summaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/MustExecute.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Analysis/MustExecute.cpp')
-rw-r--r--llvm/lib/Analysis/MustExecute.cpp516
1 files changed, 516 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/MustExecute.cpp b/llvm/lib/Analysis/MustExecute.cpp
new file mode 100644
index 000000000000..44527773115d
--- /dev/null
+++ b/llvm/lib/Analysis/MustExecute.cpp
@@ -0,0 +1,516 @@
+//===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/MustExecute.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/Analysis/CFG.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/Passes.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/AssemblyAnnotationWriter.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "must-execute"
+
+const DenseMap<BasicBlock *, ColorVector> &
+LoopSafetyInfo::getBlockColors() const {
+ return BlockColors;
+}
+
+void LoopSafetyInfo::copyColors(BasicBlock *New, BasicBlock *Old) {
+ ColorVector &ColorsForNewBlock = BlockColors[New];
+ ColorVector &ColorsForOldBlock = BlockColors[Old];
+ ColorsForNewBlock = ColorsForOldBlock;
+}
+
+bool SimpleLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
+ (void)BB;
+ return anyBlockMayThrow();
+}
+
+bool SimpleLoopSafetyInfo::anyBlockMayThrow() const {
+ return MayThrow;
+}
+
+void SimpleLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
+ assert(CurLoop != nullptr && "CurLoop can't be null");
+ BasicBlock *Header = CurLoop->getHeader();
+ // Iterate over header and compute safety info.
+ HeaderMayThrow = !isGuaranteedToTransferExecutionToSuccessor(Header);
+ MayThrow = HeaderMayThrow;
+ // Iterate over loop instructions and compute safety info.
+ // Skip header as it has been computed and stored in HeaderMayThrow.
+ // The first block in loopinfo.Blocks is guaranteed to be the header.
+ assert(Header == *CurLoop->getBlocks().begin() &&
+ "First block must be header");
+ for (Loop::block_iterator BB = std::next(CurLoop->block_begin()),
+ BBE = CurLoop->block_end();
+ (BB != BBE) && !MayThrow; ++BB)
+ MayThrow |= !isGuaranteedToTransferExecutionToSuccessor(*BB);
+
+ computeBlockColors(CurLoop);
+}
+
+bool ICFLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
+ return ICF.hasICF(BB);
+}
+
+bool ICFLoopSafetyInfo::anyBlockMayThrow() const {
+ return MayThrow;
+}
+
+void ICFLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
+ assert(CurLoop != nullptr && "CurLoop can't be null");
+ ICF.clear();
+ MW.clear();
+ MayThrow = false;
+ // Figure out the fact that at least one block may throw.
+ for (auto &BB : CurLoop->blocks())
+ if (ICF.hasICF(&*BB)) {
+ MayThrow = true;
+ break;
+ }
+ computeBlockColors(CurLoop);
+}
+
+void ICFLoopSafetyInfo::insertInstructionTo(const Instruction *Inst,
+ const BasicBlock *BB) {
+ ICF.insertInstructionTo(Inst, BB);
+ MW.insertInstructionTo(Inst, BB);
+}
+
+void ICFLoopSafetyInfo::removeInstruction(const Instruction *Inst) {
+ ICF.removeInstruction(Inst);
+ MW.removeInstruction(Inst);
+}
+
+void LoopSafetyInfo::computeBlockColors(const Loop *CurLoop) {
+ // Compute funclet colors if we might sink/hoist in a function with a funclet
+ // personality routine.
+ Function *Fn = CurLoop->getHeader()->getParent();
+ if (Fn->hasPersonalityFn())
+ if (Constant *PersonalityFn = Fn->getPersonalityFn())
+ if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn)))
+ BlockColors = colorEHFunclets(*Fn);
+}
+
+/// Return true if we can prove that the given ExitBlock is not reached on the
+/// first iteration of the given loop. That is, the backedge of the loop must
+/// be executed before the ExitBlock is executed in any dynamic execution trace.
+static bool CanProveNotTakenFirstIteration(const BasicBlock *ExitBlock,
+ const DominatorTree *DT,
+ const Loop *CurLoop) {
+ auto *CondExitBlock = ExitBlock->getSinglePredecessor();
+ if (!CondExitBlock)
+ // expect unique exits
+ return false;
+ assert(CurLoop->contains(CondExitBlock) && "meaning of exit block");
+ auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator());
+ if (!BI || !BI->isConditional())
+ return false;
+ // If condition is constant and false leads to ExitBlock then we always
+ // execute the true branch.
