summaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/ScalarEvolution.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Analysis/ScalarEvolution.cpp')
-rw-r--r--llvm/lib/Analysis/ScalarEvolution.cpp12530
1 files changed, 12530 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/ScalarEvolution.cpp b/llvm/lib/Analysis/ScalarEvolution.cpp
new file mode 100644
index 000000000000..5ce0a1adeaa0
--- /dev/null
+++ b/llvm/lib/Analysis/ScalarEvolution.cpp
@@ -0,0 +1,12530 @@
+//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the implementation of the scalar evolution analysis
+// engine, which is used primarily to analyze expressions involving induction
+// variables in loops.
+//
+// There are several aspects to this library. First is the representation of
+// scalar expressions, which are represented as subclasses of the SCEV class.
+// These classes are used to represent certain types of subexpressions that we
+// can handle. We only create one SCEV of a particular shape, so
+// pointer-comparisons for equality are legal.
+//
+// One important aspect of the SCEV objects is that they are never cyclic, even
+// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
+// the PHI node is one of the idioms that we can represent (e.g., a polynomial
+// recurrence) then we represent it directly as a recurrence node, otherwise we
+// represent it as a SCEVUnknown node.
+//
+// In addition to being able to represent expressions of various types, we also
+// have folders that are used to build the *canonical* representation for a
+// particular expression. These folders are capable of using a variety of
+// rewrite rules to simplify the expressions.
+//
+// Once the folders are defined, we can implement the more interesting
+// higher-level code, such as the code that recognizes PHI nodes of various
+// types, computes the execution count of a loop, etc.
+//
+// TODO: We should use these routines and value representations to implement
+// dependence analysis!
+//
+//===----------------------------------------------------------------------===//
+//
+// There are several good references for the techniques used in this analysis.
+//
+// Chains of recurrences -- a method to expedite the evaluation
+// of closed-form functions
+// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
+//
+// On computational properties of chains of recurrences
+// Eugene V. Zima
+//
+// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
+// Robert A. van Engelen
+//
+// Efficient Symbolic Analysis for Optimizing Compilers
+// Robert A. van Engelen
+//
+// Using the chains of recurrences algebra for data dependence testing and
+// induction variable substitution
+// MS Thesis, Johnie Birch
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/EquivalenceClasses.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/ScopeExit.h"
+#include "llvm/ADT/Sequence.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/ConstantRange.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/IR/Verifier.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/KnownBits.h"
+#include "llvm/Support/SaveAndRestore.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <climits>
+#include <cstddef>
+#include <cstdint>
+#include <cstdlib>
+#include <map>
+#include <memory>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "scalar-evolution"
+
+STATISTIC(NumArrayLenItCounts,
+ "Number of trip counts computed with array length");
+STATISTIC(NumTripCountsComputed,
+ "Number of loops with predictable loop counts");
+STATISTIC(NumTripCountsNotComputed,
+ "Number of loops without predictable loop counts");
+STATISTIC(NumBruteForceTripCountsComputed,
+ "Number of loops with trip counts computed by force");
+
+static cl::opt<unsigned>
+MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
+ cl::ZeroOrMore,
+ cl::desc("Maximum number of iterations SCEV will "
+ "symbolically execute a constant "
+ "derived loop"),
+ cl::init(100));
+
+// FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
+static cl::opt<bool> VerifySCEV(
+ "verify-scev", cl::Hidden,
+ cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
+static cl::opt<bool> VerifySCEVStrict(
+ "verify-scev-strict", cl::Hidden,
+ cl::desc("Enable stricter verification with -verify-scev is passed"));
+static cl::opt<bool>
+ VerifySCEVMap("verify-scev-maps", cl::Hidden,
+ cl::desc("Verify no dangling value in ScalarEvolution's "
+ "ExprValueMap (slow)"));
+
+static cl::opt<bool> VerifyIR(
+ "scev-verify-ir", cl::Hidden,
+ cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
+ cl::init(false));
+
+static cl::opt<unsigned> MulOpsInlineThreshold(
+ "scev-mulops-inline-threshold", cl::Hidden,
+ cl::desc("Threshold for inlining multiplication operands into a SCEV"),
+ cl::init(32));
+
+static cl::opt<unsigned> AddOpsInlineThreshold(
+ "scev-addops-inline-threshold", cl::Hidden,
+ cl::desc("Threshold for inlining addition operands into a SCEV"),
+ cl::init(500));
+
+static cl::opt<unsigned> MaxSCEVCompareDepth(
+ "scalar-evolution-max-scev-compare-depth", cl::Hidden,
+ cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
+ cl::init(32));
+
+static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
+ "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
+ cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
+ cl::init(2));
+
+static cl::opt<unsigned> MaxValueCompareDepth(
+ "scalar-evolution-max-value-compare-depth", cl::Hidden,
+ cl::desc("Maximum depth of recursive value complexity comparisons"),
+ cl::init(2));
+
+static cl::opt<unsigned>
+ MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
+ cl::desc("Maximum depth of recursive arithmetics"),
+ cl::init(32));
+
+static cl::opt<unsigned> MaxConstantEvolvingDepth(
+ "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
+ cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
+
+static cl::opt<unsigned>
+ MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
+ cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
+ cl::init(8));
+
+static cl::opt<unsigned>
+ MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
+ cl::desc("Max coefficients in AddRec during evolving"),
+ cl::init(8));
+
+static cl::opt<unsigned>
+ HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
+ cl::desc("Size of the expression which is considered huge"),
+ cl::init(4096));
+
+//===----------------------------------------------------------------------===//
+// SCEV class definitions
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Implementation of the SCEV class.
+//
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void SCEV::dump() const {
+ print(dbgs());
+ dbgs() << '\n';
+}
+#endif
+
+void SCEV::print(raw_ostream &OS) const {
+ switch (static_cast<SCEVTypes>(getSCEVType())) {
+ case scConstant:
+ cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
+ return;
+ case scTruncate: {
+ const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
+ const SCEV *Op = Trunc->getOperand();
+ OS << "(trunc " << *Op->getType() << " " << *Op << " to "
+ << *Trunc->getType() << ")";
+ return;
+ }
+ case scZeroExtend: {
+ const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
+ const SCEV *Op = ZExt->getOperand();
+ OS << "(zext " << *Op->getType() << " " << *Op << " to "
+ << *ZExt->getType() << ")";
+ return;
+ }
+ case scSignExtend: {
+ const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
+ const SCEV *Op = SExt->getOperand();
+ OS << "(sext " << *Op->getType() << " " << *Op << " to "
+ << *SExt->getType() << ")";
+ return;
+ }
+ case scAddRecExpr: {
+ const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
+ OS << "{" << *AR->getOperand(0);
+ for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
+ OS << ",+," << *AR->getOperand(i);
+ OS << "}<";
+ if (AR->hasNoUnsignedWrap())
+ OS << "nuw><";
+ if (AR->hasNoSignedWrap())
+ OS << "nsw><";
+ if (AR->hasNoSelfWrap() &&
+ !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
+ OS << "nw><";
+ AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
+ OS << ">";
+ return;
+ }
+ case scAddExpr:
+ case scMulExpr:
+ case scUMaxExpr:
+ case scSMaxExpr:
+ case scUMinExpr:
+ case scSMinExpr: {
+ const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
+ const char *OpStr = nullptr;
+ switch (NAry->getSCEVType()) {
+ case scAddExpr: OpStr = " + "; break;
+ case scMulExpr: OpStr = " * "; break;
+ case scUMaxExpr: OpStr = " umax "; break;
+ case scSMaxExpr: OpStr = " smax "; break;
+ case scUMinExpr:
+ OpStr = " umin ";
+ break;
+ case scSMinExpr:
+ OpStr = " smin ";
+ break;
+ }
+ OS << "(";
+ for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
+ I != E; ++I) {
+ OS << **I;
+ if (std::next(I) != E)
+ OS << OpStr;
+ }
+ OS << ")";
+ switch (NAry->getSCEVType()) {
+ case scAddExpr:
+ case scMulExpr:
+ if (NAry->hasNoUnsignedWrap())
+ OS << "<nuw>";
+ if (NAry->hasNoSignedWrap())
+ OS << "<nsw>";
+ }
+ return;
+ }
+ case scUDivExpr: {
+ const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
+ OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
+ return;
+ }
+ case scUnknown: {
+ const SCEVUnknown *U = cast<SCEVUnknown>(this);
+ Type *AllocTy;
+ if (U->isSizeOf(AllocTy)) {
+ OS << "sizeof(" << *AllocTy << ")";
+ return;
+ }
+ if (U->isAlignOf(AllocTy)) {
+ OS << "alignof(" << *AllocTy << ")";
+ return;
+ }
+
+ Type *CTy;
+ Constant *FieldNo;
+ if (U->isOffsetOf(CTy, FieldNo)) {
+ OS << "offsetof(" << *CTy << ", ";
+ FieldNo->printAsOperand(OS, false);
+ OS << ")";
+ return;
+ }
+
+ // Otherwise just print it normally.
+ U->getValue()->printAsOperand(OS, false);
+ return;
+ }
+ case scCouldNotCompute:
+ OS << "***COULDNOTCOMPUTE***";
+ return;
+ }
+ llvm_unreachable("Unknown SCEV kind!");
+}
+
+Type *SCEV::getType() const {
+ switch (static_cast<SCEVTypes>(getSCEVType())) {
+ case scConstant:
+ return cast<SCEVConstant>(this)->getType();
+ case scTruncate:
+ case scZeroExtend:
+ case scSignExtend:
+ return cast<SCEVCastExpr>(this)->getType();
+ case scAddRecExpr:
+ case scMulExpr:
+ case scUMaxExpr:
+ case scSMaxExpr:
+ case scUMinExpr:
+ case scSMinExpr:
+ return cast<SCEVNAryExpr>(this)->getType();
+ case scAddExpr:
+ return cast<SCEVAddExpr>(this)->getType();
+ case scUDivExpr:
+ return cast<SCEVUDivExpr>(this)->getType();
+ case scUnknown:
+ return cast<SCEVUnknown>(this)->getType();
+ case scCouldNotCompute:
+ llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
+ }
+ llvm_unreachable("Unknown SCEV kind!");
+}
+
+bool SCEV::isZero() const {
+ if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
+ return SC->getValue()->isZero();
+ return false;
+}
+
+bool SCEV::isOne() const {
+ if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
+ return SC->getValue()->isOne();
+ return false;
+}
+
+bool SCEV::isAllOnesValue() const {
+ if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
+ return SC->getValue()->isMinusOne();
+ return false;
+}
+
+bool SCEV::isNonConstantNegative() const {
+ const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
+ if (!Mul) return false;
+
+ // If there is a constant factor, it will be first.
+ const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
+ if (!SC) return false;
+
+ // Return true if the value is negative, this matches things like (-42 * V).
+ return SC->getAPInt().isNegative();
+}
+
+SCEVCouldNotCompute::SCEVCouldNotCompute() :
+ SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
+
+bool SCEVCouldNotCompute::classof(const SCEV *S) {
+ return S->getSCEVType() == scCouldNotCompute;
+}
+
+const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
+ FoldingSetNodeID ID;
+ ID.AddInteger(scConstant);
+ ID.AddPointer(V);
+ void *IP = nullptr;
+ if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+ SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
+ UniqueSCEVs.InsertNode(S, IP);
+ return S;
+}
+
+const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
+ return getConstant(ConstantInt::get(getContext(), Val));
+}
+
+const SCEV *
+ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
+ IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
+ return getConstant(ConstantInt::get(ITy, V, isSigned));
+}
+
+SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
+ unsigned SCEVTy, const SCEV *op, Type *ty)
+ : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {}
+
+SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
+ const SCEV *op, Type *ty)
+ : SCEVCastExpr(ID, scTruncate, op, ty) {
+ assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
+ "Cannot truncate non-integer value!");
+}
+
+SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
+ const SCEV *op, Type *ty)
+ : SCEVCastExpr(ID, scZeroExtend, op, ty) {
+ assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
+ "Cannot zero extend non-integer value!");
+}
+
+SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
+ const SCEV *op, Type *ty)
+ : SCEVCastExpr(ID, scSignExtend, op, ty) {
+ assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
+ "Cannot sign extend non-integer value!");
+}
+
+void SCEVUnknown::deleted() {
+ // Clear this SCEVUnknown from various maps.
+ SE->forgetMemoizedResults(this);
+
+ // Remove this SCEVUnknown from the uniquing map.
+ SE->UniqueSCEVs.RemoveNode(this);
+
+ // Release the value.
+ setValPtr(nullptr);
+}
+
+void SCEVUnknown::allUsesReplacedWith(Value *New) {
+ // Remove this SCEVUnknown from the uniquing map.
+ SE->UniqueSCEVs.RemoveNode(this);
+
+ // Update this SCEVUnknown to point to the new value. This is needed
+ // because there may still be outstanding SCEVs which still point to
+ // this SCEVUnknown.
+ setValPtr(New);
+}
+
+bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
+ if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
+ if (VCE->getOpcode() == Instruction::PtrToInt)
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
+ if (CE->getOpcode() == Instruction::GetElementPtr &&
+ CE->getOperand(0)->isNullValue() &&
+ CE->getNumOperands() == 2)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
+ if (CI->isOne()) {
+ AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
+ ->getElementType();
+ return true;
+ }
+
+ return false;
+}
+
+bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
+ if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
+ if (VCE->getOpcode() == Instruction::PtrToInt)
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
+ if (CE->getOpcode() == Instruction::GetElementPtr &&
+ CE->getOperand(0)->isNullValue()) {
+ Type *Ty =
+ cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
+ if (StructType *STy = dyn_cast<StructType>(Ty))
+ if (!STy->isPacked() &&
+ CE->getNumOperands() == 3 &&
+ CE->getOperand(1)->isNullValue()) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
+ if (CI->isOne() &&
+ STy->getNumElements() == 2 &&
+ STy->getElementType(0)->isIntegerTy(1)) {
+ AllocTy = STy->getElementType(1);
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
+ if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
+ if (VCE->getOpcode() == Instruction::PtrToInt)
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
+ if (CE->getOpcode() == Instruction::GetElementPtr &&
+ CE->getNumOperands() == 3 &&
+ CE->getOperand(0)->isNullValue() &&
+ CE->getOperand(1)->isNullValue()) {
+ Type *Ty =
+ cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
+ // Ignore vector types here so that ScalarEvolutionExpander doesn't
+ // emit getelementptrs that index into vectors.
+ if (Ty->isStructTy() || Ty->isArrayTy()) {
+ CTy = Ty;
+ FieldNo = CE->getOperand(2);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// SCEV Utilities
+//===----------------------------------------------------------------------===//
+
+/// Compare the two values \p LV and \p RV in terms of their "complexity" where
+/// "complexity" is a partial (and somewhat ad-hoc) relation used to order
+/// operands in SCEV expressions. \p EqCache is a set of pairs of values that
+/// have been previously deemed to be "equally complex" by this routine. It is
+/// intended to avoid exponential time complexity in cases like:
+///
+/// %a = f(%x, %y)
+/// %b = f(%a, %a)
+/// %c = f(%b, %b)
+///
+/// %d = f(%x, %y)
+/// %e = f(%d, %d)
+/// %f = f(%e, %e)
+///
+/// CompareValueComplexity(%f, %c)
+///
+/// Since we do not continue running this routine on expression trees once we
+/// have seen unequal values, there is no need to track them in the cache.
