summaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Analysis/MemoryDependenceAnalysis.cpp')
-rw-r--r--llvm/lib/Analysis/MemoryDependenceAnalysis.cpp1824
1 files changed, 1824 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp b/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp
new file mode 100644
index 000000000000..884587e020bb
--- /dev/null
+++ b/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp
@@ -0,0 +1,1824 @@
+//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements an analysis that determines, for a given memory
+// operation, what preceding memory operations it depends on. It builds on
+// alias analysis information, and tries to provide a lazy, caching interface to
+// a common kind of alias information query.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/MemoryDependenceAnalysis.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/MemoryLocation.h"
+#include "llvm/Analysis/OrderedBasicBlock.h"
+#include "llvm/Analysis/PHITransAddr.h"
+#include "llvm/Analysis/PhiValues.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PredIteratorCache.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/AtomicOrdering.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <utility>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "memdep"
+
+STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
+STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
+STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
+
+STATISTIC(NumCacheNonLocalPtr,
+ "Number of fully cached non-local ptr responses");
+STATISTIC(NumCacheDirtyNonLocalPtr,
+ "Number of cached, but dirty, non-local ptr responses");
+STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
+STATISTIC(NumCacheCompleteNonLocalPtr,
+ "Number of block queries that were completely cached");
+
+// Limit for the number of instructions to scan in a block.
+
+static cl::opt<unsigned> BlockScanLimit(
+ "memdep-block-scan-limit", cl::Hidden, cl::init(100),
+ cl::desc("The number of instructions to scan in a block in memory "
+ "dependency analysis (default = 100)"));
+
+static cl::opt<unsigned>
+ BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000),
+ cl::desc("The number of blocks to scan during memory "
+ "dependency analysis (default = 1000)"));
+
+// Limit on the number of memdep results to process.
+static const unsigned int NumResultsLimit = 100;
+
+/// This is a helper function that removes Val from 'Inst's set in ReverseMap.
+///
+/// If the set becomes empty, remove Inst's entry.
+template <typename KeyTy>
+static void
+RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
+ Instruction *Inst, KeyTy Val) {
+ typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
+ ReverseMap.find(Inst);
+ assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
+ bool Found = InstIt->second.erase(Val);
+ assert(Found && "Invalid reverse map!");
+ (void)Found;
+ if (InstIt->second.empty())
+ ReverseMap.erase(InstIt);
+}
+
+/// If the given instruction references a specific memory location, fill in Loc
+/// with the details, otherwise set Loc.Ptr to null.
+///
+/// Returns a ModRefInfo value describing the general behavior of the
+/// instruction.
+static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
+ const TargetLibraryInfo &TLI) {
+ if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
+ if (LI->isUnordered()) {
+ Loc = MemoryLocation::get(LI);
+ return ModRefInfo::Ref;
+ }
+ if (LI->getOrdering() == AtomicOrdering::Monotonic) {
+ Loc = MemoryLocation::get(LI);
+ return ModRefInfo::ModRef;
+ }
+ Loc = MemoryLocation();
+ return ModRefInfo::ModRef;
+ }
+
+ if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
+ if (SI->isUnordered()) {
+ Loc = MemoryLocation::get(SI);
+ return ModRefInfo::Mod;
+ }
+ if (SI->getOrdering() == AtomicOrdering::Monotonic) {
+ Loc = MemoryLocation::get(SI);
+ return ModRefInfo::ModRef;
+ }
+ Loc = MemoryLocation();
+ return ModRefInfo::ModRef;
+ }
+
+ if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
+ Loc = MemoryLocation::get(V);
+ return ModRefInfo::ModRef;
+ }
+
+ if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
+ // calls to free() deallocate the entire structure
+ Loc = MemoryLocation(CI->getArgOperand(0));
+ return ModRefInfo::Mod;
+ }
+
+ if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end:
+ case Intrinsic::invariant_start:
+ Loc = MemoryLocation::getForArgument(II, 1, TLI);
+ // These intrinsics don't really modify the memory, but returning Mod
+ // will allow them to be handled conservatively.
+ return ModRefInfo::Mod;
+ case Intrinsic::invariant_end:
+ Loc = MemoryLocation::getForArgument(II, 2, TLI);
+ // These intrinsics don't really modify the memory, but returning Mod
+ // will allow them to be handled conservatively.
+ return ModRefInfo::Mod;
+ default:
+ break;
+ }
+ }
+
+ // Otherwise, just do the coarse-grained thing that always works.
+ if (Inst->mayWriteToMemory())
+ return ModRefInfo::ModRef;
+ if (Inst->mayReadFromMemory())
+ return ModRefInfo::Ref;
+ return ModRefInfo::NoModRef;
+}
+
+/// Private helper for finding the local dependencies of a call site.
+MemDepResult MemoryDependenceResults::getCallDependencyFrom(
+ CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
+ BasicBlock *BB) {
+ unsigned Limit = getDefaultBlockScanLimit();
+
+ // Walk backwards through the block, looking for dependencies.
+ while (ScanIt != BB->begin()) {
+ Instruction *Inst = &*--ScanIt;
+ // Debug intrinsics don't cause dependences and should not affect Limit
+ if (isa<DbgInfoIntrinsic>(Inst))
+ continue;
+
+ // Limit the amount of scanning we do so we don't end up with quadratic
+ // running time on extreme testcases.
+ --Limit;
+ if (!Limit)
+ return MemDepResult::getUnknown();
+
+ // If this inst is a memory op, get the pointer it accessed
+ MemoryLocation Loc;
+ ModRefInfo MR = GetLocation(Inst, Loc, TLI);
+ if (Loc.Ptr) {
+ // A simple instruction.
+ if (isModOrRefSet(AA.getModRefInfo(Call, Loc)))
+ return MemDepResult::getClobber(Inst);
+ continue;
+ }
+
+ if (auto *CallB = dyn_cast<CallBase>(Inst)) {
+ // If these two calls do not interfere, look past it.
+ if (isNoModRef(AA.getModRefInfo(Call, CallB))) {
+ // If the two calls are the same, return Inst as a Def, so that
+ // Call can be found redundant and eliminated.
+ if (isReadOnlyCall && !isModSet(MR) &&
+ Call->isIdenticalToWhenDefined(CallB))
+ return MemDepResult::getDef(Inst);
+
+ // Otherwise if the two calls don't interact (e.g. CallB is readnone)
+ // keep scanning.
+ continue;
+ } else
+ return MemDepResult::getClobber(Inst);
+ }
+
+ // If we could not obtain a pointer for the instruction and the instruction
+ // touches memory then assume that this is a dependency.
+ if (isModOrRefSet(MR))
+ return MemDepResult::getClobber(Inst);
+ }
+
+ // No dependence found. If this is the entry block of the function, it is
+ // unknown, otherwise it is non-local.
+ if (BB != &BB->getParent()->getEntryBlock())
+ return MemDepResult::getNonLocal();
+ return MemDepResult::getNonFuncLocal();
+}
+
+unsigned MemoryDependenceResults::getLoadLoadClobberFullWidthSize(
+ const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize,
+ const LoadInst *LI) {
+ // We can only extend simple integer loads.
+ if (!isa<IntegerType>(LI->getType()) || !LI->isSimple())
+ return 0;
+
+ // Load widening is hostile to ThreadSanitizer: it may cause false positives
+ // or make the reports more cryptic (access sizes are wrong).
+ if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
+ return 0;
+
+ const DataLayout &DL = LI->getModule()->getDataLayout();
+
+ // Get the base of this load.
+ int64_t LIOffs = 0;
+ const Value *LIBase =
+ GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL);
+
+ // If the two pointers are not based on the same pointer, we can't tell that
+ // they are related.
+ if (LIBase != MemLocBase)
+ return 0;
+
+ // Okay, the two values are based on the same pointer, but returned as
+ // no-alias. This happens when we have things like two byte loads at "P+1"
+ // and "P+3". Check to see if increasing the size of the "LI" load up to its
+ // alignment (or the largest native integer type) will allow us to load all
+ // the bits required by MemLoc.