+ if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition()))
+ return BI->getSuccessor(Cond->getZExtValue() ? 1 : 0) == ExitBlock;
+ auto *Cond = dyn_cast<CmpInst>(BI->getCondition());
+ if (!Cond)
+ return false;
+ // todo: this would be a lot more powerful if we used scev, but all the
+ // plumbing is currently missing to pass a pointer in from the pass
+ // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known
+ auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0));
+ auto *RHS = Cond->getOperand(1);
+ if (!LHS || LHS->getParent() != CurLoop->getHeader())
+ return false;
+ auto DL = ExitBlock->getModule()->getDataLayout();
+ auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader());
+ auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(),
+ IVStart, RHS,
+ {DL, /*TLI*/ nullptr,
+ DT, /*AC*/ nullptr, BI});
+ auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull);
+ if (!SimpleCst)
+ return false;
+ if (ExitBlock == BI->getSuccessor(0))
+ return SimpleCst->isZeroValue();
+ assert(ExitBlock == BI->getSuccessor(1) && "implied by above");
+ return SimpleCst->isAllOnesValue();
+}
+
+/// Collect all blocks from \p CurLoop which lie on all possible paths from
+/// the header of \p CurLoop (inclusive) to BB (exclusive) into the set
+/// \p Predecessors. If \p BB is the header, \p Predecessors will be empty.
+static void collectTransitivePredecessors(
+ const Loop *CurLoop, const BasicBlock *BB,
+ SmallPtrSetImpl<const BasicBlock *> &Predecessors) {
+ assert(Predecessors.empty() && "Garbage in predecessors set?");
+ assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
+ if (BB == CurLoop->getHeader())
+ return;
+ SmallVector<const BasicBlock *, 4> WorkList;
+ for (auto *Pred : predecessors(BB)) {
+ Predecessors.insert(Pred);
+ WorkList.push_back(Pred);
+ }
+ while (!WorkList.empty()) {
+ auto *Pred = WorkList.pop_back_val();
+ assert(CurLoop->contains(Pred) && "Should only reach loop blocks!");
+ // We are not interested in backedges and we don't want to leave loop.
+ if (Pred == CurLoop->getHeader())
+ continue;
+ // TODO: If BB lies in an inner loop of CurLoop, this will traverse over all
+ // blocks of this inner loop, even those that are always executed AFTER the
+ // BB. It may make our analysis more conservative than it could be, see test
+ // @nested and @nested_no_throw in test/Analysis/MustExecute/loop-header.ll.
+ // We can ignore backedge of all loops containing BB to get a sligtly more
+ // optimistic result.
+ for (auto *PredPred : predecessors(Pred))
+ if (Predecessors.insert(PredPred).second)
+ WorkList.push_back(PredPred);
+ }
+}
+
+bool LoopSafetyInfo::allLoopPathsLeadToBlock(const Loop *CurLoop,
+ const BasicBlock *BB,
+ const DominatorTree *DT) const {
+ assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
+
+ // Fast path: header is always reached once the loop is entered.
+ if (BB == CurLoop->getHeader())
+ return true;
+
+ // Collect all transitive predecessors of BB in the same loop. This set will
+ // be a subset of the blocks within the loop.
+ SmallPtrSet<const BasicBlock *, 4> Predecessors;
+ collectTransitivePredecessors(CurLoop, BB, Predecessors);
+
+ // Make sure that all successors of, all predecessors of BB which are not
+ // dominated by BB, are either:
+ // 1) BB,
+ // 2) Also predecessors of BB,
+ // 3) Exit blocks which are not taken on 1st iteration.
+ // Memoize blocks we've already checked.
+ SmallPtrSet<const BasicBlock *, 4> CheckedSuccessors;
+ for (auto *Pred : Predecessors) {
+ // Predecessor block may throw, so it has a side exit.
+ if (blockMayThrow(Pred))
+ return false;
+
+ // BB dominates Pred, so if Pred runs, BB must run.
+ // This is true when Pred is a loop latch.
+ if (DT->dominates(BB, Pred))
+ continue;
+
+ for (auto *Succ : successors(Pred))
+ if (CheckedSuccessors.insert(Succ).second &&
+ Succ != BB && !Predecessors.count(Succ))
+ // By discharging conditions that are not executed on the 1st iteration,
+ // we guarantee that *at least* on the first iteration all paths from
+ // header that *may* execute will lead us to the block of interest. So
+ // that if we had virtually peeled one iteration away, in this peeled
+ // iteration the set of predecessors would contain only paths from
+ // header to BB without any exiting edges that may execute.
+ //
+ // TODO: We only do it for exiting edges currently. We could use the
+ // same function to skip some of the edges within the loop if we know
+ // that they will not be taken on the 1st iteration.
+ //
+ // TODO: If we somehow know the number of iterations in loop, the same
+ // check may be done for any arbitrary N-th iteration as long as N is
+ // not greater than minimum number of iterations in this loop.
