summaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/MemoryBuiltins.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Analysis/MemoryBuiltins.cpp')
-rw-r--r--llvm/lib/Analysis/MemoryBuiltins.cpp1051
1 files changed, 1051 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/MemoryBuiltins.cpp b/llvm/lib/Analysis/MemoryBuiltins.cpp
new file mode 100644
index 000000000000..172c86eb4646
--- /dev/null
+++ b/llvm/lib/Analysis/MemoryBuiltins.cpp
@@ -0,0 +1,1051 @@
+//===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This family of functions identifies calls to builtin functions that allocate
+// or free memory.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Analysis/TargetFolder.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/Utils/Local.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <utility>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "memory-builtins"
+
+enum AllocType : uint8_t {
+ OpNewLike = 1<<0, // allocates; never returns null
+ MallocLike = 1<<1 | OpNewLike, // allocates; may return null
+ CallocLike = 1<<2, // allocates + bzero
+ ReallocLike = 1<<3, // reallocates
+ StrDupLike = 1<<4,
+ MallocOrCallocLike = MallocLike | CallocLike,
+ AllocLike = MallocLike | CallocLike | StrDupLike,
+ AnyAlloc = AllocLike | ReallocLike
+};
+
+struct AllocFnsTy {
+ AllocType AllocTy;
+ unsigned NumParams;
+ // First and Second size parameters (or -1 if unused)
+ int FstParam, SndParam;
+};
+
+// FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
+// know which functions are nounwind, noalias, nocapture parameters, etc.
+static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
+ {LibFunc_malloc, {MallocLike, 1, 0, -1}},
+ {LibFunc_valloc, {MallocLike, 1, 0, -1}},
+ {LibFunc_Znwj, {OpNewLike, 1, 0, -1}}, // new(unsigned int)
+ {LibFunc_ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow)
+ {LibFunc_ZnwjSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new(unsigned int, align_val_t)
+ {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, // new(unsigned int, align_val_t, nothrow)
+ {MallocLike, 3, 0, -1}},
+ {LibFunc_Znwm, {OpNewLike, 1, 0, -1}}, // new(unsigned long)
+ {LibFunc_ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned long, nothrow)
+ {LibFunc_ZnwmSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new(unsigned long, align_val_t)
+ {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, // new(unsigned long, align_val_t, nothrow)
+ {MallocLike, 3, 0, -1}},
+ {LibFunc_Znaj, {OpNewLike, 1, 0, -1}}, // new[](unsigned int)
+ {LibFunc_ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow)
+ {LibFunc_ZnajSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new[](unsigned int, align_val_t)
+ {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, // new[](unsigned int, align_val_t, nothrow)
+ {MallocLike, 3, 0, -1}},
+ {LibFunc_Znam, {OpNewLike, 1, 0, -1}}, // new[](unsigned long)
+ {LibFunc_ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned long, nothrow)
+ {LibFunc_ZnamSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new[](unsigned long, align_val_t)
+ {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, // new[](unsigned long, align_val_t, nothrow)
+ {MallocLike, 3, 0, -1}},
+ {LibFunc_msvc_new_int, {OpNewLike, 1, 0, -1}}, // new(unsigned int)
+ {LibFunc_msvc_new_int_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow)
+ {LibFunc_msvc_new_longlong, {OpNewLike, 1, 0, -1}}, // new(unsigned long long)
+ {LibFunc_msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned long long, nothrow)
+ {LibFunc_msvc_new_array_int, {OpNewLike, 1, 0, -1}}, // new[](unsigned int)
+ {LibFunc_msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow)
+ {LibFunc_msvc_new_array_longlong, {OpNewLike, 1, 0, -1}}, // new[](unsigned long long)
+ {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned long long, nothrow)
+ {LibFunc_calloc, {CallocLike, 2, 0, 1}},
+ {LibFunc_realloc, {ReallocLike, 2, 1, -1}},
+ {LibFunc_reallocf, {ReallocLike, 2, 1, -1}},
+ {LibFunc_strdup, {StrDupLike, 1, -1, -1}},
+ {LibFunc_strndup, {StrDupLike, 2, 1, -1}}
+ // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
+};
+
+static const Function *getCalledFunction(const Value *V, bool LookThroughBitCast,
+ bool &IsNoBuiltin) {
+ // Don't care about intrinsics in this case.
