diff options
Diffstat (limited to 'llvm/lib/Analysis/LegacyDivergenceAnalysis.cpp')
-rw-r--r-- | llvm/lib/Analysis/LegacyDivergenceAnalysis.cpp | 404 |
1 files changed, 404 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/LegacyDivergenceAnalysis.cpp b/llvm/lib/Analysis/LegacyDivergenceAnalysis.cpp new file mode 100644 index 000000000000..7de9d2cbfddb --- /dev/null +++ b/llvm/lib/Analysis/LegacyDivergenceAnalysis.cpp @@ -0,0 +1,404 @@ +//===- LegacyDivergenceAnalysis.cpp --------- Legacy Divergence Analysis +//Implementation -==// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements divergence analysis which determines whether a branch +// in a GPU program is divergent.It can help branch optimizations such as jump +// threading and loop unswitching to make better decisions. +// +// GPU programs typically use the SIMD execution model, where multiple threads +// in the same execution group have to execute in lock-step. Therefore, if the +// code contains divergent branches (i.e., threads in a group do not agree on +// which path of the branch to take), the group of threads has to execute all +// the paths from that branch with different subsets of threads enabled until +// they converge at the immediately post-dominating BB of the paths. +// +// Due to this execution model, some optimizations such as jump +// threading and loop unswitching can be unfortunately harmful when performed on +// divergent branches. Therefore, an analysis that computes which branches in a +// GPU program are divergent can help the compiler to selectively run these +// optimizations. +// +// This file defines divergence analysis which computes a conservative but +// non-trivial approximation of all divergent branches in a GPU program. It +// partially implements the approach described in +// +// Divergence Analysis +// Sampaio, Souza, Collange, Pereira +// TOPLAS '13 +// +// The divergence analysis identifies the sources of divergence (e.g., special +// variables that hold the thread ID), and recursively marks variables that are +// data or sync dependent on a source of divergence as divergent. +// +// While data dependency is a well-known concept, the notion of sync dependency +// is worth more explanation. Sync dependence characterizes the control flow +// aspect of the propagation of branch divergence. For example, +// +// %cond = icmp slt i32 %tid, 10 +// br i1 %cond, label %then, label %else +// then: +// br label %merge +// else: +// br label %merge +// merge: +// %a = phi i32 [ 0, %then ], [ 1, %else ] +// +// Suppose %tid holds the thread ID. Although %a is not data dependent on %tid +// because %tid is not on its use-def chains, %a is sync dependent on %tid +// because the branch "br i1 %cond" depends on %tid and affects which value %a +// is assigned to. +// +// The current implementation has the following limitations: +// 1. intra-procedural. It conservatively considers the arguments of a +// non-kernel-entry function and the return value of a function call as +// divergent. +// 2. memory as black box. It conservatively considers values loaded from +// generic or local address as divergent. This can be improved by leveraging +// pointer analysis. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/Analysis/CFG.h" +#include "llvm/Analysis/DivergenceAnalysis.h" +#include "llvm/Analysis/LegacyDivergenceAnalysis.h" +#include "llvm/Analysis/Passes.h" +#include "llvm/Analysis/PostDominators.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/InstIterator.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Value.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include <vector> +using namespace llvm; + +#define DEBUG_TYPE "divergence" + +// transparently use the GPUDivergenceAnalysis +static cl::opt<bool> UseGPUDA("use-gpu-divergence-analysis", cl::init(false), + cl::Hidden, + cl::desc("turn the LegacyDivergenceAnalysis into " + "a wrapper for GPUDivergenceAnalysis")); + +namespace { + +class DivergencePropagator { +public: + DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT, + PostDominatorTree &PDT, DenseSet<const Value *> &DV, + DenseSet<const Use *> &DU) + : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV), DU(DU) {} + void populateWithSourcesOfDivergence(); + void propagate(); + +private: + // A helper function that explores data dependents of V. + void exploreDataDependency(Value *V); + // A helper function that explores sync dependents of TI. + void exploreSyncDependency(Instruction *TI); + // Computes the influence region from Start to End. This region includes all + // basic blocks on any simple path from Start to End. + void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End, + DenseSet<BasicBlock *> &InfluenceRegion); + // Finds all users of I that are outside the influence region, and add these + // users to Worklist. + void findUsersOutsideInfluenceRegion( + Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion); + + Function &F; + TargetTransformInfo &TTI; + DominatorTree &DT; + PostDominatorTree &PDT; + std::vector<Value *> Worklist; // Stack for DFS. + DenseSet<const Value *> &DV; // Stores all divergent values. + DenseSet<const Use *> &DU; // Stores divergent uses of possibly uniform + // values. +}; + +void DivergencePropagator::populateWithSourcesOfDivergence() { + Worklist.clear(); + DV.clear(); + DU.clear(); + for (auto &I : instructions(F)) { + if (TTI.isSourceOfDivergence(&I)) { + Worklist.push_back(&I); + DV.insert(&I); + } + } + for (auto &Arg : F.args()) { + if (TTI.isSourceOfDivergence(&Arg)) { + Worklist.push_back(&Arg); + DV.insert(&Arg); + } + } +} + +void DivergencePropagator::exploreSyncDependency(Instruction *TI) { + // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's + // immediate post dominator are divergent. This rule handles if-then-else + // patterns. For example, + // + // if (tid < 5) + // a1 = 1; + // else + // a2 = 2; + // a = phi(a1, a2); // sync dependent on (tid < 5) + BasicBlock *ThisBB = TI->getParent(); + + // Unreachable blocks may not be in the dominator tree. + if (!DT.isReachableFromEntry(ThisBB)) + return; + + // If the function has no exit blocks or doesn't reach any exit blocks, the + // post dominator may be null. + DomTreeNode *ThisNode = PDT.getNode(ThisBB); + if (!ThisNode) + return; + + BasicBlock *IPostDom = ThisNode->getIDom()->getBlock(); + if (IPostDom == nullptr) + return; + + for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) { + // A PHINode is uniform if it returns the same value no matter which path is + // taken. + if (!cast<PHINode>(I)->hasConstantOrUndefValue() && DV.insert(&*I).second) + Worklist.push_back(&*I); + } + + // Propagation rule 2: if a value defined in a loop is used outside, the user + // is sync dependent on the condition of the loop exits that dominate the + // user. For example, + // + // int i = 0; + // do { + // i++; + // if (foo(i)) ... // uniform + // } while (i < tid); + // if (bar(i)) ... // divergent + // + // A program may contain unstructured loops. Therefore, we cannot leverage + // LoopInfo, which only recognizes natural loops. + // + // The algorithm used here handles both natural and unstructured loops. Given + // a branch TI, we first compute its influence region, the union of all simple + // paths from TI to its immediate post dominator (IPostDom). Then, we search + // for all the values defined in the influence region but used outside. All + // these users are sync dependent on TI. + DenseSet<BasicBlock *> InfluenceRegion; + computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion); + // An insight that can speed up the search process is that all the in-region + // values that are used outside must dominate TI. Therefore, instead of + // searching every basic blocks in the influence region, we search all the + // dominators of TI until it is outside the influence region. + BasicBlock *InfluencedBB = ThisBB; + while (InfluenceRegion.count(InfluencedBB)) { + for (auto &I : *InfluencedBB) { + if (!DV.count(&I)) + findUsersOutsideInfluenceRegion(I, InfluenceRegion); + } + DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom(); + if (IDomNode == nullptr) + break; + InfluencedBB = IDomNode->getBlock(); + } +} + +void DivergencePropagator::findUsersOutsideInfluenceRegion( + Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) { + for (Use &Use : I.uses()) { + Instruction *UserInst = cast<Instruction>(Use.getUser()); + if (!InfluenceRegion.count(UserInst->getParent())) { + DU.insert(&Use); + if (DV.insert(UserInst).second) + Worklist.push_back(UserInst); + } + } +} + +// A helper function for computeInfluenceRegion that adds successors of "ThisBB" +// to the influence region. +static void +addSuccessorsToInfluenceRegion(BasicBlock *ThisBB, BasicBlock *End, + DenseSet<BasicBlock *> &InfluenceRegion, + std::vector<BasicBlock *> &InfluenceStack) { + for (BasicBlock *Succ : successors(ThisBB)) { + if (Succ != End && InfluenceRegion.insert(Succ).second) + InfluenceStack.push_back(Succ); + } +} + +void DivergencePropagator::computeInfluenceRegion( + BasicBlock *Start, BasicBlock *End, + DenseSet<BasicBlock *> &InfluenceRegion) { + assert(PDT.properlyDominates(End, Start) && + "End does not properly dominate Start"); + + // The influence region starts from the end of "Start" to the beginning of + // "End". Therefore, "Start" should not be in the region unless "Start" is in + // a