+
+ // If MemLoc is before LI, then no widening of LI will help us out.
+ if (MemLocOffs < LIOffs)
+ return 0;
+
+ // Get the alignment of the load in bytes. We assume that it is safe to load
+ // any legal integer up to this size without a problem. For example, if we're
+ // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
+ // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it
+ // to i16.
+ unsigned LoadAlign = LI->getAlignment();
+
+ int64_t MemLocEnd = MemLocOffs + MemLocSize;
+
+ // If no amount of rounding up will let MemLoc fit into LI, then bail out.
+ if (LIOffs + LoadAlign < MemLocEnd)
+ return 0;
+
+ // This is the size of the load to try. Start with the next larger power of
+ // two.
+ unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U;
+ NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
+
+ while (true) {
+ // If this load size is bigger than our known alignment or would not fit
+ // into a native integer register, then we fail.
+ if (NewLoadByteSize > LoadAlign ||
+ !DL.fitsInLegalInteger(NewLoadByteSize * 8))
+ return 0;
+
+ if (LIOffs + NewLoadByteSize > MemLocEnd &&
+ (LI->getParent()->getParent()->hasFnAttribute(
+ Attribute::SanitizeAddress) ||
+ LI->getParent()->getParent()->hasFnAttribute(
+ Attribute::SanitizeHWAddress)))
+ // We will be reading past the location accessed by the original program.
+ // While this is safe in a regular build, Address Safety analysis tools
+ // may start reporting false warnings. So, don't do widening.
+ return 0;
+
+ // If a load of this width would include all of MemLoc, then we succeed.
+ if (LIOffs + NewLoadByteSize >= MemLocEnd)
+ return NewLoadByteSize;
+
+ NewLoadByteSize <<= 1;
+ }
+}
+
+static bool isVolatile(Instruction *Inst) {
+ if (auto *LI = dyn_cast<LoadInst>(Inst))
+ return LI->isVolatile();
+ if (auto *SI = dyn_cast<StoreInst>(Inst))
+ return SI->isVolatile();
+ if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst))
+ return AI->isVolatile();
+ return false;
+}
+
+MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
+ const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
+ BasicBlock *BB, Instruction *QueryInst, unsigned *Limit,
+ OrderedBasicBlock *OBB) {
+ MemDepResult InvariantGroupDependency = MemDepResult::getUnknown();
+ if (QueryInst != nullptr) {
+ if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
+ InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB);
+
+ if (InvariantGroupDependency.isDef())
+ return InvariantGroupDependency;
+ }
+ }
+ MemDepResult SimpleDep = getSimplePointerDependencyFrom(
+ MemLoc, isLoad, ScanIt, BB, QueryInst, Limit, OBB);
+ if (SimpleDep.isDef())
+ return SimpleDep;
+ // Non-local invariant group dependency indicates there is non local Def
+ // (it only returns nonLocal if it finds nonLocal def), which is better than
+ // local clobber and everything else.
+ if (InvariantGroupDependency.isNonLocal())
+ return InvariantGroupDependency;
+
+ assert(InvariantGroupDependency.isUnknown() &&
+ "InvariantGroupDependency should be only unknown at this point");
+ return SimpleDep;
+}
+
+MemDepResult
+MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
+ BasicBlock *BB) {
+
+ if (!LI->hasMetadata(LLVMContext::MD_invariant_group))
+ return MemDepResult::getUnknown();
+
+ // Take the ptr operand after all casts and geps 0. This way we can search
+ // cast graph down only.
+ Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts();
+
+ // It's is not safe to walk the use list of global value, because function
+ // passes aren't allowed to look outside their functions.
+ // FIXME: this could be fixed by filtering instructions from outside
+ // of current function.
+ if (isa<GlobalValue>(LoadOperand))
+ return MemDepResult::getUnknown();
+
+ // Queue to process all pointers that are equivalent to load operand.
+ SmallVector<const Value *, 8> LoadOperandsQueue;
+ LoadOperandsQueue.push_back(LoadOperand);
+
+ Instruction *ClosestDependency = nullptr;
+ // Order of instructions in uses list is unpredictible. In order to always
+ // get the same result, we will look for the closest dominance.
+ auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) {
+ assert(Other && "Must call it with not null instruction");
+ if (Best == nullptr || DT.dominates(Best, Other))
+ return Other;
+ return Best;
+ };
+
+ // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case
+ // we will see all the instructions. This should be fixed in MSSA.
+ while (!LoadOperandsQueue.empty()) {
+ const Value *Ptr = LoadOperandsQueue.pop_back_val();
+ assert(Ptr && !isa<GlobalValue>(Ptr) &&
+ "Null or GlobalValue should not be inserted");
+
+ for (const Use &Us : Ptr->uses()) {
+ auto *U = dyn_cast<Instruction>(Us.getUser());
+ if (!U || U == LI || !DT.dominates(U, LI))
+ continue;
+
+ // Bitcast or gep with zeros are using Ptr. Add to queue to check it's
+ // users. U = bitcast Ptr
+ if (isa<BitCastInst>(U)) {
+ LoadOperandsQueue.push_back(U);
+ continue;
+ }
+ // Gep with zeros is equivalent to bitcast.
+ // FIXME: we are not sure if some bitcast should be canonicalized to gep 0
+ // or gep 0 to bitcast because of SROA, so there are 2 forms. When
+ // typeless pointers will be ready then both cases will be gone
+ // (and this BFS also won't be needed).
+ if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
+ if (GEP->hasAllZeroIndices()) {
+ LoadOperandsQueue.push_back(U);
+ continue;
+ }
+
+ // If we hit load/store with the same invariant.group metadata (and the
+ // same pointer operand) we can assume that value pointed by pointer
+ // operand didn't change.
+ if ((isa<LoadInst>(U) || isa<StoreInst>(U)) &&
+ U->hasMetadata(LLVMContext::MD_invariant_group))
+ ClosestDependency = GetClosestDependency(ClosestDependency, U);
+ }
+ }
+
+ if (!ClosestDependency)
+ return MemDepResult::getUnknown();
+ if (ClosestDependency->getParent() == BB)
+ return MemDepResult::getDef(ClosestDependency);
+ // Def(U) can't be returned here because it is non-local. If local
+ // dependency won't be found then return nonLocal counting that the
+ // user will call getNonLocalPointerDependency, which will return cached
+ // result.
+ NonLocalDefsCache.try_emplace(
+ LI, NonLocalDepResult(ClosestDependency->getParent(),
+ MemDepResult::getDef(ClosestDependency), nullptr));
+ ReverseNonLocalDefsCache[ClosestDependency].insert(LI);
+ return MemDepResult::getNonLocal();
+}
+
+MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
+ const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
+ BasicBlock *BB, Instruction *QueryInst, unsigned *Limit,
+ OrderedBasicBlock *OBB) {
+ bool isInvariantLoad = false;
+
+ unsigned DefaultLimit = getDefaultBlockScanLimit();
+ if (!Limit)
+ Limit = &DefaultLimit;
+
+ // We must be careful with atomic accesses, as they may allow another thread
+ // to touch this location, clobbering it. We are conservative: if the
+ // QueryInst is not a simple (non-atomic) memory access, we automatically
+ // return getClobber.
+ // If it is simple, we know based on the results of
+ // "Compiler testing via a theory of sound optimisations in the C11/C++11
+ // memory model" in PLDI 2013, that a non-atomic location can only be
+ // clobbered between a pair of a release and an acquire action, with no
+ // access to the location in between.
+ // Here is an example for giving the general intuition behind this rule.
+ // In the following code:
+ // store x 0;
+ // release action; [1]
+ // acquire action; [4]
+ // %val = load x;
+ // It is unsafe to replace %val by 0 because another thread may be running:
+ // acquire action; [2]
+ // store x 42;
+ // release action; [3]
+ // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
+ // being 42. A key property of this program however is that if either
+ // 1 or 4 were missing, there would be a race between the store of 42
+ // either the store of 0 or the load (making the whole program racy).