+ if (isa<IntrinsicInst>(V))
+ return nullptr;
+
+ if (LookThroughBitCast)
+ V = V->stripPointerCasts();
+
+ ImmutableCallSite CS(V);
+ if (!CS.getInstruction())
+ return nullptr;
+
+ IsNoBuiltin = CS.isNoBuiltin();
+
+ if (const Function *Callee = CS.getCalledFunction())
+ return Callee;
+ return nullptr;
+}
+
+/// Returns the allocation data for the given value if it's either a call to a
+/// known allocation function, or a call to a function with the allocsize
+/// attribute.
+static Optional<AllocFnsTy>
+getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
+ const TargetLibraryInfo *TLI) {
+ // Make sure that the function is available.
+ StringRef FnName = Callee->getName();
+ LibFunc TLIFn;
+ if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
+ return None;
+
+ const auto *Iter = find_if(
+ AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
+ return P.first == TLIFn;
+ });
+
+ if (Iter == std::end(AllocationFnData))
+ return None;
+
+ const AllocFnsTy *FnData = &Iter->second;
+ if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
+ return None;
+
+ // Check function prototype.
+ int FstParam = FnData->FstParam;
+ int SndParam = FnData->SndParam;
+ FunctionType *FTy = Callee->getFunctionType();
+
+ if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
+ FTy->getNumParams() == FnData->NumParams &&
+ (FstParam < 0 ||
+ (FTy->getParamType(FstParam)->isIntegerTy(32) ||
+ FTy->getParamType(FstParam)->isIntegerTy(64))) &&
+ (SndParam < 0 ||
+ FTy->getParamType(SndParam)->isIntegerTy(32) ||
+ FTy->getParamType(SndParam)->isIntegerTy(64)))
+ return *FnData;
+ return None;
+}
+
+static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy,
+ const TargetLibraryInfo *TLI,
+ bool LookThroughBitCast = false) {
+ bool IsNoBuiltinCall;
+ if (const Function *Callee =
+ getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall))
+ if (!IsNoBuiltinCall)
+ return getAllocationDataForFunction(Callee, AllocTy, TLI);
+ return None;
+}
+
+static Optional<AllocFnsTy>
+getAllocationData(const Value *V, AllocType AllocTy,
+ function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
+ bool LookThroughBitCast = false) {
+ bool IsNoBuiltinCall;
+ if (const Function *Callee =
+ getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall))
+ if (!IsNoBuiltinCall)
+ return getAllocationDataForFunction(
+ Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee)));
+ return None;
+}
+
+static Optional<AllocFnsTy> getAllocationSize(const Value *V,
+ const TargetLibraryInfo *TLI) {
+ bool IsNoBuiltinCall;
+ const Function *Callee =
+ getCalledFunction(V, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
+ if (!Callee)
+ return None;
+
+ // Prefer to use existing information over allocsize. This will give us an
+ // accurate AllocTy.
+ if (!IsNoBuiltinCall)
+ if (Optional<AllocFnsTy> Data =
+ getAllocationDataForFunction(Callee, AnyAlloc, TLI))
+ return Data;
+
+ Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
+ if (Attr == Attribute())
+ return None;
+
+ std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs();
+
+ AllocFnsTy Result;
+ // Because allocsize only tells us how many bytes are allocated, we're not
+ // really allowed to assume anything, so we use MallocLike.
+ Result.AllocTy = MallocLike;
+ Result.NumParams = Callee->getNumOperands();
+ Result.FstParam = Args.first;
+ Result.SndParam = Args.second.getValueOr(-1);
+ return Result;
+}
+
+static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) {
+ ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V);
+ return CS && CS.hasRetAttr(Attribute::NoAlias);
+}
+
+/// Tests if a value is a call or invoke to a library function that
+/// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
+/// like).
+bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI,
+ bool LookThroughBitCast) {
+ return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue();
+}
+bool llvm::isAllocationFn(
+ const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
+ bool LookThroughBitCast) {
+ return getAllocationData(V, AnyAlloc, GetTLI, LookThroughBitCast).hasValue();
+}
+
+/// Tests if a value is a call or invoke to a function that returns a
+/// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
+bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI,
+ bool LookThroughBitCast) {
+ // it's safe to consider realloc as noalias since accessing the original
+ // pointer is undefined behavior
+ return isAllocationFn(V, TLI, LookThroughBitCast) ||
+ hasNoAliasAttr(V, LookThroughBitCast);
+}
+
+/// Tests if a value is a call or invoke to a library function that
+/// allocates uninitialized memory (such as malloc).
+bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
+ bool LookThroughBitCast) {
+ return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue();
+}
+bool llvm::isMallocLikeFn(
+ const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
+ bool LookThroughBitCast) {
+ return getAllocationData(V, MallocLike, GetTLI, LookThroughBitCast)
+ .hasValue();
+}
+
+/// Tests if a value is a call or invoke to a library function that
+/// allocates zero-filled memory (such as calloc).
+bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
+ bool LookThroughBitCast) {
+ return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue();
+}
+
+/// Tests if a value is a call or invoke to a library function that
+/// allocates memory similar to malloc or calloc.
+bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
+ bool LookThroughBitCast) {
+ return getAllocationData(V, MallocOrCallocLike, TLI,
+ LookThroughBitCast).hasValue();
+}
+
+/// Tests if a value is a call or invoke to a library function that
+/// allocates memory (either malloc, calloc, or strdup like).
+bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
+ bool LookThroughBitCast) {
+ return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue();
+}
+
+/// Tests if a value is a call or invoke to a library function that
+/// reallocates memory (e.g., realloc).
+bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
+ bool LookThroughBitCast) {
+ return getAllocationData(V, ReallocLike, TLI, LookThroughBitCast).hasValue();
+}
+
+/// Tests if a functions is a call or invoke to a library function that
+/// reallocates memory (e.g., realloc).
+bool llvm::isReallocLikeFn(const Function *F, const TargetLibraryInfo *TLI) {
+ return getAllocationDataForFunction(F, ReallocLike, TLI).hasValue();
+}
+
+/// Tests if a value is a call or invoke to a library function that
+/// allocates memory and throws if an allocation failed (e.g., new).
+bool llvm::isOpNewLikeFn(const Value *V, const TargetLibraryInfo *TLI,
+ bool LookThroughBitCast) {
+ return getAllocationData(V, OpNewLike, TLI, LookThroughBitCast).hasValue();
+}
+
+/// Tests if a value is a call or invoke to a library function that
+/// allocates memory (strdup, strndup).
+bool llvm::isStrdupLikeFn(const Value *V, const TargetLibraryInfo *TLI,
+ bool LookThroughBitCast) {
+ return getAllocationData(V, StrDupLike, TLI, LookThroughBitCast).hasValue();
+}
+
+/// extractMallocCall - Returns the corresponding CallInst if the instruction
+/// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we
+/// ignore InvokeInst here.
+const CallInst *llvm::extractMallocCall(
+ const Value *I,
+ function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
+ return isMallocLikeFn(I, GetTLI) ? dyn_cast<CallInst>(I) : nullptr;
+}
+
+static Value *computeArraySize(const CallInst *CI, const DataLayout &DL,
+ const TargetLibraryInfo *TLI,
+ bool LookThroughSExt = false) {
+ if (!CI)
+ return nullptr;
+
+ // The size of the malloc's result type must be known to determine array size.
+ Type *T = getMallocAllocatedType(CI, TLI);
+ if (!T || !T->isSized())
+ return nullptr;
+
+ unsigned ElementSize = DL.getTypeAllocSize(T);
+ if (StructType *ST = dyn_cast<StructType>(T))
+ ElementSize = DL.getStructLayout(ST)->getSizeInBytes();
+
+ // If malloc call's arg can be determined to be a multiple of ElementSize,
+ // return the multiple. Otherwise, return NULL.
+ Value *MallocArg = CI->getArgOperand(0);
+ Value *Multiple = nullptr;
+ if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt))
+ return Multiple;
+
+ return nullptr;
+}
+
+/// getMallocType - Returns the PointerType resulting from the malloc call.
+/// The PointerType depends on the number of bitcast uses of the malloc call:
+/// 0: PointerType is the calls' return type.
+/// 1: PointerType is the bitcast's result type.
+/// >1: Unique PointerType cannot be determined, return NULL.
+PointerType *llvm::getMallocType(const CallInst *CI,
+ const TargetLibraryInfo *TLI) {
+ assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call");
+
+ PointerType *MallocType = nullptr;
+ unsigned NumOfBitCastUses = 0;
+
+ // Determine if CallInst has a bitcast use.