+static int
+CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
+ const LoopInfo *const LI, Value *LV, Value *RV,
+ unsigned Depth) {
+ if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
+ return 0;
+
+ // Order pointer values after integer values. This helps SCEVExpander form
+ // GEPs.
+ bool LIsPointer = LV->getType()->isPointerTy(),
+ RIsPointer = RV->getType()->isPointerTy();
+ if (LIsPointer != RIsPointer)
+ return (int)LIsPointer - (int)RIsPointer;
+
+ // Compare getValueID values.
+ unsigned LID = LV->getValueID(), RID = RV->getValueID();
+ if (LID != RID)
+ return (int)LID - (int)RID;
+
+ // Sort arguments by their position.
+ if (const auto *LA = dyn_cast<Argument>(LV)) {
+ const auto *RA = cast<Argument>(RV);
+ unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
+ return (int)LArgNo - (int)RArgNo;
+ }
+
+ if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
+ const auto *RGV = cast<GlobalValue>(RV);
+
+ const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
+ auto LT = GV->getLinkage();
+ return !(GlobalValue::isPrivateLinkage(LT) ||
+ GlobalValue::isInternalLinkage(LT));
+ };
+
+ // Use the names to distinguish the two values, but only if the
+ // names are semantically important.
+ if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
+ return LGV->getName().compare(RGV->getName());
+ }
+
+ // For instructions, compare their loop depth, and their operand count. This
+ // is pretty loose.
+ if (const auto *LInst = dyn_cast<Instruction>(LV)) {
+ const auto *RInst = cast<Instruction>(RV);
+
+ // Compare loop depths.
+ const BasicBlock *LParent = LInst->getParent(),
+ *RParent = RInst->getParent();
+ if (LParent != RParent) {
+ unsigned LDepth = LI->getLoopDepth(LParent),
+ RDepth = LI->getLoopDepth(RParent);
+ if (LDepth != RDepth)
+ return (int)LDepth - (int)RDepth;
+ }
+
+ // Compare the number of operands.
+ unsigned LNumOps = LInst->getNumOperands(),
+ RNumOps = RInst->getNumOperands();
+ if (LNumOps != RNumOps)
+ return (int)LNumOps - (int)RNumOps;
+
+ for (unsigned Idx : seq(0u, LNumOps)) {
+ int Result =
+ CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
+ RInst->getOperand(Idx), Depth + 1);
+ if (Result != 0)
+ return Result;
+ }
+ }
+
+ EqCacheValue.unionSets(LV, RV);
+ return 0;
+}
+
+// Return negative, zero, or positive, if LHS is less than, equal to, or greater
+// than RHS, respectively. A three-way result allows recursive comparisons to be
+// more efficient.
+static int CompareSCEVComplexity(
+ EquivalenceClasses<const SCEV *> &EqCacheSCEV,
+ EquivalenceClasses<const Value *> &EqCacheValue,
+ const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
+ DominatorTree &DT, unsigned Depth = 0) {
+ // Fast-path: SCEVs are uniqued so we can do a quick equality check.
+ if (LHS == RHS)
+ return 0;
+
+ // Primarily, sort the SCEVs by their getSCEVType().
+ unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
+ if (LType != RType)
+ return (int)LType - (int)RType;
+
+ if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
+ return 0;
+ // Aside from the getSCEVType() ordering, the particular ordering
+ // isn't very important except that it's beneficial to be consistent,
+ // so that (a + b) and (b + a) don't end up as different expressions.
+ switch (static_cast<SCEVTypes>(LType)) {
+ case scUnknown: {
+ const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
+ const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
+
+ int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
+ RU->getValue(), Depth + 1);
+ if (X == 0)
+ EqCacheSCEV.unionSets(LHS, RHS);
+ return X;
+ }
+
+ case scConstant: {
+ const SCEVConstant *LC = cast<SCEVConstant>(LHS);
+ const SCEVConstant *RC = cast<SCEVConstant>(RHS);
+
+ // Compare constant values.
+ const APInt &LA = LC->getAPInt();
+ const APInt &RA = RC->getAPInt();
+ unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
+ if (LBitWidth != RBitWidth)
+ return (int)LBitWidth - (int)RBitWidth;
+ return LA.ult(RA) ? -1 : 1;
+ }
+
+ case scAddRecExpr: {
+ const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
+ const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
+
+ // There is always a dominance between two recs that are used by one SCEV,
+ // so we can safely sort recs by loop header dominance. We require such
+ // order in getAddExpr.
+ const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
+ if (LLoop != RLoop) {
+ const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
+ assert(LHead != RHead && "Two loops share the same header?");
+ if (DT.dominates(LHead, RHead))
+ return 1;
+ else
+ assert(DT.dominates(RHead, LHead) &&
+ "No dominance between recurrences used by one SCEV?");
+ return -1;
+ }
+
+ // Addrec complexity grows with operand count.
+ unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
+ if (LNumOps != RNumOps)
+ return (int)LNumOps - (int)RNumOps;
+
+ // Lexicographically compare.
+ for (unsigned i = 0; i != LNumOps; ++i) {
+ int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
+ LA->getOperand(i), RA->getOperand(i), DT,
+ Depth + 1);
+ if (X != 0)
+ return X;
+ }
+ EqCacheSCEV.unionSets(LHS, RHS);
+ return 0;
+ }
+
+ case scAddExpr:
+ case scMulExpr:
+ case scSMaxExpr:
+ case scUMaxExpr:
+ case scSMinExpr:
+ case scUMinExpr: {
+ const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
+ const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
+
+ // Lexicographically compare n-ary expressions.
+ unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
+ if (LNumOps != RNumOps)
+ return (int)LNumOps - (int)RNumOps;
+
+ for (unsigned i = 0; i != LNumOps; ++i) {
+ int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
+ LC->getOperand(i), RC->getOperand(i), DT,
+ Depth + 1);
+ if (X != 0)
+ return X;
+ }
+ EqCacheSCEV.unionSets(LHS, RHS);
+ return 0;
+ }
+
+ case scUDivExpr: {
+ const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
+ const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
+
+ // Lexicographically compare udiv expressions.
+ int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
+ RC->getLHS(), DT, Depth + 1);
+ if (X != 0)
+ return X;
+ X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
+ RC->getRHS(), DT, Depth + 1);
+ if (X == 0)
+ EqCacheSCEV.unionSets(LHS, RHS);
+ return X;
+ }
+
+ case scTruncate:
+ case scZeroExtend:
+ case scSignExtend: {
+ const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
+ const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
+
+ // Compare cast expressions by operand.
+ int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
+ LC->getOperand(), RC->getOperand(), DT,
+ Depth + 1);
+ if (X == 0)
+ EqCacheSCEV.unionSets(LHS, RHS);
+ return X;
+ }
+
+ case scCouldNotCompute:
+ llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
+ }
+ llvm_unreachable("Unknown SCEV kind!");
+}
+
+/// Given a list of SCEV objects, order them by their complexity, and group
+/// objects of the same complexity together by value. When this routine is
+/// finished, we know that any duplicates in the vector are consecutive and that
+/// complexity is monotonically increasing.
+///
+/// Note that we go take special precautions to ensure that we get deterministic
+/// results from this routine. In other words, we don't want the results of
+/// this to depend on where the addresses of various SCEV objects happened to
+/// land in memory.
+static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
+ LoopInfo *LI, DominatorTree &DT) {
+ if (Ops.size() < 2) return; // Noop
+
+ EquivalenceClasses<const SCEV *> EqCacheSCEV;
+ EquivalenceClasses<const Value *> EqCacheValue;
+ if (Ops.size() == 2) {
+ // This is the common case, which also happens to be trivially simple.
+ // Special case it.
+ const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
+ if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
+ std::swap(LHS, RHS);
+ return;
+ }
+
+ // Do the rough sort by complexity.
+ llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
+ return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) <
+ 0;
+ });
+
+ // Now that we are sorted by complexity, group elements of the same
+ // complexity. Note that this is, at worst, N^2, but the vector is likely to
+ // be extremely short in practice. Note that we take this approach because we
+ // do not want to depend on the addresses of the objects we are grouping.
+ for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
+ const SCEV *S = Ops[i];
+ unsigned Complexity = S->getSCEVType();
+
+ // If there are any objects of the same complexity and same value as this
+ // one, group them.
+ for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
+ if (Ops[j] == S) { // Found a duplicate.
+ // Move it to immediately after i'th element.
+ std::swap(Ops[i+1], Ops[j]);
+ ++i; // no need to rescan it.
+ if (i == e-2) return; // Done!
+ }
+ }
+ }
+}
+
+// Returns the size of the SCEV S.
+static inline int sizeOfSCEV(const SCEV *S) {
+ struct FindSCEVSize {
+ int Size = 0;
+
+ FindSCEVSize() = default;
+
+ bool follow(const SCEV *S) {
+ ++Size;
+ // Keep looking at all operands of S.
+ return true;
+ }
+
+ bool isDone() const {
+ return false;
+ }
+ };
+
+ FindSCEVSize F;
+ SCEVTraversal<FindSCEVSize> ST(F);
+ ST.visitAll(S);
+ return F.Size;
+}
+
+/// Returns true if the subtree of \p S contains at least HugeExprThreshold
+/// nodes.
+static bool isHugeExpression(const SCEV *S) {
+ return S->getExpressionSize() >= HugeExprThreshold;
+}
+
+/// Returns true of \p Ops contains a huge SCEV (see definition above).
+static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
+ return any_of(Ops, isHugeExpression);
+}
+
+namespace {
+
+struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
+public:
+ // Computes the Quotient and Remainder of the division of Numerator by
+ // Denominator.
+ static void divide(ScalarEvolution &SE, const SCEV *Numerator,
+ const SCEV *Denominator, const SCEV **Quotient,
+ const SCEV **Remainder) {
+ assert(Numerator && Denominator && "Uninitialized SCEV");
+
+ SCEVDivision D(SE, Numerator, Denominator);
+
+ // Check for the trivial case here to avoid having to check for it in the
+ // rest of the code.
+ if (Numerator == Denominator) {
+ *Quotient = D.One;
+ *Remainder = D.Zero;
+ return;
+ }
+
+ if (Numerator->isZero()) {
+ *Quotient = D.Zero;
+ *Remainder = D.Zero;
+ return;
+ }
+
+ // A simple case when N/1. The quotient is N.
+ if (Denominator->isOne()) {
+ *Quotient = Numerator;
+ *Remainder = D.Zero;
+ return;
+ }
+
+ // Split the Denominator when it is a product.
+ if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
+ const SCEV *Q, *R;
+ *Quotient = Numerator;
+ for (const SCEV *Op : T->operands()) {
+ divide(SE, *Quotient, Op, &Q, &R);
+ *Quotient = Q;
+
+ // Bail out when the Numerator is not divisible by one of the terms of
+ // the Denominator.
+ if (!R->isZero()) {
+ *Quotient = D.Zero;
+ *Remainder = Numerator;
+ return;
+ }
+ }
+ *Remainder = D.Zero;
+ return;
+ }
+
+ D.visit(Numerator);
+ *Quotient = D.Quotient;
+ *Remainder = D.Remainder;
+ }
+
+ // Except in the trivial case described above, we do not know how to divide
+ // Expr by Denominator for the following functions with empty implementation.
+ void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
+ void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
+ void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
+ void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
+ void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
+ void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
+ void visitSMinExpr(const SCEVSMinExpr *Numerator) {}
+ void visitUMinExpr(const SCEVUMinExpr *Numerator) {}
+ void visitUnknown(const SCEVUnknown *Numerator) {}
+ void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
+
+ void visitConstant(const SCEVConstant *Numerator) {
+ if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
+ APInt NumeratorVal = Numerator->getAPInt();
+ APInt DenominatorVal = D->getAPInt();
+ uint32_t NumeratorBW = NumeratorVal.getBitWidth();
+ uint32_t DenominatorBW = DenominatorVal.getBitWidth();
+
+ if (NumeratorBW > DenominatorBW)
+ DenominatorVal = DenominatorVal.sext(NumeratorBW);
+ else if (NumeratorBW < DenominatorBW)
+ NumeratorVal = NumeratorVal.sext(DenominatorBW);
+
+ APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
+ APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
+ APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
+ Quotient = SE.getConstant(QuotientVal);
+ Remainder = SE.getConstant(RemainderVal);
+ return;
+ }
+ }
+
+ void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
+ const SCEV *StartQ, *StartR, *StepQ, *StepR;
+ if (!Numerator->isAffine())
+ return cannotDivide(Numerator);
+ divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
+ divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
+ // Bail out if the types do not match.
+ Type *Ty = Denominator->getType();
+ if (Ty != StartQ->getType() || Ty != StartR->getType() ||
+ Ty != StepQ->getType() || Ty != StepR->getType())
+ return cannotDivide(Numerator);
+ Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
+ Numerator->getNoWrapFlags());
+ Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
+ Numerator->getNoWrapFlags());
+ }
+
+ void visitAddExpr(const SCEVAddExpr *Numerator) {
+ SmallVector<const SCEV *, 2> Qs, Rs;
+ Type *Ty = Denominator->getType();
+
+ for (const SCEV *Op : Numerator->operands()) {
+ const SCEV *Q, *R;
+ divide(SE, Op, Denominator, &Q, &R);
+
+ // Bail out if types do not match.
+ if (Ty != Q->getType() || Ty != R->getType())
+ return cannotDivide(Numerator);
+
+ Qs.push_back(Q);
+ Rs.push_back(R);
+ }
+
+ if (Qs.size() == 1) {
+ Quotient = Qs[0];
+ Remainder = Rs[0];
+ return;
+ }
+
+ Quotient = SE.getAddExpr(Qs);
+ Remainder = SE.getAddExpr(Rs);
+ }
+
+ void visitMulExpr(const SCEVMulExpr *Numerator) {
+ SmallVector<const SCEV *, 2> Qs;
+ Type *Ty = Denominator->getType();
+
+ bool FoundDenominatorTerm = false;
+ for (const SCEV *Op : Numerator->operands()) {
+ // Bail out if types do not match.
+ if (Ty != Op->getType())
+ return cannotDivide(Numerator);
+
+ if (FoundDenominatorTerm) {
+ Qs.push_back(Op);
+ continue;
+ }
+
+ // Check whether Denominator divides one of the product operands.
+ const SCEV *Q, *R;
+ divide(SE, Op, Denominator, &Q, &R);
+ if (!R->isZero()) {
+ Qs.push_back(Op);
+ continue;
+ }
+
+ // Bail out if types do not match.
+ if (Ty != Q->getType())
+ return cannotDivide(Numerator);
+
+ FoundDenominatorTerm = true;
+ Qs.push_back(Q);
+ }
+
+ if (FoundDenominatorTerm) {
+ Remainder = Zero;
+ if (Qs.size() == 1)
+ Quotient = Qs[0];
+ else
+ Quotient = SE.getMulExpr(Qs);
+ return;
+ }
+
+ if (!isa<SCEVUnknown>(Denominator))
+ return cannotDivide(Numerator);
+
+ // The Remainder is obtained by replacing Denominator by 0 in Numerator.
+ ValueToValueMap RewriteMap;
+ RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
+ cast<SCEVConstant>(Zero)->getValue();
+ Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
+
+ if (Remainder->isZero()) {
+ // The Quotient is obtained by replacing Denominator by 1 in Numerator.
+ RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
+ cast<SCEVConstant>(One)->getValue();
+ Quotient =
+ SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
+ return;
+ }
+
+ // Quotient is (Numerator - Remainder) divided by Denominator.
