lookupSROAArgAndCost(TrueVal, SROAArg, CostIt))
+ SROAArgValues[&SI] = SROAArg;
+ return true;
+ }
+
+ return Base::visitSelectInst(SI);
+ }
+
+ // Select condition is a constant.
+ Value *SelectedV = CondC->isAllOnesValue()
+ ? TrueVal
+ : (CondC->isNullValue()) ? FalseVal : nullptr;
+ if (!SelectedV) {
+ // Condition is a vector constant that is not all 1s or all 0s. If all
+ // operands are constants, ConstantExpr::getSelect() can handle the cases
+ // such as select vectors.
+ if (TrueC && FalseC) {
+ if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) {
+ SimplifiedValues[&SI] = C;
+ return true;
+ }
+ }
+ return Base::visitSelectInst(SI);
+ }
+
+ // Condition is either all 1s or all 0s. SI can be simplified.
+ if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) {
+ SimplifiedValues[&SI] = SelectedC;
+ return true;
+ }
+
+ if (!CheckSROA)
+ return true;
+
+ std::pair<Value *, APInt> BaseAndOffset =
+ ConstantOffsetPtrs.lookup(SelectedV);
+ if (BaseAndOffset.first) {
+ ConstantOffsetPtrs[&SI] = BaseAndOffset;
+
+ Value *SROAArg;
+ DenseMap<Value *, int>::iterator CostIt;
+ if (lookupSROAArgAndCost(SelectedV, SROAArg, CostIt))
+ SROAArgValues[&SI] = SROAArg;
+ }
+
+ return true;
+}
+
+bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) {
+ // We model unconditional switches as free, see the comments on handling
+ // branches.
+ if (isa<ConstantInt>(SI.getCondition()))
+ return true;
+ if (Value *V = SimplifiedValues.lookup(SI.getCondition()))
+ if (isa<ConstantInt>(V))
+ return true;
+
+ // Assume the most general case where the switch is lowered into
+ // either a jump table, bit test, or a balanced binary tree consisting of
+ // case clusters without merging adjacent clusters with the same
+ // destination. We do not consider the switches that are lowered with a mix
+ // of jump table/bit test/binary search tree. The cost of the switch is
+ // proportional to the size of the tree or the size of jump table range.
+ //
+ // NB: We convert large switches which are just used to initialize large phi
+ // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent
+ // inlining those. It will prevent inlining in cases where the optimization
+ // does not (yet) fire.
+
+ // Maximum valid cost increased in this function.
+ int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1;
+
+ unsigned JumpTableSize = 0;
+ unsigned NumCaseCluster =
+ TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize);
+
+ // If suitable for a jump table, consider the cost for the table size and
+ // branch to destination.
+ if (JumpTableSize) {
+ int64_t JTCost = (int64_t)JumpTableSize * InlineConstants::InstrCost +
+ 4 * InlineConstants::InstrCost;
+
+ addCost(JTCost, (int64_t)CostUpperBound);
+ return false;
+ }
+
+ // Considering forming a binary search, we should find the number of nodes
+ // which is same as the number of comparisons when lowered. For a given
+ // number of clusters, n, we can define a recursive function, f(n), to find
+ // the number of nodes in the tree. The recursion is :
+ // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3,
+ // and f(n) = n, when n <= 3.
+ // This will lead a binary tree where the leaf should be either f(2) or f(3)
+ // when n > 3. So, the number of comparisons from leaves should be n, while
+ // the number of non-leaf should be :
+ // 2^(log2(n) - 1) - 1
+ // = 2^log2(n) * 2^-1 - 1
+ // = n / 2 - 1.
+ // Considering comparisons from leaf and non-leaf nodes, we can estimate the
+ // number of comparisons in a simple closed form :
+ // n + n / 2 - 1 = n * 3 / 2 - 1
+ if (NumCaseCluster <= 3) {
+ // Suppose a comparison includes one compare and one conditional branch.
