diff options
Diffstat (limited to 'llvm/lib/Analysis/MustExecute.cpp')
-rw-r--r-- | llvm/lib/Analysis/MustExecute.cpp | 516 |
1 files changed, 516 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/MustExecute.cpp b/llvm/lib/Analysis/MustExecute.cpp new file mode 100644 index 000000000000..44527773115d --- /dev/null +++ b/llvm/lib/Analysis/MustExecute.cpp @@ -0,0 +1,516 @@ +//===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/MustExecute.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/Analysis/CFG.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/Passes.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/AssemblyAnnotationWriter.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/InstIterator.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/FormattedStream.h" +#include "llvm/Support/raw_ostream.h" + +using namespace llvm; + +#define DEBUG_TYPE "must-execute" + +const DenseMap<BasicBlock *, ColorVector> & +LoopSafetyInfo::getBlockColors() const { + return BlockColors; +} + +void LoopSafetyInfo::copyColors(BasicBlock *New, BasicBlock *Old) { + ColorVector &ColorsForNewBlock = BlockColors[New]; + ColorVector &ColorsForOldBlock = BlockColors[Old]; + ColorsForNewBlock = ColorsForOldBlock; +} + +bool SimpleLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const { + (void)BB; + return anyBlockMayThrow(); +} + +bool SimpleLoopSafetyInfo::anyBlockMayThrow() const { + return MayThrow; +} + +void SimpleLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) { + assert(CurLoop != nullptr && "CurLoop can't be null"); + BasicBlock *Header = CurLoop->getHeader(); + // Iterate over header and compute safety info. + HeaderMayThrow = !isGuaranteedToTransferExecutionToSuccessor(Header); + MayThrow = HeaderMayThrow; + // Iterate over loop instructions and compute safety info. + // Skip header as it has been computed and stored in HeaderMayThrow. + // The first block in loopinfo.Blocks is guaranteed to be the header. + assert(Header == *CurLoop->getBlocks().begin() && + "First block must be header"); + for (Loop::block_iterator BB = std::next(CurLoop->block_begin()), + BBE = CurLoop->block_end(); + (BB != BBE) && !MayThrow; ++BB) + MayThrow |= !isGuaranteedToTransferExecutionToSuccessor(*BB); + + computeBlockColors(CurLoop); +} + +bool ICFLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const { + return ICF.hasICF(BB); +} + +bool ICFLoopSafetyInfo::anyBlockMayThrow() const { + return MayThrow; +} + +void ICFLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) { + assert(CurLoop != nullptr && "CurLoop can't be null"); + ICF.clear(); + MW.clear(); + MayThrow = false; + // Figure out the fact that at least one block may throw. + for (auto &BB : CurLoop->blocks()) + if (ICF.hasICF(&*BB)) { + MayThrow = true; + break; + } + computeBlockColors(CurLoop); +} + +void ICFLoopSafetyInfo::insertInstructionTo(const Instruction *Inst, + const BasicBlock *BB) { + ICF.insertInstructionTo(Inst, BB); + MW.insertInstructionTo(Inst, BB); +} + +void ICFLoopSafetyInfo::removeInstruction(const Instruction *Inst) { + ICF.removeInstruction(Inst); + MW.removeInstruction(Inst); +} + +void LoopSafetyInfo::computeBlockColors(const Loop *CurLoop) { + // Compute funclet colors if we might sink/hoist in a function with a funclet + // personality routine. + Function *Fn = CurLoop->getHeader()->getParent(); + if (Fn->hasPersonalityFn()) + if (Constant *PersonalityFn = Fn->getPersonalityFn()) + if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn))) + BlockColors = colorEHFunclets(*Fn); +} + +/// Return true if we can prove that the given ExitBlock is not reached on the +/// first iteration of the given loop. That is, the backedge of the loop must +/// be executed before the ExitBlock is executed in any dynamic execution trace. +static bool CanProveNotTakenFirstIteration(const BasicBlock *ExitBlock, + const DominatorTree *DT, + const Loop *CurLoop) { + auto *CondExitBlock = ExitBlock->getSinglePredecessor(); + if (!CondExitBlock) + // expect unique exits + return false; + assert(CurLoop->contains(CondExitBlock) && "meaning of exit block"); + auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator()); + if (!BI || !BI->isConditional()) + return false; + // If condition is constant and false leads to ExitBlock then we always + // execute the true branch. + if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) + return BI->getSuccessor(Cond->getZExtValue() ? 