+ const SCEV *Q, *R;
+ const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
+ // This SCEV does not seem to simplify: fail the division here.
+ if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
+ return cannotDivide(Numerator);
+ divide(SE, Diff, Denominator, &Q, &R);
+ if (R != Zero)
+ return cannotDivide(Numerator);
+ Quotient = Q;
+ }
+
+private:
+ SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
+ const SCEV *Denominator)
+ : SE(S), Denominator(Denominator) {
+ Zero = SE.getZero(Denominator->getType());
+ One = SE.getOne(Denominator->getType());
+
+ // We generally do not know how to divide Expr by Denominator. We
+ // initialize the division to a "cannot divide" state to simplify the rest
+ // of the code.
+ cannotDivide(Numerator);
+ }
+
+ // Convenience function for giving up on the division. We set the quotient to
+ // be equal to zero and the remainder to be equal to the numerator.
+ void cannotDivide(const SCEV *Numerator) {
+ Quotient = Zero;
+ Remainder = Numerator;
+ }
+
+ ScalarEvolution &SE;
+ const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
+};
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// Simple SCEV method implementations
+//===----------------------------------------------------------------------===//
+
+/// Compute BC(It, K). The result has width W. Assume, K > 0.
+static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
+ ScalarEvolution &SE,
+ Type *ResultTy) {
+ // Handle the simplest case efficiently.
+ if (K == 1)
+ return SE.getTruncateOrZeroExtend(It, ResultTy);
+
+ // We are using the following formula for BC(It, K):
+ //
+ // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
+ //
+ // Suppose, W is the bitwidth of the return value. We must be prepared for
+ // overflow. Hence, we must assure that the result of our computation is
+ // equal to the accurate one modulo 2^W. Unfortunately, division isn't
+ // safe in modular arithmetic.
+ //
+ // However, this code doesn't use exactly that formula; the formula it uses
+ // is something like the following, where T is the number of factors of 2 in
+ // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
+ // exponentiation:
+ //
+ // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
+ //
+ // This formula is trivially equivalent to the previous formula. However,
+ // this formula can be implemented much more efficiently. The trick is that
+ // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
+ // arithmetic. To do exact division in modular arithmetic, all we have
+ // to do is multiply by the inverse. Therefore, this step can be done at
+ // width W.
+ //
+ // The next issue is how to safely do the division by 2^T. The way this
+ // is done is by doing the multiplication step at a width of at least W + T
+ // bits. This way, the bottom W+T bits of the product are accurate. Then,
+ // when we perform the division by 2^T (which is equivalent to a right shift
+ // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
+ // truncated out after the division by 2^T.
+ //
+ // In comparison to just directly using the first formula, this technique
+ // is much more efficient; using the first formula requires W * K bits,
+ // but this formula less than W + K bits. Also, the first formula requires
+ // a division step, whereas this formula only requires multiplies and shifts.
+ //
+ // It doesn't matter whether the subtraction step is done in the calculation
+ // width or the input iteration count's width; if the subtraction overflows,
+ // the result must be zero anyway. We prefer here to do it in the width of
+ // the induction variable because it helps a lot for certain cases; CodeGen
+ // isn't smart enough to ignore the overflow, which leads to much less
+ // efficient code if the width of the subtraction is wider than the native
+ // register width.
+ //
+ // (It's possible to not widen at all by pulling out factors of 2 before
+ // the multiplication; for example, K=2 can be calculated as
+ // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
+ // extra arithmetic, so it's not an obvious win, and it gets
+ // much more complicated for K > 3.)
+
+ // Protection from insane SCEVs; this bound is conservative,
+ // but it probably doesn't matter.
+ if (K > 1000)
+ return SE.getCouldNotCompute();
+
+ unsigned W = SE.getTypeSizeInBits(ResultTy);
+
+ // Calculate K! / 2^T and T; we divide out the factors of two before
+ // multiplying for calculating K! / 2^T to avoid overflow.
+ // Other overflow doesn't matter because we only care about the bottom
+ // W bits of the result.
+ APInt OddFactorial(W, 1);
+ unsigned T = 1;
+ for (unsigned i = 3; i <= K; ++i) {
+ APInt Mult(W, i);
+ unsigned TwoFactors = Mult.countTrailingZeros();
+ T += TwoFactors;
+ Mult.lshrInPlace(TwoFactors);
+ OddFactorial *= Mult;
+ }
+
+ // We need at least W + T bits for the multiplication step
+ unsigned CalculationBits = W + T;
+
+ // Calculate 2^T, at width T+W.
+ APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
+
+ // Calculate the multiplicative inverse of K! / 2^T;
+ // this multiplication factor will perform the exact division by
+ // K! / 2^T.
+ APInt Mod = APInt::getSignedMinValue(W+1);
+ APInt MultiplyFactor = OddFactorial.zext(W+1);
+ MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
+ MultiplyFactor = MultiplyFactor.trunc(W);
+
+ // Calculate the product, at width T+W
+ IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
+ CalculationBits);
+ const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
+ for (unsigned i = 1; i != K; ++i) {
+ const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
+ Dividend = SE.getMulExpr(Dividend,
+ SE.getTruncateOrZeroExtend(S, CalculationTy));
+ }
+
+ // Divide by 2^T
+ const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
+
+ // Truncate the result, and divide by K! / 2^T.
+
+ return SE.getMulExpr(SE.getConstant(MultiplyFactor),
+ SE.getTruncateOrZeroExtend(DivResult, ResultTy));
+}
+
+/// Return the value of this chain of recurrences at the specified iteration
+/// number. We can evaluate this recurrence by multiplying each element in the
+/// chain by the binomial coefficient corresponding to it. In other words, we
+/// can evaluate {A,+,B,+,C,+,D} as:
+///
+/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
+///
+/// where BC(It, k) stands for binomial coefficient.
+const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
+ ScalarEvolution &SE) const {
+ const SCEV *Result = getStart();
+ for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
+ // The computation is correct in the face of overflow provided that the
+ // multiplication is performed _after_ the evaluation of the binomial
+ // coefficient.
+ const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
+ if (isa<SCEVCouldNotCompute>(Coeff))
+ return Coeff;
+
+ Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
+ }
+ return Result;
+}
+
+//===----------------------------------------------------------------------===//
+// SCEV Expression folder implementations
+//===----------------------------------------------------------------------===//
+
+const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
+ unsigned Depth) {
+ assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
+ "This is not a truncating conversion!");
+ assert(isSCEVable(Ty) &&
+ "This is not a conversion to a SCEVable type!");
+ Ty = getEffectiveSCEVType(Ty);
+
+ FoldingSetNodeID ID;
+ ID.AddInteger(scTruncate);
+ ID.AddPointer(Op);
+ ID.AddPointer(Ty);
+ void *IP = nullptr;
+ if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+
+ // Fold if the operand is constant.
+ if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
+ return getConstant(
+ cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
+
+ // trunc(trunc(x)) --> trunc(x)
+ if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
+ return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
+
+ // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
+ if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
+ return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
+
+ // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
+ if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
+ return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
+
+ if (Depth > MaxCastDepth) {
+ SCEV *S =
+ new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
+ UniqueSCEVs.InsertNode(S, IP);
+ addToLoopUseLists(S);
+ return S;
+ }
+
+ // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
+ // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
+ // if after transforming we have at most one truncate, not counting truncates
+ // that replace other casts.
+ if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
+ auto *CommOp = cast<SCEVCommutativeExpr>(Op);
+ SmallVector<const SCEV *, 4> Operands;
+ unsigned numTruncs = 0;
+ for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
+ ++i) {
+ const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
+ if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S))
+ numTruncs++;
+ Operands.push_back(S);
+ }
+ if (numTruncs < 2) {
+ if (isa<SCEVAddExpr>(Op))
+ return getAddExpr(Operands);
+ else if (isa<SCEVMulExpr>(Op))
+ return getMulExpr(Operands);
+ else
+ llvm_unreachable("Unexpected SCEV type for Op.");
+ }
+ // Although we checked in the beginning that ID is not in the cache, it is
+ // possible that during recursion and different modification ID was inserted
+ // into the cache. So if we find it, just return it.
+ if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
+ return S;
+ }
+
+ // If the input value is a chrec scev, truncate the chrec's operands.
+ if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
+ SmallVector<const SCEV *, 4> Operands;
+ for (const SCEV *Op : AddRec->operands())
+ Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
+ return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
+ }
+
+ // The cast wasn't folded; create an explicit cast node. We can reuse
+ // the existing insert position since if we get here, we won't have
+ // made any changes which would invalidate it.
+ SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
+ Op, Ty);
+ UniqueSCEVs.InsertNode(S, IP);
+ addToLoopUseLists(S);
+ return S;
+}
+
+// Get the limit of a recurrence such that incrementing by Step cannot cause
+// signed overflow as long as the value of the recurrence within the
+// loop does not exceed this limit before incrementing.
+static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
+ ICmpInst::Predicate *Pred,
+ ScalarEvolution *SE) {
+ unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
+ if (SE->isKnownPositive(Step)) {
+ *Pred = ICmpInst::ICMP_SLT;
+ return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
+ SE->getSignedRangeMax(Step));
+ }
+ if (SE->isKnownNegative(Step)) {
+ *Pred = ICmpInst::ICMP_SGT;
+ return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
+ SE->getSignedRangeMin(Step));
+ }
+ return nullptr;
+}
+
+// Get the limit of a recurrence such that incrementing by Step cannot cause
+// unsigned overflow as long as the value of the recurrence within the loop does
+// not exceed this limit before incrementing.
+static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
+ ICmpInst::Predicate *Pred,
+ ScalarEvolution *SE) {
+ unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
+ *Pred = ICmpInst::ICMP_ULT;
+
+ return SE->getConstant(APInt::getMinValue(BitWidth) -
+ SE->getUnsignedRangeMax(Step));
+}
+
+namespace {
+
+struct ExtendOpTraitsBase {
+ typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
+ unsigned);
+};
+
+// Used to make code generic over signed and unsigned overflow.
+template <typename ExtendOp> struct ExtendOpTraits {
+ // Members present:
+ //
+ // static const SCEV::NoWrapFlags WrapType;
+ //
+ // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
+ //
+ // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
+ // ICmpInst::Predicate *Pred,
+ // ScalarEvolution *SE);
+};
+
+template <>
+struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
+ static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
+
+ static const GetExtendExprTy GetExtendExpr;
+
+ static const SCEV *getOverflowLimitForStep(const SCEV *Step,
+ ICmpInst::Predicate *Pred,
+ ScalarEvolution *SE) {
+ return getSignedOverflowLimitForStep(Step, Pred, SE);
+ }
+};
+
+const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
+ SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
+
+template <>
+struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
+ static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
+
+ static const GetExtendExprTy GetExtendExpr;
+
+ static const SCEV *getOverflowLimitForStep(const SCEV *Step,
+ ICmpInst::Predicate *Pred,
+ ScalarEvolution *SE) {
+ return getUnsignedOverflowLimitForStep(Step, Pred, SE);
+ }
+};
+
+const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
+ SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
+
+} // end anonymous namespace
+
+// The recurrence AR has been shown to have no signed/unsigned wrap or something
+// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
+// easily prove NSW/NUW for its preincrement or postincrement sibling. This
+// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
+// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
+// expression "Step + sext/zext(PreIncAR)" is congruent with
+// "sext/zext(PostIncAR)"
+template <typename ExtendOpTy>
+static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
+ ScalarEvolution *SE, unsigned Depth) {
+ auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
+ auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
+
+ const Loop *L = AR->getLoop();
+ const SCEV *Start = AR->getStart();
+ const SCEV *Step = AR->getStepRecurrence(*SE);
+
+ // Check for a simple looking step prior to loop entry.
+ const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
+ if (!SA)
+ return nullptr;
+
+ // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
+ // subtraction is expensive. For this purpose, perform a quick and dirty
+ // difference, by checking for Step in the operand list.
+ SmallVector<const SCEV *, 4> DiffOps;
+ for (const SCEV *Op : SA->operands())
+ if (Op != Step)
+ DiffOps.push_back(Op);
+
+ if (DiffOps.size() == SA->getNumOperands())
+ return nullptr;
+
+ // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
+ // `Step`:
+
+ // 1. NSW/NUW flags on the step increment.
+ auto PreStartFlags =
+ ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
+ const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
+ const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
+ SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
+
+ // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
+ // "S+X does not sign/unsign-overflow".
+ //
+
+ const SCEV *BECount = SE->getBackedgeTakenCount(L);
+ if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
+ !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
+ return PreStart;
+
+ // 2. Direct overflow check on the step operation's expression.
+ unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
+ Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
+ const SCEV *OperandExtendedStart =
+ SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
+ (SE->*GetExtendExpr)(Step, WideTy, Depth));
+ if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
+ if (PreAR && AR->getNoWrapFlags(WrapType)) {
+ // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
+ // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
+ // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
+ const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
+ }
+ return PreStart;
+ }
+
+ // 3. Loop precondition.
+ ICmpInst::Predicate Pred;
+ const SCEV *OverflowLimit =
+ ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
+
+ if (OverflowLimit &&
+ SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
+ return PreStart;
+
+ return nullptr;
+}
+
+// Get the normalized zero or sign extended expression for this AddRec's Start.
+template <typename ExtendOpTy>
+static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
+ ScalarEvolution *SE,
+ unsigned Depth) {
+ auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
+
+ const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
+ if (!PreStart)
+ return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
+
+ return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
+ Depth),
+ (SE->*GetExtendExpr)(PreStart, Ty, Depth));
+}
+
+// Try to prove away overflow by looking at "nearby" add recurrences. A
+// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
+// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
+//
+// Formally:
+//
+// {S,+,X} == {S-T,+,X} + T
+// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
+//
+// If ({S-T,+,X} + T) does not overflow ... (1)
+//
+// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
+//
+// If {S-T,+,X} does not overflow ... (2)
+//
+// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
+// == {Ext(S-T)+Ext(T),+,Ext(X)}
+//
+// If (S-T)+T does not overflow ... (3)
+//
+// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
+// == {Ext(S),+,Ext(X)} == LHS
+//
+// Thus, if (1), (2) and (3) are true for some T, then
+// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
+//
+// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
+// does not overflow" restricted to the 0th iteration. Therefore we only need
+// to check for (1) and (2).
+//
+// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
+// is `Delta` (defined below).
+template <typename ExtendOpTy>
+bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
+ const SCEV *Step,
+ const Loop *L) {
+ auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
+
+ // We restrict `Start` to a constant to prevent SCEV from spending too much
+ // time here. It is correct (but more expensive) to continue with a
+ // non-constant `Start` and do a general SCEV subtraction to compute
+ // `PreStart` below.
+ const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
+ if (!StartC)
+ return false;
+
+ APInt StartAI = StartC->getAPInt();
+
+ for (unsigned Delta : {-2, -1, 1, 2}) {
+ const SCEV *PreStart = getConstant(StartAI - Delta);
+
+ FoldingSetNodeID ID;
+ ID.AddInteger(scAddRecExpr);
+ ID.AddPointer(PreStart);
+ ID.AddPointer(Step);
+ ID.AddPointer(L);
+ void *IP = nullptr;
+ const auto *PreAR =
+ static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
+
+ // Give up if we don't already have the add recurrence we need because
+ // actually constructing an add recurrence is relatively expensive.