+ addCost(NumCaseCluster * 2 * InlineConstants::InstrCost);
+ return false;
+ }
+
+ int64_t ExpectedNumberOfCompare = 3 * (int64_t)NumCaseCluster / 2 - 1;
+ int64_t SwitchCost =
+ ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost;
+
+ addCost(SwitchCost, (int64_t)CostUpperBound);
+ return false;
+}
+
+bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) {
+ // We never want to inline functions that contain an indirectbr. This is
+ // incorrect because all the blockaddress's (in static global initializers
+ // for example) would be referring to the original function, and this
+ // indirect jump would jump from the inlined copy of the function into the
+ // original function which is extremely undefined behavior.
+ // FIXME: This logic isn't really right; we can safely inline functions with
+ // indirectbr's as long as no other function or global references the
+ // blockaddress of a block within the current function.
+ HasIndirectBr = true;
+ return false;
+}
+
+bool CallAnalyzer::visitResumeInst(ResumeInst &RI) {
+ // FIXME: It's not clear that a single instruction is an accurate model for
+ // the inline cost of a resume instruction.
+ return false;
+}
+
+bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) {
+ // FIXME: It's not clear that a single instruction is an accurate model for
+ // the inline cost of a cleanupret instruction.
+ return false;
+}
+
+bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) {
+ // FIXME: It's not clear that a single instruction is an accurate model for
+ // the inline cost of a catchret instruction.
+ return false;
+}
+
+bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) {
+ // FIXME: It might be reasonably to discount the cost of instructions leading
+ // to unreachable as they have the lowest possible impact on both runtime and
+ // code size.
+ return true; // No actual code is needed for unreachable.
+}
+
+bool CallAnalyzer::visitInstruction(Instruction &I) {
+ // Some instructions are free. All of the free intrinsics can also be
+ // handled by SROA, etc.
+ if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I))
+ return true;
+
+ // We found something we don't understand or can't handle. Mark any SROA-able
+ // values in the operand list as no longer viable.
+ for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI)
+ disableSROA(*OI);
+
+ return false;
+}
+
+/// Analyze a basic block for its contribution to the inline cost.
+///
+/// This method walks the analyzer over every instruction in the given basic
+/// block and accounts for their cost during inlining at this callsite. It
+/// aborts early if the threshold has been exceeded or an impossible to inline
+/// construct has been detected. It returns false if inlining is no longer
+/// viable, and true if inlining remains viable.
+InlineResult
+CallAnalyzer::analyzeBlock(BasicBlock *BB,
+ SmallPtrSetImpl<const Value *> &EphValues) {
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
+ // FIXME: Currently, the number of instructions in a function regardless of
+ // our ability to simplify them during inline to constants or dead code,
+ // are actually used by the vector bonus heuristic. As long as that's true,
+ // we have to special case debug intrinsics here to prevent differences in
+ // inlining due to debug symbols. Eventually, the number of unsimplified
+ // instructions shouldn't factor into the cost computation, but until then,
+ // hack around it here.
+ if (isa<DbgInfoIntrinsic>(I))
+ continue;
+
+ // Skip ephemeral values.
+ if (EphValues.count(&*I))
+ continue;
+
+ ++NumInstructions;
+ if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy())
+ ++NumVectorInstructions;
+
+ // If the instruction simplified to a constant, there is no cost to this
+ // instruction. Visit the instructions using our InstVisitor to account for
+ // all of the per-instruction logic. The visit tree returns true if we
+ // consumed the instruction in any way, and false if the instruction's base
+ // cost should count against inlining.
+ if (Base::visit(&*I))
+ ++NumInstructionsSimplified;
+ else
+ addCost(InlineConstants::InstrCost);
+
+ using namespace ore;
+ // If the visit this instruction detected an uninlinable pattern, abort.