+ for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end();
+ UI != E;)
+ if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) {
+ MallocType = cast<PointerType>(BCI->getDestTy());
+ NumOfBitCastUses++;
+ }
+
+ // Malloc call has 1 bitcast use, so type is the bitcast's destination type.
+ if (NumOfBitCastUses == 1)
+ return MallocType;
+
+ // Malloc call was not bitcast, so type is the malloc function's return type.
+ if (NumOfBitCastUses == 0)
+ return cast<PointerType>(CI->getType());
+
+ // Type could not be determined.
+ return nullptr;
+}
+
+/// getMallocAllocatedType - Returns the Type allocated by malloc call.
+/// The Type depends on the number of bitcast uses of the malloc call:
+/// 0: PointerType is the malloc calls' return type.
+/// 1: PointerType is the bitcast's result type.
+/// >1: Unique PointerType cannot be determined, return NULL.
+Type *llvm::getMallocAllocatedType(const CallInst *CI,
+ const TargetLibraryInfo *TLI) {
+ PointerType *PT = getMallocType(CI, TLI);
+ return PT ? PT->getElementType() : nullptr;
+}
+
+/// getMallocArraySize - Returns the array size of a malloc call. If the
+/// argument passed to malloc is a multiple of the size of the malloced type,
+/// then return that multiple. For non-array mallocs, the multiple is
+/// constant 1. Otherwise, return NULL for mallocs whose array size cannot be
+/// determined.
+Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL,
+ const TargetLibraryInfo *TLI,
+ bool LookThroughSExt) {
+ assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call");
+ return computeArraySize(CI, DL, TLI, LookThroughSExt);
+}
+
+/// extractCallocCall - Returns the corresponding CallInst if the instruction
+/// is a calloc call.
+const CallInst *llvm::extractCallocCall(const Value *I,
+ const TargetLibraryInfo *TLI) {
+ return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr;
+}
+
+/// isLibFreeFunction - Returns true if the function is a builtin free()
+bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) {
+ unsigned ExpectedNumParams;
+ if (TLIFn == LibFunc_free ||
+ TLIFn == LibFunc_ZdlPv || // operator delete(void*)
+ TLIFn == LibFunc_ZdaPv || // operator delete[](void*)
+ TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*)
+ TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*)
+ TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*)
+ TLIFn == LibFunc_msvc_delete_array_ptr64) // operator delete[](void*)
+ ExpectedNumParams = 1;
+ else if (TLIFn == LibFunc_ZdlPvj || // delete(void*, uint)
+ TLIFn == LibFunc_ZdlPvm || // delete(void*, ulong)
+ TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
+ TLIFn == LibFunc_ZdlPvSt11align_val_t || // delete(void*, align_val_t)
+ TLIFn == LibFunc_ZdaPvj || // delete[](void*, uint)
+ TLIFn == LibFunc_ZdaPvm || // delete[](void*, ulong)
+ TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow)
+ TLIFn == LibFunc_ZdaPvSt11align_val_t || // delete[](void*, align_val_t)
+ TLIFn == LibFunc_msvc_delete_ptr32_int || // delete(void*, uint)
+ TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong)
+ TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow)
+ TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow)
+ TLIFn == LibFunc_msvc_delete_array_ptr32_int || // delete[](void*, uint)
+ TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong)
+ TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow)
+ TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow) // delete[](void*, nothrow)
+ ExpectedNumParams = 2;
+ else if (TLIFn == LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t || // delete(void*, align_val_t, nothrow)
+ TLIFn == LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t) // delete[](void*, align_val_t, nothrow)
+ ExpectedNumParams = 3;
+ else
+ return false;
+
+ // Check free prototype.
+ // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
+ // attribute will exist.
+ FunctionType *FTy = F->getFunctionType();
+ if (!FTy->getReturnType()->isVoidTy())
+ return false;
+ if (FTy->getNumParams() != ExpectedNumParams)
+ return false;
+ if (FTy->getParamType(0) != Type::getInt8PtrTy(F->getContext()))
+ return false;
+
+ return true;
+}
+
+/// isFreeCall - Returns non-null if the value is a call to the builtin free()
+const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
+ bool IsNoBuiltinCall;
+ const Function *Callee =
+ getCalledFunction(I, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
+ if (Callee == nullptr || IsNoBuiltinCall)
+ return nullptr;
+
+ StringRef FnName = Callee->getName();
+ LibFunc TLIFn;
+ if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
+ return nullptr;
+
+ return isLibFreeFunction(Callee, TLIFn) ? dyn_cast<CallInst>(I) : nullptr;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Utility functions to compute size of objects.
