summaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/Loads.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Analysis/Loads.cpp')
-rw-r--r--llvm/lib/Analysis/Loads.cpp481
1 files changed, 481 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/Loads.cpp b/llvm/lib/Analysis/Loads.cpp
new file mode 100644
index 000000000000..641e92eac781
--- /dev/null
+++ b/llvm/lib/Analysis/Loads.cpp
@@ -0,0 +1,481 @@
+//===- Loads.cpp - Local load analysis ------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines simple local analyses for load instructions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/Loads.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Statepoint.h"
+
+using namespace llvm;
+
+static MaybeAlign getBaseAlign(const Value *Base, const DataLayout &DL) {
+ if (const MaybeAlign PA = Base->getPointerAlignment(DL))
+ return *PA;
+ Type *const Ty = Base->getType()->getPointerElementType();
+ if (!Ty->isSized())
+ return None;
+ return Align(DL.getABITypeAlignment(Ty));
+}
+
+static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment,
+ const DataLayout &DL) {
+ if (MaybeAlign BA = getBaseAlign(Base, DL)) {
+ const APInt APBaseAlign(Offset.getBitWidth(), BA->value());
+ const APInt APAlign(Offset.getBitWidth(), Alignment.value());
+ assert(APAlign.isPowerOf2() && "must be a power of 2!");
+ return APBaseAlign.uge(APAlign) && !(Offset & (APAlign - 1));
+ }
+ return false;
+}
+
+/// Test if V is always a pointer to allocated and suitably aligned memory for
+/// a simple load or store.
+static bool isDereferenceableAndAlignedPointer(
+ const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL,
+ const Instruction *CtxI, const DominatorTree *DT,
+ SmallPtrSetImpl<const Value *> &Visited) {
+ // Already visited? Bail out, we've likely hit unreachable code.
+ if (!Visited.insert(V).second)
+ return false;
+
+ // Note that it is not safe to speculate into a malloc'd region because
+ // malloc may return null.
+
+ // bitcast instructions are no-ops as far as dereferenceability is concerned.
+ if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V))
+ return isDereferenceableAndAlignedPointer(BC->getOperand(0), Alignment,
+ Size, DL, CtxI, DT, Visited);
+
+ bool CheckForNonNull = false;
+ APInt KnownDerefBytes(Size.getBitWidth(),
+ V->getPointerDereferenceableBytes(DL, CheckForNonNull));
+ if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size))
+ if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) {
+ // As we recursed through GEPs to get here, we've incrementally checked
+ // that each step advanced by a multiple of the alignment. If our base is
+ // properly aligned, then the original offset accessed must also be.
+ Type *Ty = V->getType();
+ assert(Ty->isSized() && "must be sized");
+ APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
+ return isAligned(V, Offset, Alignment, DL);
+ }
+
+ // For GEPs, determine if the indexing lands within the allocated object.
+ if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
+ const Value *Base = GEP->getPointerOperand();
+
+ APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
+ if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
+ !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value()))
+ .isMinValue())
+ return false;
+
+ // If the base pointer is dereferenceable for Offset+Size bytes, then the
+ // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base
+ // pointer is aligned to Align bytes, and the Offset is divisible by Align
+ // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
+ // aligned to Align bytes.
+
+ // Offset and Size may have different bit widths if we have visited an
+ // addrspacecast, so we can't do arithmetic directly on the APInt values.
+ return isDereferenceableAndAlignedPointer(
+ Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL,
+ CtxI, DT, Visited);
+ }
+
+ // For gc.relocate, look through relocations
+ if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
+ return isDereferenceableAndAlignedPointer(
+ RelocateInst->getDerivedPtr(), Alignment, Size, DL, CtxI, DT, Visited);
+
+ if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
+ return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment,
+ Size, DL, CtxI, DT, Visited);
+
+ if (const auto *Call = dyn_cast<CallBase>(V))
+ if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
+ return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI,
+ DT, Visited);
+
+ // If we don't know, assume the worst.