+ InlineResult IR;
+ if (IsRecursiveCall)
+ IR = "recursive";
+ else if (ExposesReturnsTwice)
+ IR = "exposes returns twice";
+ else if (HasDynamicAlloca)
+ IR = "dynamic alloca";
+ else if (HasIndirectBr)
+ IR = "indirect branch";
+ else if (HasUninlineableIntrinsic)
+ IR = "uninlinable intrinsic";
+ else if (InitsVargArgs)
+ IR = "varargs";
+ if (!IR) {
+ if (ORE)
+ ORE->emit([&]() {
+ return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
+ &CandidateCall)
+ << NV("Callee", &F) << " has uninlinable pattern ("
+ << NV("InlineResult", IR.message)
+ << ") and cost is not fully computed";
+ });
+ return IR;
+ }
+
+ // If the caller is a recursive function then we don't want to inline
+ // functions which allocate a lot of stack space because it would increase
+ // the caller stack usage dramatically.
+ if (IsCallerRecursive &&
+ AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) {
+ InlineResult IR = "recursive and allocates too much stack space";
+ if (ORE)
+ ORE->emit([&]() {
+ return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
+ &CandidateCall)
+ << NV("Callee", &F) << " is " << NV("InlineResult", IR.message)
+ << ". Cost is not fully computed";
+ });
+ return IR;
+ }
+
+ // Check if we've passed the maximum possible threshold so we don't spin in
+ // huge basic blocks that will never inline.
+ if (Cost >= Threshold && !ComputeFullInlineCost)
+ return false;
+ }
+
+ return true;
+}
+
+/// Compute the base pointer and cumulative constant offsets for V.
+///
+/// This strips all constant offsets off of V, leaving it the base pointer, and
+/// accumulates the total constant offset applied in the returned constant. It
+/// returns 0 if V is not a pointer, and returns the constant '0' if there are
+/// no constant offsets applied.
+ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
+ if (!V->getType()->isPointerTy())
+ return nullptr;
+
+ unsigned AS = V->getType()->getPointerAddressSpace();
+ unsigned IntPtrWidth = DL.getIndexSizeInBits(AS);
+ APInt Offset = APInt::getNullValue(IntPtrWidth);
+
+ // Even though we don't look through PHI nodes, we could be called on an
+ // instruction in an unreachable block, which may be on a cycle.
+ SmallPtrSet<Value *, 4> Visited;
+ Visited.insert(V);
+ do {
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
+ if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
+ return nullptr;
+ V = GEP->getPointerOperand();
+ } else if (Operator::getOpcode(V) == Instruction::BitCast) {
+ V = cast<Operator>(V)->getOperand(0);
+ } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
+ if (GA->isInterposable())
+ break;
+ V = GA->getAliasee();
+ } else {
+ break;
+ }
+ assert(V->getType()->isPointerTy() && "Unexpected operand type!");
+ } while (Visited.insert(V).second);
+
+ Type *IntPtrTy = DL.getIntPtrType(V->getContext(), AS);
+ return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset));
+}
+
+/// Find dead blocks due to deleted CFG edges during inlining.
+///
+/// If we know the successor of the current block, \p CurrBB, has to be \p
+/// NextBB, the other successors of \p CurrBB are dead if these successors have
+/// no live incoming CFG edges. If one block is found to be dead, we can
+/// continue growing the dead block list by checking the successors of the dead
+/// blocks to see if all their incoming edges are dead or not.
+void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) {
+ auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) {
+ // A CFG edge is dead if the predecessor is dead or the predecessor has a
+ // known successor which is not the one under exam.
+ return (DeadBlocks.count(Pred) ||
+ (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ));
+ };
+
+ auto IsNewlyDead = [&](BasicBlock *BB) {
+ // If all the edges to a block are dead, the block is also dead.
+ return (!DeadBlocks.count(BB) &&
+ llvm::all_of(predecessors(BB),
+ [&](BasicBlock *P) { return IsEdgeDead(P, BB); }));
+ };
+
+ for (BasicBlock *Succ : successors(CurrBB)) {
+ if (Succ == NextBB || !IsNewlyDead(Succ))
+ continue;
+ SmallVector<BasicBlock *, 4> NewDead;
+ NewDead.push_back(Succ);
+ while (!NewDead.empty()) {
+ BasicBlock *Dead = NewDead.pop_back_val();
+ if (DeadBlocks.insert(Dead))
+ // Continue growing the dead block lists.
