diff options
Diffstat (limited to 'llvm/lib/Analysis/Loads.cpp')
-rw-r--r-- | llvm/lib/Analysis/Loads.cpp | 481 |
1 files changed, 481 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/Loads.cpp b/llvm/lib/Analysis/Loads.cpp new file mode 100644 index 000000000000..641e92eac781 --- /dev/null +++ b/llvm/lib/Analysis/Loads.cpp @@ -0,0 +1,481 @@ +//===- Loads.cpp - Local load analysis ------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines simple local analyses for load instructions. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/Loads.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/Statepoint.h" + +using namespace llvm; + +static MaybeAlign getBaseAlign(const Value *Base, const DataLayout &DL) { + if (const MaybeAlign PA = Base->getPointerAlignment(DL)) + return *PA; + Type *const Ty = Base->getType()->getPointerElementType(); + if (!Ty->isSized()) + return None; + return Align(DL.getABITypeAlignment(Ty)); +} + +static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment, + const DataLayout &DL) { + if (MaybeAlign BA = getBaseAlign(Base, DL)) { + const APInt APBaseAlign(Offset.getBitWidth(), BA->value()); + const APInt APAlign(Offset.getBitWidth(), Alignment.value()); + assert(APAlign.isPowerOf2() && "must be a power of 2!"); + return APBaseAlign.uge(APAlign) && !(Offset & (APAlign - 1)); + } + return false; +} + +/// Test if V is always a pointer to allocated and suitably aligned memory for +/// a simple load or store. +static bool isDereferenceableAndAlignedPointer( + const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL, + const Instruction *CtxI, const DominatorTree *DT, + SmallPtrSetImpl<const Value *> &Visited) { + // Already visited? Bail out, we've likely hit unreachable code. + if (!Visited.insert(V).second) + return false; + + // Note that it is not safe to speculate into a malloc'd region because + // malloc may return null. + + // bitcast instructions are no-ops as far as dereferenceability is concerned. + if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) + return isDereferenceableAndAlignedPointer(BC->getOperand(0), Alignment, + Size, DL, CtxI, DT, Visited); + + bool CheckForNonNull = false; + APInt KnownDerefBytes(Size.getBitWidth(), + V->getPointerDereferenceableBytes(DL, CheckForNonNull)); + if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size)) + if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) { + // As we recursed through GEPs to get here, we've incrementally checked + // that each step advanced by a multiple of the alignment. If our base is + // properly aligned, then the original offset accessed must also be. + Type *Ty = V->getType(); + assert(Ty->isSized() && "must be sized"); + APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0); + return isAligned(V, Offset, Alignment, DL); + } + + // For GEPs, determine if the indexing lands within the allocated object. + if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { + const Value *Base = GEP->getPointerOperand(); + + APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0); + if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() || + !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value())) + .isMinValue()) + return false; + + // If the base pointer is dereferenceable for Offset+Size bytes, then the + // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base + // pointer is aligned to Align bytes, and the Offset is divisible by Align + // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also + // aligned to Align bytes. + + // Offset and Size may have different bit widths if we have visited an + // addrspacecast, so we can't do arithmetic directly on the APInt values. + return isDereferenceableAndAlignedPointer( + Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL, + CtxI, DT, Visited); + } + + // For gc.relocate, look through relocations + if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V)) + return isDereferenceableAndAlignedPointer( + RelocateInst->getDerivedPtr(), Alignment, Size, DL, CtxI, DT, Visited); + + if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V)) + return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment, + Size, DL, CtxI, DT, Visited); + + if (const auto *Call = dyn_cast<CallBase>(V)) + if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) + return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI, + DT, Visited); + + // If we don't know, assume the worst. + return false; +} + +bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Align Alignment, + const APInt &Size, + const DataLayout &DL, + const Instruction *CtxI, + const DominatorTree *DT) { + // Note: At the moment, Size can be zero. This ends up being interpreted as + // a query of whether [Base, V] is dereferenceable and V is aligned (since + // that's what the implementation happened to do). It's unclear if this is + // the desired semantic, but at least SelectionDAG does exercise this case. + + SmallPtrSet<const Value *, 32> Visited; + return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT, + Visited); +} + +bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, + MaybeAlign MA, + const DataLayout &DL, + const Instruction *CtxI, + const DominatorTree *DT) { + if (!Ty->isSized()) + return false; + + // When dereferenceability information is provided by a dereferenceable + // attribute, we know exactly how many bytes are dereferenceable. If we can + // determine the exact offset to the attributed variable, we can use that + // information here. + + // Require ABI alignment for loads without alignment specification + const Align Alignment = DL.getValueOrABITypeAlignment(MA, Ty); + APInt