summaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/MemorySSAUpdater.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Analysis/MemorySSAUpdater.cpp')
-rw-r--r--llvm/lib/Analysis/MemorySSAUpdater.cpp1440
1 files changed, 1440 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/MemorySSAUpdater.cpp b/llvm/lib/Analysis/MemorySSAUpdater.cpp
new file mode 100644
index 000000000000..f2d56b05d968
--- /dev/null
+++ b/llvm/lib/Analysis/MemorySSAUpdater.cpp
@@ -0,0 +1,1440 @@
+//===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------===//
+//
+// This file implements the MemorySSAUpdater class.
+//
+//===----------------------------------------------------------------===//
+#include "llvm/Analysis/MemorySSAUpdater.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Analysis/IteratedDominanceFrontier.h"
+#include "llvm/Analysis/MemorySSA.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/FormattedStream.h"
+#include <algorithm>
+
+#define DEBUG_TYPE "memoryssa"
+using namespace llvm;
+
+// This is the marker algorithm from "Simple and Efficient Construction of
+// Static Single Assignment Form"
+// The simple, non-marker algorithm places phi nodes at any join
+// Here, we place markers, and only place phi nodes if they end up necessary.
+// They are only necessary if they break a cycle (IE we recursively visit
+// ourselves again), or we discover, while getting the value of the operands,
+// that there are two or more definitions needing to be merged.
+// This still will leave non-minimal form in the case of irreducible control
+// flow, where phi nodes may be in cycles with themselves, but unnecessary.
+MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
+ BasicBlock *BB,
+ DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
+ // First, do a cache lookup. Without this cache, certain CFG structures
+ // (like a series of if statements) take exponential time to visit.
+ auto Cached = CachedPreviousDef.find(BB);
+ if (Cached != CachedPreviousDef.end())
+ return Cached->second;
+
+ // If this method is called from an unreachable block, return LoE.
+ if (!MSSA->DT->isReachableFromEntry(BB))
+ return MSSA->getLiveOnEntryDef();
+
+ if (BasicBlock *Pred = BB->getUniquePredecessor()) {
+ VisitedBlocks.insert(BB);
+ // Single predecessor case, just recurse, we can only have one definition.
+ MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
+ CachedPreviousDef.insert({BB, Result});
+ return Result;
+ }
+
+ if (VisitedBlocks.count(BB)) {
+ // We hit our node again, meaning we had a cycle, we must insert a phi
+ // node to break it so we have an operand. The only case this will
+ // insert useless phis is if we have irreducible control flow.
+ MemoryAccess *Result = MSSA->createMemoryPhi(BB);
+ CachedPreviousDef.insert({BB, Result});
+ return Result;
+ }
+
+ if (VisitedBlocks.insert(BB).second) {
+ // Mark us visited so we can detect a cycle
+ SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps;
+
+ // Recurse to get the values in our predecessors for placement of a
+ // potential phi node. This will insert phi nodes if we cycle in order to
+ // break the cycle and have an operand.
+ bool UniqueIncomingAccess = true;
+ MemoryAccess *SingleAccess = nullptr;
+ for (auto *Pred : predecessors(BB)) {
+ if (MSSA->DT->isReachableFromEntry(Pred)) {
+ auto *IncomingAccess = getPreviousDefFromEnd(Pred, CachedPreviousDef);
+ if (!SingleAccess)
+ SingleAccess = IncomingAccess;
+ else if (IncomingAccess != SingleAccess)
+ UniqueIncomingAccess = false;
+ PhiOps.push_back(IncomingAccess);
+ } else
+ PhiOps.push_back(MSSA->getLiveOnEntryDef());
+ }
+
+ // Now try to simplify the ops to avoid placing a phi.
+ // This may return null if we never created a phi yet, that's okay
+ MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
+
+ // See if we can avoid the phi by simplifying it.
+ auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
+ // If we couldn't simplify, we may have to create a phi
+ if (Result == Phi && UniqueIncomingAccess && SingleAccess) {
+ // A concrete Phi only exists if we created an empty one to break a cycle.
+ if (Phi) {
+ assert(Phi->operands().empty() && "Expected empty Phi");
+ Phi->replaceAllUsesWith(SingleAccess);
+ removeMemoryAccess(Phi);
+ }
+ Result = SingleAccess;
+ } else if (Result == Phi && !(UniqueIncomingAccess && SingleAccess)) {
+ if (!Phi)
+ Phi = MSSA->createMemoryPhi(BB);
+
+ // See if the existing phi operands match what we need.
+ // Unlike normal SSA, we only allow one phi node per block, so we can't just
+ // create a new one.
+ if (Phi->getNumOperands() != 0) {
+ // FIXME: Figure out whether this is dead code and if so remove it.
+ if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
+ // These will have been filled in by the recursive read we did above.
+ llvm::copy(PhiOps, Phi->op_begin());
+ std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
+ }
+ } else {
+ unsigned i = 0;
+ for (auto *Pred : predecessors(BB))
+ Phi->addIncoming(&*PhiOps[i++], Pred);
+ InsertedPHIs.push_back(Phi);
+ }
+ Result = Phi;
+ }
+
+ // Set ourselves up for the next variable by resetting visited state.
+ VisitedBlocks.erase(BB);
+ CachedPreviousDef.insert({BB, Result});
+ return Result;
+ }
+ llvm_unreachable("Should have hit one of the three cases above");
+}
+
+// This starts at the memory access, and goes backwards in the block to find the
+// previous definition. If a definition is not found the block of the access,
+// it continues globally, creating phi nodes to ensure we have a single
+// definition.
+MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
+ if (auto *LocalResult = getPreviousDefInBlock(MA))
+ return LocalResult;
+ DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
+ return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
+}
+
+// This starts at the memory access, and goes backwards in the block to the find
+// the previous definition. If the definition is not found in the block of the
+// access, it returns nullptr.
+MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
+ auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
+
+ // It's possible there are no defs, or we got handed the first def to start.
+ if (Defs) {
+ // If this is a def, we can just use the def iterators.
+ if (!isa<MemoryUse>(MA)) {
+ auto Iter = MA->getReverseDefsIterator();
+ ++Iter;
+ if (Iter != Defs->rend())
+ return &*Iter;
+ } else {
+ // Otherwise, have to walk the all access iterator.
+ auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
+ for (auto &U : make_range(++MA->getReverseIterator(), End))
+ if (!isa<MemoryUse>(U))
+ return cast<MemoryAccess>(&U);
+ // Note that if MA comes before Defs->begin(), we won't hit a def.