+ // The paper mentioned above shows that the same property is respected
+ // by every program that can detect any optimization of that kind: either
+ // it is racy (undefined) or there is a release followed by an acquire
+ // between the pair of accesses under consideration.
+
+ // If the load is invariant, we "know" that it doesn't alias *any* write. We
+ // do want to respect mustalias results since defs are useful for value
+ // forwarding, but any mayalias write can be assumed to be noalias.
+ // Arguably, this logic should be pushed inside AliasAnalysis itself.
+ if (isLoad && QueryInst) {
+ LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
+ if (LI && LI->hasMetadata(LLVMContext::MD_invariant_load))
+ isInvariantLoad = true;
+ }
+
+ const DataLayout &DL = BB->getModule()->getDataLayout();
+
+ // If the caller did not provide an ordered basic block,
+ // create one to lazily compute and cache instruction
+ // positions inside a BB. This is used to provide fast queries for relative
+ // position between two instructions in a BB and can be used by
+ // AliasAnalysis::callCapturesBefore.
+ OrderedBasicBlock OBBTmp(BB);
+ if (!OBB)
+ OBB = &OBBTmp;
+
+ // Return "true" if and only if the instruction I is either a non-simple
+ // load or a non-simple store.
+ auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool {
+ if (auto *LI = dyn_cast<LoadInst>(I))
+ return !LI->isSimple();
+ if (auto *SI = dyn_cast<StoreInst>(I))
+ return !SI->isSimple();
+ return false;
+ };
+
+ // Return "true" if I is not a load and not a store, but it does access
+ // memory.
+ auto isOtherMemAccess = [](Instruction *I) -> bool {
+ return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory();
+ };
+
+ // Walk backwards through the basic block, looking for dependencies.
+ while (ScanIt != BB->begin()) {
+ Instruction *Inst = &*--ScanIt;
+
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
+ // Debug intrinsics don't (and can't) cause dependencies.
+ if (isa<DbgInfoIntrinsic>(II))
+ continue;
+
+ // Limit the amount of scanning we do so we don't end up with quadratic
+ // running time on extreme testcases.
+ --*Limit;
+ if (!*Limit)
+ return MemDepResult::getUnknown();
+
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
+ // If we reach a lifetime begin or end marker, then the query ends here
+ // because the value is undefined.
+ if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
+ // FIXME: This only considers queries directly on the invariant-tagged
+ // pointer, not on query pointers that are indexed off of them. It'd
+ // be nice to handle that at some point (the right approach is to use
+ // GetPointerBaseWithConstantOffset).
+ if (AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc))
+ return MemDepResult::getDef(II);
+ continue;
+ }
+ }
+
+ // Values depend on loads if the pointers are must aliased. This means
+ // that a load depends on another must aliased load from the same value.
+ // One exception is atomic loads: a value can depend on an atomic load that
+ // it does not alias with when this atomic load indicates that another
+ // thread may be accessing the location.
+ if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
+ // While volatile access cannot be eliminated, they do not have to clobber
+ // non-aliasing locations, as normal accesses, for example, can be safely
+ // reordered with volatile accesses.
+ if (LI->isVolatile()) {
+ if (!QueryInst)
+ // Original QueryInst *may* be volatile
+ return MemDepResult::getClobber(LI);
+ if (isVolatile(QueryInst))
+ // Ordering required if QueryInst is itself volatile
+ return MemDepResult::getClobber(LI);
+ // Otherwise, volatile doesn't imply any special ordering
+ }
+
+ // Atomic loads have complications involved.
+ // A Monotonic (or higher) load is OK if the query inst is itself not
+ // atomic.
+ // FIXME: This is overly conservative.
+ if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
+ if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
+ isOtherMemAccess(QueryInst))
+ return MemDepResult::getClobber(LI);
+ if (LI->getOrdering() != AtomicOrdering::Monotonic)
+ return MemDepResult::getClobber(LI);
+ }
+
+ MemoryLocation LoadLoc = MemoryLocation::get(LI);
+
+ // If we found a pointer, check if it could be the same as our pointer.
+ AliasResult R = AA.alias(LoadLoc, MemLoc);
+
+ if (isLoad) {
+ if (R == NoAlias)
+ continue;
+
+ // Must aliased loads are defs of each other.
+ if (R == MustAlias)
+ return MemDepResult::getDef(Inst);
+
+#if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
+ // in terms of clobbering loads, but since it does this by looking
+ // at the clobbering load directly, it doesn't know about any
+ // phi translation that may have happened along the way.
+
+ // If we have a partial alias, then return this as a clobber for the
+ // client to handle.
+ if (R == PartialAlias)
+ return MemDepResult::getClobber(Inst);
+#endif
+
+ // Random may-alias loads don't depend on each other without a
+ // dependence.
+ continue;
+ }
+
+ // Stores don't depend on other no-aliased accesses.
+ if (R == NoAlias)
+ continue;
+
+ // Stores don't alias loads from read-only memory.
+ if (AA.pointsToConstantMemory(LoadLoc))
+ continue;
+
+ // Stores depend on may/must aliased loads.
+ return MemDepResult::getDef(Inst);
+ }
+
+ if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
+ // Atomic stores have complications involved.
+ // A Monotonic store is OK if the query inst is itself not atomic.
+ // FIXME: This is overly conservative.
+ if (!SI->isUnordered() && SI->isAtomic()) {
+ if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
+ isOtherMemAccess(QueryInst))
+ return MemDepResult::getClobber(SI);
+ if (SI->getOrdering() != AtomicOrdering::Monotonic)
+ return MemDepResult::getClobber(SI);
+ }
+
+ // FIXME: this is overly conservative.
+ // While volatile access cannot be eliminated, they do not have to clobber
+ // non-aliasing locations, as normal accesses can for example be reordered
+ // with volatile accesses.
+ if (SI->isVolatile())
+ if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
+ isOtherMemAccess(QueryInst))
+ return MemDepResult::getClobber(SI);
+
+ // If alias analysis can tell that this store is guaranteed to not modify
+ // the query pointer, ignore it. Use getModRefInfo to handle cases where
+ // the query pointer points to constant memory etc.
+ if (!isModOrRefSet(AA.getModRefInfo(SI, MemLoc)))
+ continue;
+
+ // Ok, this store might clobber the query pointer. Check to see if it is
+ // a must alias: in this case, we want to return this as a def.
+ // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above.
+ MemoryLocation StoreLoc = MemoryLocation::get(SI);
+
+ // If we found a pointer, check if it could be the same as our pointer.
+ AliasResult R = AA.alias(StoreLoc, MemLoc);
+
+ if (R == NoAlias)
+ continue;
+ if (R == MustAlias)
+ return MemDepResult::getDef(Inst);
+ if (isInvariantLoad)
+ continue;
+ return MemDepResult::getClobber(Inst);
+ }
+
+ // If this is an allocation, and if we know that the accessed pointer is to
+ // the allocation, return Def. This means that there is no dependence and
+ // the access can be optimized based on that. For example, a load could
+ // turn into undef. Note that we can bypass the allocation itself when
+ // looking for a clobber in many cases; that's an alias property and is
+ // handled by BasicAA.
+ if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) {
+ const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL);
+ if (AccessPtr == Inst || AA.isMustAlias(Inst, AccessPtr))
+ return MemDepResult::getDef(Inst);
+ }
+
+ if (isInvariantLoad)
+ continue;
+
+ // A release fence requires that all stores complete before it, but does
+ // not prevent the reordering of following loads or stores 'before' the
+ // fence. As a result, we look past it when finding a dependency for
+ // loads. DSE uses this to find preceding stores to delete and thus we
+ // can't bypass the fence if the query instruction is a store.
+ if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
+ if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
+ continue;
+
+ // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
+ ModRefInfo MR = AA.getModRefInfo(Inst, MemLoc);
+ // If necessary, perform additional analysis.
+ if (isModAndRefSet(MR))
+ MR = AA.callCapturesBefore(Inst, MemLoc, &DT, OBB);
+ switch (clearMust(MR)) {
+ case ModRefInfo::NoModRef:
+ // If the call has no effect on the queried pointer, just ignore it.