+ for (BasicBlock *S : successors(Dead))
+ if (IsNewlyDead(S))
+ NewDead.push_back(S);
+ }
+ }
+}
+
+/// Analyze a call site for potential inlining.
+///
+/// Returns true if inlining this call is viable, and false if it is not
+/// viable. It computes the cost and adjusts the threshold based on numerous
+/// factors and heuristics. If this method returns false but the computed cost
+/// is below the computed threshold, then inlining was forcibly disabled by
+/// some artifact of the routine.
+InlineResult CallAnalyzer::analyzeCall(CallBase &Call) {
+ ++NumCallsAnalyzed;
+
+ // Perform some tweaks to the cost and threshold based on the direct
+ // callsite information.
+
+ // We want to more aggressively inline vector-dense kernels, so up the
+ // threshold, and we'll lower it if the % of vector instructions gets too
+ // low. Note that these bonuses are some what arbitrary and evolved over time
+ // by accident as much as because they are principled bonuses.
+ //
+ // FIXME: It would be nice to remove all such bonuses. At least it would be
+ // nice to base the bonus values on something more scientific.
+ assert(NumInstructions == 0);
+ assert(NumVectorInstructions == 0);
+
+ // Update the threshold based on callsite properties
+ updateThreshold(Call, F);
+
+ // While Threshold depends on commandline options that can take negative
+ // values, we want to enforce the invariant that the computed threshold and
+ // bonuses are non-negative.
+ assert(Threshold >= 0);
+ assert(SingleBBBonus >= 0);
+ assert(VectorBonus >= 0);
+
+ // Speculatively apply all possible bonuses to Threshold. If cost exceeds
+ // this Threshold any time, and cost cannot decrease, we can stop processing
+ // the rest of the function body.
+ Threshold += (SingleBBBonus + VectorBonus);
+
+ // Give out bonuses for the callsite, as the instructions setting them up
+ // will be gone after inlining.
+ addCost(-getCallsiteCost(Call, DL));
+
+ // If this function uses the coldcc calling convention, prefer not to inline
+ // it.
+ if (F.getCallingConv() == CallingConv::Cold)
+ Cost += InlineConstants::ColdccPenalty;
+
+ // Check if we're done. This can happen due to bonuses and penalties.
+ if (Cost >= Threshold && !ComputeFullInlineCost)
+ return "high cost";
+
+ if (F.empty())
+ return true;
+
+ Function *Caller = Call.getFunction();
+ // Check if the caller function is recursive itself.
+ for (User *U : Caller->users()) {
+ CallBase *Call = dyn_cast<CallBase>(U);
+ if (Call && Call->getFunction() == Caller) {
+ IsCallerRecursive = true;
+ break;
+ }
+ }
+
+ // Populate our simplified values by mapping from function arguments to call
+ // arguments with known important simplifications.
+ auto CAI = Call.arg_begin();
+ for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end();
+ FAI != FAE; ++FAI, ++CAI) {
+ assert(CAI != Call.arg_end());
+ if (Constant *C = dyn_cast<Constant>(CAI))
+ SimplifiedValues[&*FAI] = C;
+
+ Value *PtrArg = *CAI;
+ if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
+ ConstantOffsetPtrs[&*FAI] = std::make_pair(PtrArg, C->getValue());
+
+ // We can SROA any pointer arguments derived from alloca instructions.
+ if (isa<AllocaInst>(PtrArg)) {
+ SROAArgValues[&*FAI] = PtrArg;
+ SROAArgCosts[PtrArg] = 0;
+ }
+ }
+ }
+ NumConstantArgs = SimplifiedValues.size();
+ NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
+ NumAllocaArgs = SROAArgValues.size();
+
+ // FIXME: If a caller has multiple calls to a callee, we end up recomputing
+ // the ephemeral values multiple times (and they're completely determined by
+ // the callee, so this is purely duplicate work).