+ return nullptr;
+ }
+ }
+ return nullptr;
+}
+
+// This starts at the end of block
+MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
+ BasicBlock *BB,
+ DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
+ auto *Defs = MSSA->getWritableBlockDefs(BB);
+
+ if (Defs) {
+ CachedPreviousDef.insert({BB, &*Defs->rbegin()});
+ return &*Defs->rbegin();
+ }
+
+ return getPreviousDefRecursive(BB, CachedPreviousDef);
+}
+// Recurse over a set of phi uses to eliminate the trivial ones
+MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
+ if (!Phi)
+ return nullptr;
+ TrackingVH<MemoryAccess> Res(Phi);
+ SmallVector<TrackingVH<Value>, 8> Uses;
+ std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
+ for (auto &U : Uses)
+ if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U))
+ tryRemoveTrivialPhi(UsePhi);
+ return Res;
+}
+
+// Eliminate trivial phis
+// Phis are trivial if they are defined either by themselves, or all the same
+// argument.
+// IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
+// We recursively try to remove them.
+MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi) {
+ assert(Phi && "Can only remove concrete Phi.");
+ auto OperRange = Phi->operands();
+ return tryRemoveTrivialPhi(Phi, OperRange);
+}
+template <class RangeType>
+MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
+ RangeType &Operands) {
+ // Bail out on non-opt Phis.
+ if (NonOptPhis.count(Phi))
+ return Phi;
+
+ // Detect equal or self arguments
+ MemoryAccess *Same = nullptr;
+ for (auto &Op : Operands) {
+ // If the same or self, good so far
+ if (Op == Phi || Op == Same)
+ continue;
+ // not the same, return the phi since it's not eliminatable by us
+ if (Same)
+ return Phi;
+ Same = cast<MemoryAccess>(&*Op);
+ }
+ // Never found a non-self reference, the phi is undef
+ if (Same == nullptr)
+ return MSSA->getLiveOnEntryDef();
+ if (Phi) {
+ Phi->replaceAllUsesWith(Same);
+ removeMemoryAccess(Phi);
+ }
+
+ // We should only end up recursing in case we replaced something, in which
+ // case, we may have made other Phis trivial.
+ return recursePhi(Same);
+}
+
+void MemorySSAUpdater::insertUse(MemoryUse *MU, bool RenameUses) {
+ InsertedPHIs.clear();
+ MU->setDefiningAccess(getPreviousDef(MU));
+
+ // In cases without unreachable blocks, because uses do not create new
+ // may-defs, there are only two cases:
+ // 1. There was a def already below us, and therefore, we should not have
+ // created a phi node because it was already needed for the def.
+ //
+ // 2. There is no def below us, and therefore, there is no extra renaming work
+ // to do.
+
+ // In cases with unreachable blocks, where the unnecessary Phis were
+ // optimized out, adding the Use may re-insert those Phis. Hence, when
+ // inserting Uses outside of the MSSA creation process, and new Phis were
+ // added, rename all uses if we are asked.
+
+ if (!RenameUses && !InsertedPHIs.empty()) {
+ auto *Defs = MSSA->getBlockDefs(MU->getBlock());
+ (void)Defs;
+ assert((!Defs || (++Defs->begin() == Defs->end())) &&
+ "Block may have only a Phi or no defs");
+ }
+
+ if (RenameUses && InsertedPHIs.size()) {
+ SmallPtrSet<BasicBlock *, 16> Visited;
+ BasicBlock *StartBlock = MU->getBlock();
+
+ if (auto *Defs = MSSA->getWritableBlockDefs(StartBlock)) {
+ MemoryAccess *FirstDef = &*Defs->begin();
+ // Convert to incoming value if it's a memorydef. A phi *is* already an
+ // incoming value.
+ if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
+ FirstDef = MD->getDefiningAccess();
+
+ MSSA->renamePass(MU->getBlock(), FirstDef, Visited);
+ }
+ // We just inserted a phi into this block, so the incoming value will
+ // become the phi anyway, so it does not matter what we pass.
+ for (auto &MP : InsertedPHIs)
+ if (MemoryPhi *Phi = cast_or_null<MemoryPhi>(MP))
+ MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
+ }
+}
+
+// Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
+static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
+ MemoryAccess *NewDef) {
+ // Replace any operand with us an incoming block with the new defining
+ // access.
+ int i = MP->getBasicBlockIndex(BB);
+ assert(i != -1 && "Should have found the basic block in the phi");
+ // We can't just compare i against getNumOperands since one is signed and the
+ // other not. So use it to index into the block iterator.
+ for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
+ ++BBIter) {
+ if (*BBIter != BB)
+ break;
+ MP->setIncomingValue(i, NewDef);
+ ++i;
+ }
+}
+
+// A brief description of the algorithm:
+// First, we compute what should define the new def, using the SSA
+// construction algorithm.
+// Then, we update the defs below us (and any new phi nodes) in the graph to
+// point to the correct new defs, to ensure we only have one variable, and no
+// disconnected stores.
+void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
+ InsertedPHIs.clear();
+
+ // See if we had a local def, and if not, go hunting.
+ MemoryAccess *DefBefore = getPreviousDef(MD);
+ bool DefBeforeSameBlock = false;
+ if (DefBefore->getBlock() == MD->getBlock() &&
+ !(isa<MemoryPhi>(DefBefore) &&
+ std::find(InsertedPHIs.begin(), InsertedPHIs.end(), DefBefore) !=
+ InsertedPHIs.end()))
+ DefBeforeSameBlock = true;
+
+ // There is a def before us, which means we can replace any store/phi uses
+ // of that thing with us, since we are in the way of whatever was there
+ // before.
+ // We now define that def's memorydefs and memoryphis
+ if (DefBeforeSameBlock) {
+ DefBefore->replaceUsesWithIf(MD, [MD](Use &U) {
+ // Leave the MemoryUses alone.
+ // Also make sure we skip ourselves to avoid self references.
+ User *Usr = U.getUser();
+ return !isa<MemoryUse>(Usr) && Usr != MD;
+ // Defs are automatically unoptimized when the user is set to MD below,
+ // because the isOptimized() call will fail to find the same ID.
+ });
+ }
+
+ // and that def is now our defining access.
+ MD->setDefiningAccess(DefBefore);
+
+ SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end());
+
+ // Remember the index where we may insert new phis.
+ unsigned NewPhiIndex = InsertedPHIs.size();
+ if (!DefBeforeSameBlock) {
+ // If there was a local def before us, we must have the same effect it
+ // did. Because every may-def is the same, any phis/etc we would create, it
+ // would also have created. If there was no local def before us, we
+ // performed a global update, and have to search all successors and make
+ // sure we update the first def in each of them (following all paths until
+ // we hit the first def along each path). This may also insert phi nodes.
+ // TODO: There are other cases we can skip this work, such as when we have a
+ // single successor, and only used a straight line of single pred blocks
+ // backwards to find the def. To make that work, we'd have to track whether
+ // getDefRecursive only ever used the single predecessor case. These types
+ // of paths also only exist in between CFG simplifications.