+ return false;
+}
+
+bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Align Alignment,
+ const APInt &Size,
+ const DataLayout &DL,
+ const Instruction *CtxI,
+ const DominatorTree *DT) {
+ // Note: At the moment, Size can be zero. This ends up being interpreted as
+ // a query of whether [Base, V] is dereferenceable and V is aligned (since
+ // that's what the implementation happened to do). It's unclear if this is
+ // the desired semantic, but at least SelectionDAG does exercise this case.
+
+ SmallPtrSet<const Value *, 32> Visited;
+ return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT,
+ Visited);
+}
+
+bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty,
+ MaybeAlign MA,
+ const DataLayout &DL,
+ const Instruction *CtxI,
+ const DominatorTree *DT) {
+ if (!Ty->isSized())
+ return false;
+
+ // When dereferenceability information is provided by a dereferenceable
+ // attribute, we know exactly how many bytes are dereferenceable. If we can
+ // determine the exact offset to the attributed variable, we can use that
+ // information here.
+
+ // Require ABI alignment for loads without alignment specification
+ const Align Alignment = DL.getValueOrABITypeAlignment(MA, Ty);
+ APInt AccessSize(DL.getIndexTypeSizeInBits(V->getType()),
+ DL.getTypeStoreSize(Ty));
+ return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI,
+ DT);
+}
+
+bool llvm::isDereferenceablePointer(const Value *V, Type *Ty,
+ const DataLayout &DL,
+ const Instruction *CtxI,
+ const DominatorTree *DT) {
+ return isDereferenceableAndAlignedPointer(V, Ty, Align::None(), DL, CtxI, DT);
+}
+
+/// Test if A and B will obviously have the same value.
+///
+/// This includes recognizing that %t0 and %t1 will have the same
+/// value in code like this:
+/// \code
+/// %t0 = getelementptr \@a, 0, 3
+/// store i32 0, i32* %t0
+/// %t1 = getelementptr \@a, 0, 3
+/// %t2 = load i32* %t1
+/// \endcode
+///
+static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
+ // Test if the values are trivially equivalent.
+ if (A == B)
+ return true;
+
+ // Test if the values come from identical arithmetic instructions.
+ // Use isIdenticalToWhenDefined instead of isIdenticalTo because
+ // this function is only used when one address use dominates the
+ // other, which means that they'll always either have the same
+ // value or one of them will have an undefined value.
+ if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
+ isa<GetElementPtrInst>(A))
+ if (const Instruction *BI = dyn_cast<Instruction>(B))
+ if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
+ return true;
+
+ // Otherwise they may not be equivalent.
+ return false;
+}
+
+bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L,
+ ScalarEvolution &SE,
+ DominatorTree &DT) {
+ auto &DL = LI->getModule()->getDataLayout();
+ Value *Ptr = LI->getPointerOperand();
+
+ APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()),
+ DL.getTypeStoreSize(LI->getType()));
+ const Align Alignment = DL.getValueOrABITypeAlignment(
+ MaybeAlign(LI->getAlignment()), LI->getType());
+
+ Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI();
+
+ // If given a uniform (i.e. non-varying) address, see if we can prove the
+ // access is safe within the loop w/o needing predication.
+ if (L->isLoopInvariant(Ptr))
+ return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL,
+ HeaderFirstNonPHI, &DT);
+
+ // Otherwise, check to see if we have a repeating access pattern where we can
+ // prove that all accesses are well aligned and dereferenceable.
+ auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr));
+ if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine())
+ return false;
+ auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE));
+ if (!Step)
+ return false;
+ // TODO: generalize to access patterns which have gaps
+ if (Step->getAPInt() != EltSize)
+ return false;
+
+ // TODO: If the symbolic trip count has a small bound (max count), we might
+ // be able to prove safety.
+ auto TC = SE.getSmallConstantTripCount(L);
+ if (!TC)
+ return false;
+
+ const APInt AccessSize = TC * EltSize;
+
+ auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart());
+ if (!StartS)
+ return false;
+ assert(SE.isLoopInvariant(StartS, L) && "implied by addrec definition");
+ Value *Base = StartS->getValue();
+
+ // For the moment, restrict ourselves to the case where the access size is a
+ // multiple of the requested alignment and the base is aligned.