+ if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
+ const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
+ ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
+ const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
+ DeltaS, &Pred, this);
+ if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
+ return true;
+ }
+ }
+
+ return false;
+}
+
+// Finds an integer D for an expression (C + x + y + ...) such that the top
+// level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
+// unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
+// maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
+// the (C + x + y + ...) expression is \p WholeAddExpr.
+static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
+ const SCEVConstant *ConstantTerm,
+ const SCEVAddExpr *WholeAddExpr) {
+ const APInt C = ConstantTerm->getAPInt();
+ const unsigned BitWidth = C.getBitWidth();
+ // Find number of trailing zeros of (x + y + ...) w/o the C first:
+ uint32_t TZ = BitWidth;
+ for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
+ TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
+ if (TZ) {
+ // Set D to be as many least significant bits of C as possible while still
+ // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
+ return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
+ }
+ return APInt(BitWidth, 0);
+}
+
+// Finds an integer D for an affine AddRec expression {C,+,x} such that the top
+// level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
+// number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
+// ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
+static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
+ const APInt &ConstantStart,
+ const SCEV *Step) {
+ const unsigned BitWidth = ConstantStart.getBitWidth();
+ const uint32_t TZ = SE.GetMinTrailingZeros(Step);
+ if (TZ)
+ return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
+ : ConstantStart;
+ return APInt(BitWidth, 0);
+}
+
+const SCEV *
+ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
+ assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
+ "This is not an extending conversion!");
+ assert(isSCEVable(Ty) &&
+ "This is not a conversion to a SCEVable type!");
+ Ty = getEffectiveSCEVType(Ty);
+
+ // Fold if the operand is constant.
+ if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
+ return getConstant(
+ cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
+
+ // zext(zext(x)) --> zext(x)
+ if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
+ return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
+
+ // Before doing any expensive analysis, check to see if we've already
+ // computed a SCEV for this Op and Ty.
+ FoldingSetNodeID ID;
+ ID.AddInteger(scZeroExtend);
+ ID.AddPointer(Op);
+ ID.AddPointer(Ty);
+ void *IP = nullptr;
+ if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+ if (Depth > MaxCastDepth) {
+ SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
+ Op, Ty);
+ UniqueSCEVs.InsertNode(S, IP);
+ addToLoopUseLists(S);
+ return S;
+ }
+
+ // zext(trunc(x)) --> zext(x) or x or trunc(x)
+ if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
+ // It's possible the bits taken off by the truncate were all zero bits. If
+ // so, we should be able to simplify this further.
+ const SCEV *X = ST->getOperand();
+ ConstantRange CR = getUnsignedRange(X);
+ unsigned TruncBits = getTypeSizeInBits(ST->getType());
+ unsigned NewBits = getTypeSizeInBits(Ty);
+ if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
+ CR.zextOrTrunc(NewBits)))
+ return getTruncateOrZeroExtend(X, Ty, Depth);
+ }
+
+ // If the input value is a chrec scev, and we can prove that the value
+ // did not overflow the old, smaller, value, we can zero extend all of the
+ // operands (often constants). This allows analysis of something like
+ // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
+ if (AR->isAffine()) {
+ const SCEV *Start = AR->getStart();
+ const SCEV *Step = AR->getStepRecurrence(*this);
+ unsigned BitWidth = getTypeSizeInBits(AR->getType());
+ const Loop *L = AR->getLoop();
+
+ if (!AR->hasNoUnsignedWrap()) {
+ auto NewFlags = proveNoWrapViaConstantRanges(AR);
+ const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
+ }
+
+ // If we have special knowledge that this addrec won't overflow,
+ // we don't need to do any further analysis.
+ if (AR->hasNoUnsignedWrap())
+ return getAddRecExpr(
+ getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
+ getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
+
+ // Check whether the backedge-taken count is SCEVCouldNotCompute.
+ // Note that this serves two purposes: It filters out loops that are
+ // simply not analyzable, and it covers the case where this code is
+ // being called from within backedge-taken count analysis, such that
+ // attempting to ask for the backedge-taken count would likely result
+ // in infinite recursion. In the later case, the analysis code will
+ // cope with a conservative value, and it will take care to purge
+ // that value once it has finished.
+ const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
+ if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
+ // Manually compute the final value for AR, checking for
+ // overflow.
+
+ // Check whether the backedge-taken count can be losslessly casted to
+ // the addrec's type. The count is always unsigned.
+ const SCEV *CastedMaxBECount =
+ getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
+ const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
+ CastedMaxBECount, MaxBECount->getType(), Depth);
+ if (MaxBECount == RecastedMaxBECount) {
+ Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
+ // Check whether Start+Step*MaxBECount has no unsigned overflow.
+ const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
+ SCEV::FlagAnyWrap, Depth + 1);
+ const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
+ SCEV::FlagAnyWrap,
+ Depth + 1),
+ WideTy, Depth + 1);
+ const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
+ const SCEV *WideMaxBECount =
+ getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
+ const SCEV *OperandExtendedAdd =
+ getAddExpr(WideStart,
+ getMulExpr(WideMaxBECount,
+ getZeroExtendExpr(Step, WideTy, Depth + 1),
+ SCEV::FlagAnyWrap, Depth + 1),
+ SCEV::FlagAnyWrap, Depth + 1);
+ if (ZAdd == OperandExtendedAdd) {
+ // Cache knowledge of AR NUW, which is propagated to this AddRec.
+ const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
+ // Return the expression with the addrec on the outside.
+ return getAddRecExpr(
+ getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
+ Depth + 1),
+ getZeroExtendExpr(Step, Ty, Depth + 1), L,
+ AR->getNoWrapFlags());
+ }
+ // Similar to above, only this time treat the step value as signed.
+ // This covers loops that count down.
+ OperandExtendedAdd =
+ getAddExpr(WideStart,
+ getMulExpr(WideMaxBECount,
+ getSignExtendExpr(Step, WideTy, Depth + 1),
+ SCEV::FlagAnyWrap, Depth + 1),
+ SCEV::FlagAnyWrap, Depth + 1);
+ if (ZAdd == OperandExtendedAdd) {
+ // Cache knowledge of AR NW, which is propagated to this AddRec.
+ // Negative step causes unsigned wrap, but it still can't self-wrap.
+ const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
+ // Return the expression with the addrec on the outside.
+ return getAddRecExpr(
+ getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
+ Depth + 1),
+ getSignExtendExpr(Step, Ty, Depth + 1), L,
+ AR->getNoWrapFlags());
+ }
+ }
+ }
+
+ // Normally, in the cases we can prove no-overflow via a
+ // backedge guarding condition, we can also compute a backedge
+ // taken count for the loop. The exceptions are assumptions and
+ // guards present in the loop -- SCEV is not great at exploiting
+ // these to compute max backedge taken counts, but can still use
+ // these to prove lack of overflow. Use this fact to avoid
+ // doing extra work that may not pay off.
+ if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
+ !AC.assumptions().empty()) {
+ // If the backedge is guarded by a comparison with the pre-inc
+ // value the addrec is safe. Also, if the entry is guarded by
+ // a comparison with the start value and the backedge is
+ // guarded by a comparison with the post-inc value, the addrec
+ // is safe.
+ if (isKnownPositive(Step)) {
+ const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
+ getUnsignedRangeMax(Step));
+ if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
+ isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
+ // Cache knowledge of AR NUW, which is propagated to this
+ // AddRec.
+ const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
+ // Return the expression with the addrec on the outside.
+ return getAddRecExpr(
+ getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
+ Depth + 1),
+ getZeroExtendExpr(Step, Ty, Depth + 1), L,
+ AR->getNoWrapFlags());
+ }
+ } else if (isKnownNegative(Step)) {
+ const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
+ getSignedRangeMin(Step));
+ if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
+ isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
+ // Cache knowledge of AR NW, which is propagated to this
+ // AddRec. Negative step causes unsigned wrap, but it
+ // still can't self-wrap.
+ const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
+ // Return the expression with the addrec on the outside.
+ return getAddRecExpr(
+ getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
+ Depth + 1),
+ getSignExtendExpr(Step, Ty, Depth + 1), L,
+ AR->getNoWrapFlags());
+ }
+ }
+ }
+
+ // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
+ // if D + (C - D + Step * n) could be proven to not unsigned wrap
+ // where D maximizes the number of trailing zeros of (C - D + Step * n)
+ if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
+ const APInt &C = SC->getAPInt();
+ const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
+ if (D != 0) {
+ const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
+ const SCEV *SResidual =
+ getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
+ const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
+ return getAddExpr(SZExtD, SZExtR,
+ (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
+ Depth + 1);
+ }
+ }
+
+ if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
+ const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
+ return getAddRecExpr(
+ getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
+ getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
+ }
+ }
+
+ // zext(A % B) --> zext(A) % zext(B)
+ {
+ const SCEV *LHS;
+ const SCEV *RHS;
+ if (matchURem(Op, LHS, RHS))
+ return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
+ getZeroExtendExpr(RHS, Ty, Depth + 1));
+ }
+
+ // zext(A / B) --> zext(A) / zext(B).
+ if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
+ return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
+ getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
+
+ if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
+ // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
+ if (SA->hasNoUnsignedWrap()) {
+ // If the addition does not unsign overflow then we can, by definition,
+ // commute the zero extension with the addition operation.
+ SmallVector<const SCEV *, 4> Ops;
+ for (const auto *Op : SA->operands())
+ Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
+ return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
+ }
+
+ // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
+ // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
+ // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
+ //
+ // Often address arithmetics contain expressions like
+ // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
+ // This transformation is useful while proving that such expressions are
+ // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
+ if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
+ const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
+ if (D != 0) {
+ const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
+ const SCEV *SResidual =
+ getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
+ const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
+ return getAddExpr(SZExtD, SZExtR,
+ (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
+ Depth + 1);
+ }
+ }
+ }
+
+ if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
+ // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
+ if (SM->hasNoUnsignedWrap()) {
+ // If the multiply does not unsign overflow then we can, by definition,
+ // commute the zero extension with the multiply operation.
+ SmallVector<const SCEV *, 4> Ops;
+ for (const auto *Op : SM->operands())
+ Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
+ return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
+ }
+
+ // zext(2^K * (trunc X to iN)) to iM ->
+ // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
+ //
+ // Proof:
+ //
+ // zext(2^K * (trunc X to iN)) to iM
+ // = zext((trunc X to iN) << K) to iM
+ // = zext((trunc X to i{N-K}) << K)<nuw> to iM
+ // (because shl removes the top K bits)
+ // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
+ // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
+ //
+ if (SM->getNumOperands() == 2)
+ if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
+ if (MulLHS->getAPInt().isPowerOf2())
+ if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
+ int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
+ MulLHS->getAPInt().logBase2();
+ Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
+ return getMulExpr(
+ getZeroExtendExpr(MulLHS, Ty),
+ getZeroExtendExpr(
+ getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
+ SCEV::FlagNUW, Depth + 1);
+ }
+ }
+
+ // The cast wasn't folded; create an explicit cast node.
+ // Recompute the insert position, as it may have been invalidated.
+ if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+ SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
+ Op, Ty);
+ UniqueSCEVs.InsertNode(S, IP);
+ addToLoopUseLists(S);
+ return S;
+}
+
+const SCEV *
+ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
+ assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
+ "This is not an extending conversion!");
+ assert(isSCEVable(Ty) &&
+ "This is not a conversion to a SCEVable type!");
+ Ty = getEffectiveSCEVType(Ty);
+
+ // Fold if the operand is constant.
+ if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
+ return getConstant(
+ cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
+
+ // sext(sext(x)) --> sext(x)
+ if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
+ return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
+
+ // sext(zext(x)) --> zext(x)
+ if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
+ return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
+
+ // Before doing any expensive analysis, check to see if we've already
+ // computed a SCEV for this Op and Ty.
+ FoldingSetNodeID ID;
+ ID.AddInteger(scSignExtend);
+ ID.AddPointer(Op);
+ ID.AddPointer(Ty);
+ void *IP = nullptr;
+ if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+ // Limit recursion depth.
+ if (Depth > MaxCastDepth) {
+ SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
+ Op, Ty);
+ UniqueSCEVs.InsertNode(S, IP);
+ addToLoopUseLists(S);
+ return S;
+ }
+
+ // sext(trunc(x)) --> sext(x) or x or trunc(x)
+ if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
+ // It's possible the bits taken off by the truncate were all sign bits. If
+ // so, we should be able to simplify this further.
+ const SCEV *X = ST->getOperand();
+ ConstantRange CR = getSignedRange(X);
+ unsigned TruncBits = getTypeSizeInBits(ST->getType());
+ unsigned NewBits = getTypeSizeInBits(Ty);
+ if (CR.truncate(TruncBits).signExtend(NewBits).contains(
+ CR.sextOrTrunc(NewBits)))
+ return getTruncateOrSignExtend(X, Ty, Depth);
+ }
+
+ if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
+ // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
+ if (SA->hasNoSignedWrap()) {
+ // If the addition does not sign overflow then we can, by definition,
+ // commute the sign extension with the addition operation.
+ SmallVector<const SCEV *, 4> Ops;
+ for (const auto *Op : SA->operands())
+ Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
+ return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
+ }
+
+ // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
+ // if D + (C - D + x + y + ...) could be proven to not signed wrap
+ // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
+ //
+ // For instance, this will bring two seemingly different expressions:
+ // 1 + sext(5 + 20 * %x + 24 * %y) and
+ // sext(6 + 20 * %x + 24 * %y)
+ // to the same form:
+ // 2 + sext(4 + 20 * %x + 24 * %y)
+ if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
+ const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
+ if (D != 0) {
+ const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
+ const SCEV *SResidual =
+ getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
+ const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
+ return getAddExpr(SSExtD, SSExtR,
+ (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
+ Depth + 1);
+ }
+ }
+ }
+ // If the input value is a chrec scev, and we can prove that the value
+ // did not overflow the old, smaller, value, we can sign extend all of the
+ // operands (often constants). This allows analysis of something like
+ // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
+ if (AR->isAffine()) {
+ const SCEV *Start = AR->getStart();
+ const SCEV *Step = AR->getStepRecurrence(*this);
+ unsigned BitWidth = getTypeSizeInBits(AR->getType());
+ const Loop *L = AR->getLoop();
+
+ if (!AR->hasNoSignedWrap()) {
+ auto NewFlags = proveNoWrapViaConstantRanges(AR);
+ const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
+ }
+
+ // If we have special knowledge that this addrec won't overflow,
+ // we don't need to do any further analysis.
+ if (AR->hasNoSignedWrap())
+ return getAddRecExpr(
+ getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
+ getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
+
+ // Check whether the backedge-taken count is SCEVCouldNotCompute.
+ // Note that this serves two purposes: It filters out loops that are
+ // simply not analyzable, and it covers the case where this code is
+ // being called from within backedge-taken count analysis, such that
+ // attempting to ask for the backedge-taken count would likely result
+ // in infinite recursion. In the later case, the analysis code will
+ // cope with a conservative value, and it will take care to purge
+ // that value once it has finished.
+ const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
+ if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
+ // Manually compute the final value for AR, checking for
+ // overflow.
+
+ // Check whether the backedge-taken count can be losslessly casted to
+ // the addrec's type. The count is always unsigned.
+ const SCEV *CastedMaxBECount =
+ getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
+ const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
+ CastedMaxBECount, MaxBECount->getType(), Depth);
+ if (MaxBECount == RecastedMaxBECount) {
+ Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
+ // Check whether Start+Step*MaxBECount has no signed overflow.