1 : 0) == ExitBlock; + auto *Cond = dyn_cast<CmpInst>(BI->getCondition()); + if (!Cond) + return false; + // todo: this would be a lot more powerful if we used scev, but all the + // plumbing is currently missing to pass a pointer in from the pass + // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known + auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0)); + auto *RHS = Cond->getOperand(1); + if (!LHS || LHS->getParent() != CurLoop->getHeader()) + return false; + auto DL = ExitBlock->getModule()->getDataLayout(); + auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader()); + auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(), + IVStart, RHS, + {DL, /*TLI*/ nullptr, + DT, /*AC*/ nullptr, BI}); + auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull); + if (!SimpleCst) + return false; + if (ExitBlock == BI->getSuccessor(0)) + return SimpleCst->isZeroValue(); + assert(ExitBlock == BI->getSuccessor(1) && "implied by above"); + return SimpleCst->isAllOnesValue(); +} + +/// Collect all blocks from \p CurLoop which lie on all possible paths from +/// the header of \p CurLoop (inclusive) to BB (exclusive) into the set +/// \p Predecessors. If \p BB is the header, \p Predecessors will be empty. +static void collectTransitivePredecessors( + const Loop *CurLoop, const BasicBlock *BB, + SmallPtrSetImpl<const BasicBlock *> &Predecessors) { + assert(Predecessors.empty() && "Garbage in predecessors set?"); + assert(CurLoop->contains(BB) && "Should only be called for loop blocks!"); + if (BB == CurLoop->getHeader()) + return; + SmallVector<const BasicBlock *, 4> WorkList; + for (auto *Pred : predecessors(BB)) { + Predecessors.insert(Pred); + WorkList.push_back(Pred); + } + while (!WorkList.empty()) { + auto *Pred = WorkList.pop_back_val(); + assert(CurLoop->contains(Pred) && "Should only reach loop blocks!"); + // We are not interested in backedges and we don't want to leave loop. + if (Pred == CurLoop->getHeader()) + continue; + // TODO: If BB lies in an inner loop of CurLoop, this will traverse over all + // blocks of this inner loop, even those that are always executed AFTER the + // BB. It may make our analysis more conservative than it could be, see test + // @nested and @nested_no_throw in test/Analysis/MustExecute/loop-header.ll. + // We can ignore backedge of all loops containing BB to get a sligtly more + // optimistic result. + for (auto *PredPred : predecessors(Pred)) + if (Predecessors.insert(PredPred).second) + WorkList.push_back(PredPred); + } +} + +bool LoopSafetyInfo::allLoopPathsLeadToBlock(const Loop *CurLoop, + const BasicBlock *BB, + const DominatorTree *DT) const { + assert(CurLoop->contains(BB) && "Should only be called for loop blocks!"); + + // Fast path: header is always reached once the loop is entered. + if (BB == CurLoop->getHeader()) + return true; + + // Collect all transitive predecessors of BB in the same loop. This set will + // be a subset of the blocks within the loop. + SmallPtrSet<const BasicBlock *, 4> Predecessors; + collectTransitivePredecessors(CurLoop, BB, Predecessors); + + // Make sure that all successors of, all predecessors of BB which are not + // dominated by BB, are either: + // 1) BB, + // 2) Also predecessors of BB, + // 3) Exit blocks which are not taken on 1st iteration. + // Memoize blocks we've already checked. + SmallPtrSet<const BasicBlock *, 4> CheckedSuccessors; + for (auto *Pred : Predecessors) { + // Predecessor block may throw, so it has a side exit. + if (blockMayThrow(Pred)) + return false; + + // BB dominates Pred, so if Pred runs, BB must run. + // This is true when Pred is a loop latch. + if (DT->dominates(BB, Pred)) + continue; + + for (auto *Succ : successors(Pred)) + if (CheckedSuccessors.insert(Succ).second && + Succ != BB && !Predecessors.count(Succ)) + // By discharging conditions that are not executed on the 1st iteration, + // we guarantee that *at least* on the first iteration all paths from + // header that *may* execute will lead us to the block of interest. So + // that if we had virtually peeled one iteration away, in this peeled + // iteration the set of predecessors would contain only paths from + // header to BB without any exiting edges that may execute. + // + // TODO: We only do it for exiting edges currently. We could use the + // same function to skip some of the edges within the loop if we know + // that they will not be taken on the 1st iteration. + // + // TODO: If we somehow know the number of iterations in loop, the same + // check may be done for any arbitrary N-th iteration as long as N is + // not greater than minimum number of iterations