+ // TODO: generalize if a case found which warrants
+ if (EltSize.urem(Alignment.value()) != 0)
+ return false;
+ return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL,
+ HeaderFirstNonPHI, &DT);
+}
+
+/// Check if executing a load of this pointer value cannot trap.
+///
+/// If DT and ScanFrom are specified this method performs context-sensitive
+/// analysis and returns true if it is safe to load immediately before ScanFrom.
+///
+/// If it is not obviously safe to load from the specified pointer, we do
+/// a quick local scan of the basic block containing \c ScanFrom, to determine
+/// if the address is already accessed.
+///
+/// This uses the pointee type to determine how many bytes need to be safe to
+/// load from the pointer.
+bool llvm::isSafeToLoadUnconditionally(Value *V, MaybeAlign MA, APInt &Size,
+ const DataLayout &DL,
+ Instruction *ScanFrom,
+ const DominatorTree *DT) {
+ // Zero alignment means that the load has the ABI alignment for the target
+ const Align Alignment =
+ DL.getValueOrABITypeAlignment(MA, V->getType()->getPointerElementType());
+
+ // If DT is not specified we can't make context-sensitive query
+ const Instruction* CtxI = DT ? ScanFrom : nullptr;
+ if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT))
+ return true;
+
+ if (!ScanFrom)
+ return false;
+
+ if (Size.getBitWidth() > 64)
+ return false;
+ const uint64_t LoadSize = Size.getZExtValue();
+
+ // Otherwise, be a little bit aggressive by scanning the local block where we
+ // want to check to see if the pointer is already being loaded or stored
+ // from/to. If so, the previous load or store would have already trapped,
+ // so there is no harm doing an extra load (also, CSE will later eliminate
+ // the load entirely).
+ BasicBlock::iterator BBI = ScanFrom->getIterator(),
+ E = ScanFrom->getParent()->begin();
+
+ // We can at least always strip pointer casts even though we can't use the
+ // base here.
+ V = V->stripPointerCasts();
+
+ while (BBI != E) {
+ --BBI;
+
+ // If we see a free or a call which may write to memory (i.e. which might do
+ // a free) the pointer could be marked invalid.
+ if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
+ !isa<DbgInfoIntrinsic>(BBI))
+ return false;
+
+ Value *AccessedPtr;
+ MaybeAlign MaybeAccessedAlign;
+ if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
+ // Ignore volatile loads. The execution of a volatile load cannot
+ // be used to prove an address is backed by regular memory; it can,
+ // for example, point to an MMIO register.
+ if (LI->isVolatile())
+ continue;
+ AccessedPtr = LI->getPointerOperand();
+ MaybeAccessedAlign = MaybeAlign(LI->getAlignment());
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
+ // Ignore volatile stores (see comment for loads).
+ if (SI->isVolatile())
+ continue;
+ AccessedPtr = SI->getPointerOperand();
+ MaybeAccessedAlign = MaybeAlign(SI->getAlignment());
+ } else
+ continue;
+
+ Type *AccessedTy = AccessedPtr->getType()->getPointerElementType();
+
+ const Align AccessedAlign =
+ DL.getValueOrABITypeAlignment(MaybeAccessedAlign, AccessedTy);
+ if (AccessedAlign < Alignment)
+ continue;
+
+ // Handle trivial cases.
+ if (AccessedPtr == V &&
+ LoadSize <= DL.getTypeStoreSize(AccessedTy))
+ return true;
+
+ if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
+ LoadSize <= DL.getTypeStoreSize(AccessedTy))
+ return true;
+ }
+ return false;
+}
+
+bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, MaybeAlign Alignment,
+ const DataLayout &DL,
+ Instruction *ScanFrom,
+ const DominatorTree *DT) {
+ APInt Size(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty));
+ return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, DT);
+}
+
+ /// DefMaxInstsToScan - the default number of maximum instructions
+/// to scan in the block, used by FindAvailableLoadedValue().
+/// FindAvailableLoadedValue() was introduced in r60148, to improve jump
+/// threading in part by eliminating partially redundant loads.
+/// At that point, the value of MaxInstsToScan was already set to '6'
+/// without documented explanation.