+ if (CurLoop->contains(Succ) ||
+ !CanProveNotTakenFirstIteration(Succ, DT, CurLoop))
+ return false;
+ }
+
+ // All predecessors can only lead us to BB.
+ return true;
+}
+
+/// Returns true if the instruction in a loop is guaranteed to execute at least
+/// once.
+bool SimpleLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
+ const DominatorTree *DT,
+ const Loop *CurLoop) const {
+ // If the instruction is in the header block for the loop (which is very
+ // common), it is always guaranteed to dominate the exit blocks. Since this
+ // is a common case, and can save some work, check it now.
+ if (Inst.getParent() == CurLoop->getHeader())
+ // If there's a throw in the header block, we can't guarantee we'll reach
+ // Inst unless we can prove that Inst comes before the potential implicit
+ // exit. At the moment, we use a (cheap) hack for the common case where
+ // the instruction of interest is the first one in the block.
+ return !HeaderMayThrow ||
+ Inst.getParent()->getFirstNonPHIOrDbg() == &Inst;
+
+ // If there is a path from header to exit or latch that doesn't lead to our
+ // instruction's block, return false.
+ return allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
+}
+
+bool ICFLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
+ const DominatorTree *DT,
+ const Loop *CurLoop) const {
+ return !ICF.isDominatedByICFIFromSameBlock(&Inst) &&
+ allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
+}
+
+bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const BasicBlock *BB,
+ const Loop *CurLoop) const {
+ assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
+
+ // Fast path: there are no instructions before header.
+ if (BB == CurLoop->getHeader())
+ return true;
+
+ // Collect all transitive predecessors of BB in the same loop. This set will
+ // be a subset of the blocks within the loop.
+ SmallPtrSet<const BasicBlock *, 4> Predecessors;
+ collectTransitivePredecessors(CurLoop, BB, Predecessors);
+ // Find if there any instruction in either predecessor that could write
+ // to memory.
+ for (auto *Pred : Predecessors)
+ if (MW.mayWriteToMemory(Pred))
+ return false;
+ return true;
+}
+
+bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const Instruction &I,
+ const Loop *CurLoop) const {
+ auto *BB = I.getParent();
+ assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
+ return !MW.isDominatedByMemoryWriteFromSameBlock(&I) &&
+ doesNotWriteMemoryBefore(BB, CurLoop);
+}
+
+namespace {
+ struct MustExecutePrinter : public FunctionPass {
+
+ static char ID; // Pass identification, replacement for typeid
+ MustExecutePrinter() : FunctionPass(ID) {
+ initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry());
+ }
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesAll();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<LoopInfoWrapperPass>();
+ }
+ bool runOnFunction(Function &F) override;
+ };
+ struct MustBeExecutedContextPrinter : public ModulePass {
+ static char ID;
+
+ MustBeExecutedContextPrinter() : ModulePass(ID) {
+ initializeMustBeExecutedContextPrinterPass(*PassRegistry::getPassRegistry());
+ }
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesAll();
+ }
+ bool runOnModule(Module &M) override;
+ };
+}
+
+char MustExecutePrinter::ID = 0;
+INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute",
+ "Instructions which execute on loop entry", false, true)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
+INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute",
+ "Instructions which execute on loop entry", false, true)
+
+FunctionPass *llvm::createMustExecutePrinter() {
+ return new MustExecutePrinter();
+}
+
+char MustBeExecutedContextPrinter::ID = 0;
+INITIALIZE_PASS_BEGIN(
+ MustBeExecutedContextPrinter, "print-must-be-executed-contexts",
+ "print the must-be-executed-contexed for all instructions", false, true)
+INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
+INITIALIZE_PASS_END(MustBeExecutedContextPrinter,
+ "print-must-be-executed-contexts",
+ "print the must-be-executed-contexed for all instructions",
+ false, true)
+
+ModulePass *llvm::createMustBeExecutedContextPrinter() {
+ return new MustBeExecutedContextPrinter();
+}
+
+bool MustBeExecutedContextPrinter::runOnModule(Module &M) {
+ MustBeExecutedContextExplorer Explorer(true);
+ for (Function &F : M) {
+ for (Instruction &I : instructions(F)) {
+ dbgs() << "-- Explore context of: " << I << "\n";
+ for (const Instruction *CI : Explorer.range(&I))
+ dbgs() << " [F: " << CI->getFunction()->getName() << "] " << *CI
+ << "\n";
+ }
+ }
+
+ return false;
+}
+
+static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) {
+ // TODO: merge these two routines. For the moment, we display the best
+ // result obtained by *either* implementation. This is a bit unfair since no
+ // caller actually gets the full power at the moment.
+ SimpleLoopSafetyInfo LSI;
+ LSI.computeLoopSafetyInfo(L);
+ return LSI.isGuaranteedToExecute(I, DT, L) ||
+ isGuaranteedToExecuteForEveryIteration(&I, L);
+}
+
+namespace {
+/// An assembly annotator class to print must execute information in
+/// comments.