+ continue;
+ case ModRefInfo::Mod:
+ return MemDepResult::getClobber(Inst);
+ case ModRefInfo::Ref:
+ // If the call is known to never store to the pointer, and if this is a
+ // load query, we can safely ignore it (scan past it).
+ if (isLoad)
+ continue;
+ LLVM_FALLTHROUGH;
+ default:
+ // Otherwise, there is a potential dependence. Return a clobber.
+ return MemDepResult::getClobber(Inst);
+ }
+ }
+
+ // No dependence found. If this is the entry block of the function, it is
+ // unknown, otherwise it is non-local.
+ if (BB != &BB->getParent()->getEntryBlock())
+ return MemDepResult::getNonLocal();
+ return MemDepResult::getNonFuncLocal();
+}
+
+MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst,
+ OrderedBasicBlock *OBB) {
+ Instruction *ScanPos = QueryInst;
+
+ // Check for a cached result
+ MemDepResult &LocalCache = LocalDeps[QueryInst];
+
+ // If the cached entry is non-dirty, just return it. Note that this depends
+ // on MemDepResult's default constructing to 'dirty'.
+ if (!LocalCache.isDirty())
+ return LocalCache;
+
+ // Otherwise, if we have a dirty entry, we know we can start the scan at that
+ // instruction, which may save us some work.
+ if (Instruction *Inst = LocalCache.getInst()) {
+ ScanPos = Inst;
+
+ RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
+ }
+
+ BasicBlock *QueryParent = QueryInst->getParent();
+
+ // Do the scan.
+ if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
+ // No dependence found. If this is the entry block of the function, it is
+ // unknown, otherwise it is non-local.
+ if (QueryParent != &QueryParent->getParent()->getEntryBlock())
+ LocalCache = MemDepResult::getNonLocal();
+ else
+ LocalCache = MemDepResult::getNonFuncLocal();
+ } else {
+ MemoryLocation MemLoc;
+ ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
+ if (MemLoc.Ptr) {
+ // If we can do a pointer scan, make it happen.
+ bool isLoad = !isModSet(MR);
+ if (auto *II = dyn_cast<IntrinsicInst>(QueryInst))
+ isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
+
+ LocalCache =
+ getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(),
+ QueryParent, QueryInst, nullptr, OBB);
+ } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) {
+ bool isReadOnly = AA.onlyReadsMemory(QueryCall);
+ LocalCache = getCallDependencyFrom(QueryCall, isReadOnly,
+ ScanPos->getIterator(), QueryParent);
+ } else
+ // Non-memory instruction.
+ LocalCache = MemDepResult::getUnknown();
+ }
+
+ // Remember the result!
+ if (Instruction *I = LocalCache.getInst())
+ ReverseLocalDeps[I].insert(QueryInst);
+
+ return LocalCache;
+}
+
+#ifndef NDEBUG
+/// This method is used when -debug is specified to verify that cache arrays
+/// are properly kept sorted.
+static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
+ int Count = -1) {
+ if (Count == -1)
+ Count = Cache.size();
+ assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
+ "Cache isn't sorted!");
+}
+#endif
+
+const MemoryDependenceResults::NonLocalDepInfo &
+MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) {
+ assert(getDependency(QueryCall).isNonLocal() &&
+ "getNonLocalCallDependency should only be used on calls with "
+ "non-local deps!");
+ PerInstNLInfo &CacheP = NonLocalDeps[QueryCall];
+ NonLocalDepInfo &Cache = CacheP.first;
+
+ // This is the set of blocks that need to be recomputed. In the cached case,
+ // this can happen due to instructions being deleted etc. In the uncached
+ // case, this starts out as the set of predecessors we care about.
+ SmallVector<BasicBlock *, 32> DirtyBlocks;
+
+ if (!Cache.empty()) {
+ // Okay, we have a cache entry. If we know it is not dirty, just return it
+ // with no computation.
+ if (!CacheP.second) {
+ ++NumCacheNonLocal;
+ return Cache;
+ }
+
+ // If we already have a partially computed set of results, scan them to
+ // determine what is dirty, seeding our initial DirtyBlocks worklist.
+ for (auto &Entry : Cache)
+ if (Entry.getResult().isDirty())
+ DirtyBlocks.push_back(Entry.getBB());
+
+ // Sort the cache so that we can do fast binary search lookups below.
+ llvm::sort(Cache);
+
+ ++NumCacheDirtyNonLocal;
+ // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
+ // << Cache.size() << " cached: " << *QueryInst;
+ } else {
+ // Seed DirtyBlocks with each of the preds of QueryInst's block.
+ BasicBlock *QueryBB = QueryCall->getParent();
+ for (BasicBlock *Pred : PredCache.get(QueryBB))
+ DirtyBlocks.push_back(Pred);
+ ++NumUncacheNonLocal;
+ }
+
+ // isReadonlyCall - If this is a read-only call, we can be more aggressive.
+ bool isReadonlyCall = AA.onlyReadsMemory(QueryCall);
+
+ SmallPtrSet<BasicBlock *, 32> Visited;
+
+ unsigned NumSortedEntries = Cache.size();
+ LLVM_DEBUG(AssertSorted(Cache));
+
+ // Iterate while we still have blocks to update.
+ while (!DirtyBlocks.empty()) {
+ BasicBlock *DirtyBB = DirtyBlocks.back();
+ DirtyBlocks.pop_back();
+
+ // Already processed this block?
+ if (!Visited.insert(DirtyBB).second)
+ continue;
+
+ // Do a binary search to see if we already have an entry for this block in
+ // the cache set. If so, find it.
+ LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries));
+ NonLocalDepInfo::iterator Entry =
+ std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
+ NonLocalDepEntry(DirtyBB));
+ if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
+ --Entry;
+
+ NonLocalDepEntry *ExistingResult = nullptr;
+ if (Entry != Cache.begin() + NumSortedEntries &&
+ Entry->getBB() == DirtyBB) {
+ // If we already have an entry, and if it isn't already dirty, the block
+ // is done.
+ if (!Entry->getResult().isDirty())
+ continue;
+
+ // Otherwise, remember this slot so we can update the value.
+ ExistingResult = &*Entry;
+ }
+
+ // If the dirty entry has a pointer, start scanning from it so we don't have
+ // to rescan the entire block.
+ BasicBlock::iterator ScanPos = DirtyBB->end();
+ if (ExistingResult) {
+ if (Instruction *Inst = ExistingResult->getResult().getInst()) {
+ ScanPos = Inst->getIterator();
+ // We're removing QueryInst's use of Inst.
+ RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst,
+ QueryCall);
+ }
+ }
+
+ // Find out if this block has a local dependency for QueryInst.
+ MemDepResult Dep;
+
+ if (ScanPos != DirtyBB->begin()) {
+ Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB);
+ } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
+ // No dependence found. If this is the entry block of the function, it is
+ // a clobber, otherwise it is unknown.
+ Dep = MemDepResult::getNonLocal();
+ } else {
+ Dep = MemDepResult::getNonFuncLocal();
+ }
+
+ // If we had a dirty entry for the block, update it. Otherwise, just add
+ // a new entry.
+ if (ExistingResult)
+ ExistingResult->setResult(Dep);
+ else
+ Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
+
+ // If the block has a dependency (i.e. it isn't completely transparent to
+ // the value), remember the association!
+ if (!Dep.isNonLocal()) {
+ // Keep the ReverseNonLocalDeps map up to date so we can efficiently
+ // update this when we remove instructions.
+ if (Instruction *Inst = Dep.getInst())
+ ReverseNonLocalDeps[Inst].insert(QueryCall);
+ } else {
+
+ // If the block *is* completely transparent to the load, we need to check
+ // the predecessors of this block. Add them to our worklist.