+
+ // If this is the first def in the block and this insert is in an arbitrary
+ // place, compute IDF and place phis.
+ SmallPtrSet<BasicBlock *, 2> DefiningBlocks;
+
+ // If this is the last Def in the block, also compute IDF based on MD, since
+ // this may a new Def added, and we may need additional Phis.
+ auto Iter = MD->getDefsIterator();
+ ++Iter;
+ auto IterEnd = MSSA->getBlockDefs(MD->getBlock())->end();
+ if (Iter == IterEnd)
+ DefiningBlocks.insert(MD->getBlock());
+
+ for (const auto &VH : InsertedPHIs)
+ if (const auto *RealPHI = cast_or_null<MemoryPhi>(VH))
+ DefiningBlocks.insert(RealPHI->getBlock());
+ ForwardIDFCalculator IDFs(*MSSA->DT);
+ SmallVector<BasicBlock *, 32> IDFBlocks;
+ IDFs.setDefiningBlocks(DefiningBlocks);
+ IDFs.calculate(IDFBlocks);
+ SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs;
+ for (auto *BBIDF : IDFBlocks) {
+ auto *MPhi = MSSA->getMemoryAccess(BBIDF);
+ if (!MPhi) {
+ MPhi = MSSA->createMemoryPhi(BBIDF);
+ NewInsertedPHIs.push_back(MPhi);
+ }
+ // Add the phis created into the IDF blocks to NonOptPhis, so they are not
+ // optimized out as trivial by the call to getPreviousDefFromEnd below.
+ // Once they are complete, all these Phis are added to the FixupList, and
+ // removed from NonOptPhis inside fixupDefs(). Existing Phis in IDF may
+ // need fixing as well, and potentially be trivial before this insertion,
+ // hence add all IDF Phis. See PR43044.
+ NonOptPhis.insert(MPhi);
+ }
+ for (auto &MPhi : NewInsertedPHIs) {
+ auto *BBIDF = MPhi->getBlock();
+ for (auto *Pred : predecessors(BBIDF)) {
+ DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
+ MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef), Pred);
+ }
+ }
+
+ // Re-take the index where we're adding the new phis, because the above call
+ // to getPreviousDefFromEnd, may have inserted into InsertedPHIs.
+ NewPhiIndex = InsertedPHIs.size();
+ for (auto &MPhi : NewInsertedPHIs) {
+ InsertedPHIs.push_back(&*MPhi);
+ FixupList.push_back(&*MPhi);
+ }
+
+ FixupList.push_back(MD);
+ }
+
+ // Remember the index where we stopped inserting new phis above, since the
+ // fixupDefs call in the loop below may insert more, that are already minimal.
+ unsigned NewPhiIndexEnd = InsertedPHIs.size();
+
+ while (!FixupList.empty()) {
+ unsigned StartingPHISize = InsertedPHIs.size();
+ fixupDefs(FixupList);
+ FixupList.clear();
+ // Put any new phis on the fixup list, and process them
+ FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end());
+ }
+
+ // Optimize potentially non-minimal phis added in this method.
+ unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex;
+ if (NewPhiSize)
+ tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize));
+
+ // Now that all fixups are done, rename all uses if we are asked.
+ if (RenameUses) {
+ SmallPtrSet<BasicBlock *, 16> Visited;
+ BasicBlock *StartBlock = MD->getBlock();
+ // We are guaranteed there is a def in the block, because we just got it
+ // handed to us in this function.
+ MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
+ // Convert to incoming value if it's a memorydef. A phi *is* already an
+ // incoming value.
+ if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
+ FirstDef = MD->getDefiningAccess();
+
+ MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
+ // We just inserted a phi into this block, so the incoming value will become
+ // the phi anyway, so it does not matter what we pass.
+ for (auto &MP : InsertedPHIs) {
+ MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
+ if (Phi)
+ MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
+ }
+ }
+}
+
+void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) {
+ SmallPtrSet<const BasicBlock *, 8> Seen;
+ SmallVector<const BasicBlock *, 16> Worklist;
+ for (auto &Var : Vars) {
+ MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var);
+ if (!NewDef)
+ continue;
+ // First, see if there is a local def after the operand.
+ auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
+ auto DefIter = NewDef->getDefsIterator();
+
+ // The temporary Phi is being fixed, unmark it for not to optimize.
+ if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef))
+ NonOptPhis.erase(Phi);
+
+ // If there is a local def after us, we only have to rename that.
+ if (++DefIter != Defs->end()) {
+ cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
+ continue;
+ }
+
+ // Otherwise, we need to search down through the CFG.
+ // For each of our successors, handle it directly if their is a phi, or
+ // place on the fixup worklist.
+ for (const auto *S : successors(NewDef->getBlock())) {
+ if (auto *MP = MSSA->getMemoryAccess(S))
+ setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
+ else
+ Worklist.push_back(S);
+ }
+
+ while (!Worklist.empty()) {
+ const BasicBlock *FixupBlock = Worklist.back();
+ Worklist.pop_back();
+
+ // Get the first def in the block that isn't a phi node.
+ if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
+ auto *FirstDef = &*Defs->begin();
+ // The loop above and below should have taken care of phi nodes
+ assert(!isa<MemoryPhi>(FirstDef) &&
+ "Should have already handled phi nodes!");
+ // We are now this def's defining access, make sure we actually dominate
+ // it
+ assert(MSSA->dominates(NewDef, FirstDef) &&
+ "Should have dominated the new access");
+
+ // This may insert new phi nodes, because we are not guaranteed the
+ // block we are processing has a single pred, and depending where the
+ // store was inserted, it may require phi nodes below it.
+ cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
+ return;
+ }
+ // We didn't find a def, so we must continue.
+ for (const auto *S : successors(FixupBlock)) {
+ // If there is a phi node, handle it.
+ // Otherwise, put the block on the worklist
+ if (auto *MP = MSSA->getMemoryAccess(S))
+ setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
+ else {
+ // If we cycle, we should have ended up at a phi node that we already
+ // processed. FIXME: Double check this
+ if (!Seen.insert(S).second)
+ continue;
+ Worklist.push_back(S);
+ }
+ }
+ }
+ }
+}
+
+void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) {
+ if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
+ MPhi->unorderedDeleteIncomingBlock(From);
+ tryRemoveTrivialPhi(MPhi);
+ }
+}
+
+void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From,
+ const BasicBlock *To) {
+ if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
+ bool Found = false;
+ MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) {
+ if (From != B)
+ return false;
+ if (Found)
+ return true;
+ Found = true;
+ return false;
+ });
+ tryRemoveTrivialPhi(MPhi);
+ }
+}
+
+static MemoryAccess *getNewDefiningAccessForClone(MemoryAccess *MA,
+ const ValueToValueMapTy &VMap,
+ PhiToDefMap &MPhiMap,
+ bool CloneWasSimplified,
+ MemorySSA *MSSA) {
+ MemoryAccess *InsnDefining = MA;
+ if (MemoryDef *DefMUD = dyn_cast<MemoryDef>(InsnDefining)) {
+ if (!MSSA->isLiveOnEntryDef(DefMUD)) {
+ Instruction *DefMUDI = DefMUD->getMemoryInst();
+ assert(DefMUDI && "Found MemoryUseOrDef with no Instruction.");
+ if (Instruction *NewDefMUDI =
+ cast_or_null<Instruction>(VMap.lookup(DefMUDI))) {
+ InsnDefining = MSSA->getMemoryAccess(NewDefMUDI);
+ if (!CloneWasSimplified)
+ assert(InsnDefining && "Defining instruction cannot be nullptr.");
+ else if (!InsnDefining || isa<MemoryUse>(InsnDefining)) {
+ // The clone was simplified, it's no longer a MemoryDef, look up.