+ SmallPtrSet<const Value *, 32> EphValues;
+ CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues);
+
+ // The worklist of live basic blocks in the callee *after* inlining. We avoid
+ // adding basic blocks of the callee which can be proven to be dead for this
+ // particular call site in order to get more accurate cost estimates. This
+ // requires a somewhat heavyweight iteration pattern: we need to walk the
+ // basic blocks in a breadth-first order as we insert live successors. To
+ // accomplish this, prioritizing for small iterations because we exit after
+ // crossing our threshold, we use a small-size optimized SetVector.
+ typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>,
+ SmallPtrSet<BasicBlock *, 16>>
+ BBSetVector;
+ BBSetVector BBWorklist;
+ BBWorklist.insert(&F.getEntryBlock());
+ bool SingleBB = true;
+ // Note that we *must not* cache the size, this loop grows the worklist.
+ for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
+ // Bail out the moment we cross the threshold. This means we'll under-count
+ // the cost, but only when undercounting doesn't matter.
+ if (Cost >= Threshold && !ComputeFullInlineCost)
+ break;
+
+ BasicBlock *BB = BBWorklist[Idx];
+ if (BB->empty())
+ continue;
+
+ // Disallow inlining a blockaddress with uses other than strictly callbr.
+ // A blockaddress only has defined behavior for an indirect branch in the
+ // same function, and we do not currently support inlining indirect
+ // branches. But, the inliner may not see an indirect branch that ends up
+ // being dead code at a particular call site. If the blockaddress escapes
+ // the function, e.g., via a global variable, inlining may lead to an
+ // invalid cross-function reference.
+ // FIXME: pr/39560: continue relaxing this overt restriction.
+ if (BB->hasAddressTaken())
+ for (User *U : BlockAddress::get(&*BB)->users())
+ if (!isa<CallBrInst>(*U))
+ return "blockaddress used outside of callbr";
+
+ // Analyze the cost of this block. If we blow through the threshold, this
+ // returns false, and we can bail on out.
+ InlineResult IR = analyzeBlock(BB, EphValues);
+ if (!IR)
+ return IR;
+
+ Instruction *TI = BB->getTerminator();
+
+ // Add in the live successors by first checking whether we have terminator
+ // that may be simplified based on the values simplified by this call.
+ if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+ if (BI->isConditional()) {
+ Value *Cond = BI->getCondition();
+ if (ConstantInt *SimpleCond =
+ dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
+ BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0);
+ BBWorklist.insert(NextBB);
+ KnownSuccessors[BB] = NextBB;
+ findDeadBlocks(BB, NextBB);
+ continue;
+ }
+ }
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ Value *Cond = SI->getCondition();
+ if (ConstantInt *SimpleCond =
+ dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
+ BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor();
+ BBWorklist.insert(NextBB);
+ KnownSuccessors[BB] = NextBB;
+ findDeadBlocks(BB, NextBB);
+ continue;
+ }
+ }
+
+ // If we're unable to select a particular successor, just count all of
+ // them.
+ for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
+ ++TIdx)
+ BBWorklist.insert(TI->getSuccessor(TIdx));
+
+ // If we had any successors at this point, than post-inlining is likely to
+ // have them as well. Note that we assume any basic blocks which existed
+ // due to branches or switches which folded above will also fold after
+ // inlining.
+ if (SingleBB && TI->getNumSuccessors() > 1) {
+ // Take off the bonus we applied to the threshold.
+ Threshold -= SingleBBBonus;
+ SingleBB = false;
+ }
+ }
+
+ bool OnlyOneCallAndLocalLinkage =
+ F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction();
+ // If this is a noduplicate call, we can still inline as long as
+ // inlining this would cause the removal of the caller (so the instruction
+ // is not actually duplicated, just moved).
+ if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall)
+ return "noduplicate";
+
+ // Loops generally act a lot like calls in that they act like barriers to
+ // movement, require a certain amount of setup, etc. So when optimising for
+ // size, we penalise any call sites that perform loops. We do this after all
+ // other costs here, so will likely only be dealing with relatively small
+ // functions (and hence DT and LI will hopefully be cheap).