+ for (BasicBlock *Pred : PredCache.get(DirtyBB))
+ DirtyBlocks.push_back(Pred);
+ }
+ }
+
+ return Cache;
+}
+
+void MemoryDependenceResults::getNonLocalPointerDependency(
+ Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
+ const MemoryLocation Loc = MemoryLocation::get(QueryInst);
+ bool isLoad = isa<LoadInst>(QueryInst);
+ BasicBlock *FromBB = QueryInst->getParent();
+ assert(FromBB);
+
+ assert(Loc.Ptr->getType()->isPointerTy() &&
+ "Can't get pointer deps of a non-pointer!");
+ Result.clear();
+ {
+ // Check if there is cached Def with invariant.group.
+ auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst);
+ if (NonLocalDefIt != NonLocalDefsCache.end()) {
+ Result.push_back(NonLocalDefIt->second);
+ ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()]
+ .erase(QueryInst);
+ NonLocalDefsCache.erase(NonLocalDefIt);
+ return;
+ }
+ }
+ // This routine does not expect to deal with volatile instructions.
+ // Doing so would require piping through the QueryInst all the way through.
+ // TODO: volatiles can't be elided, but they can be reordered with other
+ // non-volatile accesses.
+
+ // We currently give up on any instruction which is ordered, but we do handle
+ // atomic instructions which are unordered.
+ // TODO: Handle ordered instructions
+ auto isOrdered = [](Instruction *Inst) {
+ if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
+ return !LI->isUnordered();
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
+ return !SI->isUnordered();
+ }
+ return false;
+ };
+ if (isVolatile(QueryInst) || isOrdered(QueryInst)) {
+ Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
+ const_cast<Value *>(Loc.Ptr)));
+ return;
+ }
+ const DataLayout &DL = FromBB->getModule()->getDataLayout();
+ PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
+
+ // This is the set of blocks we've inspected, and the pointer we consider in
+ // each block. Because of critical edges, we currently bail out if querying
+ // a block with multiple different pointers. This can happen during PHI
+ // translation.
+ DenseMap<BasicBlock *, Value *> Visited;
+ if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
+ Result, Visited, true))
+ return;
+ Result.clear();
+ Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
+ const_cast<Value *>(Loc.Ptr)));
+}
+
+/// Compute the memdep value for BB with Pointer/PointeeSize using either
+/// cached information in Cache or by doing a lookup (which may use dirty cache
+/// info if available).
+///
+/// If we do a lookup, add the result to the cache.
+MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock(
+ Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
+ BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
+
+ // Do a binary search to see if we already have an entry for this block in
+ // the cache set. If so, find it.
+ NonLocalDepInfo::iterator Entry = std::upper_bound(
+ Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
+ if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
+ --Entry;
+
+ NonLocalDepEntry *ExistingResult = nullptr;
+ if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
+ ExistingResult = &*Entry;
+
+ // If we have a cached entry, and it is non-dirty, use it as the value for
+ // this dependency.
+ if (ExistingResult && !ExistingResult->getResult().isDirty()) {
+ ++NumCacheNonLocalPtr;
+ return ExistingResult->getResult();
+ }
+
+ // Otherwise, we have to scan for the value. If we have a dirty cache
+ // entry, start scanning from its position, otherwise we scan from the end
+ // of the block.
+ BasicBlock::iterator ScanPos = BB->end();
+ if (ExistingResult && ExistingResult->getResult().getInst()) {
+ assert(ExistingResult->getResult().getInst()->getParent() == BB &&
+ "Instruction invalidated?");
+ ++NumCacheDirtyNonLocalPtr;
+ ScanPos = ExistingResult->getResult().getInst()->getIterator();
+
+ // Eliminating the dirty entry from 'Cache', so update the reverse info.
+ ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
+ RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
+ } else {
+ ++NumUncacheNonLocalPtr;
+ }
+
+ // Scan the block for the dependency.
+ MemDepResult Dep =
+ getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst);
+
+ // If we had a dirty entry for the block, update it. Otherwise, just add
+ // a new entry.
+ if (ExistingResult)
+ ExistingResult->setResult(Dep);
+ else
+ Cache->push_back(NonLocalDepEntry(BB, Dep));
+
+ // If the block has a dependency (i.e. it isn't completely transparent to
+ // the value), remember the reverse association because we just added it
+ // to Cache!
+ if (!Dep.isDef() && !Dep.isClobber())
+ return Dep;
+
+ // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
+ // update MemDep when we remove instructions.
+ Instruction *Inst = Dep.getInst();
+ assert(Inst && "Didn't depend on anything?");
+ ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
+ ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
+ return Dep;
+}
+
+/// Sort the NonLocalDepInfo cache, given a certain number of elements in the
+/// array that are already properly ordered.
+///
+/// This is optimized for the case when only a few entries are added.
+static void
+SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache,
+ unsigned NumSortedEntries) {
+ switch (Cache.size() - NumSortedEntries) {
+ case 0:
+ // done, no new entries.
+ break;
+ case 2: {
+ // Two new entries, insert the last one into place.
+ NonLocalDepEntry Val = Cache.back();
+ Cache.pop_back();
+ MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
+ std::upper_bound(Cache.begin(), Cache.end() - 1, Val);
+ Cache.insert(Entry, Val);
+ LLVM_FALLTHROUGH;
+ }
+ case 1:
+ // One new entry, Just insert the new value at the appropriate position.
+ if (Cache.size() != 1) {
+ NonLocalDepEntry Val = Cache.back();
+ Cache.pop_back();
+ MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
+ std::upper_bound(Cache.begin(), Cache.end(), Val);
+ Cache.insert(Entry, Val);
+ }
+ break;
+ default:
+ // Added many values, do a full scale sort.
+ llvm::sort(Cache);
+ break;
+ }
+}
+
+/// Perform a dependency query based on pointer/pointeesize starting at the end
+/// of StartBB.
+///
+/// Add any clobber/def results to the results vector and keep track of which
+/// blocks are visited in 'Visited'.
+///
+/// This has special behavior for the first block queries (when SkipFirstBlock
+/// is true). In this special case, it ignores the contents of the specified
+/// block and starts returning dependence info for its predecessors.
+///
+/// This function returns true on success, or false to indicate that it could
+/// not compute dependence information for some reason. This should be treated
+/// as a clobber dependence on the first instruction in the predecessor block.
+bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
+ Instruction *QueryInst, const PHITransAddr &Pointer,
+ const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
+ SmallVectorImpl<NonLocalDepResult> &Result,
+ DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) {
+ // Look up the cached info for Pointer.
+ ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
+
+ // Set up a temporary NLPI value. If the map doesn't yet have an entry for
+ // CacheKey, this value will be inserted as the associated value. Otherwise,
+ // it'll be ignored, and we'll have to check to see if the cached size and
+ // aa tags are consistent with the current query.
+ NonLocalPointerInfo InitialNLPI;
+ InitialNLPI.Size = Loc.Size;
+ InitialNLPI.AATags = Loc.AATags;
+
+ // Get the NLPI for CacheKey, inserting one into the map if it doesn't
+ // already have one.
+ std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
+ NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
+ NonLocalPointerInfo *CacheInfo = &Pair.first->second;
+
+ // If we already have a cache entry for this CacheKey, we may need to do some
+ // work to reconcile the cache entry and the current query.
+ if (!Pair.second) {
+ if (CacheInfo->Size != Loc.Size) {
+ bool ThrowOutEverything;
+ if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) {
+ // FIXME: We may be able to do better in the face of results with mixed
+ // precision. We don't appear to get them in practice, though, so just
+ // be conservative.
+ ThrowOutEverything =
+ CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() ||
+ CacheInfo->Size.getValue() < Loc.Size.getValue();
+ } else {
+ // For our purposes, unknown size > all others.
+ ThrowOutEverything = !Loc.Size.hasValue();
+ }
+
+ if (ThrowOutEverything) {
+ // The query's Size is greater than the cached one. Throw out the
+ // cached data and proceed with the query at the greater size.
+ CacheInfo->Pair = BBSkipFirstBlockPair();
+ CacheInfo->Size = Loc.Size;
+ for (auto &Entry : CacheInfo->NonLocalDeps)
+ if (Instruction *Inst = Entry.getResult().getInst())
+ RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
+ CacheInfo->NonLocalDeps.clear();
+ } else {
+ // This query's Size is less than the cached one. Conservatively restart
+ // the query using the greater size.