AccessSize(DL.getIndexTypeSizeInBits(V->getType()), + DL.getTypeStoreSize(Ty)); + return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI, + DT); +} + +bool llvm::isDereferenceablePointer(const Value *V, Type *Ty, + const DataLayout &DL, + const Instruction *CtxI, + const DominatorTree *DT) { + return isDereferenceableAndAlignedPointer(V, Ty, Align::None(), DL, CtxI, DT); +} + +/// Test if A and B will obviously have the same value. +/// +/// This includes recognizing that %t0 and %t1 will have the same +/// value in code like this: +/// \code +/// %t0 = getelementptr \@a, 0, 3 +/// store i32 0, i32* %t0 +/// %t1 = getelementptr \@a, 0, 3 +/// %t2 = load i32* %t1 +/// \endcode +/// +static bool AreEquivalentAddressValues(const Value *A, const Value *B) { + // Test if the values are trivially equivalent. + if (A == B) + return true; + + // Test if the values come from identical arithmetic instructions. + // Use isIdenticalToWhenDefined instead of isIdenticalTo because + // this function is only used when one address use dominates the + // other, which means that they'll always either have the same + // value or one of them will have an undefined value. + if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) || + isa<GetElementPtrInst>(A)) + if (const Instruction *BI = dyn_cast<Instruction>(B)) + if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) + return true; + + // Otherwise they may not be equivalent. + return false; +} + +bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L, + ScalarEvolution &SE, + DominatorTree &DT) { + auto &DL = LI->getModule()->getDataLayout(); + Value *Ptr = LI->getPointerOperand(); + + APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()), + DL.getTypeStoreSize(LI->getType())); + const Align Alignment = DL.getValueOrABITypeAlignment( + MaybeAlign(LI->getAlignment()), LI->getType()); + + Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI(); + + // If given a uniform (i.e. non-varying) address, see if we can prove the + // access is safe within the loop w/o needing predication. + if (L->isLoopInvariant(Ptr)) + return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL, + HeaderFirstNonPHI, &DT); + + // Otherwise, check to see if we have a repeating access pattern where we can + // prove that all accesses are well aligned and dereferenceable. + auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr)); + if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine()) + return false; + auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE)); + if (!Step) + return false; + // TODO: generalize to access patterns which have gaps + if (Step->getAPInt() != EltSize) + return false; + + // TODO: If the symbolic trip count has a small bound (max count), we might + // be able to prove safety. + auto TC = SE.getSmallConstantTripCount(L); + if (!TC) + return false; + + const APInt AccessSize = TC * EltSize; + + auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart()); + if (!StartS) + return false; + assert(SE.isLoopInvariant(StartS, L) && "implied by addrec definition"); + Value *Base = StartS->getValue(); + + // For the moment, restrict ourselves to the case where the access size is a + // multiple of the requested alignment and the base is aligned. + // TODO: generalize if a case found which warrants + if (EltSize.urem(Alignment.value()) != 0) + return false; + return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL, + HeaderFirstNonPHI, &DT); +} + +/// Check if executing a load of this pointer value cannot trap. +/// +/// If DT and ScanFrom are specified this method performs context-sensitive +/// analysis and returns true if it is safe to load immediately before ScanFrom. +/// +/// If it is not obviously safe to load from the specified pointer, we do +/// a quick local scan of the basic block containing \c ScanFrom, to determine +/// if the address is already accessed. +/// +/// This uses the pointee type to determine how many bytes need to be safe to +/// load from the pointer. +bool llvm::isSafeToLoadUnconditionally(Value *V, MaybeAlign MA, APInt &Size, + const DataLayout &DL, + Instruction *ScanFrom, + const DominatorTree *DT) { + // Zero alignment means that the load has the ABI alignment for the target + const Align Alignment = + DL.getValueOrABITypeAlignment(MA, V->getType()->getPointerElementType()); + + // If DT is not specified we can't make context-sensitive query + const Instruction* CtxI = DT ? ScanFrom : nullptr; + if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT)) + return true; + + if (!ScanFrom) + return false; + + if (Size.getBitWidth() > 64) + return false; + const uint64_t LoadSize = Size.getZExtValue(); + + // Otherwise, be a little bit aggressive by scanning the local block where we + // want to check to see if the pointer is already being loaded or stored + // from/to. If so, the previous load or store would have already trapped, + // so there is no harm doing an extra load (also, CSE will later eliminate + // the load entirely). + BasicBlock::iterator BBI = ScanFrom->getIterator(), + E = ScanFrom->getParent()->begin(); + + // We can at least always strip pointer casts even though we can't use the + // base here. + V = V->stripPointerCasts(); + + while (BBI != E) { + --BBI; + + // If we see a free or a call which may write to memory (i.e. which might do + // a free) the pointer could be marked invalid. + if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() && + !isa<DbgInfoIntrinsic>(BBI)) + return false; + + Value *AccessedPtr; + MaybeAlign MaybeAccessedAlign; + if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { + // Ignore volatile loads. The execution of a volatile load cannot + // be used to prove an address is backed