+cl::opt<unsigned>
+llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
+ cl::desc("Use this to specify the default maximum number of instructions "
+ "to scan backward from a given instruction, when searching for "
+ "available loaded value"));
+
+Value *llvm::FindAvailableLoadedValue(LoadInst *Load,
+ BasicBlock *ScanBB,
+ BasicBlock::iterator &ScanFrom,
+ unsigned MaxInstsToScan,
+ AliasAnalysis *AA, bool *IsLoad,
+ unsigned *NumScanedInst) {
+ // Don't CSE load that is volatile or anything stronger than unordered.
+ if (!Load->isUnordered())
+ return nullptr;
+
+ return FindAvailablePtrLoadStore(
+ Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB,
+ ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst);
+}
+
+Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy,
+ bool AtLeastAtomic, BasicBlock *ScanBB,
+ BasicBlock::iterator &ScanFrom,
+ unsigned MaxInstsToScan,
+ AliasAnalysis *AA, bool *IsLoadCSE,
+ unsigned *NumScanedInst) {
+ if (MaxInstsToScan == 0)
+ MaxInstsToScan = ~0U;
+
+ const DataLayout &DL = ScanBB->getModule()->getDataLayout();
+
+ // Try to get the store size for the type.
+ auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy));
+
+ Value *StrippedPtr = Ptr->stripPointerCasts();
+
+ while (ScanFrom != ScanBB->begin()) {
+ // We must ignore debug info directives when counting (otherwise they
+ // would affect codegen).
+ Instruction *Inst = &*--ScanFrom;
+ if (isa<DbgInfoIntrinsic>(Inst))
+ continue;
+
+ // Restore ScanFrom to expected value in case next test succeeds
+ ScanFrom++;
+
+ if (NumScanedInst)
+ ++(*NumScanedInst);
+
+ // Don't scan huge blocks.
+ if (MaxInstsToScan-- == 0)
+ return nullptr;
+
+ --ScanFrom;
+ // If this is a load of Ptr, the loaded value is available.
+ // (This is true even if the load is volatile or atomic, although
+ // those cases are unlikely.)
+ if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
+ if (AreEquivalentAddressValues(
+ LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) &&
+ CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
+
+ // We can value forward from an atomic to a non-atomic, but not the
+ // other way around.
+ if (LI->isAtomic() < AtLeastAtomic)
+ return nullptr;
+
+ if (IsLoadCSE)
+ *IsLoadCSE = true;
+ return LI;
+ }
+
+ if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
+ Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
+ // If this is a store through Ptr, the value is available!
+ // (This is true even if the store is volatile or atomic, although
+ // those cases are unlikely.)
+ if (AreEquivalentAddressValues(StorePtr, StrippedPtr) &&
+ CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(),
+ AccessTy, DL)) {
+
+ // We can value forward from an atomic to a non-atomic, but not the
+ // other way around.
+ if (SI->isAtomic() < AtLeastAtomic)
+ return nullptr;
+
+ if (IsLoadCSE)
+ *IsLoadCSE = false;
+ return SI->getOperand(0);
+ }
+
+ // If both StrippedPtr and StorePtr reach all the way to an alloca or
+ // global and they are different, ignore the store. This is a trivial form
+ // of alias analysis that is important for reg2mem'd code.
+ if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
+ (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
+ StrippedPtr != StorePtr)
+ continue;
+
+ // If we have alias analysis and it says the store won't modify the loaded
+ // value, ignore the store.
+ if (AA && !isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize)))
+ continue;
+
+ // Otherwise the store that may or may not alias the pointer, bail out.
+ ++ScanFrom;
+ return nullptr;
+ }
+
+ // If this is some other instruction that may clobber Ptr, bail out.
+ if (Inst->mayWriteToMemory()) {
+ // If alias analysis claims that it really won't modify the load,
+ // ignore it.
+ if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize)))
+ continue;
+
+ // May modify the pointer, bail out.
+ ++ScanFrom;
+ return nullptr;
+ }
+ }
+
+ // Got to the start of the block, we didn't find it, but are done for this
+ // block.
+ return nullptr;
+}