+//
+static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
+ if (Data.second.isNegative() || Data.first.ult(Data.second))
+ return APInt(Data.first.getBitWidth(), 0);
+ return Data.first - Data.second;
+}
+
+/// Compute the size of the object pointed by Ptr. Returns true and the
+/// object size in Size if successful, and false otherwise.
+/// If RoundToAlign is true, then Size is rounded up to the alignment of
+/// allocas, byval arguments, and global variables.
+bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
+ const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
+ ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
+ SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
+ if (!Visitor.bothKnown(Data))
+ return false;
+
+ Size = getSizeWithOverflow(Data).getZExtValue();
+ return true;
+}
+
+Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
+ const DataLayout &DL,
+ const TargetLibraryInfo *TLI,
+ bool MustSucceed) {
+ assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
+ "ObjectSize must be a call to llvm.objectsize!");
+
+ bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
+ ObjectSizeOpts EvalOptions;
+ // Unless we have to fold this to something, try to be as accurate as
+ // possible.
+ if (MustSucceed)
+ EvalOptions.EvalMode =
+ MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
+ else
+ EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact;
+
+ EvalOptions.NullIsUnknownSize =
+ cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
+
+ auto *ResultType = cast<IntegerType>(ObjectSize->getType());
+ bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero();
+ if (StaticOnly) {
+ // FIXME: Does it make sense to just return a failure value if the size won't
+ // fit in the output and `!MustSucceed`?
+ uint64_t Size;
+ if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
+ isUIntN(ResultType->getBitWidth(), Size))
+ return ConstantInt::get(ResultType, Size);
+ } else {
+ LLVMContext &Ctx = ObjectSize->getFunction()->getContext();
+ ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions);
+ SizeOffsetEvalType SizeOffsetPair =
+ Eval.compute(ObjectSize->getArgOperand(0));
+
+ if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) {
+ IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL));
+ Builder.SetInsertPoint(ObjectSize);
+
+ // If we've outside the end of the object, then we can always access
+ // exactly 0 bytes.
+ Value *ResultSize =
+ Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second);
+ Value *UseZero =
+ Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second);
+ return Builder.CreateSelect(UseZero, ConstantInt::get(ResultType, 0),
+ ResultSize);
+ }
+ }
+
+ if (!MustSucceed)
+ return nullptr;
+
+ return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
+}
+
+STATISTIC(ObjectVisitorArgument,
+ "Number of arguments with unsolved size and offset");
+STATISTIC(ObjectVisitorLoad,
+ "Number of load instructions with unsolved size and offset");
+
+APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Alignment) {
+ if (Options.RoundToAlign && Alignment)
+ return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align(Alignment)));
+ return Size;
+}
+
+ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
+ const TargetLibraryInfo *TLI,
+ LLVMContext &Context,
+ ObjectSizeOpts Options)
+ : DL(DL), TLI(TLI), Options(Options) {
+ // Pointer size must be rechecked for each object visited since it could have
+ // a different address space.
+}
+
+SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
+ IntTyBits = DL.getPointerTypeSizeInBits(V->getType());
+ Zero = APInt::getNullValue(IntTyBits);
+
+ V = V->stripPointerCasts();
+ if (Instruction *I = dyn_cast<Instruction>(V)) {
+ // If we have already seen this instruction, bail out. Cycles can happen in
+ // unreachable code after constant propagation.
+ if (!SeenInsts.insert(I).second)
+ return unknown();
+
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
+ return visitGEPOperator(*GEP);
+ return visit(*I);
+ }
+ if (Argument *A = dyn_cast<Argument>(V))
+ return visitArgument(*A);
+ if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
+ return visitConstantPointerNull(*P);
+ if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
+ return visitGlobalAlias(*GA);
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
+ return visitGlobalVariable(*GV);
+ if (UndefValue *UV = dyn_cast<UndefValue>(V))
+ return visitUndefValue(*UV);
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
+ if (CE->getOpcode() == Instruction::IntToPtr)
+ return unknown(); // clueless
+ if (CE->getOpcode() == Instruction::GetElementPtr)
+ return visitGEPOperator(cast<GEPOperator>(*CE));
+ }
+
+ LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
+ << *V << '\n');
+ return unknown();
+}
+
+/// When we're compiling N-bit code, and the user uses parameters that are
+/// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
+/// trouble with APInt size issues. This function handles resizing + overflow
+/// checks for us. Check and zext or trunc \p I depending on IntTyBits and
+/// I's value.
+bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
+ // More bits than we can handle. Checking the bit width isn't necessary, but
+ // it's faster than checking active bits, and should give `false` in the
+ // vast majority of cases.
+ if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
+ return false;
+ if (I.getBitWidth() != IntTyBits)
+ I = I.zextOrTrunc(IntTyBits);
+ return true;
+}
+
+SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
+ if (!I.getAllocatedType()->isSized())
+ return unknown();
+
+ APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType()));
+ if (!I.isArrayAllocation())
+ return std::make_pair(align(Size, I.getAlignment()), Zero);
+
+ Value *ArraySize = I.getArraySize();
+ if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
+ APInt NumElems = C->getValue();
+ if (!CheckedZextOrTrunc(NumElems))
+ return unknown();
+
+ bool Overflow;
+ Size = Size.umul_ov(NumElems, Overflow);
+ return Overflow ? unknown() : std::make_pair(align(Size, I.getAlignment()),
+ Zero);
+ }
+ return unknown();
+}
+
+SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
+ // No interprocedural analysis is done at the moment.
+ if (!A.hasByValOrInAllocaAttr()) {
+ ++ObjectVisitorArgument;
+ return unknown();
+ }
+ PointerType *PT = cast<PointerType>(A.getType());
+ APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType()));
+ return std::make_pair(align(Size, A.getParamAlignment()), Zero);
+}
+
+SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) {
+ Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI);
+ if (!FnData)
+ return unknown();
+
+ // Handle strdup-like functions separately.
+ if (FnData->AllocTy == StrDupLike) {
+ APInt Size(IntTyBits, GetStringLength(CS.getArgument(0)));
+ if (!Size)
+ return unknown();
+
+ // Strndup limits strlen.
+ if (FnData->FstParam > 0) {
+ ConstantInt *Arg =
+ dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
+ if (!Arg)
+ return unknown();
+
+ APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
+ if (Size.ugt(MaxSize))
+ Size = MaxSize + 1;
+ }
+ return std::make_pair(Size, Zero);
+ }
+
+ ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
+ if (!Arg)
+ return unknown();
+
+ APInt Size = Arg->getValue();
+ if (!CheckedZextOrTrunc(Size))
+ return unknown();
+
+ // Size is determined by just 1 parameter.
+ if (FnData->SndParam < 0)
+ return std::make_pair(Size, Zero);
+
+ Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam));
+ if (!Arg)
+ return unknown();
+
+ APInt NumElems = Arg->getValue();
+ if (!CheckedZextOrTrunc(NumElems))
+ return unknown();
+
+ bool Overflow;
+ Size = Size.umul_ov(NumElems, Overflow);
+ return Overflow ? unknown() : std::make_pair(Size, Zero);
+
+ // TODO: handle more standard functions (+ wchar cousins):
+ // - strdup / strndup
+ // - strcpy / strncpy
+ // - strcat / strncat
+ // - memcpy / memmove
+ // - strcat / strncat
+ // - memset
+}
+
+SizeOffsetType
+ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) {
+ // If null is unknown, there's nothing we can do. Additionally, non-zero
+ // address spaces can make use of null, so we don't presume to know anything
+ // about that.
+ //
+ // TODO: How should this work with address space casts? We currently just drop
+ // them on the floor, but it's unclear what we should do when a NULL from
+ // addrspace(1) gets casted to addrspace(0) (or vice-versa).
+ if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace())
+ return unknown();
+ return std::make_pair(Zero, Zero);
+}
+
+SizeOffsetType
+ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
+ return unknown();
+}
+
+SizeOffsetType
+ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
+ // Easy cases were already folded by previous passes.