+ const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
+ SCEV::FlagAnyWrap, Depth + 1);
+ const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
+ SCEV::FlagAnyWrap,
+ Depth + 1),
+ WideTy, Depth + 1);
+ const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
+ const SCEV *WideMaxBECount =
+ getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
+ const SCEV *OperandExtendedAdd =
+ getAddExpr(WideStart,
+ getMulExpr(WideMaxBECount,
+ getSignExtendExpr(Step, WideTy, Depth + 1),
+ SCEV::FlagAnyWrap, Depth + 1),
+ SCEV::FlagAnyWrap, Depth + 1);
+ if (SAdd == OperandExtendedAdd) {
+ // Cache knowledge of AR NSW, which is propagated to this AddRec.
+ const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
+ // Return the expression with the addrec on the outside.
+ return getAddRecExpr(
+ getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
+ Depth + 1),
+ getSignExtendExpr(Step, Ty, Depth + 1), L,
+ AR->getNoWrapFlags());
+ }
+ // Similar to above, only this time treat the step value as unsigned.
+ // This covers loops that count up with an unsigned step.
+ OperandExtendedAdd =
+ getAddExpr(WideStart,
+ getMulExpr(WideMaxBECount,
+ getZeroExtendExpr(Step, WideTy, Depth + 1),
+ SCEV::FlagAnyWrap, Depth + 1),
+ SCEV::FlagAnyWrap, Depth + 1);
+ if (SAdd == OperandExtendedAdd) {
+ // If AR wraps around then
+ //
+ // abs(Step) * MaxBECount > unsigned-max(AR->getType())
+ // => SAdd != OperandExtendedAdd
+ //
+ // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
+ // (SAdd == OperandExtendedAdd => AR is NW)
+
+ const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
+
+ // Return the expression with the addrec on the outside.
+ return getAddRecExpr(
+ getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
+ Depth + 1),
+ getZeroExtendExpr(Step, Ty, Depth + 1), L,
+ AR->getNoWrapFlags());
+ }
+ }
+ }
+
+ // Normally, in the cases we can prove no-overflow via a
+ // backedge guarding condition, we can also compute a backedge
+ // taken count for the loop. The exceptions are assumptions and
+ // guards present in the loop -- SCEV is not great at exploiting
+ // these to compute max backedge taken counts, but can still use
+ // these to prove lack of overflow. Use this fact to avoid
+ // doing extra work that may not pay off.
+
+ if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
+ !AC.assumptions().empty()) {
+ // If the backedge is guarded by a comparison with the pre-inc
+ // value the addrec is safe. Also, if the entry is guarded by
+ // a comparison with the start value and the backedge is
+ // guarded by a comparison with the post-inc value, the addrec
+ // is safe.
+ ICmpInst::Predicate Pred;
+ const SCEV *OverflowLimit =
+ getSignedOverflowLimitForStep(Step, &Pred, this);
+ if (OverflowLimit &&
+ (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
+ isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
+ // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
+ const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
+ return getAddRecExpr(
+ getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
+ getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
+ }
+ }
+
+ // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
+ // if D + (C - D + Step * n) could be proven to not signed wrap
+ // where D maximizes the number of trailing zeros of (C - D + Step * n)
+ if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
+ const APInt &C = SC->getAPInt();
+ const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
+ if (D != 0) {
+ const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
+ const SCEV *SResidual =
+ getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
+ const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
+ return getAddExpr(SSExtD, SSExtR,
+ (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
+ Depth + 1);
+ }
+ }
+
+ if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
+ const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
+ return getAddRecExpr(
+ getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
+ getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
+ }
+ }
+
+ // If the input value is provably positive and we could not simplify
+ // away the sext build a zext instead.
+ if (isKnownNonNegative(Op))
+ return getZeroExtendExpr(Op, Ty, Depth + 1);
+
+ // The cast wasn't folded; create an explicit cast node.
+ // Recompute the insert position, as it may have been invalidated.
+ if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+ SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
+ Op, Ty);
+ UniqueSCEVs.InsertNode(S, IP);
+ addToLoopUseLists(S);
+ return S;
+}
+
+/// getAnyExtendExpr - Return a SCEV for the given operand extended with
+/// unspecified bits out to the given type.
+const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
+ Type *Ty) {
+ assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
+ "This is not an extending conversion!");
+ assert(isSCEVable(Ty) &&
+ "This is not a conversion to a SCEVable type!");
+ Ty = getEffectiveSCEVType(Ty);
+
+ // Sign-extend negative constants.
+ if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
+ if (SC->getAPInt().isNegative())
+ return getSignExtendExpr(Op, Ty);
+
+ // Peel off a truncate cast.
+ if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
+ const SCEV *NewOp = T->getOperand();
+ if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
+ return getAnyExtendExpr(NewOp, Ty);
+ return getTruncateOrNoop(NewOp, Ty);
+ }
+
+ // Next try a zext cast. If the cast is folded, use it.
+ const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
+ if (!isa<SCEVZeroExtendExpr>(ZExt))
+ return ZExt;
+
+ // Next try a sext cast. If the cast is folded, use it.
+ const SCEV *SExt = getSignExtendExpr(Op, Ty);
+ if (!isa<SCEVSignExtendExpr>(SExt))
+ return SExt;
+
+ // Force the cast to be folded into the operands of an addrec.
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
+ SmallVector<const SCEV *, 4> Ops;
+ for (const SCEV *Op : AR->operands())
+ Ops.push_back(getAnyExtendExpr(Op, Ty));
+ return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
+ }
+
+ // If the expression is obviously signed, use the sext cast value.
+ if (isa<SCEVSMaxExpr>(Op))
+ return SExt;
+
+ // Absent any other information, use the zext cast value.
+ return ZExt;
+}
+
+/// Process the given Ops list, which is a list of operands to be added under
+/// the given scale, update the given map. This is a helper function for
+/// getAddRecExpr. As an example of what it does, given a sequence of operands
+/// that would form an add expression like this:
+///
+/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
+///
+/// where A and B are constants, update the map with these values:
+///
+/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
+///
+/// and add 13 + A*B*29 to AccumulatedConstant.
+/// This will allow getAddRecExpr to produce this:
+///
+/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
+///
+/// This form often exposes folding opportunities that are hidden in
+/// the original operand list.
+///
+/// Return true iff it appears that any interesting folding opportunities
+/// may be exposed. This helps getAddRecExpr short-circuit extra work in
+/// the common case where no interesting opportunities are present, and
+/// is also used as a check to avoid infinite recursion.
+static bool
+CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
+ SmallVectorImpl<const SCEV *> &NewOps,
+ APInt &AccumulatedConstant,
+ const SCEV *const *Ops, size_t NumOperands,
+ const APInt &Scale,
+ ScalarEvolution &SE) {
+ bool Interesting = false;
+
+ // Iterate over the add operands. They are sorted, with constants first.
+ unsigned i = 0;
+ while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
+ ++i;
+ // Pull a buried constant out to the outside.
+ if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
+ Interesting = true;
+ AccumulatedConstant += Scale * C->getAPInt();
+ }
+
+ // Next comes everything else. We're especially interested in multiplies
+ // here, but they're in the middle, so just visit the rest with one loop.
+ for (; i != NumOperands; ++i) {
+ const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
+ if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
+ APInt NewScale =
+ Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
+ if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
+ // A multiplication of a constant with another add; recurse.
+ const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
+ Interesting |=
+ CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
+ Add->op_begin(), Add->getNumOperands(),
+ NewScale, SE);
+ } else {
+ // A multiplication of a constant with some other value. Update
+ // the map.
+ SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
+ const SCEV *Key = SE.getMulExpr(MulOps);
+ auto Pair = M.insert({Key, NewScale});
+ if (Pair.second) {
+ NewOps.push_back(Pair.first->first);
+ } else {
+ Pair.first->second += NewScale;
+ // The map already had an entry for this value, which may indicate
+ // a folding opportunity.
+ Interesting = true;
+ }
+ }
+ } else {
+ // An ordinary operand. Update the map.
+ std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
+ M.insert({Ops[i], Scale});
+ if (Pair.second) {
+ NewOps.push_back(Pair.first->first);
+ } else {
+ Pair.first->second += Scale;
+ // The map already had an entry for this value, which may indicate
+ // a folding opportunity.
+ Interesting = true;
+ }
+ }
+ }
+
+ return Interesting;
+}
+
+// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
+// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
+// can't-overflow flags for the operation if possible.
+static SCEV::NoWrapFlags
+StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
+ const ArrayRef<const SCEV *> Ops,
+ SCEV::NoWrapFlags Flags) {
+ using namespace std::placeholders;
+
+ using OBO = OverflowingBinaryOperator;
+
+ bool CanAnalyze =
+ Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
+ (void)CanAnalyze;
+ assert(CanAnalyze && "don't call from other places!");
+
+ int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
+ SCEV::NoWrapFlags SignOrUnsignWrap =
+ ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
+
+ // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
+ auto IsKnownNonNegative = [&](const SCEV *S) {
+ return SE->isKnownNonNegative(S);
+ };
+
+ if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
+ Flags =
+ ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
+
+ SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
+
+ if (SignOrUnsignWrap != SignOrUnsignMask &&
+ (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
+ isa<SCEVConstant>(Ops[0])) {
+
+ auto Opcode = [&] {
+ switch (Type) {
+ case scAddExpr:
+ return Instruction::Add;
+ case scMulExpr:
+ return Instruction::Mul;
+ default:
+ llvm_unreachable("Unexpected SCEV op.");
+ }
+ }();
+
+ const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
+
+ // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
+ if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
+ auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
+ Opcode, C, OBO::NoSignedWrap);
+ if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
+ Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
+ }
+
+ // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
+ if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
+ auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
+ Opcode, C, OBO::NoUnsignedWrap);
+ if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
+ Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
+ }
+ }
+
+ return Flags;
+}
+
+bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
+ return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
+}
+
+/// Get a canonical add expression, or something simpler if possible.
+const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
+ SCEV::NoWrapFlags Flags,
+ unsigned Depth) {
+ assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
+ "only nuw or nsw allowed");
+ assert(!Ops.empty() && "Cannot get empty add!");
+ if (Ops.size() == 1) return Ops[0];
+#ifndef NDEBUG
+ Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
+ for (unsigned i = 1, e = Ops.size(); i != e; ++i)
+ assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
+ "SCEVAddExpr operand types don't match!");
+#endif
+
+ // Sort by complexity, this groups all similar expression types together.
+ GroupByComplexity(Ops, &LI, DT);
+
+ Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
+
+ // If there are any constants, fold them together.
+ unsigned Idx = 0;
+ if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
+ ++Idx;
+ assert(Idx < Ops.size());
+ while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
+ // We found two constants, fold them together!
+ Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
+ if (Ops.size() == 2) return Ops[0];
+ Ops.erase(Ops.begin()+1); // Erase the folded element
+ LHSC = cast<SCEVConstant>(Ops[0]);
+ }
+
+ // If we are left with a constant zero being added, strip it off.
+ if (LHSC->getValue()->isZero()) {
+ Ops.erase(Ops.begin());
+ --Idx;
+ }
+
+ if (Ops.size() == 1) return Ops[0];
+ }
+
+ // Limit recursion calls depth.
+ if (Depth > MaxArithDepth || hasHugeExpression(Ops))
+ return getOrCreateAddExpr(Ops, Flags);
+
+ // Okay, check to see if the same value occurs in the operand list more than
+ // once. If so, merge them together into an multiply expression. Since we
+ // sorted the list, these values are required to be adjacent.
+ Type *Ty = Ops[0]->getType();
+ bool FoundMatch = false;
+ for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
+ if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
+ // Scan ahead to count how many equal operands there are.
+ unsigned Count = 2;
+ while (i+Count != e && Ops[i+Count] == Ops[i])
+ ++Count;
+ // Merge the values into a multiply.
+ const SCEV *Scale = getConstant(Ty, Count);
+ const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
+ if (Ops.size() == Count)
+ return Mul;
+ Ops[i] = Mul;
+ Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
+ --i; e -= Count - 1;
+ FoundMatch = true;
+ }
+ if (FoundMatch)
+ return getAddExpr(Ops, Flags, Depth + 1);
+
+ // Check for truncates. If all the operands are truncated from the same
+ // type, see if factoring out the truncate would permit the result to be
+ // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
+ // if the contents of the resulting outer trunc fold to something simple.
+ auto FindTruncSrcType = [&]() -> Type * {
+ // We're ultimately looking to fold an addrec of truncs and muls of only
+ // constants and truncs, so if we find any other types of SCEV
+ // as operands of the addrec then we bail and return nullptr here.
+ // Otherwise, we return the type of the operand of a trunc that we find.
+ if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
+ return T->getOperand()->getType();
+ if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
+ const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
+ if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
+ return T->getOperand()->getType();
+ }
+ return nullptr;
+ };
+ if (auto *SrcType = FindTruncSrcType()) {
+ SmallVector<const SCEV *, 8> LargeOps;
+ bool Ok = true;
+ // Check all the operands to see if they can be represented in the
+ // source type of the truncate.
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+ if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
+ if (T->getOperand()->getType() != SrcType) {
+ Ok = false;
+ break;
+ }
+ LargeOps.push_back(T->getOperand());
+ } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
+ LargeOps.push_back(getAnyExtendExpr(C, SrcType));
+ } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
+ SmallVector<const SCEV *, 8> LargeMulOps;
+ for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
+ if (const SCEVTruncateExpr *T =
+ dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
+ if (T->getOperand()->getType() != SrcType) {
+ Ok = false;
+ break;
+ }
+ LargeMulOps.push_back(T->getOperand());
+ } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
+ LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
+ } else {
+ Ok = false;
+ break;
+ }
+ }
+ if (Ok)
+ LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
+ } else {
+ Ok = false;
+ break;
+ }
+ }
+ if (Ok) {
+ // Evaluate the expression in the larger type.
+ const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
+ // If it folds to something simple, use it. Otherwise, don't.
+ if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
+ return getTruncateExpr(Fold, Ty);
+ }
+ }
+
+ // Skip past any other cast SCEVs.
+ while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
+ ++Idx;
+
+ // If there are add operands they would be next.
+ if (Idx < Ops.size()) {
+ bool DeletedAdd = false;
+ while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
+ if (Ops.size() > AddOpsInlineThreshold ||
+ Add->getNumOperands() > AddOpsInlineThreshold)
+ break;
+ // If we have an add, expand the add operands onto the end of the operands
+ // list.
+ Ops.erase(Ops.begin()+Idx);
+ Ops.append(Add->op_begin(), Add->op_end());
+ DeletedAdd = true;
+ }
+
+ // If we deleted at least one add, we added operands to the end of the list,
+ // and they are not necessarily sorted. Recurse to resort and resimplify
+ // any operands we just acquired.
+ if (DeletedAdd)
+ return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
+ }
+
+ // Skip over the add expression until we get to a multiply.
+ while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
+ ++Idx;
+
+ // Check to see if there are any folding opportunities present with
+ // operands multiplied by constant values.
+ if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
+ uint64_t BitWidth = getTypeSizeInBits(Ty);
+ DenseMap<const SCEV *, APInt> M;
+ SmallVector<const SCEV *, 8> NewOps;
+ APInt AccumulatedConstant(BitWidth, 0);
+ if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
+ Ops.data(), Ops.size(),
+ APInt(BitWidth, 1), *this)) {
+ struct APIntCompare {
+ bool operator()(const APInt &LHS, const APInt &RHS) const {
+ return LHS.ult(RHS);
+ }
+ };
+
+ // Some interesting folding opportunity is present, so its worthwhile to
+ // re-generate the operands list. Group the operands by constant scale,
+ // to avoid multiplying by the same constant scale multiple times.