+ auto DefIt = DefMUD->getDefsIterator();
+ // Since simplified clones only occur in single block cloning, a
+ // previous definition must exist, otherwise NewDefMUDI would not
+ // have been found in VMap.
+ assert(DefIt != MSSA->getBlockDefs(DefMUD->getBlock())->begin() &&
+ "Previous def must exist");
+ InsnDefining = getNewDefiningAccessForClone(
+ &*(--DefIt), VMap, MPhiMap, CloneWasSimplified, MSSA);
+ }
+ }
+ }
+ } else {
+ MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining);
+ if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi))
+ InsnDefining = NewDefPhi;
+ }
+ assert(InsnDefining && "Defining instruction cannot be nullptr.");
+ return InsnDefining;
+}
+
+void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
+ const ValueToValueMapTy &VMap,
+ PhiToDefMap &MPhiMap,
+ bool CloneWasSimplified) {
+ const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
+ if (!Acc)
+ return;
+ for (const MemoryAccess &MA : *Acc) {
+ if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) {
+ Instruction *Insn = MUD->getMemoryInst();
+ // Entry does not exist if the clone of the block did not clone all
+ // instructions. This occurs in LoopRotate when cloning instructions
+ // from the old header to the old preheader. The cloned instruction may
+ // also be a simplified Value, not an Instruction (see LoopRotate).
+ // Also in LoopRotate, even when it's an instruction, due to it being
+ // simplified, it may be a Use rather than a Def, so we cannot use MUD as
+ // template. Calls coming from updateForClonedBlockIntoPred, ensure this.
+ if (Instruction *NewInsn =
+ dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) {
+ MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess(
+ NewInsn,
+ getNewDefiningAccessForClone(MUD->getDefiningAccess(), VMap,
+ MPhiMap, CloneWasSimplified, MSSA),
+ /*Template=*/CloneWasSimplified ? nullptr : MUD,
+ /*CreationMustSucceed=*/CloneWasSimplified ? false : true);
+ if (NewUseOrDef)
+ MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End);
+ }
+ }
+ }
+}
+
+void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock(
+ BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) {
+ auto *MPhi = MSSA->getMemoryAccess(Header);
+ if (!MPhi)
+ return;
+
+ // Create phi node in the backedge block and populate it with the same
+ // incoming values as MPhi. Skip incoming values coming from Preheader.
+ auto *NewMPhi = MSSA->createMemoryPhi(BEBlock);
+ bool HasUniqueIncomingValue = true;
+ MemoryAccess *UniqueValue = nullptr;
+ for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) {
+ BasicBlock *IBB = MPhi->getIncomingBlock(I);
+ MemoryAccess *IV = MPhi->getIncomingValue(I);
+ if (IBB != Preheader) {
+ NewMPhi->addIncoming(IV, IBB);
+ if (HasUniqueIncomingValue) {
+ if (!UniqueValue)
+ UniqueValue = IV;
+ else if (UniqueValue != IV)
+ HasUniqueIncomingValue = false;
+ }
+ }
+ }
+
+ // Update incoming edges into MPhi. Remove all but the incoming edge from
+ // Preheader. Add an edge from NewMPhi
+ auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader);
+ MPhi->setIncomingValue(0, AccFromPreheader);
+ MPhi->setIncomingBlock(0, Preheader);
+ for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I)
+ MPhi->unorderedDeleteIncoming(I);
+ MPhi->addIncoming(NewMPhi, BEBlock);
+
+ // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be
+ // replaced with the unique value.
+ tryRemoveTrivialPhi(NewMPhi);
+}
+
+void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
+ ArrayRef<BasicBlock *> ExitBlocks,
+ const ValueToValueMapTy &VMap,
+ bool IgnoreIncomingWithNoClones) {
+ PhiToDefMap MPhiMap;
+
+ auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) {
+ assert(Phi && NewPhi && "Invalid Phi nodes.");
+ BasicBlock *NewPhiBB = NewPhi->getBlock();
+ SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB),
+ pred_end(NewPhiBB));
+ for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) {
+ MemoryAccess *IncomingAccess = Phi->getIncomingValue(It);
+ BasicBlock *IncBB = Phi->getIncomingBlock(It);
+
+ if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB)))
+ IncBB = NewIncBB;
+ else if (IgnoreIncomingWithNoClones)
+ continue;
+
+ // Now we have IncBB, and will need to add incoming from it to NewPhi.
+
+ // If IncBB is not a predecessor of NewPhiBB, then do not add it.
+ // NewPhiBB was cloned without that edge.
+ if (!NewPhiBBPreds.count(IncBB))
+ continue;
+
+ // Determine incoming value and add it as incoming from IncBB.
+ if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) {
+ if (!MSSA->isLiveOnEntryDef(IncMUD)) {
+ Instruction *IncI = IncMUD->getMemoryInst();
+ assert(IncI && "Found MemoryUseOrDef with no Instruction.");
+ if (Instruction *NewIncI =
+ cast_or_null<Instruction>(VMap.lookup(IncI))) {
+ IncMUD = MSSA->getMemoryAccess(NewIncI);
+ assert(IncMUD &&
+ "MemoryUseOrDef cannot be null, all preds processed.");
+ }
+ }
+ NewPhi->addIncoming(IncMUD, IncBB);
+ } else {
+ MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess);
+ if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi))
+ NewPhi->addIncoming(NewDefPhi, IncBB);
+ else
+ NewPhi->addIncoming(IncPhi, IncBB);
+ }
+ }
+ };
+
+ auto ProcessBlock = [&](BasicBlock *BB) {
+ BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB));
+ if (!NewBlock)
+ return;
+
+ assert(!MSSA->getWritableBlockAccesses(NewBlock) &&
+ "Cloned block should have no accesses");
+
+ // Add MemoryPhi.