by regular memory; it can, + // for example, point to an MMIO register. + if (LI->isVolatile()) + continue; + AccessedPtr = LI->getPointerOperand(); + MaybeAccessedAlign = MaybeAlign(LI->getAlignment()); + } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { + // Ignore volatile stores (see comment for loads). + if (SI->isVolatile()) + continue; + AccessedPtr = SI->getPointerOperand(); + MaybeAccessedAlign = MaybeAlign(SI->getAlignment()); + } else + continue; + + Type *AccessedTy = AccessedPtr->getType()->getPointerElementType(); + + const Align AccessedAlign = + DL.getValueOrABITypeAlignment(MaybeAccessedAlign, AccessedTy); + if (AccessedAlign < Alignment) + continue; + + // Handle trivial cases. + if (AccessedPtr == V && + LoadSize <= DL.getTypeStoreSize(AccessedTy)) + return true; + + if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) && + LoadSize <= DL.getTypeStoreSize(AccessedTy)) + return true; + } + return false; +} + +bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, MaybeAlign Alignment, + const DataLayout &DL, + Instruction *ScanFrom, + const DominatorTree *DT) { + APInt Size(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty)); + return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, DT); +} + + /// DefMaxInstsToScan - the default number of maximum instructions +/// to scan in the block, used by FindAvailableLoadedValue(). +/// FindAvailableLoadedValue() was introduced in r60148, to improve jump +/// threading in part by eliminating partially redundant loads. +/// At that point, the value of MaxInstsToScan was already set to '6' +/// without documented explanation. +cl::opt<unsigned> +llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden, + cl::desc("Use this to specify the default maximum number of instructions " + "to scan backward from a given instruction, when searching for " + "available loaded value")); + +Value *llvm::FindAvailableLoadedValue(LoadInst *Load, + BasicBlock *ScanBB, + BasicBlock::iterator &ScanFrom, + unsigned MaxInstsToScan, + AliasAnalysis *AA, bool *IsLoad, + unsigned *NumScanedInst) { + // Don't CSE load that is volatile or anything stronger than unordered. + if (!Load->isUnordered()) + return nullptr; + + return FindAvailablePtrLoadStore( + Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB, + ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst); +} + +Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy, + bool AtLeastAtomic, BasicBlock *ScanBB, + BasicBlock::iterator &ScanFrom, + unsigned MaxInstsToScan, + AliasAnalysis *AA, bool *IsLoadCSE, + unsigned *NumScanedInst) { + if (MaxInstsToScan == 0) + MaxInstsToScan = ~0U; + + const DataLayout &DL = ScanBB->getModule()->getDataLayout(); + + // Try to get the store size for the type. + auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy)); + + Value *StrippedPtr = Ptr->stripPointerCasts(); + + while (ScanFrom != ScanBB->begin()) { + // We must ignore debug info directives when counting (otherwise they + // would affect codegen). + Instruction *Inst = &*--ScanFrom; + if (isa<DbgInfoIntrinsic>(Inst)) + continue; + + // Restore ScanFrom to expected value in case next test succeeds + ScanFrom++; + + if (NumScanedInst) + ++(*NumScanedInst); + + // Don't scan huge blocks. + if (MaxInstsToScan-- == 0) + return nullptr; + + --ScanFrom; + // If this is a load of Ptr, the loaded value is available. + // (This is true even if the load is volatile or atomic, although + // those cases are unlikely.) + if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) + if (AreEquivalentAddressValues( + LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) && + CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) { + + // We can value forward from an atomic to a non-atomic, but not the + // other way around. + if (LI->isAtomic() < AtLeastAtomic) + return nullptr; + + if (IsLoadCSE) + *IsLoadCSE = true; + return LI; + } + + if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { + Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); + // If this is a store through Ptr, the value is available! + // (This is true even if the store is volatile or atomic, although + // those cases are unlikely.) + if (AreEquivalentAddressValues(StorePtr, StrippedPtr) && + CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(), + AccessTy, DL)) { + + // We can value forward from an atomic to a non-atomic, but not the + // other way around. + if (SI->isAtomic() < AtLeastAtomic) + return nullptr; + + if (IsLoadCSE) + *IsLoadCSE = false; + return SI->getOperand(0); + } + + // If both StrippedPtr and StorePtr reach all the way to an alloca or + // global and they are different, ignore the store. This is a trivial form + // of alias analysis that is important for reg2mem'd code. + if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) && + (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) && + StrippedPtr != StorePtr) + continue; + + // If we have alias analysis and it says the store won't modify the loaded + // value, ignore the store. + if (AA && !isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize))) + continue; + + // Otherwise the store that may or may not alias the pointer, bail out. + ++ScanFrom; + return nullptr; + } + + // If this is some other instruction that may clobber Ptr, bail out. + if (Inst->mayWriteToMemory()) { + // If alias analysis claims that it really won't modify the load, + // ignore it. + if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize))) + continue; + + // May modify the pointer, bail out. + ++ScanFrom; + return nullptr; + } + } + + // Got to the start of the block, we didn't find it, but are done for this + // block. + return nullptr; +} |