+ return getNonLocalPointerDepFromBB(
+ QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad,
+ StartBB, Result, Visited, SkipFirstBlock);
+ }
+ }
+
+ // If the query's AATags are inconsistent with the cached one,
+ // conservatively throw out the cached data and restart the query with
+ // no tag if needed.
+ if (CacheInfo->AATags != Loc.AATags) {
+ if (CacheInfo->AATags) {
+ CacheInfo->Pair = BBSkipFirstBlockPair();
+ CacheInfo->AATags = AAMDNodes();
+ for (auto &Entry : CacheInfo->NonLocalDeps)
+ if (Instruction *Inst = Entry.getResult().getInst())
+ RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
+ CacheInfo->NonLocalDeps.clear();
+ }
+ if (Loc.AATags)
+ return getNonLocalPointerDepFromBB(
+ QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result,
+ Visited, SkipFirstBlock);
+ }
+ }
+
+ NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
+
+ // If we have valid cached information for exactly the block we are
+ // investigating, just return it with no recomputation.
+ if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
+ // We have a fully cached result for this query then we can just return the
+ // cached results and populate the visited set. However, we have to verify
+ // that we don't already have conflicting results for these blocks. Check
+ // to ensure that if a block in the results set is in the visited set that
+ // it was for the same pointer query.
+ if (!Visited.empty()) {
+ for (auto &Entry : *Cache) {
+ DenseMap<BasicBlock *, Value *>::iterator VI =
+ Visited.find(Entry.getBB());
+ if (VI == Visited.end() || VI->second == Pointer.getAddr())
+ continue;
+
+ // We have a pointer mismatch in a block. Just return false, saying
+ // that something was clobbered in this result. We could also do a
+ // non-fully cached query, but there is little point in doing this.
+ return false;
+ }
+ }
+
+ Value *Addr = Pointer.getAddr();
+ for (auto &Entry : *Cache) {
+ Visited.insert(std::make_pair(Entry.getBB(), Addr));
+ if (Entry.getResult().isNonLocal()) {
+ continue;
+ }
+
+ if (DT.isReachableFromEntry(Entry.getBB())) {
+ Result.push_back(
+ NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr));
+ }
+ }
+ ++NumCacheCompleteNonLocalPtr;
+ return true;
+ }
+
+ // Otherwise, either this is a new block, a block with an invalid cache
+ // pointer or one that we're about to invalidate by putting more info into it
+ // than its valid cache info. If empty, the result will be valid cache info,
+ // otherwise it isn't.
+ if (Cache->empty())
+ CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
+ else
+ CacheInfo->Pair = BBSkipFirstBlockPair();
+
+ SmallVector<BasicBlock *, 32> Worklist;
+ Worklist.push_back(StartBB);
+
+ // PredList used inside loop.
+ SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList;
+
+ // Keep track of the entries that we know are sorted. Previously cached
+ // entries will all be sorted. The entries we add we only sort on demand (we
+ // don't insert every element into its sorted position). We know that we
+ // won't get any reuse from currently inserted values, because we don't
+ // revisit blocks after we insert info for them.
+ unsigned NumSortedEntries = Cache->size();
+ unsigned WorklistEntries = BlockNumberLimit;
+ bool GotWorklistLimit = false;
+ LLVM_DEBUG(AssertSorted(*Cache));
+
+ while (!Worklist.empty()) {
+ BasicBlock *BB = Worklist.pop_back_val();
+
+ // If we do process a large number of blocks it becomes very expensive and
+ // likely it isn't worth worrying about
+ if (Result.size() > NumResultsLimit) {
+ Worklist.clear();
+ // Sort it now (if needed) so that recursive invocations of
+ // getNonLocalPointerDepFromBB and other routines that could reuse the
+ // cache value will only see properly sorted cache arrays.
+ if (Cache && NumSortedEntries != Cache->size()) {
+ SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
+ }
+ // Since we bail out, the "Cache" set won't contain all of the
+ // results for the query. This is ok (we can still use it to accelerate
+ // specific block queries) but we can't do the fastpath "return all
+ // results from the set". Clear out the indicator for this.
+ CacheInfo->Pair = BBSkipFirstBlockPair();
+ return false;
+ }
+
+ // Skip the first block if we have it.
+ if (!SkipFirstBlock) {
+ // Analyze the dependency of *Pointer in FromBB. See if we already have
+ // been here.
+ assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
+
+ // Get the dependency info for Pointer in BB. If we have cached
+ // information, we will use it, otherwise we compute it.
+ LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries));
+ MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB,
+ Cache, NumSortedEntries);
+
+ // If we got a Def or Clobber, add this to the list of results.
+ if (!Dep.isNonLocal()) {
+ if (DT.isReachableFromEntry(BB)) {
+ Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
+ continue;
+ }
+ }
+ }
+
+ // If 'Pointer' is an instruction defined in this block, then we need to do
+ // phi translation to change it into a value live in the predecessor block.
+ // If not, we just add the predecessors to the worklist and scan them with
+ // the same Pointer.
+ if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
+ SkipFirstBlock = false;
+ SmallVector<BasicBlock *, 16> NewBlocks;
+ for (BasicBlock *Pred : PredCache.get(BB)) {
+ // Verify that we haven't looked at this block yet.
+ std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
+ Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
+ if (InsertRes.second) {
+ // First time we've looked at *PI.
+ NewBlocks.push_back(Pred);
+ continue;
+ }
+
+ // If we have seen this block before, but it was with a different
+ // pointer then we have a phi translation failure and we have to treat
+ // this as a clobber.
+ if (InsertRes.first->second != Pointer.getAddr()) {
+ // Make sure to clean up the Visited map before continuing on to
+ // PredTranslationFailure.
+ for (unsigned i = 0; i < NewBlocks.size(); i++)
+ Visited.erase(NewBlocks[i]);
+ goto PredTranslationFailure;
+ }
+ }
+ if (NewBlocks.size() > WorklistEntries) {
+ // Make sure to clean up the Visited map before continuing on to
+ // PredTranslationFailure.
+ for (unsigned i = 0; i < NewBlocks.size(); i++)
+ Visited.erase(NewBlocks[i]);
+ GotWorklistLimit = true;
+ goto PredTranslationFailure;
+ }
+ WorklistEntries -= NewBlocks.size();
+ Worklist.append(NewBlocks.begin(), NewBlocks.end());
+ continue;
+ }
+
+ // We do need to do phi translation, if we know ahead of time we can't phi
+ // translate this value, don't even try.
+ if (!Pointer.IsPotentiallyPHITranslatable())
+ goto PredTranslationFailure;
+
+ // We may have added values to the cache list before this PHI translation.
+ // If so, we haven't done anything to ensure that the cache remains sorted.
+ // Sort it now (if needed) so that recursive invocations of
+ // getNonLocalPointerDepFromBB and other routines that could reuse the cache
+ // value will only see properly sorted cache arrays.
+ if (Cache && NumSortedEntries != Cache->size()) {
+ SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
+ NumSortedEntries = Cache->size();
+ }
+ Cache = nullptr;
+
+ PredList.clear();
+ for (BasicBlock *Pred : PredCache.get(BB)) {
+ PredList.push_back(std::make_pair(Pred, Pointer));
+
+ // Get the PHI translated pointer in this predecessor. This can fail if
+ // not translatable, in which case the getAddr() returns null.
+ PHITransAddr &PredPointer = PredList.back().second;
+ PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false);
+ Value *PredPtrVal = PredPointer.getAddr();
+
+ // Check to see if we have already visited this pred block with another
+ // pointer. If so, we can't do this lookup. This failure can occur
+ // with PHI translation when a critical edge exists and the PHI node in
+ // the successor translates to a pointer value different than the
+ // pointer the block was first analyzed with.
+ std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
+ Visited.insert(std::make_pair(Pred, PredPtrVal));
+
+ if (!InsertRes.second) {
+ // We found the pred; take it off the list of preds to visit.
+ PredList.pop_back();
+
+ // If the predecessor was visited with PredPtr, then we already did
+ // the analysis and can ignore it.