in this loop. + if (CurLoop->contains(Succ) || + !CanProveNotTakenFirstIteration(Succ, DT, CurLoop)) + return false; + } + + // All predecessors can only lead us to BB. + return true; +} + +/// Returns true if the instruction in a loop is guaranteed to execute at least +/// once. +bool SimpleLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst, + const DominatorTree *DT, + const Loop *CurLoop) const { + // If the instruction is in the header block for the loop (which is very + // common), it is always guaranteed to dominate the exit blocks. Since this + // is a common case, and can save some work, check it now. + if (Inst.getParent() == CurLoop->getHeader()) + // If there's a throw in the header block, we can't guarantee we'll reach + // Inst unless we can prove that Inst comes before the potential implicit + // exit. At the moment, we use a (cheap) hack for the common case where + // the instruction of interest is the first one in the block. + return !HeaderMayThrow || + Inst.getParent()->getFirstNonPHIOrDbg() == &Inst; + + // If there is a path from header to exit or latch that doesn't lead to our + // instruction's block, return false. + return allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT); +} + +bool ICFLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst, + const DominatorTree *DT, + const Loop *CurLoop) const { + return !ICF.isDominatedByICFIFromSameBlock(&Inst) && + allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT); +} + +bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const BasicBlock *BB, + const Loop *CurLoop) const { + assert(CurLoop->contains(BB) && "Should only be called for loop blocks!"); + + // Fast path: there are no instructions before header. + if (BB == CurLoop->getHeader()) + return true; + + // Collect all transitive predecessors of BB in the same loop. This set will + // be a subset of the blocks within the loop. + SmallPtrSet<const BasicBlock *, 4> Predecessors; + collectTransitivePredecessors(CurLoop, BB, Predecessors); + // Find if there any instruction in either predecessor that could write + // to memory. + for (auto *Pred : Predecessors) + if (MW.mayWriteToMemory(Pred)) + return false; + return true; +} + +bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const Instruction &I, + const Loop *CurLoop) const { + auto *BB = I.getParent(); + assert(CurLoop->contains(BB) && "Should only be called for loop blocks!"); + return !MW.isDominatedByMemoryWriteFromSameBlock(&I) && + doesNotWriteMemoryBefore(BB, CurLoop); +} + +namespace { + struct MustExecutePrinter : public FunctionPass { + + static char ID; // Pass identification, replacement for typeid + MustExecutePrinter() : FunctionPass(ID) { + initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry()); + } + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesAll(); + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<LoopInfoWrapperPass>(); + } + bool runOnFunction(Function &F) override; + }; + struct MustBeExecutedContextPrinter : public ModulePass { + static char ID; + + MustBeExecutedContextPrinter() : ModulePass(ID) { + initializeMustBeExecutedContextPrinterPass(*PassRegistry::getPassRegistry()); + } + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesAll(); + } + bool runOnModule(Module &M) override; + }; +} + +char MustExecutePrinter::ID = 0; +INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute", + "Instructions which execute on loop entry", false, true) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) +INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute", + "Instructions which execute on loop entry", false, true) + +FunctionPass *llvm::createMustExecutePrinter() { + return new MustExecutePrinter(); +} + +char MustBeExecutedContextPrinter::ID = 0; +INITIALIZE_PASS_BEGIN( + MustBeExecutedContextPrinter, "print-must-be-executed-contexts", + "print the must-be-executed-contexed for all instructions", false, true) +INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) +INITIALIZE_PASS_END(MustBeExecutedContextPrinter, + "print-must-be-executed-contexts", + "print the must-be-executed-contexed for all instructions", + false, true) + +ModulePass *llvm::createMustBeExecutedContextPrinter() { + return new MustBeExecutedContextPrinter(); +} + +bool MustBeExecutedContextPrinter::runOnModule(Module &M) { + MustBeExecutedContextExplorer Explorer(true); + for (Function &F : M) { + for (Instruction &I : instructions(F)) { + dbgs() << "-- Explore context of: " << I << "\n"; + for (const Instruction *CI : Explorer.range(&I)) + dbgs() << " [F: " << CI->getFunction()->getName() << "] " << *CI + << "\n"; + } + } + + return false; +} + +static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) { + // TODO: merge these two routines. For the moment, we display the best + // result obtained by *either* implementation. This is a bit unfair since no + // caller actually gets the full power at the moment. + SimpleLoopSafetyInfo LSI; + LSI.computeLoopSafetyInfo(L); + return LSI.isGuaranteedToExecute(I, DT, L) || + isGuaranteedToExecuteForEveryIteration(&I, L); +} + +namespace { +/// An assembly annotator class to print must execute information in +/// comments. +class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter { + DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec; + +public: + MustExecuteAnnotatedWriter(const Function &F, + DominatorTree &DT, LoopInfo &LI) { + for (auto &I: instructions(F)) { + Loop *L = LI.getLoopFor(I.getParent()); + while (L) { + if (isMustExecuteIn(I, L, &DT)) { + MustExec[&I].push_back(L); + } + L = L->getParentLoop(); + }; + } + } + MustExecuteAnnotatedWriter(const Module &M, + DominatorTree &DT, LoopInfo &LI) { + for (auto &F : M) + for (auto &I: instructions(F)) { + Loop *L = LI.getLoopFor(I.getParent()); + while (L) { + if (isMustExecuteIn(I, L, &DT)) { + MustExec[&I].push_back(L); + } + L = L->getParentLoop(); + }; + } + } + + + void printInfoComment(const Value &V, formatted_raw_ostream &OS) override { + if (!MustExec.count(&V)) + return; + + const auto &Loops = MustExec.lookup(&V); + const auto NumLoops = Loops.size(); + if (NumLoops > 1) + OS << " ; (mustexec in " << NumLoops << " loops: "; + else + OS << " ; (mustexec in: "; + + bool first = true; + for (const Loop *L : Loops) { + if (!first) + OS << ", "; + first = false; + OS << L->getHeader()->getName(); + } + OS << ")"; + } +}; +} // namespace + +bool MustExecutePrinter::runOnFunction(Function &F) { + auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + + MustExecuteAnnotatedWriter Writer(F, DT, LI); + F.print(dbgs(), &Writer); + + return false; +} + +const Instruction * +MustBeExecutedContextExplorer::getMustBeExecutedNextInstruction( + MustBeExecutedIterator &It, const Instruction *PP) { + if (!PP) + return PP; + LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP << "\n"); + + // If we explore only inside a given basic block we stop at terminators. + if (!ExploreInterBlock && PP->isTerminator()) { + LLVM_DEBUG(dbgs() << "\tReached terminator in intra-block mode, done\n"); + return nullptr; + } + + // If we do not traverse the call graph we check if we can make progress in + // the current function. First, check if the instruction is guaranteed to + // transfer execution to the successor. + bool TransfersExecution = isGuaranteedToTransferExecutionToSuccessor(PP); + if (!TransfersExecution) + return nullptr; + + // If this is not a terminator we know that there is a single instruction + // after this one that is executed next if control is transfered. If not, + // we can try to go back to a call site we entered earlier. If none exists, we + // do not know any instruction that has to be executd next. + if (!PP->isTerminator()) { + const Instruction *NextPP = PP->getNextNode(); + LLVM_DEBUG(dbgs() << "\tIntermediate instruction does transfer control\n"); + return NextPP; + } + + // Finally, we have to handle terminators, trivial ones first. + assert(PP->isTerminator() && "Expected a terminator!"); + + // A terminator without a successor is not handled yet. + if (PP->getNumSuccessors() == 0) { + LLVM_DEBUG(dbgs() << "\tUnhandled terminator\n"); + return nullptr; + } + + // A terminator with a single successor, we will continue at the beginning of + // that one. + if (PP->getNumSuccessors() == 1) { + LLVM_DEBUG( + dbgs() << "\tUnconditional terminator, continue with successor\n"); + return &PP->getSuccessor(0)->front(); + } + + LLVM_DEBUG(dbgs() << "\tNo join point found\n"); + return nullptr; +} + +MustBeExecutedIterator::MustBeExecutedIterator( + MustBeExecutedContextExplorer &Explorer, const Instruction *I) + : Explorer(Explorer), CurInst(I) { + reset(I); +} + +void MustBeExecutedIterator::reset(const Instruction *I) { + CurInst = I; + Visited.clear(); + Visited.insert(I); +} + +const Instruction *MustBeExecutedIterator::advance() { + assert(CurInst && "Cannot advance an end iterator!"); + const Instruction *Next = + Explorer.getMustBeExecutedNextInstruction(*this, CurInst); + if (Next && !Visited.insert(Next).second) + Next = nullptr; + return Next; +} |