+ if (Caller->hasMinSize()) {
+ DominatorTree DT(F);
+ LoopInfo LI(DT);
+ int NumLoops = 0;
+ for (Loop *L : LI) {
+ // Ignore loops that will not be executed
+ if (DeadBlocks.count(L->getHeader()))
+ continue;
+ NumLoops++;
+ }
+ addCost(NumLoops * InlineConstants::CallPenalty);
+ }
+
+ // We applied the maximum possible vector bonus at the beginning. Now,
+ // subtract the excess bonus, if any, from the Threshold before
+ // comparing against Cost.
+ if (NumVectorInstructions <= NumInstructions / 10)
+ Threshold -= VectorBonus;
+ else if (NumVectorInstructions <= NumInstructions / 2)
+ Threshold -= VectorBonus/2;
+
+ return Cost < std::max(1, Threshold);
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+/// Dump stats about this call's analysis.
+LLVM_DUMP_METHOD void CallAnalyzer::dump() {
+#define DEBUG_PRINT_STAT(x) dbgs() << " " #x ": " << x << "\n"
+ DEBUG_PRINT_STAT(NumConstantArgs);
+ DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
+ DEBUG_PRINT_STAT(NumAllocaArgs);
+ DEBUG_PRINT_STAT(NumConstantPtrCmps);
+ DEBUG_PRINT_STAT(NumConstantPtrDiffs);
+ DEBUG_PRINT_STAT(NumInstructionsSimplified);
+ DEBUG_PRINT_STAT(NumInstructions);
+ DEBUG_PRINT_STAT(SROACostSavings);
+ DEBUG_PRINT_STAT(SROACostSavingsLost);
+ DEBUG_PRINT_STAT(LoadEliminationCost);
+ DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
+ DEBUG_PRINT_STAT(Cost);
+ DEBUG_PRINT_STAT(Threshold);
+#undef DEBUG_PRINT_STAT
+}
+#endif
+
+/// Test that there are no attribute conflicts between Caller and Callee
+/// that prevent inlining.
+static bool functionsHaveCompatibleAttributes(Function *Caller,
+ Function *Callee,
+ TargetTransformInfo &TTI) {
+ return TTI.areInlineCompatible(Caller, Callee) &&
+ AttributeFuncs::areInlineCompatible(*Caller, *Callee);
+}
+
+int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) {
+ int Cost = 0;
+ for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) {
+ if (Call.isByValArgument(I)) {
+ // We approximate the number of loads and stores needed by dividing the
+ // size of the byval type by the target's pointer size.
+ PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
+ unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType());
+ unsigned AS = PTy->getAddressSpace();
+ unsigned PointerSize = DL.getPointerSizeInBits(AS);
+ // Ceiling division.
+ unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
+
+ // If it generates more than 8 stores it is likely to be expanded as an
+ // inline memcpy so we take that as an upper bound. Otherwise we assume
+ // one load and one store per word copied.
+ // FIXME: The maxStoresPerMemcpy setting from the target should be used
+ // here instead of a magic number of 8, but it's not available via
+ // DataLayout.
+ NumStores = std::min(NumStores, 8U);
+
+ Cost += 2 * NumStores * InlineConstants::InstrCost;
+ } else {
+ // For non-byval arguments subtract off one instruction per call
+ // argument.
+ Cost += InlineConstants::InstrCost;
+ }
+ }
+ // The call instruction also disappears after inlining.
+ Cost += InlineConstants::InstrCost + InlineConstants::CallPenalty;
+ return Cost;
+}
+
+InlineCost llvm::getInlineCost(
+ CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI,
+ std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
+ Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI,
+ ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
+ return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI,
+ GetAssumptionCache, GetBFI, PSI, ORE);
+}
+
+InlineCost llvm::getInlineCost(
+ CallBase &Call, Function *Callee, const InlineParams &Params,
+ TargetTransformInfo &CalleeTTI,
+ std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
+ Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI,
+ ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
+
+ // Cannot inline indirect calls.