+ if (InsertRes.first->second == PredPtrVal)
+ continue;
+
+ // Otherwise, the block was previously analyzed with a different
+ // pointer. We can't represent the result of this case, so we just
+ // treat this as a phi translation failure.
+
+ // Make sure to clean up the Visited map before continuing on to
+ // PredTranslationFailure.
+ for (unsigned i = 0, n = PredList.size(); i < n; ++i)
+ Visited.erase(PredList[i].first);
+
+ goto PredTranslationFailure;
+ }
+ }
+
+ // Actually process results here; this need to be a separate loop to avoid
+ // calling getNonLocalPointerDepFromBB for blocks we don't want to return
+ // any results for. (getNonLocalPointerDepFromBB will modify our
+ // datastructures in ways the code after the PredTranslationFailure label
+ // doesn't expect.)
+ for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
+ BasicBlock *Pred = PredList[i].first;
+ PHITransAddr &PredPointer = PredList[i].second;
+ Value *PredPtrVal = PredPointer.getAddr();
+
+ bool CanTranslate = true;
+ // If PHI translation was unable to find an available pointer in this
+ // predecessor, then we have to assume that the pointer is clobbered in
+ // that predecessor. We can still do PRE of the load, which would insert
+ // a computation of the pointer in this predecessor.
+ if (!PredPtrVal)
+ CanTranslate = false;
+
+ // FIXME: it is entirely possible that PHI translating will end up with
+ // the same value. Consider PHI translating something like:
+ // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
+ // to recurse here, pedantically speaking.
+
+ // If getNonLocalPointerDepFromBB fails here, that means the cached
+ // result conflicted with the Visited list; we have to conservatively
+ // assume it is unknown, but this also does not block PRE of the load.
+ if (!CanTranslate ||
+ !getNonLocalPointerDepFromBB(QueryInst, PredPointer,
+ Loc.getWithNewPtr(PredPtrVal), isLoad,
+ Pred, Result, Visited)) {
+ // Add the entry to the Result list.
+ NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
+ Result.push_back(Entry);
+
+ // Since we had a phi translation failure, the cache for CacheKey won't
+ // include all of the entries that we need to immediately satisfy future
+ // queries. Mark this in NonLocalPointerDeps by setting the
+ // BBSkipFirstBlockPair pointer to null. This requires reuse of the
+ // cached value to do more work but not miss the phi trans failure.
+ NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
+ NLPI.Pair = BBSkipFirstBlockPair();
+ continue;
+ }
+ }
+
+ // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
+ CacheInfo = &NonLocalPointerDeps[CacheKey];
+ Cache = &CacheInfo->NonLocalDeps;
+ NumSortedEntries = Cache->size();
+
+ // Since we did phi translation, the "Cache" set won't contain all of the
+ // results for the query. This is ok (we can still use it to accelerate
+ // specific block queries) but we can't do the fastpath "return all
+ // results from the set" Clear out the indicator for this.
+ CacheInfo->Pair = BBSkipFirstBlockPair();
+ SkipFirstBlock = false;
+ continue;
+
+ PredTranslationFailure:
+ // The following code is "failure"; we can't produce a sane translation
+ // for the given block. It assumes that we haven't modified any of
+ // our datastructures while processing the current block.
+
+ if (!Cache) {
+ // Refresh the CacheInfo/Cache pointer if it got invalidated.
+ CacheInfo = &NonLocalPointerDeps[CacheKey];
+ Cache = &CacheInfo->NonLocalDeps;
+ NumSortedEntries = Cache->size();
+ }
+
+ // Since we failed phi translation, the "Cache" set won't contain all of the
+ // results for the query. This is ok (we can still use it to accelerate
+ // specific block queries) but we can't do the fastpath "return all
+ // results from the set". Clear out the indicator for this.
+ CacheInfo->Pair = BBSkipFirstBlockPair();
+
+ // If *nothing* works, mark the pointer as unknown.
+ //
+ // If this is the magic first block, return this as a clobber of the whole
+ // incoming value. Since we can't phi translate to one of the predecessors,
+ // we have to bail out.
+ if (SkipFirstBlock)
+ return false;
+
+ bool foundBlock = false;
+ for (NonLocalDepEntry &I : llvm::reverse(*Cache)) {
+ if (I.getBB() != BB)
+ continue;
+
+ assert((GotWorklistLimit || I.getResult().isNonLocal() ||
+ !DT.isReachableFromEntry(BB)) &&
+ "Should only be here with transparent block");
+ foundBlock = true;
+ I.setResult(MemDepResult::getUnknown());
+ Result.push_back(
+ NonLocalDepResult(I.getBB(), I.getResult(), Pointer.getAddr()));
+ break;
+ }
+ (void)foundBlock; (void)GotWorklistLimit;
+ assert((foundBlock || GotWorklistLimit) && "Current block not in cache?");
+ }
+
+ // Okay, we're done now. If we added new values to the cache, re-sort it.
+ SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
+ LLVM_DEBUG(AssertSorted(*Cache));
+ return true;
+}
+
+/// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it.
+void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies(
+ ValueIsLoadPair P) {
+
+ // Most of the time this cache is empty.
+ if (!NonLocalDefsCache.empty()) {
+ auto it = NonLocalDefsCache.find(P.getPointer());
+ if (it != NonLocalDefsCache.end()) {
+ RemoveFromReverseMap(ReverseNonLocalDefsCache,
+ it->second.getResult().getInst(), P.getPointer());
+ NonLocalDefsCache.erase(it);
+ }
+
+ if (auto *I = dyn_cast<Instruction>(P.getPointer())) {
+ auto toRemoveIt = ReverseNonLocalDefsCache.find(I);
+ if (toRemoveIt != ReverseNonLocalDefsCache.end()) {
+ for (const auto &entry : toRemoveIt->second)
+ NonLocalDefsCache.erase(entry);
+ ReverseNonLocalDefsCache.erase(toRemoveIt);
+ }
+ }
+ }
+
+ CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P);
+ if (It == NonLocalPointerDeps.end())
+ return;
+
+ // Remove all of the entries in the BB->val map. This involves removing
+ // instructions from the reverse map.
+ NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
+
+ for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
+ Instruction *Target = PInfo[i].getResult().getInst();
+ if (!Target)
+ continue; // Ignore non-local dep results.
+ assert(Target->getParent() == PInfo[i].getBB());
+
+ // Eliminating the dirty entry from 'Cache', so update the reverse info.
+ RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
+ }
+
+ // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
+ NonLocalPointerDeps.erase(It);
+}
+
+void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) {
+ // If Ptr isn't really a pointer, just ignore it.
+ if (!Ptr->getType()->isPointerTy())
+ return;
+ // Flush store info for the pointer.
+ RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
+ // Flush load info for the pointer.
+ RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
+ // Invalidate phis that use the pointer.
+ PV.invalidateValue(Ptr);
+}
+
+void MemoryDependenceResults::invalidateCachedPredecessors() {
+ PredCache.clear();
+}
+
+void MemoryDependenceResults::removeInstruction(Instruction *RemInst) {
+ // Walk through the Non-local dependencies, removing this one as the value
+ // for any cached queries.
+ NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
+ if (NLDI != NonLocalDeps.end()) {
+ NonLocalDepInfo &BlockMap = NLDI->second.first;
+ for (auto &Entry : BlockMap)
+ if (Instruction *Inst = Entry.getResult().getInst())
+ RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
+ NonLocalDeps.erase(NLDI);
+ }
+
+ // If we have a cached local dependence query for this instruction, remove it.
+ LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
+ if (LocalDepEntry != LocalDeps.end()) {
+ // Remove us from DepInst's reverse set now that the local dep info is gone.
+ if (Instruction *Inst = LocalDepEntry->second.getInst())
+ RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
+
+ // Remove this local dependency info.
+ LocalDeps.erase(LocalDepEntry);
+ }
+
+ // If we have any cached pointer dependencies on this instruction, remove
+ // them. If the instruction has non-pointer type, then it can't be a pointer
+ // base.