+ std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
+ for (const SCEV *NewOp : NewOps)
+ MulOpLists[M.find(NewOp)->second].push_back(NewOp);
+ // Re-generate the operands list.
+ Ops.clear();
+ if (AccumulatedConstant != 0)
+ Ops.push_back(getConstant(AccumulatedConstant));
+ for (auto &MulOp : MulOpLists)
+ if (MulOp.first != 0)
+ Ops.push_back(getMulExpr(
+ getConstant(MulOp.first),
+ getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
+ SCEV::FlagAnyWrap, Depth + 1));
+ if (Ops.empty())
+ return getZero(Ty);
+ if (Ops.size() == 1)
+ return Ops[0];
+ return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
+ }
+ }
+
+ // If we are adding something to a multiply expression, make sure the
+ // something is not already an operand of the multiply. If so, merge it into
+ // the multiply.
+ for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
+ const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
+ for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
+ const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
+ if (isa<SCEVConstant>(MulOpSCEV))
+ continue;
+ for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
+ if (MulOpSCEV == Ops[AddOp]) {
+ // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
+ const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
+ if (Mul->getNumOperands() != 2) {
+ // If the multiply has more than two operands, we must get the
+ // Y*Z term.
+ SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
+ Mul->op_begin()+MulOp);
+ MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
+ InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
+ }
+ SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
+ const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
+ const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
+ SCEV::FlagAnyWrap, Depth + 1);
+ if (Ops.size() == 2) return OuterMul;
+ if (AddOp < Idx) {
+ Ops.erase(Ops.begin()+AddOp);
+ Ops.erase(Ops.begin()+Idx-1);
+ } else {
+ Ops.erase(Ops.begin()+Idx);
+ Ops.erase(Ops.begin()+AddOp-1);
+ }
+ Ops.push_back(OuterMul);
+ return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
+ }
+
+ // Check this multiply against other multiplies being added together.
+ for (unsigned OtherMulIdx = Idx+1;
+ OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
+ ++OtherMulIdx) {
+ const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
+ // If MulOp occurs in OtherMul, we can fold the two multiplies
+ // together.
+ for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
+ OMulOp != e; ++OMulOp)
+ if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
+ // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
+ const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
+ if (Mul->getNumOperands() != 2) {
+ SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
+ Mul->op_begin()+MulOp);
+ MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
+ InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
+ }
+ const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
+ if (OtherMul->getNumOperands() != 2) {
+ SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
+ OtherMul->op_begin()+OMulOp);
+ MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
+ InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
+ }
+ SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
+ const SCEV *InnerMulSum =
+ getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
+ const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
+ SCEV::FlagAnyWrap, Depth + 1);
+ if (Ops.size() == 2) return OuterMul;
+ Ops.erase(Ops.begin()+Idx);
+ Ops.erase(Ops.begin()+OtherMulIdx-1);
+ Ops.push_back(OuterMul);
+ return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
+ }
+ }
+ }
+ }
+
+ // If there are any add recurrences in the operands list, see if any other
+ // added values are loop invariant. If so, we can fold them into the
+ // recurrence.
+ while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
+ ++Idx;
+
+ // Scan over all recurrences, trying to fold loop invariants into them.
+ for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
+ // Scan all of the other operands to this add and add them to the vector if
+ // they are loop invariant w.r.t. the recurrence.
+ SmallVector<const SCEV *, 8> LIOps;
+ const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
+ const Loop *AddRecLoop = AddRec->getLoop();
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+ if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
+ LIOps.push_back(Ops[i]);
+ Ops.erase(Ops.begin()+i);
+ --i; --e;
+ }
+
+ // If we found some loop invariants, fold them into the recurrence.
+ if (!LIOps.empty()) {
+ // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
+ LIOps.push_back(AddRec->getStart());
+
+ SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
+ AddRec->op_end());
+ // This follows from the fact that the no-wrap flags on the outer add
+ // expression are applicable on the 0th iteration, when the add recurrence
+ // will be equal to its start value.
+ AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
+
+ // Build the new addrec. Propagate the NUW and NSW flags if both the
+ // outer add and the inner addrec are guaranteed to have no overflow.
+ // Always propagate NW.
+ Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
+ const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
+
+ // If all of the other operands were loop invariant, we are done.
+ if (Ops.size() == 1) return NewRec;
+
+ // Otherwise, add the folded AddRec by the non-invariant parts.
+ for (unsigned i = 0;; ++i)
+ if (Ops[i] == AddRec) {
+ Ops[i] = NewRec;
+ break;
+ }
+ return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
+ }
+
+ // Okay, if there weren't any loop invariants to be folded, check to see if
+ // there are multiple AddRec's with the same loop induction variable being
+ // added together. If so, we can fold them.
+ for (unsigned OtherIdx = Idx+1;
+ OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
+ ++OtherIdx) {
+ // We expect the AddRecExpr's to be sorted in reverse dominance order,
+ // so that the 1st found AddRecExpr is dominated by all others.
+ assert(DT.dominates(
+ cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
+ AddRec->getLoop()->getHeader()) &&
+ "AddRecExprs are not sorted in reverse dominance order?");
+ if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
+ // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
+ SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
+ AddRec->op_end());
+ for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
+ ++OtherIdx) {
+ const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
+ if (OtherAddRec->getLoop() == AddRecLoop) {
+ for (unsigned i = 0, e = OtherAddRec->getNumOperands();
+ i != e; ++i) {
+ if (i >= AddRecOps.size()) {
+ AddRecOps.append(OtherAddRec->op_begin()+i,
+ OtherAddRec->op_end());
+ break;
+ }
+ SmallVector<const SCEV *, 2> TwoOps = {
+ AddRecOps[i], OtherAddRec->getOperand(i)};
+ AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
+ }
+ Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
+ }
+ }
+ // Step size has changed, so we cannot guarantee no self-wraparound.
+ Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
+ return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
+ }
+ }
+
+ // Otherwise couldn't fold anything into this recurrence. Move onto the
+ // next one.
+ }
+
+ // Okay, it looks like we really DO need an add expr. Check to see if we
+ // already have one, otherwise create a new one.
+ return getOrCreateAddExpr(Ops, Flags);
+}
+
+const SCEV *
+ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
+ SCEV::NoWrapFlags Flags) {
+ FoldingSetNodeID ID;
+ ID.AddInteger(scAddExpr);
+ for (const SCEV *Op : Ops)
+ ID.AddPointer(Op);
+ void *IP = nullptr;
+ SCEVAddExpr *S =
+ static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
+ if (!S) {
+ const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
+ std::uninitialized_copy(Ops.begin(), Ops.end(), O);
+ S = new (SCEVAllocator)
+ SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
+ UniqueSCEVs.InsertNode(S, IP);
+ addToLoopUseLists(S);
+ }
+ S->setNoWrapFlags(Flags);
+ return S;
+}
+
+const SCEV *
+ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
+ const Loop *L, SCEV::NoWrapFlags Flags) {
+ FoldingSetNodeID ID;
+ ID.AddInteger(scAddRecExpr);
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+ ID.AddPointer(Ops[i]);
+ ID.AddPointer(L);
+ void *IP = nullptr;
+ SCEVAddRecExpr *S =
+ static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
+ if (!S) {
+ const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
+ std::uninitialized_copy(Ops.begin(), Ops.end(), O);
+ S = new (SCEVAllocator)
+ SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
+ UniqueSCEVs.InsertNode(S, IP);
+ addToLoopUseLists(S);
+ }
+ S->setNoWrapFlags(Flags);
+ return S;
+}
+
+const SCEV *
+ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
+ SCEV::NoWrapFlags Flags) {
+ FoldingSetNodeID ID;
+ ID.AddInteger(scMulExpr);
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+ ID.AddPointer(Ops[i]);
+ void *IP = nullptr;
+ SCEVMulExpr *S =
+ static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
+ if (!S) {
+ const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
+ std::uninitialized_copy(Ops.begin(), Ops.end(), O);
+ S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
+ O, Ops.size());
+ UniqueSCEVs.InsertNode(S, IP);
+ addToLoopUseLists(S);
+ }
+ S->setNoWrapFlags(Flags);
+ return S;
+}
+
+static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
+ uint64_t k = i*j;
+ if (j > 1 && k / j != i) Overflow = true;
+ return k;
+}
+
+/// Compute the result of "n choose k", the binomial coefficient. If an
+/// intermediate computation overflows, Overflow will be set and the return will
+/// be garbage. Overflow is not cleared on absence of overflow.
+static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
+ // We use the multiplicative formula:
+ // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
+ // At each iteration, we take the n-th term of the numeral and divide by the
+ // (k-n)th term of the denominator. This division will always produce an
+ // integral result, and helps reduce the chance of overflow in the
+ // intermediate computations. However, we can still overflow even when the
+ // final result would fit.
+
+ if (n == 0 || n == k) return 1;
+ if (k > n) return 0;
+
+ if (k > n/2)
+ k = n-k;
+
+ uint64_t r = 1;
+ for (uint64_t i = 1; i <= k; ++i) {
+ r = umul_ov(r, n-(i-1), Overflow);
+ r /= i;
+ }
+ return r;
+}
+
+/// Determine if any of the operands in this SCEV are a constant or if
+/// any of the add or multiply expressions in this SCEV contain a constant.
+static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
+ struct FindConstantInAddMulChain {
+ bool FoundConstant = false;
+
+ bool follow(const SCEV *S) {
+ FoundConstant |= isa<SCEVConstant>(S);
+ return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
+ }
+
+ bool isDone() const {
+ return FoundConstant;
+ }
+ };
+
+ FindConstantInAddMulChain F;
+ SCEVTraversal<FindConstantInAddMulChain> ST(F);
+ ST.visitAll(StartExpr);
+ return F.FoundConstant;
+}
+
+/// Get a canonical multiply expression, or something simpler if possible.
+const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
+ SCEV::NoWrapFlags Flags,
+ unsigned Depth) {
+ assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
+ "only nuw or nsw allowed");
+ assert(!Ops.empty() && "Cannot get empty mul!");
+ if (Ops.size() == 1) return Ops[0];
+#ifndef NDEBUG
+ Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
+ for (unsigned i = 1, e = Ops.size(); i != e; ++i)
+ assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
+ "SCEVMulExpr operand types don't match!");
+#endif
+
+ // Sort by complexity, this groups all similar expression types together.
+ GroupByComplexity(Ops, &LI, DT);
+
+ Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
+
+ // Limit recursion calls depth.
+ if (Depth > MaxArithDepth || hasHugeExpression(Ops))
+ return getOrCreateMulExpr(Ops, Flags);
+
+ // If there are any constants, fold them together.
+ unsigned Idx = 0;
+ if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
+
+ if (Ops.size() == 2)
+ // C1*(C2+V) -> C1*C2 + C1*V
+ if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
+ // If any of Add's ops are Adds or Muls with a constant, apply this
+ // transformation as well.
+ //
+ // TODO: There are some cases where this transformation is not
+ // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of
+ // this transformation should be narrowed down.
+ if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
+ return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
+ SCEV::FlagAnyWrap, Depth + 1),
+ getMulExpr(LHSC, Add->getOperand(1),
+ SCEV::FlagAnyWrap, Depth + 1),
+ SCEV::FlagAnyWrap, Depth + 1);
+
+ ++Idx;
+ while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
+ // We found two constants, fold them together!
+ ConstantInt *Fold =
+ ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
+ Ops[0] = getConstant(Fold);
+ Ops.erase(Ops.begin()+1); // Erase the folded element
+ if (Ops.size() == 1) return Ops[0];
+ LHSC = cast<SCEVConstant>(Ops[0]);
+ }
+
+ // If we are left with a constant one being multiplied, strip it off.
+ if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) {
+ Ops.erase(Ops.begin());
+ --Idx;
+ } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
+ // If we have a multiply of zero, it will always be zero.
+ return Ops[0];
+ } else if (Ops[0]->isAllOnesValue()) {
+ // If we have a mul by -1 of an add, try distributing the -1 among the
+ // add operands.
+ if (Ops.size() == 2) {
+ if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
+ SmallVector<const SCEV *, 4> NewOps;
+ bool AnyFolded = false;
+ for (const SCEV *AddOp : Add->operands()) {
+ const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
+ Depth + 1);
+ if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
+ NewOps.push_back(Mul);
+ }
+ if (AnyFolded)
+ return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
+ } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
+ // Negation preserves a recurrence's no self-wrap property.
+ SmallVector<const SCEV *, 4> Operands;
+ for (const SCEV *AddRecOp : AddRec->operands())
+ Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
+ Depth + 1));
+
+ return getAddRecExpr(Operands, AddRec->getLoop(),
+ AddRec->getNoWrapFlags(SCEV::FlagNW));
+ }
+ }
+ }
+
+ if (Ops.size() == 1)
+ return Ops[0];
+ }
+
+ // Skip over the add expression until we get to a multiply.
+ while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
+ ++Idx;
+
+ // If there are mul operands inline them all into this expression.
+ if (Idx < Ops.size()) {
+ bool DeletedMul = false;
+ while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
+ if (Ops.size() > MulOpsInlineThreshold)
+ break;
+ // If we have an mul, expand the mul operands onto the end of the
+ // operands list.
+ Ops.erase(Ops.begin()+Idx);
+ Ops.append(Mul->op_begin(), Mul->op_end());
+ DeletedMul = true;
+ }
+
+ // If we deleted at least one mul, we added operands to the end of the
+ // list, and they are not necessarily sorted. Recurse to resort and
+ // resimplify any operands we just acquired.
+ if (DeletedMul)
+ return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
+ }
+
+ // If there are any add recurrences in the operands list, see if any other
+ // added values are loop invariant. If so, we can fold them into the
+ // recurrence.
+ while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
+ ++Idx;
+
+ // Scan over all recurrences, trying to fold loop invariants into them.
+ for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
+ // Scan all of the other operands to this mul and add them to the vector
+ // if they are loop invariant w.r.t. the recurrence.
+ SmallVector<const SCEV *, 8> LIOps;
+ const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
+ const Loop *AddRecLoop = AddRec->getLoop();
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+ if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
+ LIOps.push_back(Ops[i]);
+ Ops.erase(Ops.begin()+i);
+ --i; --e;
+ }
+
+ // If we found some loop invariants, fold them into the recurrence.
+ if (!LIOps.empty()) {
+ // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
+ SmallVector<const SCEV *, 4> NewOps;
+ NewOps.reserve(AddRec->getNumOperands());
+ const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
+ for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
+ NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
+ SCEV::FlagAnyWrap, Depth + 1));
+
+ // Build the new addrec. Propagate the NUW and NSW flags if both the
+ // outer mul and the inner addrec are guaranteed to have no overflow.
+ //
+ // No self-wrap cannot be guaranteed after changing the step size, but
+ // will be inferred if either NUW or NSW is true.
+ Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
+ const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
+
+ // If all of the other operands were loop invariant, we are done.
+ if (Ops.size() == 1) return NewRec;
+
+ // Otherwise, multiply the folded AddRec by the non-invariant parts.
+ for (unsigned i = 0;; ++i)
+ if (Ops[i] == AddRec) {
+ Ops[i] = NewRec;
+ break;
+ }
+ return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
+ }
+
+ // Okay, if there weren't any loop invariants to be folded, check to see
+ // if there are multiple AddRec's with the same loop induction variable
+ // being multiplied together. If so, we can fold them.
+
+ // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
+ // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
+ // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
+ // ]]],+,...up to x=2n}.