+ return unknown();
+}
+
+SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
+ SizeOffsetType PtrData = compute(GEP.getPointerOperand());
+ APInt Offset(IntTyBits, 0);
+ if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset))
+ return unknown();
+
+ return std::make_pair(PtrData.first, PtrData.second + Offset);
+}
+
+SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
+ if (GA.isInterposable())
+ return unknown();
+ return compute(GA.getAliasee());
+}
+
+SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
+ if (!GV.hasDefinitiveInitializer())
+ return unknown();
+
+ APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType()));
+ return std::make_pair(align(Size, GV.getAlignment()), Zero);
+}
+
+SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
+ // clueless
+ return unknown();
+}
+
+SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
+ ++ObjectVisitorLoad;
+ return unknown();
+}
+
+SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
+ // too complex to analyze statically.
+ return unknown();
+}
+
+SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
+ SizeOffsetType TrueSide = compute(I.getTrueValue());
+ SizeOffsetType FalseSide = compute(I.getFalseValue());
+ if (bothKnown(TrueSide) && bothKnown(FalseSide)) {
+ if (TrueSide == FalseSide) {
+ return TrueSide;
+ }
+
+ APInt TrueResult = getSizeWithOverflow(TrueSide);
+ APInt FalseResult = getSizeWithOverflow(FalseSide);
+
+ if (TrueResult == FalseResult) {
+ return TrueSide;
+ }
+ if (Options.EvalMode == ObjectSizeOpts::Mode::Min) {
+ if (TrueResult.slt(FalseResult))
+ return TrueSide;
+ return FalseSide;
+ }
+ if (Options.EvalMode == ObjectSizeOpts::Mode::Max) {
+ if (TrueResult.sgt(FalseResult))
+ return TrueSide;
+ return FalseSide;
+ }
+ }
+ return unknown();
+}
+
+SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
+ return std::make_pair(Zero, Zero);
+}
+
+SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
+ LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
+ << '\n');
+ return unknown();
+}
+
+ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
+ const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
+ ObjectSizeOpts EvalOpts)
+ : DL(DL), TLI(TLI), Context(Context),
+ Builder(Context, TargetFolder(DL),
+ IRBuilderCallbackInserter(
+ [&](Instruction *I) { InsertedInstructions.insert(I); })),
+ EvalOpts(EvalOpts) {
+ // IntTy and Zero must be set for each compute() since the address space may
+ // be different for later objects.
+}
+
+SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
+ // XXX - Are vectors of pointers possible here?
+ IntTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
+ Zero = ConstantInt::get(IntTy, 0);
+
+ SizeOffsetEvalType Result = compute_(V);
+
+ if (!bothKnown(Result)) {
+ // Erase everything that was computed in this iteration from the cache, so
+ // that no dangling references are left behind. We could be a bit smarter if
+ // we kept a dependency graph. It's probably not worth the complexity.
+ for (const Value *SeenVal : SeenVals) {
+ CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
+ // non-computable results can be safely cached
+ if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
+ CacheMap.erase(CacheIt);
+ }
+
+ // Erase any instructions we inserted as part of the traversal.
+ for (Instruction *I : InsertedInstructions) {
+ I->replaceAllUsesWith(UndefValue::get(I->getType()));
+ I->eraseFromParent();
+ }
+ }
+
+ SeenVals.clear();
+ InsertedInstructions.clear();
+ return Result;
+}
+
+SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
+ ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts);
+ SizeOffsetType Const = Visitor.compute(V);
+ if (Visitor.bothKnown(Const))
+ return std::make_pair(ConstantInt::get(Context, Const.first),
+ ConstantInt::get(Context, Const.second));
+
+ V = V->stripPointerCasts();
+
+ // Check cache.
+ CacheMapTy::iterator CacheIt = CacheMap.find(V);
+ if (CacheIt != CacheMap.end())
+ return CacheIt->second;
+
+ // Always generate code immediately before the instruction being
+ // processed, so that the generated code dominates the same BBs.
+ BuilderTy::InsertPointGuard Guard(Builder);
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ Builder.SetInsertPoint(I);
+
+ // Now compute the size and offset.
+ SizeOffsetEvalType Result;
+
+ // Record the pointers that were handled in this run, so that they can be
+ // cleaned later if something fails. We also use this set to break cycles that
+ // can occur in dead code.