+class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter {
+ DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec;
+
+public:
+ MustExecuteAnnotatedWriter(const Function &F,
+ DominatorTree &DT, LoopInfo &LI) {
+ for (auto &I: instructions(F)) {
+ Loop *L = LI.getLoopFor(I.getParent());
+ while (L) {
+ if (isMustExecuteIn(I, L, &DT)) {
+ MustExec[&I].push_back(L);
+ }
+ L = L->getParentLoop();
+ };
+ }
+ }
+ MustExecuteAnnotatedWriter(const Module &M,
+ DominatorTree &DT, LoopInfo &LI) {
+ for (auto &F : M)
+ for (auto &I: instructions(F)) {
+ Loop *L = LI.getLoopFor(I.getParent());
+ while (L) {
+ if (isMustExecuteIn(I, L, &DT)) {
+ MustExec[&I].push_back(L);
+ }
+ L = L->getParentLoop();
+ };
+ }
+ }
+
+
+ void printInfoComment(const Value &V, formatted_raw_ostream &OS) override {
+ if (!MustExec.count(&V))
+ return;
+
+ const auto &Loops = MustExec.lookup(&V);
+ const auto NumLoops = Loops.size();
+ if (NumLoops > 1)
+ OS << " ; (mustexec in " << NumLoops << " loops: ";
+ else
+ OS << " ; (mustexec in: ";
+
+ bool first = true;
+ for (const Loop *L : Loops) {
+ if (!first)
+ OS << ", ";
+ first = false;
+ OS << L->getHeader()->getName();
+ }
+ OS << ")";
+ }
+};
+} // namespace
+
+bool MustExecutePrinter::runOnFunction(Function &F) {
+ auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+
+ MustExecuteAnnotatedWriter Writer(F, DT, LI);
+ F.print(dbgs(), &Writer);
+
+ return false;
+}
+
+const Instruction *
+MustBeExecutedContextExplorer::getMustBeExecutedNextInstruction(
+ MustBeExecutedIterator &It, const Instruction *PP) {
+ if (!PP)
+ return PP;
+ LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP << "\n");
+
+ // If we explore only inside a given basic block we stop at terminators.
+ if (!ExploreInterBlock && PP->isTerminator()) {
+ LLVM_DEBUG(dbgs() << "\tReached terminator in intra-block mode, done\n");
+ return nullptr;
+ }
+
+ // If we do not traverse the call graph we check if we can make progress in
+ // the current function. First, check if the instruction is guaranteed to
+ // transfer execution to the successor.
+ bool TransfersExecution = isGuaranteedToTransferExecutionToSuccessor(PP);
+ if (!TransfersExecution)
+ return nullptr;
+
+ // If this is not a terminator we know that there is a single instruction
+ // after this one that is executed next if control is transfered. If not,
+ // we can try to go back to a call site we entered earlier. If none exists, we
+ // do not know any instruction that has to be executd next.
+ if (!PP->isTerminator()) {
+ const Instruction *NextPP = PP->getNextNode();
+ LLVM_DEBUG(dbgs() << "\tIntermediate instruction does transfer control\n");
+ return NextPP;
+ }
+
+ // Finally, we have to handle terminators, trivial ones first.
+ assert(PP->isTerminator() && "Expected a terminator!");
+
+ // A terminator without a successor is not handled yet.
+ if (PP->getNumSuccessors() == 0) {
+ LLVM_DEBUG(dbgs() << "\tUnhandled terminator\n");
+ return nullptr;
+ }
+
+ // A terminator with a single successor, we will continue at the beginning of
+ // that one.
+ if (PP->getNumSuccessors() == 1) {
+ LLVM_DEBUG(
+ dbgs() << "\tUnconditional terminator, continue with successor\n");
+ return &PP->getSuccessor(0)->front();
+ }
+
+ LLVM_DEBUG(dbgs() << "\tNo join point found\n");
+ return nullptr;
+}
+
+MustBeExecutedIterator::MustBeExecutedIterator(
+ MustBeExecutedContextExplorer &Explorer, const Instruction *I)
+ : Explorer(Explorer), CurInst(I) {
+ reset(I);
+}
+
+void MustBeExecutedIterator::reset(const Instruction *I) {
+ CurInst = I;
+ Visited.clear();
+ Visited.insert(I);
+}
+
+const Instruction *MustBeExecutedIterator::advance() {
+ assert(CurInst && "Cannot advance an end iterator!");
+ const Instruction *Next =
+ Explorer.getMustBeExecutedNextInstruction(*this, CurInst);
+ if (Next && !Visited.insert(Next).second)
+ Next = nullptr;
+ return Next;
+}