+ // Note that the arguments to choose() are always integers with values
+ // known at compile time, never SCEV objects.
+ //
+ // The implementation avoids pointless extra computations when the two
+ // addrec's are of different length (mathematically, it's equivalent to
+ // an infinite stream of zeros on the right).
+ bool OpsModified = false;
+ for (unsigned OtherIdx = Idx+1;
+ OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
+ ++OtherIdx) {
+ const SCEVAddRecExpr *OtherAddRec =
+ dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
+ if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
+ continue;
+
+ // Limit max number of arguments to avoid creation of unreasonably big
+ // SCEVAddRecs with very complex operands.
+ if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
+ MaxAddRecSize || isHugeExpression(AddRec) ||
+ isHugeExpression(OtherAddRec))
+ continue;
+
+ bool Overflow = false;
+ Type *Ty = AddRec->getType();
+ bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
+ SmallVector<const SCEV*, 7> AddRecOps;
+ for (int x = 0, xe = AddRec->getNumOperands() +
+ OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
+ SmallVector <const SCEV *, 7> SumOps;
+ for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
+ uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
+ for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
+ ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
+ z < ze && !Overflow; ++z) {
+ uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
+ uint64_t Coeff;
+ if (LargerThan64Bits)
+ Coeff = umul_ov(Coeff1, Coeff2, Overflow);
+ else
+ Coeff = Coeff1*Coeff2;
+ const SCEV *CoeffTerm = getConstant(Ty, Coeff);
+ const SCEV *Term1 = AddRec->getOperand(y-z);
+ const SCEV *Term2 = OtherAddRec->getOperand(z);
+ SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
+ SCEV::FlagAnyWrap, Depth + 1));
+ }
+ }
+ if (SumOps.empty())
+ SumOps.push_back(getZero(Ty));
+ AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
+ }
+ if (!Overflow) {
+ const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
+ SCEV::FlagAnyWrap);
+ if (Ops.size() == 2) return NewAddRec;
+ Ops[Idx] = NewAddRec;
+ Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
+ OpsModified = true;
+ AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
+ if (!AddRec)
+ break;
+ }
+ }
+ if (OpsModified)
+ return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
+
+ // Otherwise couldn't fold anything into this recurrence. Move onto the
+ // next one.
+ }
+
+ // Okay, it looks like we really DO need an mul expr. Check to see if we
+ // already have one, otherwise create a new one.
+ return getOrCreateMulExpr(Ops, Flags);
+}
+
+/// Represents an unsigned remainder expression based on unsigned division.
+const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
+ const SCEV *RHS) {
+ assert(getEffectiveSCEVType(LHS->getType()) ==
+ getEffectiveSCEVType(RHS->getType()) &&
+ "SCEVURemExpr operand types don't match!");
+
+ // Short-circuit easy cases
+ if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
+ // If constant is one, the result is trivial
+ if (RHSC->getValue()->isOne())
+ return getZero(LHS->getType()); // X urem 1 --> 0
+
+ // If constant is a power of two, fold into a zext(trunc(LHS)).
+ if (RHSC->getAPInt().isPowerOf2()) {
+ Type *FullTy = LHS->getType();
+ Type *TruncTy =
+ IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
+ return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
+ }
+ }
+
+ // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
+ const SCEV *UDiv = getUDivExpr(LHS, RHS);
+ const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
+ return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
+}
+
+/// Get a canonical unsigned division expression, or something simpler if
+/// possible.
+const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
+ const SCEV *RHS) {
+ assert(getEffectiveSCEVType(LHS->getType()) ==
+ getEffectiveSCEVType(RHS->getType()) &&
+ "SCEVUDivExpr operand types don't match!");
+
+ if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
+ if (RHSC->getValue()->isOne())
+ return LHS; // X udiv 1 --> x
+ // If the denominator is zero, the result of the udiv is undefined. Don't
+ // try to analyze it, because the resolution chosen here may differ from
+ // the resolution chosen in other parts of the compiler.
+ if (!RHSC->getValue()->isZero()) {
+ // Determine if the division can be folded into the operands of
+ // its operands.
+ // TODO: Generalize this to non-constants by using known-bits information.
+ Type *Ty = LHS->getType();
+ unsigned LZ = RHSC->getAPInt().countLeadingZeros();
+ unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
+ // For non-power-of-two values, effectively round the value up to the
+ // nearest power of two.
+ if (!RHSC->getAPInt().isPowerOf2())
+ ++MaxShiftAmt;
+ IntegerType *ExtTy =
+ IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
+ if (const SCEVConstant *Step =
+ dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
+ // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
+ const APInt &StepInt = Step->getAPInt();
+ const APInt &DivInt = RHSC->getAPInt();
+ if (!StepInt.urem(DivInt) &&
+ getZeroExtendExpr(AR, ExtTy) ==
+ getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
+ getZeroExtendExpr(Step, ExtTy),
+ AR->getLoop(), SCEV::FlagAnyWrap)) {
+ SmallVector<const SCEV *, 4> Operands;
+ for (const SCEV *Op : AR->operands())
+ Operands.push_back(getUDivExpr(Op, RHS));
+ return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
+ }
+ /// Get a canonical UDivExpr for a recurrence.
+ /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
+ // We can currently only fold X%N if X is constant.
+ const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
+ if (StartC && !DivInt.urem(StepInt) &&
+ getZeroExtendExpr(AR, ExtTy) ==
+ getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
+ getZeroExtendExpr(Step, ExtTy),
+ AR->getLoop(), SCEV::FlagAnyWrap)) {
+ const APInt &StartInt = StartC->getAPInt();
+ const APInt &StartRem = StartInt.urem(StepInt);
+ if (StartRem != 0)
+ LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
+ AR->getLoop(), SCEV::FlagNW);
+ }
+ }
+ // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
+ if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
+ SmallVector<const SCEV *, 4> Operands;
+ for (const SCEV *Op : M->operands())
+ Operands.push_back(getZeroExtendExpr(Op, ExtTy));
+ if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
+ // Find an operand that's safely divisible.
+ for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
+ const SCEV *Op = M->getOperand(i);
+ const SCEV *Div = getUDivExpr(Op, RHSC);
+ if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
+ Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
+ M->op_end());
+ Operands[i] = Div;
+ return getMulExpr(Operands);
+ }
+ }
+ }
+
+ // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
+ if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
+ if (auto *DivisorConstant =
+ dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
+ bool Overflow = false;
+ APInt NewRHS =
+ DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
+ if (Overflow) {
+ return getConstant(RHSC->getType(), 0, false);
+ }
+ return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
+ }
+ }
+
+ // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
+ if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
+ SmallVector<const SCEV *, 4> Operands;
+ for (const SCEV *Op : A->operands())
+ Operands.push_back(getZeroExtendExpr(Op, ExtTy));
+ if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
+ Operands.clear();
+ for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
+ const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
+ if (isa<SCEVUDivExpr>(Op) ||
+ getMulExpr(Op, RHS) != A->getOperand(i))
+ break;
+ Operands.push_back(Op);
+ }
+ if (Operands.size() == A->getNumOperands())
+ return getAddExpr(Operands);
+ }
+ }
+
+ // Fold if both operands are constant.
+ if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
+ Constant *LHSCV = LHSC->getValue();
+ Constant *RHSCV = RHSC->getValue();
+ return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
+ RHSCV)));
+ }
+ }
+ }
+
+ FoldingSetNodeID ID;
+ ID.AddInteger(scUDivExpr);
+ ID.AddPointer(LHS);
+ ID.AddPointer(RHS);
+ void *IP = nullptr;
+ if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+ SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
+ LHS, RHS);
+ UniqueSCEVs.InsertNode(S, IP);
+ addToLoopUseLists(S);
+ return S;
+}
+
+static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
+ APInt A = C1->getAPInt().abs();
+ APInt B = C2->getAPInt().abs();
+ uint32_t ABW = A.getBitWidth();
+ uint32_t BBW = B.getBitWidth();
+
+ if (ABW > BBW)
+ B = B.zext(ABW);
+ else if (ABW < BBW)
+ A = A.zext(BBW);
+
+ return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
+}
+
+/// Get a canonical unsigned division expression, or something simpler if
+/// possible. There is no representation for an exact udiv in SCEV IR, but we
+/// can attempt to remove factors from the LHS and RHS. We can't do this when
+/// it's not exact because the udiv may be clearing bits.
+const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
+ const SCEV *RHS) {
+ // TODO: we could try to find factors in all sorts of things, but for now we
+ // just deal with u/exact (multiply, constant). See SCEVDivision towards the
+ // end of this file for inspiration.
+
+ const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
+ if (!Mul || !Mul->hasNoUnsignedWrap())
+ return getUDivExpr(LHS, RHS);
+
+ if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
+ // If the mulexpr multiplies by a constant, then that constant must be the
+ // first element of the mulexpr.
+ if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
+ if (LHSCst == RHSCst) {
+ SmallVector<const SCEV *, 2> Operands;
+ Operands.append(Mul->op_begin() + 1, Mul->op_end());
+ return getMulExpr(Operands);
+ }
+
+ // We can't just assume that LHSCst divides RHSCst cleanly, it could be
+ // that there's a factor provided by one of the other terms. We need to
+ // check.
+ APInt Factor = gcd(LHSCst, RHSCst);
+ if (!Factor.isIntN(1)) {
+ LHSCst =
+ cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
+ RHSCst =
+ cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
+ SmallVector<const SCEV *, 2> Operands;
+ Operands.push_back(LHSCst);
+ Operands.append(Mul->op_begin() + 1, Mul->op_end());
+ LHS = getMulExpr(Operands);
+ RHS = RHSCst;
+ Mul = dyn_cast<SCEVMulExpr>(LHS);
+ if (!Mul)
+ return getUDivExactExpr(LHS, RHS);
+ }
+ }
+ }
+
+ for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
+ if (Mul->getOperand(i) == RHS) {
+ SmallVector<const SCEV *, 2> Operands;
+ Operands.append(Mul->op_begin(), Mul->op_begin() + i);
+ Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
+ return getMulExpr(Operands);
+ }
+ }
+
+ return getUDivExpr(LHS, RHS);
+}
+
+/// Get an add recurrence expression for the specified loop. Simplify the
+/// expression as much as possible.
+const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
+ const Loop *L,
+ SCEV::NoWrapFlags Flags) {
+ SmallVector<const SCEV *, 4> Operands;
+ Operands.push_back(Start);
+ if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
+ if (StepChrec->getLoop() == L) {
+ Operands.append(StepChrec->op_begin(), StepChrec->op_end());
+ return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
+ }
+
+ Operands.push_back(Step);
+ return getAddRecExpr(Operands, L, Flags);
+}
+
+/// Get an add recurrence expression for the specified loop. Simplify the
+/// expression as much as possible.
+const SCEV *
+ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
+ const Loop *L, SCEV::NoWrapFlags Flags) {
+ if (Operands.size() == 1) return Operands[0];
+#ifndef NDEBUG
+ Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
+ for (unsigned i = 1, e = Operands.size(); i != e; ++i)
+ assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
+ "SCEVAddRecExpr operand types don't match!");
+ for (unsigned i = 0, e = Operands.size(); i != e; ++i)
+ assert(isLoopInvariant(Operands[i], L) &&
+ "SCEVAddRecExpr operand is not loop-invariant!");
+#endif
+
+ if (Operands.back()->isZero()) {
+ Operands.pop_back();
+ return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
+ }
+
+ // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
+ // use that information to infer NUW and NSW flags. However, computing a
+ // BE count requires calling getAddRecExpr, so we may not yet have a
+ // meaningful BE count at this point (and if we don't, we'd be stuck
+ // with a SCEVCouldNotCompute as the cached BE count).
+
+ Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
+
+ // Canonicalize nested AddRecs in by nesting them in order of loop depth.
+ if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
+ const Loop *NestedLoop = NestedAR->getLoop();
+ if (L->contains(NestedLoop)
+ ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
+ : (!NestedLoop->contains(L) &&
+ DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
+ SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
+ NestedAR->op_end());
+ Operands[0] = NestedAR->getStart();
+ // AddRecs require their operands be loop-invariant with respect to their
+ // loops. Don't perform this transformation if it would break this
+ // requirement.
+ bool AllInvariant = all_of(
+ Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
+
+ if (AllInvariant) {
+ // Create a recurrence for the outer loop with the same step size.
+ //
+ // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
+ // inner recurrence has the same property.
+ SCEV::NoWrapFlags OuterFlags =
+ maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
+
+ NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
+ AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
+ return isLoopInvariant(Op, NestedLoop);
+ });
+
+ if (AllInvariant) {
+ // Ok, both add recurrences are valid after the transformation.
+ //
+ // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
+ // the outer recurrence has the same property.
+ SCEV::NoWrapFlags InnerFlags =
+ maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
+ return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
+ }
+ }
+ // Reset Operands to its original state.
+ Operands[0] = NestedAR;
+ }
+ }
+
+ // Okay, it looks like we really DO need an addrec expr. Check to see if we
+ // already have one, otherwise create a new one.
+ return getOrCreateAddRecExpr(Operands, L, Flags);
+}
+
+const SCEV *
+ScalarEvolution::getGEPExpr(GEPOperator *GEP,
+ const SmallVectorImpl<const SCEV *> &IndexExprs) {
+ const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
+ // getSCEV(Base)->getType() has the same address space as Base->getType()
+ // because SCEV::getType() preserves the address space.
+ Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
+ // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
+ // instruction to its SCEV, because the Instruction may be guarded by control
+ // flow and the no-overflow bits may not be valid for the expression in any
+ // context. This can be fixed similarly to how these flags are handled for
+ // adds.
+ SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
+ : SCEV::FlagAnyWrap;
+
+ const SCEV *TotalOffset = getZero(IntPtrTy);
+ // The array size is unimportant. The first thing we do on CurTy is getting
+ // its element type.
+ Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0);
+ for (const SCEV *IndexExpr : IndexExprs) {
+ // Compute the (potentially symbolic) offset in bytes for this index.
+ if (StructType *STy = dyn_cast<StructType>(CurTy)) {
+ // For a struct, add the member offset.
+ ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
+ unsigned FieldNo = Index->getZExtValue();
+ const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
+
+ // Add the field offset to the running total offset.
+ TotalOffset = getAddExpr(TotalOffset, FieldOffset);
+
+ // Update CurTy to the type of the field at Index.
+ CurTy = STy->getTypeAtIndex(Index);
+ } else {
+ // Update CurTy to its element type.
+ CurTy = cast<SequentialType>(CurTy)->getElementType();
+ // For an array, add the element offset, explicitly scaled.
+ const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
+ // Getelementptr indices are signed.
+ IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
+
+ // Multiply the index by the element size to compute the element offset.
+ const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
+
+ // Add the element offset to the running total offset.
+ TotalOffset = getAddExpr(TotalOffset, LocalOffset);
+ }
+ }
+
+ // Add the total offset from all the GEP indices to the base.
+ return getAddExpr(BaseExpr, TotalOffset, Wrap);
+}
+
+std::tuple<const SCEV *, FoldingSetNodeID, void *>
+ScalarEvolution::findExistingSCEVInCache(int SCEVType,
+ ArrayRef<const SCEV *> Ops) {
+ FoldingSetNodeID ID;
+ void *IP = nullptr;
+ ID.AddInteger(SCEVType);
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+ ID.AddPointer(Ops[i]);
+ return std::tuple<const SCEV *, FoldingSetNodeID, void *>(
+ UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
+}
+
+const SCEV *ScalarEvolution::getMinMaxExpr(unsigned Kind,
+ SmallVectorImpl<const SCEV *> &Ops) {
+ assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
+ if (Ops.size() == 1) return Ops[0];
+#ifndef NDEBUG
+ Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
+ for (unsigned i = 1, e = Ops.size(); i != e; ++i)
+ assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
+ "Operand types don't match!");
+#endif
+
+ bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
+ bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
+
+ // Sort by complexity, this groups all similar expression types together.