+
+ // Remove it from both the load info and the store info. The instruction
+ // can't be in either of these maps if it is non-pointer.
+ if (RemInst->getType()->isPointerTy()) {
+ RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
+ RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
+ }
+
+ // Loop over all of the things that depend on the instruction we're removing.
+ SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd;
+
+ // If we find RemInst as a clobber or Def in any of the maps for other values,
+ // we need to replace its entry with a dirty version of the instruction after
+ // it. If RemInst is a terminator, we use a null dirty value.
+ //
+ // Using a dirty version of the instruction after RemInst saves having to scan
+ // the entire block to get to this point.
+ MemDepResult NewDirtyVal;
+ if (!RemInst->isTerminator())
+ NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
+
+ ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
+ if (ReverseDepIt != ReverseLocalDeps.end()) {
+ // RemInst can't be the terminator if it has local stuff depending on it.
+ assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() &&
+ "Nothing can locally depend on a terminator");
+
+ for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
+ assert(InstDependingOnRemInst != RemInst &&
+ "Already removed our local dep info");
+
+ LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
+
+ // Make sure to remember that new things depend on NewDepInst.
+ assert(NewDirtyVal.getInst() &&
+ "There is no way something else can have "
+ "a local dep on this if it is a terminator!");
+ ReverseDepsToAdd.push_back(
+ std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst));
+ }
+
+ ReverseLocalDeps.erase(ReverseDepIt);
+
+ // Add new reverse deps after scanning the set, to avoid invalidating the
+ // 'ReverseDeps' reference.
+ while (!ReverseDepsToAdd.empty()) {
+ ReverseLocalDeps[ReverseDepsToAdd.back().first].insert(
+ ReverseDepsToAdd.back().second);
+ ReverseDepsToAdd.pop_back();
+ }
+ }
+
+ ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
+ if (ReverseDepIt != ReverseNonLocalDeps.end()) {
+ for (Instruction *I : ReverseDepIt->second) {
+ assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
+
+ PerInstNLInfo &INLD = NonLocalDeps[I];
+ // The information is now dirty!
+ INLD.second = true;
+
+ for (auto &Entry : INLD.first) {
+ if (Entry.getResult().getInst() != RemInst)
+ continue;
+
+ // Convert to a dirty entry for the subsequent instruction.
+ Entry.setResult(NewDirtyVal);
+
+ if (Instruction *NextI = NewDirtyVal.getInst())
+ ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
+ }
+ }
+
+ ReverseNonLocalDeps.erase(ReverseDepIt);
+
+ // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
+ while (!ReverseDepsToAdd.empty()) {
+ ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert(
+ ReverseDepsToAdd.back().second);
+ ReverseDepsToAdd.pop_back();
+ }
+ }
+
+ // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
+ // value in the NonLocalPointerDeps info.
+ ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
+ ReverseNonLocalPtrDeps.find(RemInst);
+ if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
+ SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8>
+ ReversePtrDepsToAdd;
+
+ for (ValueIsLoadPair P : ReversePtrDepIt->second) {
+ assert(P.getPointer() != RemInst &&
+ "Already removed NonLocalPointerDeps info for RemInst");
+
+ NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
+
+ // The cache is not valid for any specific block anymore.
+ NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
+
+ // Update any entries for RemInst to use the instruction after it.
+ for (auto &Entry : NLPDI) {
+ if (Entry.getResult().getInst() != RemInst)
+ continue;
+
+ // Convert to a dirty entry for the subsequent instruction.
+ Entry.setResult(NewDirtyVal);
+
+ if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
+ ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
+ }
+
+ // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
+ // subsequent value may invalidate the sortedness.
+ llvm::sort(NLPDI);
+ }
+
+ ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
+
+ while (!ReversePtrDepsToAdd.empty()) {
+ ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert(
+ ReversePtrDepsToAdd.back().second);
+ ReversePtrDepsToAdd.pop_back();
+ }
+ }
+
+ // Invalidate phis that use the removed instruction.
+ PV.invalidateValue(RemInst);
+
+ assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
+ LLVM_DEBUG(verifyRemoved(RemInst));
+}
+
+/// Verify that the specified instruction does not occur in our internal data
+/// structures.
+///
+/// This function verifies by asserting in debug builds.
+void MemoryDependenceResults::verifyRemoved(Instruction *D) const {
+#ifndef NDEBUG
+ for (const auto &DepKV : LocalDeps) {
+ assert(DepKV.first != D && "Inst occurs in data structures");
+ assert(DepKV.second.getInst() != D && "Inst occurs in data structures");
+ }
+
+ for (const auto &DepKV : NonLocalPointerDeps) {
+ assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key");
+ for (const auto &Entry : DepKV.second.NonLocalDeps)
+ assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value");
+ }
+
+ for (const auto &DepKV : NonLocalDeps) {
+ assert(DepKV.first != D && "Inst occurs in data structures");
+ const PerInstNLInfo &INLD = DepKV.second;
+ for (const auto &Entry : INLD.first)
+ assert(Entry.getResult().getInst() != D &&
+ "Inst occurs in data structures");
+ }
+
+ for (const auto &DepKV : ReverseLocalDeps) {
+ assert(DepKV.first != D && "Inst occurs in data structures");
+ for (Instruction *Inst : DepKV.second)
+ assert(Inst != D && "Inst occurs in data structures");
+ }
+
+ for (const auto &DepKV : ReverseNonLocalDeps) {
+ assert(DepKV.first != D && "Inst occurs in data structures");
+ for (Instruction *Inst : DepKV.second)
+ assert(Inst != D && "Inst occurs in data structures");
+ }
+
+ for (const auto &DepKV : ReverseNonLocalPtrDeps) {
+ assert(DepKV.first != D && "Inst occurs in rev NLPD map");
+
+ for (ValueIsLoadPair P : DepKV.second)
+ assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) &&
+ "Inst occurs in ReverseNonLocalPtrDeps map");
+ }
+#endif
+}
+
+AnalysisKey MemoryDependenceAnalysis::Key;
+
+MemoryDependenceAnalysis::MemoryDependenceAnalysis()
+ : DefaultBlockScanLimit(BlockScanLimit) {}
+
+MemoryDependenceResults
+MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
+ auto &AA = AM.getResult<AAManager>(F);
+ auto &AC = AM.getResult<AssumptionAnalysis>(F);
+ auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
+ auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
+ auto &PV = AM.getResult<PhiValuesAnalysis>(F);
+ return MemoryDependenceResults(AA, AC, TLI, DT, PV, DefaultBlockScanLimit);
+}
+
+char MemoryDependenceWrapperPass::ID = 0;
+
+INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep",
+ "Memory Dependence Analysis", false, true)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
+INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep",
+ "Memory Dependence Analysis", false, true)
+
+MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {
+ initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
+}
+
+MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default;
+
+void MemoryDependenceWrapperPass::releaseMemory() {
+ MemDep.reset();
+}
+
+void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<PhiValuesWrapperPass>();
+ AU.addRequiredTransitive<AAResultsWrapperPass>();
+ AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
+}
+
+bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA,
+ FunctionAnalysisManager::Invalidator &Inv) {
+ // Check whether our analysis is preserved.
+ auto PAC = PA.getChecker<MemoryDependenceAnalysis>();
+ if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
+ // If not, give up now.
+ return true;
+
+ // Check whether the analyses we depend on became invalid for any reason.
+ if (Inv.invalidate<AAManager>(F, PA) ||
+ Inv.invalidate<AssumptionAnalysis>(F, PA) ||
+ Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
+ Inv.invalidate<PhiValuesAnalysis>(F, PA))
+ return true;
+
+ // Otherwise this analysis result remains valid.
+ return false;
+}
+
+unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const {
+ return DefaultBlockScanLimit;
+}
+
+bool MemoryDependenceWrapperPass::runOnFunction(Function &F) {
+ auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
+ auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
+ auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
+ auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult();
+ MemDep.emplace(AA, AC, TLI, DT, PV, BlockScanLimit);
+ return false;
+}