+ if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) {
+ MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock);
+ MPhiMap[MPhi] = NewPhi;
+ }
+ // Update Uses and Defs.
+ cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap);
+ };
+
+ for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
+ ProcessBlock(BB);
+
+ for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
+ if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
+ if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi))
+ FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi));
+}
+
+void MemorySSAUpdater::updateForClonedBlockIntoPred(
+ BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) {
+ // All defs/phis from outside BB that are used in BB, are valid uses in P1.
+ // Since those defs/phis must have dominated BB, and also dominate P1.
+ // Defs from BB being used in BB will be replaced with the cloned defs from
+ // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the
+ // incoming def into the Phi from P1.
+ // Instructions cloned into the predecessor are in practice sometimes
+ // simplified, so disable the use of the template, and create an access from
+ // scratch.
+ PhiToDefMap MPhiMap;
+ if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
+ MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1);
+ cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true);
+}
+
+template <typename Iter>
+void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop(
+ ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd,
+ DominatorTree &DT) {
+ SmallVector<CFGUpdate, 4> Updates;
+ // Update/insert phis in all successors of exit blocks.
+ for (auto *Exit : ExitBlocks)
+ for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd))
+ if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) {
+ BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
+ Updates.push_back({DT.Insert, NewExit, ExitSucc});
+ }
+ applyInsertUpdates(Updates, DT);
+}
+
+void MemorySSAUpdater::updateExitBlocksForClonedLoop(
+ ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap,
+ DominatorTree &DT) {
+ const ValueToValueMapTy *const Arr[] = {&VMap};
+ privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr),
+ std::end(Arr), DT);
+}
+
+void MemorySSAUpdater::updateExitBlocksForClonedLoop(
+ ArrayRef<BasicBlock *> ExitBlocks,
+ ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) {
+ auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) {
+ return I.get();
+ };
+ using MappedIteratorType =
+ mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *,
+ decltype(GetPtr)>;
+ auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr);
+ auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr);
+ privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT);
+}
+
+void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates,
+ DominatorTree &DT) {
+ SmallVector<CFGUpdate, 4> RevDeleteUpdates;
+ SmallVector<CFGUpdate, 4> InsertUpdates;
+ for (auto &Update : Updates) {
+ if (Update.getKind() == DT.Insert)
+ InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
+ else
+ RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
+ }
+
+ if (!RevDeleteUpdates.empty()) {
+ // Update for inserted edges: use newDT and snapshot CFG as if deletes had
+ // not occurred.
+ // FIXME: This creates a new DT, so it's more expensive to do mix
+ // delete/inserts vs just inserts. We can do an incremental update on the DT
+ // to revert deletes, than re-delete the edges. Teaching DT to do this, is
+ // part of a pending cleanup.
+ DominatorTree NewDT(DT, RevDeleteUpdates);
+ GraphDiff<BasicBlock *> GD(RevDeleteUpdates);
+ applyInsertUpdates(InsertUpdates, NewDT, &GD);
+ } else {
+ GraphDiff<BasicBlock *> GD;
+ applyInsertUpdates(InsertUpdates, DT, &GD);
+ }
+
+ // Update for deleted edges
+ for (auto &Update : RevDeleteUpdates)
+ removeEdge(Update.getFrom(), Update.getTo());
+}
+
+void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
+ DominatorTree &DT) {
+ GraphDiff<BasicBlock *> GD;
+ applyInsertUpdates(Updates, DT, &GD);
+}
+
+void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
+ DominatorTree &DT,
+ const GraphDiff<BasicBlock *> *GD) {
+ // Get recursive last Def, assuming well formed MSSA and updated DT.
+ auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * {
+ while (true) {
+ MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB);
+ // Return last Def or Phi in BB, if it exists.
+ if (Defs)
+ return &*(--Defs->end());
+
+ // Check number of predecessors, we only care if there's more than one.
+ unsigned Count = 0;
+ BasicBlock *Pred = nullptr;
+ for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
+ Pred = Pair.second;
+ Count++;
+ if (Count == 2)
+ break;
+ }
+
+ // If BB has multiple predecessors, get last definition from IDom.
+ if (Count != 1) {
+ // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its
+ // DT is invalidated. Return LoE as its last def. This will be added to
+ // MemoryPhi node, and later deleted when the block is deleted.
+ if (!DT.getNode(BB))
+ return MSSA->getLiveOnEntryDef();
+ if (auto *IDom = DT.getNode(BB)->getIDom())
+ if (IDom->getBlock() != BB) {
+ BB = IDom->getBlock();
+ continue;
+ }
+ return MSSA->getLiveOnEntryDef();
+ } else {
+ // Single predecessor, BB cannot be dead. GetLastDef of Pred.
+ assert(Count == 1 && Pred && "Single predecessor expected.");
+ // BB can be unreachable though, return LoE if that is the case.
+ if (!DT.getNode(BB))
+ return MSSA->getLiveOnEntryDef();
+ BB = Pred;
+ }
+ };
+ llvm_unreachable("Unable to get last definition.");
+ };
+
+ // Get nearest IDom given a set of blocks.
+ // TODO: this can be optimized by starting the search at the node with the
+ // lowest level (highest in the tree).
+ auto FindNearestCommonDominator =
+ [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * {
+ BasicBlock *PrevIDom = *BBSet.begin();
+ for (auto *BB : BBSet)
+ PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB);
+ return PrevIDom;
+ };
+
+ // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not
+ // include CurrIDom.
+ auto GetNoLongerDomBlocks =
+ [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom,
+ SmallVectorImpl<BasicBlock *> &BlocksPrevDom) {
+ if (PrevIDom == CurrIDom)
+ return;
+ BlocksPrevDom.push_back(PrevIDom);
+ BasicBlock *NextIDom = PrevIDom;
+ while (BasicBlock *UpIDom =
+ DT.getNode(NextIDom)->getIDom()->getBlock()) {
+ if (UpIDom == CurrIDom)
+ break;
+ BlocksPrevDom.push_back(UpIDom);
+ NextIDom = UpIDom;
+ }
+ };
+
+ // Map a BB to its predecessors: added + previously existing. To get a
+ // deterministic order, store predecessors as SetVectors. The order in each
+ // will be defined by the order in Updates (fixed) and the order given by
+ // children<> (also fixed). Since we further iterate over these ordered sets,
+ // we lose the information of multiple edges possibly existing between two
+ // blocks, so we'll keep and EdgeCount map for that.
+ // An alternate implementation could keep unordered set for the predecessors,
+ // traverse either Updates or children<> each time to get the deterministic
+ // order, and drop the usage of EdgeCount. This alternate approach would still
+ // require querying the maps for each predecessor, and children<> call has
+ // additional computation inside for creating the snapshot-graph predecessors.
+ // As such, we favor using a little additional storage and less compute time.