+ if (!Callee)
+ return llvm::InlineCost::getNever("indirect call");
+
+ // Never inline calls with byval arguments that does not have the alloca
+ // address space. Since byval arguments can be replaced with a copy to an
+ // alloca, the inlined code would need to be adjusted to handle that the
+ // argument is in the alloca address space (so it is a little bit complicated
+ // to solve).
+ unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace();
+ for (unsigned I = 0, E = Call.arg_size(); I != E; ++I)
+ if (Call.isByValArgument(I)) {
+ PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
+ if (PTy->getAddressSpace() != AllocaAS)
+ return llvm::InlineCost::getNever("byval arguments without alloca"
+ " address space");
+ }
+
+ // Calls to functions with always-inline attributes should be inlined
+ // whenever possible.
+ if (Call.hasFnAttr(Attribute::AlwaysInline)) {
+ auto IsViable = isInlineViable(*Callee);
+ if (IsViable)
+ return llvm::InlineCost::getAlways("always inline attribute");
+ return llvm::InlineCost::getNever(IsViable.message);
+ }
+
+ // Never inline functions with conflicting attributes (unless callee has
+ // always-inline attribute).
+ Function *Caller = Call.getCaller();
+ if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI))
+ return llvm::InlineCost::getNever("conflicting attributes");
+
+ // Don't inline this call if the caller has the optnone attribute.
+ if (Caller->hasOptNone())
+ return llvm::InlineCost::getNever("optnone attribute");
+
+ // Don't inline a function that treats null pointer as valid into a caller
+ // that does not have this attribute.
+ if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined())
+ return llvm::InlineCost::getNever("nullptr definitions incompatible");
+
+ // Don't inline functions which can be interposed at link-time.
+ if (Callee->isInterposable())
+ return llvm::InlineCost::getNever("interposable");
+
+ // Don't inline functions marked noinline.
+ if (Callee->hasFnAttribute(Attribute::NoInline))
+ return llvm::InlineCost::getNever("noinline function attribute");
+
+ // Don't inline call sites marked noinline.
+ if (Call.isNoInline())
+ return llvm::InlineCost::getNever("noinline call site attribute");
+
+ LLVM_DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName()
+ << "... (caller:" << Caller->getName() << ")\n");
+
+ CallAnalyzer CA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, ORE, *Callee,
+ Call, Params);
+ InlineResult ShouldInline = CA.analyzeCall(Call);
+
+ LLVM_DEBUG(CA.dump());
+
+ // Check if there was a reason to force inlining or no inlining.
+ if (!ShouldInline && CA.getCost() < CA.getThreshold())
+ return InlineCost::getNever(ShouldInline.message);
+ if (ShouldInline && CA.getCost() >= CA.getThreshold())
+ return InlineCost::getAlways("empty function");
+
+ return llvm::InlineCost::get(CA.getCost(), CA.getThreshold());
+}
+
+InlineResult llvm::isInlineViable(Function &F) {
+ bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice);
+ for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
+ // Disallow inlining of functions which contain indirect branches.
+ if (isa<IndirectBrInst>(BI->getTerminator()))
+ return "contains indirect branches";
+
+ // Disallow inlining of blockaddresses which are used by non-callbr
+ // instructions.
+ if (BI->hasAddressTaken())
+ for (User *U : BlockAddress::get(&*BI)->users())
+ if (!isa<CallBrInst>(*U))
+ return "blockaddress used outside of callbr";
+
+ for (auto &II : *BI) {
+ CallBase *Call = dyn_cast<CallBase>(&II);
+ if (!Call)
+ continue;
+
+ // Disallow recursive calls.
+ if (&F == Call->getCalledFunction())
+ return "recursive call";
+
+ // Disallow calls which expose returns-twice to a function not previously
+ // attributed as such.
+ if (!ReturnsTwice && isa<CallInst>(Call) &&
+ cast<CallInst>(Call)->canReturnTwice())
+ return "exposes returns-twice attribute";
+
+ if (Call->getCalledFunction())
+ switch (Call->getCalledFunction()->getIntrinsicID()) {
+ default:
+ break;
+ // Disallow inlining of @llvm.icall.branch.funnel because current
+ // backend can't separate call targets from call arguments.