loop that doesn't contain "End". + std::vector<BasicBlock *> InfluenceStack; + addSuccessorsToInfluenceRegion(Start, End, InfluenceRegion, InfluenceStack); + while (!InfluenceStack.empty()) { + BasicBlock *BB = InfluenceStack.back(); + InfluenceStack.pop_back(); + addSuccessorsToInfluenceRegion(BB, End, InfluenceRegion, InfluenceStack); + } +} + +void DivergencePropagator::exploreDataDependency(Value *V) { + // Follow def-use chains of V. + for (User *U : V->users()) { + if (!TTI.isAlwaysUniform(U) && DV.insert(U).second) + Worklist.push_back(U); + } +} + +void DivergencePropagator::propagate() { + // Traverse the dependency graph using DFS. + while (!Worklist.empty()) { + Value *V = Worklist.back(); + Worklist.pop_back(); + if (Instruction *I = dyn_cast<Instruction>(V)) { + // Terminators with less than two successors won't introduce sync + // dependency. Ignore them. + if (I->isTerminator() && I->getNumSuccessors() > 1) + exploreSyncDependency(I); + } + exploreDataDependency(V); + } +} + +} // namespace + +// Register this pass. +char LegacyDivergenceAnalysis::ID = 0; +INITIALIZE_PASS_BEGIN(LegacyDivergenceAnalysis, "divergence", + "Legacy Divergence Analysis", false, true) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) +INITIALIZE_PASS_END(LegacyDivergenceAnalysis, "divergence", + "Legacy Divergence Analysis", false, true) + +FunctionPass *llvm::createLegacyDivergenceAnalysisPass() { + return new LegacyDivergenceAnalysis(); +} + +void LegacyDivergenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<PostDominatorTreeWrapperPass>(); + if (UseGPUDA) + AU.addRequired<LoopInfoWrapperPass>(); + AU.setPreservesAll(); +} + +bool LegacyDivergenceAnalysis::shouldUseGPUDivergenceAnalysis( + const Function &F) const { + if (!UseGPUDA) + return false; + + // GPUDivergenceAnalysis requires a reducible CFG. + auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + using RPOTraversal = ReversePostOrderTraversal<const Function *>; + RPOTraversal FuncRPOT(&F); + return !containsIrreducibleCFG<const BasicBlock *, const RPOTraversal, + const LoopInfo>(FuncRPOT, LI); +} + +bool LegacyDivergenceAnalysis::runOnFunction(Function &F) { + auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); + if (TTIWP == nullptr) + return false; + + TargetTransformInfo &TTI = TTIWP->getTTI(F); + // Fast path: if the target does not have branch divergence, we do not mark + // any branch as divergent. + if (!TTI.hasBranchDivergence()) + return false; + + DivergentValues.clear(); + DivergentUses.clear(); + gpuDA = nullptr; + + auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); + + if (shouldUseGPUDivergenceAnalysis(F)) { + // run the new GPU divergence analysis + auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + gpuDA = std::make_unique<GPUDivergenceAnalysis>(F, DT, PDT, LI, TTI); + + } else { + // run LLVM's existing DivergenceAnalysis + DivergencePropagator DP(F, TTI, DT, PDT, DivergentValues, DivergentUses); + DP.populateWithSourcesOfDivergence(); + DP.propagate(); + } + + LLVM_DEBUG(dbgs() << "\nAfter divergence analysis on " << F.getName() + << ":\n"; + print(dbgs(), F.getParent())); + + return false; +} + +bool LegacyDivergenceAnalysis::isDivergent(const Value *V) const { + if (gpuDA) { + return gpuDA->isDivergent(*V); + } + return DivergentValues.count(V); +} + +bool LegacyDivergenceAnalysis::isDivergentUse(const Use *U) const { + if (gpuDA) { + return gpuDA->isDivergentUse(*U); + } + return DivergentValues.count(U->get()) || DivergentUses.count(U); +} + +void LegacyDivergenceAnalysis::print(raw_ostream &OS, const Module *) const { + if ((!gpuDA || !gpuDA->hasDivergence()) && DivergentValues.empty()) + return; + + const Function *F = nullptr; + if (!DivergentValues.empty()) { + const Value *FirstDivergentValue = *DivergentValues.begin(); + if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) { + F = Arg->getParent(); + } else if (const Instruction *I = + dyn_cast<Instruction>(FirstDivergentValue)) { + F = I->getParent()->getParent(); + } else { + llvm_unreachable("Only arguments and instructions can be divergent"); + } + } else if (gpuDA) { + F = &gpuDA->getFunction(); + } + if (!F) + return; + + // Dumps all divergent values in F, arguments and then instructions. + for (auto &Arg : F->args()) { + OS << (isDivergent(&Arg) ? "DIVERGENT: " : " "); + OS << Arg << "\n"; + } + // Iterate instructions using instructions() to ensure a deterministic order. + for (auto BI = F->begin(), BE = F->end(); BI != BE; ++BI) { + auto &BB = *BI; + OS << "\n " << BB.getName() << ":\n"; + for (auto &I : BB.instructionsWithoutDebug()) { + OS << (isDivergent(&I) ? "DIVERGENT: " : " "); + OS << I << "\n"; + } + } + OS << "\n"; +} |