+ // This decision can be revisited if we find the alternative more favorable.
+
+ struct PredInfo {
+ SmallSetVector<BasicBlock *, 2> Added;
+ SmallSetVector<BasicBlock *, 2> Prev;
+ };
+ SmallDenseMap<BasicBlock *, PredInfo> PredMap;
+
+ for (auto &Edge : Updates) {
+ BasicBlock *BB = Edge.getTo();
+ auto &AddedBlockSet = PredMap[BB].Added;
+ AddedBlockSet.insert(Edge.getFrom());
+ }
+
+ // Store all existing predecessor for each BB, at least one must exist.
+ SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap;
+ SmallPtrSet<BasicBlock *, 2> NewBlocks;
+ for (auto &BBPredPair : PredMap) {
+ auto *BB = BBPredPair.first;
+ const auto &AddedBlockSet = BBPredPair.second.Added;
+ auto &PrevBlockSet = BBPredPair.second.Prev;
+ for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
+ BasicBlock *Pi = Pair.second;
+ if (!AddedBlockSet.count(Pi))
+ PrevBlockSet.insert(Pi);
+ EdgeCountMap[{Pi, BB}]++;
+ }
+
+ if (PrevBlockSet.empty()) {
+ assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added.");
+ LLVM_DEBUG(
+ dbgs()
+ << "Adding a predecessor to a block with no predecessors. "
+ "This must be an edge added to a new, likely cloned, block. "
+ "Its memory accesses must be already correct, assuming completed "
+ "via the updateExitBlocksForClonedLoop API. "
+ "Assert a single such edge is added so no phi addition or "
+ "additional processing is required.\n");
+ assert(AddedBlockSet.size() == 1 &&
+ "Can only handle adding one predecessor to a new block.");
+ // Need to remove new blocks from PredMap. Remove below to not invalidate
+ // iterator here.
+ NewBlocks.insert(BB);
+ }
+ }
+ // Nothing to process for new/cloned blocks.
+ for (auto *BB : NewBlocks)
+ PredMap.erase(BB);
+
+ SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace;
+ SmallVector<WeakVH, 8> InsertedPhis;
+
+ // First create MemoryPhis in all blocks that don't have one. Create in the
+ // order found in Updates, not in PredMap, to get deterministic numbering.
+ for (auto &Edge : Updates) {
+ BasicBlock *BB = Edge.getTo();
+ if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB))
+ InsertedPhis.push_back(MSSA->createMemoryPhi(BB));
+ }
+
+ // Now we'll fill in the MemoryPhis with the right incoming values.
+ for (auto &BBPredPair : PredMap) {
+ auto *BB = BBPredPair.first;
+ const auto &PrevBlockSet = BBPredPair.second.Prev;
+ const auto &AddedBlockSet = BBPredPair.second.Added;
+ assert(!PrevBlockSet.empty() &&
+ "At least one previous predecessor must exist.");
+
+ // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by
+ // keeping this map before the loop. We can reuse already populated entries
+ // if an edge is added from the same predecessor to two different blocks,
+ // and this does happen in rotate. Note that the map needs to be updated
+ // when deleting non-necessary phis below, if the phi is in the map by
+ // replacing the value with DefP1.
+ SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred;
+ for (auto *AddedPred : AddedBlockSet) {
+ auto *DefPn = GetLastDef(AddedPred);
+ assert(DefPn != nullptr && "Unable to find last definition.");
+ LastDefAddedPred[AddedPred] = DefPn;
+ }
+
+ MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB);
+ // If Phi is not empty, add an incoming edge from each added pred. Must
+ // still compute blocks with defs to replace for this block below.
+ if (NewPhi->getNumOperands()) {
+ for (auto *Pred : AddedBlockSet) {
+ auto *LastDefForPred = LastDefAddedPred[Pred];
+ for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
+ NewPhi->addIncoming(LastDefForPred, Pred);
+ }
+ } else {
+ // Pick any existing predecessor and get its definition. All other
+ // existing predecessors should have the same one, since no phi existed.
+ auto *P1 = *PrevBlockSet.begin();
+ MemoryAccess *DefP1 = GetLastDef(P1);
+
+ // Check DefP1 against all Defs in LastDefPredPair. If all the same,
+ // nothing to add.
+ bool InsertPhi = false;
+ for (auto LastDefPredPair : LastDefAddedPred)
+ if (DefP1 != LastDefPredPair.second) {
+ InsertPhi = true;
+ break;
+ }
+ if (!InsertPhi) {
+ // Since NewPhi may be used in other newly added Phis, replace all uses
+ // of NewPhi with the definition coming from all predecessors (DefP1),
+ // before deleting it.
+ NewPhi->replaceAllUsesWith(DefP1);
+ removeMemoryAccess(NewPhi);
+ continue;
+ }
+
+ // Update Phi with new values for new predecessors and old value for all
+ // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered
+ // sets, the order of entries in NewPhi is deterministic.
+ for (auto *Pred : AddedBlockSet) {
+ auto *LastDefForPred = LastDefAddedPred[Pred];
+ for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
+ NewPhi->addIncoming(LastDefForPred, Pred);
+ }
+ for (auto *Pred : PrevBlockSet)
+ for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
+ NewPhi->addIncoming(DefP1, Pred);
+ }
+
+ // Get all blocks that used to dominate BB and no longer do after adding
+ // AddedBlockSet, where PrevBlockSet are the previously known predecessors.
+ assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom");
+ BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet);
+ assert(PrevIDom && "Previous IDom should exists");
+ BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock();
+ assert(NewIDom && "BB should have a new valid idom");
+ assert(DT.dominates(NewIDom, PrevIDom) &&
+ "New idom should dominate old idom");
+ GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace);
+ }
+
+ tryRemoveTrivialPhis(InsertedPhis);
+ // Create the set of blocks that now have a definition. We'll use this to
+ // compute IDF and add Phis there next.
+ SmallVector<BasicBlock *, 8> BlocksToProcess;
+ for (auto &VH : InsertedPhis)
+ if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
+ BlocksToProcess.push_back(MPhi->getBlock());
+
+ // Compute IDF and add Phis in all IDF blocks that do not have one.
+ SmallVector<BasicBlock *, 32> IDFBlocks;
+ if (!BlocksToProcess.empty()) {
+ ForwardIDFCalculator IDFs(DT, GD);
+ SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(),
+ BlocksToProcess.end());
+ IDFs.setDefiningBlocks(DefiningBlocks);
+ IDFs.calculate(IDFBlocks);
+
+ SmallSetVector<MemoryPhi *, 4> PhisToFill;
+ // First create all needed Phis.