+ case llvm::Intrinsic::icall_branch_funnel:
+ return "disallowed inlining of @llvm.icall.branch.funnel";
+ // Disallow inlining functions that call @llvm.localescape. Doing this
+ // correctly would require major changes to the inliner.
+ case llvm::Intrinsic::localescape:
+ return "disallowed inlining of @llvm.localescape";
+ // Disallow inlining of functions that initialize VarArgs with va_start.
+ case llvm::Intrinsic::vastart:
+ return "contains VarArgs initialized with va_start";
+ }
+ }
+ }
+
+ return true;
+}
+
+// APIs to create InlineParams based on command line flags and/or other
+// parameters.
+
+InlineParams llvm::getInlineParams(int Threshold) {
+ InlineParams Params;
+
+ // This field is the threshold to use for a callee by default. This is
+ // derived from one or more of:
+ // * optimization or size-optimization levels,
+ // * a value passed to createFunctionInliningPass function, or
+ // * the -inline-threshold flag.
+ // If the -inline-threshold flag is explicitly specified, that is used
+ // irrespective of anything else.
+ if (InlineThreshold.getNumOccurrences() > 0)
+ Params.DefaultThreshold = InlineThreshold;
+ else
+ Params.DefaultThreshold = Threshold;
+
+ // Set the HintThreshold knob from the -inlinehint-threshold.
+ Params.HintThreshold = HintThreshold;
+
+ // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold.
+ Params.HotCallSiteThreshold = HotCallSiteThreshold;
+
+ // If the -locally-hot-callsite-threshold is explicitly specified, use it to
+ // populate LocallyHotCallSiteThreshold. Later, we populate
+ // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if
+ // we know that optimization level is O3 (in the getInlineParams variant that
+ // takes the opt and size levels).
+ // FIXME: Remove this check (and make the assignment unconditional) after
+ // addressing size regression issues at O2.
+ if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0)
+ Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
+
+ // Set the ColdCallSiteThreshold knob from the -inline-cold-callsite-threshold.
+ Params.ColdCallSiteThreshold = ColdCallSiteThreshold;
+
+ // Set the OptMinSizeThreshold and OptSizeThreshold params only if the
+ // -inlinehint-threshold commandline option is not explicitly given. If that
+ // option is present, then its value applies even for callees with size and
+ // minsize attributes.
+ // If the -inline-threshold is not specified, set the ColdThreshold from the
+ // -inlinecold-threshold even if it is not explicitly passed. If
+ // -inline-threshold is specified, then -inlinecold-threshold needs to be
+ // explicitly specified to set the ColdThreshold knob
+ if (InlineThreshold.getNumOccurrences() == 0) {
+ Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold;
+ Params.OptSizeThreshold = InlineConstants::OptSizeThreshold;
+ Params.ColdThreshold = ColdThreshold;
+ } else if (ColdThreshold.getNumOccurrences() > 0) {
+ Params.ColdThreshold = ColdThreshold;
+ }
+ return Params;
+}
+
+InlineParams llvm::getInlineParams() {
+ return getInlineParams(InlineThreshold);
+}
+
+// Compute the default threshold for inlining based on the opt level and the
+// size opt level.
+static int computeThresholdFromOptLevels(unsigned OptLevel,
+ unsigned SizeOptLevel) {
+ if (OptLevel > 2)
+ return InlineConstants::OptAggressiveThreshold;
+ if (SizeOptLevel == 1) // -Os
+ return InlineConstants::OptSizeThreshold;
+ if (SizeOptLevel == 2) // -Oz
+ return InlineConstants::OptMinSizeThreshold;
+ return InlineThreshold;
+}
+
+InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) {
+ auto Params =
+ getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel));
+ // At O3, use the value of -locally-hot-callsite-threshold option to populate
+ // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only
+ // when it is specified explicitly.
+ if (OptLevel > 2)
+ Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
+ return Params;
+}