+ if (!SeenVals.insert(V).second) {
+ Result = unknown();
+ } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
+ Result = visitGEPOperator(*GEP);
+ } else if (Instruction *I = dyn_cast<Instruction>(V)) {
+ Result = visit(*I);
+ } else if (isa<Argument>(V) ||
+ (isa<ConstantExpr>(V) &&
+ cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
+ isa<GlobalAlias>(V) ||
+ isa<GlobalVariable>(V)) {
+ // Ignore values where we cannot do more than ObjectSizeVisitor.
+ Result = unknown();
+ } else {
+ LLVM_DEBUG(
+ dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
+ << '\n');
+ Result = unknown();
+ }
+
+ // Don't reuse CacheIt since it may be invalid at this point.
+ CacheMap[V] = Result;
+ return Result;
+}
+
+SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
+ if (!I.getAllocatedType()->isSized())
+ return unknown();
+
+ // must be a VLA
+ assert(I.isArrayAllocation());
+ Value *ArraySize = I.getArraySize();
+ Value *Size = ConstantInt::get(ArraySize->getType(),
+ DL.getTypeAllocSize(I.getAllocatedType()));
+ Size = Builder.CreateMul(Size, ArraySize);
+ return std::make_pair(Size, Zero);
+}
+
+SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) {
+ Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI);
+ if (!FnData)
+ return unknown();
+
+ // Handle strdup-like functions separately.
+ if (FnData->AllocTy == StrDupLike) {
+ // TODO
+ return unknown();
+ }
+
+ Value *FirstArg = CS.getArgument(FnData->FstParam);
+ FirstArg = Builder.CreateZExt(FirstArg, IntTy);
+ if (FnData->SndParam < 0)
+ return std::make_pair(FirstArg, Zero);
+
+ Value *SecondArg = CS.getArgument(FnData->SndParam);
+ SecondArg = Builder.CreateZExt(SecondArg, IntTy);
+ Value *Size = Builder.CreateMul(FirstArg, SecondArg);
+ return std::make_pair(Size, Zero);
+
+ // TODO: handle more standard functions (+ wchar cousins):
+ // - strdup / strndup
+ // - strcpy / strncpy
+ // - strcat / strncat
+ // - memcpy / memmove
+ // - strcat / strncat
+ // - memset
+}
+
+SizeOffsetEvalType
+ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
+ return unknown();
+}
+
+SizeOffsetEvalType
+ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
+ return unknown();
+}
+
+SizeOffsetEvalType
+ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
+ SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
+ if (!bothKnown(PtrData))
+ return unknown();
+
+ Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
+ Offset = Builder.CreateAdd(PtrData.second, Offset);
+ return std::make_pair(PtrData.first, Offset);
+}
+
+SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
+ // clueless
+ return unknown();
+}
+
+SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
+ return unknown();
+}
+
+SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
+ // Create 2 PHIs: one for size and another for offset.
+ PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
+ PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
+
+ // Insert right away in the cache to handle recursive PHIs.
+ CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
+
+ // Compute offset/size for each PHI incoming pointer.
+ for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
+ Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
+ SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
+
+ if (!bothKnown(EdgeData)) {
+ OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
+ OffsetPHI->eraseFromParent();
+ InsertedInstructions.erase(OffsetPHI);
+ SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
+ SizePHI->eraseFromParent();
+ InsertedInstructions.erase(SizePHI);
+ return unknown();
+ }
+ SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
+ OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
+ }
+
+ Value *Size = SizePHI, *Offset = OffsetPHI;
+ if (Value *Tmp = SizePHI->hasConstantValue()) {
+ Size = Tmp;
+ SizePHI->replaceAllUsesWith(Size);
+ SizePHI->eraseFromParent();
+ InsertedInstructions.erase(SizePHI);
+ }
+ if (Value *Tmp = OffsetPHI->hasConstantValue()) {
+ Offset = Tmp;
+ OffsetPHI->replaceAllUsesWith(Offset);
+ OffsetPHI->eraseFromParent();
+ InsertedInstructions.erase(OffsetPHI);
+ }
+ return std::make_pair(Size, Offset);
+}
+
+SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
+ SizeOffsetEvalType TrueSide = compute_(I.getTrueValue());
+ SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
+
+ if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
+ return unknown();
+ if (TrueSide == FalseSide)
+ return TrueSide;
+
+ Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
+ FalseSide.first);
+ Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
+ FalseSide.second);
+ return std::make_pair(Size, Offset);
+}
+
+SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
+ LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
+ << '\n');
+ return unknown();
+}