+ for (auto *BBIDF : IDFBlocks)
+ if (!MSSA->getMemoryAccess(BBIDF)) {
+ auto *IDFPhi = MSSA->createMemoryPhi(BBIDF);
+ InsertedPhis.push_back(IDFPhi);
+ PhisToFill.insert(IDFPhi);
+ }
+ // Then update or insert their correct incoming values.
+ for (auto *BBIDF : IDFBlocks) {
+ auto *IDFPhi = MSSA->getMemoryAccess(BBIDF);
+ assert(IDFPhi && "Phi must exist");
+ if (!PhisToFill.count(IDFPhi)) {
+ // Update existing Phi.
+ // FIXME: some updates may be redundant, try to optimize and skip some.
+ for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I)
+ IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I)));
+ } else {
+ for (auto &Pair : children<GraphDiffInvBBPair>({GD, BBIDF})) {
+ BasicBlock *Pi = Pair.second;
+ IDFPhi->addIncoming(GetLastDef(Pi), Pi);
+ }
+ }
+ }
+ }
+
+ // Now for all defs in BlocksWithDefsToReplace, if there are uses they no
+ // longer dominate, replace those with the closest dominating def.
+ // This will also update optimized accesses, as they're also uses.
+ for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) {
+ if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) {
+ for (auto &DefToReplaceUses : *DefsList) {
+ BasicBlock *DominatingBlock = DefToReplaceUses.getBlock();
+ Value::use_iterator UI = DefToReplaceUses.use_begin(),
+ E = DefToReplaceUses.use_end();
+ for (; UI != E;) {
+ Use &U = *UI;
+ ++UI;
+ MemoryAccess *Usr = cast<MemoryAccess>(U.getUser());
+ if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) {
+ BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U);
+ if (!DT.dominates(DominatingBlock, DominatedBlock))
+ U.set(GetLastDef(DominatedBlock));
+ } else {
+ BasicBlock *DominatedBlock = Usr->getBlock();
+ if (!DT.dominates(DominatingBlock, DominatedBlock)) {
+ if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock))
+ U.set(DomBlPhi);
+ else {
+ auto *IDom = DT.getNode(DominatedBlock)->getIDom();
+ assert(IDom && "Block must have a valid IDom.");
+ U.set(GetLastDef(IDom->getBlock()));
+ }
+ cast<MemoryUseOrDef>(Usr)->resetOptimized();
+ }
+ }
+ }
+ }
+ }
+ }
+ tryRemoveTrivialPhis(InsertedPhis);
+}
+
+// Move What before Where in the MemorySSA IR.
+template <class WhereType>
+void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
+ WhereType Where) {
+ // Mark MemoryPhi users of What not to be optimized.
+ for (auto *U : What->users())
+ if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U))
+ NonOptPhis.insert(PhiUser);
+
+ // Replace all our users with our defining access.
+ What->replaceAllUsesWith(What->getDefiningAccess());
+
+ // Let MemorySSA take care of moving it around in the lists.
+ MSSA->moveTo(What, BB, Where);
+
+ // Now reinsert it into the IR and do whatever fixups needed.
+ if (auto *MD = dyn_cast<MemoryDef>(What))
+ insertDef(MD, /*RenameUses=*/true);
+ else
+ insertUse(cast<MemoryUse>(What), /*RenameUses=*/true);
+
+ // Clear dangling pointers. We added all MemoryPhi users, but not all
+ // of them are removed by fixupDefs().
+ NonOptPhis.clear();
+}
+
+// Move What before Where in the MemorySSA IR.
+void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
+ moveTo(What, Where->getBlock(), Where->getIterator());
+}
+
+// Move What after Where in the MemorySSA IR.
+void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
+ moveTo(What, Where->getBlock(), ++Where->getIterator());
+}
+
+void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
+ MemorySSA::InsertionPlace Where) {
+ return moveTo(What, BB, Where);
+}
+
+// All accesses in To used to be in From. Move to end and update access lists.
+void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To,
+ Instruction *Start) {
+
+ MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From);
+ if (!Accs)
+ return;
+
+ assert(Start->getParent() == To && "Incorrect Start instruction");
+ MemoryAccess *FirstInNew = nullptr;
+ for (Instruction &I : make_range(Start->getIterator(), To->end()))
+ if ((FirstInNew = MSSA->getMemoryAccess(&I)))
+ break;
+ if (FirstInNew) {
+ auto *MUD = cast<MemoryUseOrDef>(FirstInNew);
+ do {
+ auto NextIt = ++MUD->getIterator();
+ MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end())
+ ? nullptr
+ : cast<MemoryUseOrDef>(&*NextIt);
+ MSSA->moveTo(MUD, To, MemorySSA::End);
+ // Moving MUD from Accs in the moveTo above, may delete Accs, so we need
+ // to retrieve it again.
+ Accs = MSSA->getWritableBlockAccesses(From);
+ MUD = NextMUD;
+ } while (MUD);
+ }
+
+ // If all accesses were moved and only a trivial Phi remains, we try to remove
+ // that Phi. This is needed when From is going to be deleted.
+ auto *Defs = MSSA->getWritableBlockDefs(From);
+ if (Defs && !Defs->empty())
+ if (auto *Phi = dyn_cast<MemoryPhi>(&*Defs->begin()))
+ tryRemoveTrivialPhi(Phi);
+}
+
+void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From,
+ BasicBlock *To,
+ Instruction *Start) {
+ assert(MSSA->getBlockAccesses(To) == nullptr &&
+ "To block is expected to be free of MemoryAccesses.");
+ moveAllAccesses(From, To, Start);
+ for (BasicBlock *Succ : successors(To))
+ if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
+ MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
+}
+
+void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
+ Instruction *Start) {
+ assert(From->getUniquePredecessor() == To &&
+ "From block is expected to have a single predecessor (To).");
+ moveAllAccesses(From, To, Start);
+ for (BasicBlock *Succ : successors(From))
+ if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
+ MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
+}
+
+/// If all arguments of a MemoryPHI are defined by the same incoming
+/// argument, return that argument.
+static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
+ MemoryAccess *MA = nullptr;
+
+ for (auto &Arg : MP->operands()) {
+ if (!MA)
+ MA = cast<MemoryAccess>(Arg);
+ else if (MA != Arg)
+ return nullptr;
+ }
+ return MA;
+}
+
+void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
+ BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
+ bool IdenticalEdgesWereMerged) {
+ assert(!MSSA->getWritableBlockAccesses(New) &&
+ "Access list should be null for a new block.");
+ MemoryPhi *Phi = MSSA->getMemoryAccess(Old);
+ if (!Phi)
+ return;
+ if (Old->hasNPredecessors(1)) {
+ assert(pred_size(New) == Preds.size() &&
+ "Should have moved all predecessors.");
+ MSSA->moveTo(Phi, New, MemorySSA::Beginning);
+ } else {
+ assert(!Preds.empty() && "Must be moving at least one predecessor to the "
+ "new immediate predecessor.");
+ MemoryPhi *NewPhi = MSSA->createMemoryPhi(New);
+ SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end());
+ // Currently only support the case of removing a single incoming edge when
+ // identical edges were not merged.
+ if (!IdenticalEdgesWereMerged)
+ assert(PredsSet.size() == Preds.size() &&
+ "If identical edges were not merged, we cannot have duplicate "
+ "blocks in the predecessors");
+ Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) {
+ if (PredsSet.count(B)) {
+ NewPhi->addIncoming(MA, B);
+ if (!IdenticalEdgesWereMerged)
+ PredsSet.erase(B);
+ return true;
+ }
+ return false;
+ });
+ Phi->addIncoming(NewPhi, New);
+ tryRemoveTrivialPhi(NewPhi);
+ }
+}
+
+void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) {
+ assert(!MSSA->isLiveOnEntryDef(MA) &&
+ "Trying to remove the live on entry def");
+ // We can only delete phi nodes if they have no uses, or we can replace all
+ // uses with a single definition.
+ MemoryAccess *NewDefTarget = nullptr;
+ if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
+ // Note that it is sufficient to know that all edges of the phi node have
+ // the same argument. If they do, by the definition of dominance frontiers
+ // (which we used to place this phi), that argument must dominate this phi,
+ // and thus, must dominate the phi's uses, and so we will not hit the assert
+ // below.
+ NewDefTarget = onlySingleValue(MP);
+ assert((NewDefTarget || MP->use_empty()) &&
+ "We can't delete this memory phi");
+ } else {
+ NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
+ }
+
+ SmallSetVector<MemoryPhi *, 4> PhisToCheck;
+
+ // Re-point the uses at our defining access
+ if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
+ // Reset optimized on users of this store, and reset the uses.
+ // A few notes:
+ // 1. This is a slightly modified version of RAUW to avoid walking the
+ // uses twice here.
+ // 2. If we wanted to be complete, we would have to reset the optimized
+ // flags on users of phi nodes if doing the below makes a phi node have all
+ // the same arguments. Instead, we prefer users to removeMemoryAccess those
+ // phi nodes, because doing it here would be N^3.
+ if (MA->hasValueHandle())
+ ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
+ // Note: We assume MemorySSA is not used in metadata since it's not really
+ // part of the IR.
+
+ while (!MA->use_empty()) {
+ Use &U = *MA->use_begin();
+ if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
+ MUD->resetOptimized();
+ if (OptimizePhis)
+ if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser()))
+ PhisToCheck.insert(MP);
+ U.set(NewDefTarget);
+ }
+ }
+
+ // The call below to erase will destroy MA, so we can't change the order we
+ // are doing things here
+ MSSA->removeFromLookups(MA);
+ MSSA->removeFromLists(MA);
+
+ // Optionally optimize Phi uses. This will recursively remove trivial phis.
+ if (!PhisToCheck.empty()) {
+ SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(),
+ PhisToCheck.end()};
+ PhisToCheck.clear();
+
+ unsigned PhisSize = PhisToOptimize.size();
+ while (PhisSize-- > 0)
+ if (MemoryPhi *MP =
+ cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val()))
+ tryRemoveTrivialPhi(MP);
+ }
+}
+
+void MemorySSAUpdater::removeBlocks(
+ const SmallSetVector<BasicBlock *, 8> &DeadBlocks) {
+ // First delete all uses of BB in MemoryPhis.
+ for (BasicBlock *BB : DeadBlocks) {
+ Instruction *TI = BB->getTerminator();
+ assert(TI && "Basic block expected to have a terminator instruction");
+ for (BasicBlock *Succ : successors(TI))
+ if (!DeadBlocks.count(Succ))
+ if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) {
+ MP->unorderedDeleteIncomingBlock(BB);
+ tryRemoveTrivialPhi(MP);
+ }
+ // Drop all references of all accesses in BB
+ if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB))
+ for (MemoryAccess &MA : *Acc)
+ MA.dropAllReferences();
+ }
+
+ // Next, delete all memory accesses in each block
+ for (BasicBlock *BB : DeadBlocks) {
+ MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB);
+ if (!Acc)
+ continue;
+ for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) {
+ MemoryAccess *MA = &*AB;
+ ++AB;
+ MSSA->removeFromLookups(MA);
+ MSSA->removeFromLists(MA);
+ }
+ }
+}
+
+void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) {
+ for (auto &VH : UpdatedPHIs)
+ if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
+ tryRemoveTrivialPhi(MPhi);
+}
+
+void MemorySSAUpdater::changeToUnreachable(const Instruction *I) {
+ const BasicBlock *BB = I->getParent();
+ // Remove memory accesses in BB for I and all following instructions.
+ auto BBI = I->getIterator(), BBE = BB->end();
+ // FIXME: If this becomes too expensive, iterate until the first instruction
+ // with a memory access, then iterate over MemoryAccesses.
+ while (BBI != BBE)
+ removeMemoryAccess(&*(BBI++));
+ // Update phis in BB's successors to remove BB.
+ SmallVector<WeakVH, 16> UpdatedPHIs;
+ for (const BasicBlock *Successor : successors(BB)) {
+ removeDuplicatePhiEdgesBetween(BB, Successor);
+ if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) {
+ MPhi->unorderedDeleteIncomingBlock(BB);
+ UpdatedPHIs.push_back(MPhi);
+ }
+ }
+ // Optimize trivial phis.
+ tryRemoveTrivialPhis(UpdatedPHIs);
+}
+
+void MemorySSAUpdater::changeCondBranchToUnconditionalTo(const BranchInst *BI,
+ const BasicBlock *To) {
+ const BasicBlock *BB = BI->getParent();
+ SmallVector<WeakVH, 16> UpdatedPHIs;
+ for (const BasicBlock *Succ : successors(BB)) {
+ removeDuplicatePhiEdgesBetween(BB, Succ);
+ if (Succ != To)
+ if (auto *MPhi = MSSA->getMemoryAccess(Succ)) {
+ MPhi->unorderedDeleteIncomingBlock(BB);
+ UpdatedPHIs.push_back(MPhi);
+ }
+ }
+ // Optimize trivial phis.
+ tryRemoveTrivialPhis(UpdatedPHIs);
+}
+
+MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
+ Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
+ MemorySSA::InsertionPlace Point) {
+ MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
+ MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
+ return NewAccess;
+}
+
+MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
+ Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
+ assert(I->getParent() == InsertPt->getBlock() &&
+ "New and old access must be in the same block");
+ MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
+ MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
+ InsertPt->getIterator());
+ return NewAccess;
+}
+
+MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
+ Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
+ assert(I->getParent() == InsertPt->getBlock() &&
+ "New and old access must be in the same block");
+ MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
+ MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
+ ++InsertPt->getIterator());
+ return NewAccess;
+}