+ GroupByComplexity(Ops, &LI, DT);
+
+ // Check if we have created the same expression before.
+ if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
+ return S;
+ }
+
+ // If there are any constants, fold them together.
+ unsigned Idx = 0;
+ if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
+ ++Idx;
+ assert(Idx < Ops.size());
+ auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
+ if (Kind == scSMaxExpr)
+ return APIntOps::smax(LHS, RHS);
+ else if (Kind == scSMinExpr)
+ return APIntOps::smin(LHS, RHS);
+ else if (Kind == scUMaxExpr)
+ return APIntOps::umax(LHS, RHS);
+ else if (Kind == scUMinExpr)
+ return APIntOps::umin(LHS, RHS);
+ llvm_unreachable("Unknown SCEV min/max opcode");
+ };
+
+ while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
+ // We found two constants, fold them together!
+ ConstantInt *Fold = ConstantInt::get(
+ getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
+ Ops[0] = getConstant(Fold);
+ Ops.erase(Ops.begin()+1); // Erase the folded element
+ if (Ops.size() == 1) return Ops[0];
+ LHSC = cast<SCEVConstant>(Ops[0]);
+ }
+
+ bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
+ bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
+
+ if (IsMax ? IsMinV : IsMaxV) {
+ // If we are left with a constant minimum(/maximum)-int, strip it off.
+ Ops.erase(Ops.begin());
+ --Idx;
+ } else if (IsMax ? IsMaxV : IsMinV) {
+ // If we have a max(/min) with a constant maximum(/minimum)-int,
+ // it will always be the extremum.
+ return LHSC;
+ }
+
+ if (Ops.size() == 1) return Ops[0];
+ }
+
+ // Find the first operation of the same kind
+ while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
+ ++Idx;
+
+ // Check to see if one of the operands is of the same kind. If so, expand its
+ // operands onto our operand list, and recurse to simplify.
+ if (Idx < Ops.size()) {
+ bool DeletedAny = false;
+ while (Ops[Idx]->getSCEVType() == Kind) {
+ const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
+ Ops.erase(Ops.begin()+Idx);
+ Ops.append(SMME->op_begin(), SMME->op_end());
+ DeletedAny = true;
+ }
+
+ if (DeletedAny)
+ return getMinMaxExpr(Kind, Ops);
+ }
+
+ // Okay, check to see if the same value occurs in the operand list twice. If
+ // so, delete one. Since we sorted the list, these values are required to
+ // be adjacent.
+ llvm::CmpInst::Predicate GEPred =
+ IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
+ llvm::CmpInst::Predicate LEPred =
+ IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
+ llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
+ llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
+ for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
+ if (Ops[i] == Ops[i + 1] ||
+ isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
+ // X op Y op Y --> X op Y
+ // X op Y --> X, if we know X, Y are ordered appropriately
+ Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
+ --i;
+ --e;
+ } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
+ Ops[i + 1])) {
+ // X op Y --> Y, if we know X, Y are ordered appropriately
+ Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
+ --i;
+ --e;
+ }
+ }
+
+ if (Ops.size() == 1) return Ops[0];
+
+ assert(!Ops.empty() && "Reduced smax down to nothing!");
+
+ // Okay, it looks like we really DO need an expr. Check to see if we
+ // already have one, otherwise create a new one.
+ const SCEV *ExistingSCEV;
+ FoldingSetNodeID ID;
+ void *IP;
+ std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
+ if (ExistingSCEV)
+ return ExistingSCEV;
+ const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
+ std::uninitialized_copy(Ops.begin(), Ops.end(), O);
+ SCEV *S = new (SCEVAllocator) SCEVMinMaxExpr(
+ ID.Intern(SCEVAllocator), static_cast<SCEVTypes>(Kind), O, Ops.size());
+
+ UniqueSCEVs.InsertNode(S, IP);
+ addToLoopUseLists(S);
+ return S;
+}
+
+const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
+ SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
+ return getSMaxExpr(Ops);
+}
+
+const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
+ return getMinMaxExpr(scSMaxExpr, Ops);
+}
+
+const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
+ SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
+ return getUMaxExpr(Ops);
+}
+
+const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
+ return getMinMaxExpr(scUMaxExpr, Ops);
+}
+
+const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
+ const SCEV *RHS) {
+ SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
+ return getSMinExpr(Ops);
+}
+
+const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
+ return getMinMaxExpr(scSMinExpr, Ops);
+}
+
+const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
+ const SCEV *RHS) {
+ SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
+ return getUMinExpr(Ops);
+}
+
+const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
+ return getMinMaxExpr(scUMinExpr, Ops);
+}
+
+const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
+ // We can bypass creating a target-independent
+ // constant expression and then folding it back into a ConstantInt.
+ // This is just a compile-time optimization.
+ return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
+}
+
+const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
+ StructType *STy,
+ unsigned FieldNo) {
+ // We can bypass creating a target-independent
+ // constant expression and then folding it back into a ConstantInt.
+ // This is just a compile-time optimization.
+ return getConstant(
+ IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
+}
+
+const SCEV *ScalarEvolution::getUnknown(Value *V) {
+ // Don't attempt to do anything other than create a SCEVUnknown object
+ // here. createSCEV only calls getUnknown after checking for all other
+ // interesting possibilities, and any other code that calls getUnknown
+ // is doing so in order to hide a value from SCEV canonicalization.
+
+ FoldingSetNodeID ID;
+ ID.AddInteger(scUnknown);
+ ID.AddPointer(V);
+ void *IP = nullptr;
+ if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
+ assert(cast<SCEVUnknown>(S)->getValue() == V &&
+ "Stale SCEVUnknown in uniquing map!");
+ return S;
+ }
+ SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
+ FirstUnknown);
+ FirstUnknown = cast<SCEVUnknown>(S);
+ UniqueSCEVs.InsertNode(S, IP);
+ return S;
+}
+
+//===----------------------------------------------------------------------===//
+// Basic SCEV Analysis and PHI Idiom Recognition Code
+//
+
+/// Test if values of the given type are analyzable within the SCEV
+/// framework. This primarily includes integer types, and it can optionally
+/// include pointer types if the ScalarEvolution class has access to
+/// target-specific information.
+bool ScalarEvolution::isSCEVable(Type *Ty) const {
+ // Integers and pointers are always SCEVable.
+ return Ty->isIntOrPtrTy();
+}
+
+/// Return the size in bits of the specified type, for which isSCEVable must
+/// return true.
+uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
+ assert(isSCEVable(Ty) && "Type is not SCEVable!");
+ if (Ty->isPointerTy())
+ return getDataLayout().getIndexTypeSizeInBits(Ty);
+ return getDataLayout().getTypeSizeInBits(Ty);
+}
+
+/// Return a type with the same bitwidth as the given type and which represents
+/// how SCEV will treat the given type, for which isSCEVable must return
+/// true. For pointer types, this is the pointer-sized integer type.
+Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
+ assert(isSCEVable(Ty) && "Type is not SCEVable!");
+
+ if (Ty->isIntegerTy())
+ return Ty;
+
+ // The only other support type is pointer.
+ assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
+ return getDataLayout().getIntPtrType(Ty);
+}
+
+Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
+ return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
+}
+
+const SCEV *ScalarEvolution::getCouldNotCompute() {
+ return CouldNotCompute.get();
+}
+
+bool ScalarEvolution::checkValidity(const SCEV *S) const {
+ bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
+ auto *SU = dyn_cast<SCEVUnknown>(S);
+ return SU && SU->getValue() == nullptr;
+ });
+
+ return !ContainsNulls;
+}
+
+bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
+ HasRecMapType::iterator I = HasRecMap.find(S);
+ if (I != HasRecMap.end())
+ return I->second;
+
+ bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>);
+ HasRecMap.insert({S, FoundAddRec});
+ return FoundAddRec;
+}
+
+/// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
+/// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
+/// offset I, then return {S', I}, else return {\p S, nullptr}.
+static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
+ const auto *Add = dyn_cast<SCEVAddExpr>(S);
+ if (!Add)
+ return {S, nullptr};
+
+ if (Add->getNumOperands() != 2)
+ return {S, nullptr};
+
+ auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
+ if (!ConstOp)
+ return {S, nullptr};
+
+ return {Add->getOperand(1), ConstOp->getValue()};
+}
+
+/// Return the ValueOffsetPair set for \p S. \p S can be represented
+/// by the value and offset from any ValueOffsetPair in the set.
+SetVector<ScalarEvolution::ValueOffsetPair> *
+ScalarEvolution::getSCEVValues(const SCEV *S) {
+ ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
+ if (SI == ExprValueMap.end())
+ return nullptr;
+#ifndef NDEBUG
+ if (VerifySCEVMap) {
+ // Check there is no dangling Value in the set returned.
+ for (const auto &VE : SI->second)
+ assert(ValueExprMap.count(VE.first));
+ }
+#endif
+ return &SI->second;
+}
+
+/// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
+/// cannot be used separately. eraseValueFromMap should be used to remove
+/// V from ValueExprMap and ExprValueMap at the same time.
+void ScalarEvolution::eraseValueFromMap(Value *V) {
+ ValueExprMapType::iterator I = ValueExprMap.find_as(V);
+ if (I != ValueExprMap.end()) {
+ const SCEV *S = I->second;
+ // Remove {V, 0} from the set of ExprValueMap[S]
+ if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
+ SV->remove({V, nullptr});
+
+ // Remove {V, Offset} from the set of ExprValueMap[Stripped]
+ const SCEV *Stripped;
+ ConstantInt *Offset;
+ std::tie(Stripped, Offset) = splitAddExpr(S);
+ if (Offset != nullptr) {
+ if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
+ SV->remove({V, Offset});
+ }
+ ValueExprMap.erase(V);
+ }
+}
+
+/// Check whether value has nuw/nsw/exact set but SCEV does not.
+/// TODO: In reality it is better to check the poison recursively
+/// but this is better than nothing.
+static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
+ if (auto *I = dyn_cast<Instruction>(V)) {
+ if (isa<OverflowingBinaryOperator>(I)) {
+ if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
+ if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
+ return true;
+ if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
+ return true;
+ }
+ } else if (isa<PossiblyExactOperator>(I) && I->isExact())
+ return true;
+ }
+ return false;
+}
+
+/// Return an existing SCEV if it exists, otherwise analyze the expression and
+/// create a new one.
+const SCEV *ScalarEvolution::getSCEV(Value *V) {
+ assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
+
+ const SCEV *S = getExistingSCEV(V);
+ if (S == nullptr) {
+ S = createSCEV(V);
+ // During PHI resolution, it is possible to create two SCEVs for the same
+ // V, so it is needed to double check whether V->S is inserted into
+ // ValueExprMap before insert S->{V, 0} into ExprValueMap.
+ std::pair<ValueExprMapType::iterator, bool> Pair =
+ ValueExprMap.insert({SCEVCallbackVH(V, this), S});
+ if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
+ ExprValueMap[S].insert({V, nullptr});
+
+ // If S == Stripped + Offset, add Stripped -> {V, Offset} into
+ // ExprValueMap.
+ const SCEV *Stripped = S;
+ ConstantInt *Offset = nullptr;
+ std::tie(Stripped, Offset) = splitAddExpr(S);
+ // If stripped is SCEVUnknown, don't bother to save
+ // Stripped -> {V, offset}. It doesn't simplify and sometimes even
+ // increase the complexity of the expansion code.
+ // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
+ // because it may generate add/sub instead of GEP in SCEV expansion.
+ if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
+ !isa<GetElementPtrInst>(V))
+ ExprValueMap[Stripped].insert({V, Offset});
+ }
+ }
+ return S;
+}
+
+const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
+ assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
+
+ ValueExprMapType::iterator I = ValueExprMap.find_as(V);
+ if (I != ValueExprMap.end()) {
+ const SCEV *S = I->second;
+ if (checkValidity(S))
+ return S;
+ eraseValueFromMap(V);
+ forgetMemoizedResults(S);
+ }
+ return nullptr;
+}
+
+/// Return a SCEV corresponding to -V = -1*V
+const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
+ SCEV::NoWrapFlags Flags) {
+ if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
+ return getConstant(
+ cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
+
+ Type *Ty = V->getType();
+ Ty = getEffectiveSCEVType(Ty);
+ return getMulExpr(
+ V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
+}
+
+/// If Expr computes ~A, return A else return nullptr
+static const SCEV *MatchNotExpr(const SCEV *Expr) {
+ const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
+ if (!Add || Add->getNumOperands() != 2 ||
+ !Add->getOperand(0)->isAllOnesValue())
+ return nullptr;
+
+ const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
+ if (!AddRHS || AddRHS->getNumOperands() != 2 ||
+ !AddRHS->getOperand(0)->isAllOnesValue())
+ return nullptr;
+
+ return AddRHS->getOperand(1);
+}
+
+/// Return a SCEV corresponding to ~V = -1-V
+const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
+ if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
+ return getConstant(
+ cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
+
+ // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
+ if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
+ auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
+ SmallVector<const SCEV *, 2> MatchedOperands;
+ for (const SCEV *Operand : MME->operands()) {
+ const SCEV *Matched = MatchNotExpr(Operand);
+ if (!Matched)
+ return (const SCEV *)nullptr;
+ MatchedOperands.push_back(Matched);
+ }
+ return getMinMaxExpr(
+ SCEVMinMaxExpr::negate(static_cast<SCEVTypes>(MME->getSCEVType())),
+ MatchedOperands);
+ };
+ if (const SCEV *Replaced = MatchMinMaxNegation(MME))
+ return Replaced;
+ }
+
+ Type *Ty = V->getType();
+ Ty = getEffectiveSCEVType(Ty);
+ const SCEV *AllOnes =
+ getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
+ return getMinusSCEV(AllOnes, V);
+}
+
+const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
+ SCEV::NoWrapFlags Flags,
+ unsigned Depth) {
+ // Fast path: X - X --> 0.
+ if (LHS == RHS)
+ return getZero(LHS->getType());
+
+ // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
+ // makes it so that we cannot make much use of NUW.
+ auto AddFlags = SCEV::FlagAnyWrap;
+ const bool RHSIsNotMinSigned =
+ !getSignedRangeMin(RHS).isMinSignedValue();
+ if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
+ // Let M be the minimum representable signed value. Then (-1)*RHS
+ // signed-wraps if and only if RHS is M. That can happen even for
+ // a NSW subtraction because e.g. (-1)*M signed-wraps even though
+ // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
+ // (-1)*RHS, we need to prove that RHS != M.
+ //
+ // If LHS is non-negative and we know that LHS - RHS does not
+ // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
+ // either by proving that RHS > M or that LHS >= 0.
+ if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
+ AddFlags = SCEV::FlagNSW;
+ }
+ }
+
+ // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
+ // RHS is NSW and LHS >= 0.
+ //
+ // The difficulty here is that the NSW flag may have been proven
+ // relative to a loop that is to be found in a recurrence in LHS and
+ // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
+ // larger scope than intended.
+ auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
+
+ return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
+}
+
+const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
+ unsigned Depth) {
+ Type *SrcTy = V->getType();
+ assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
+ "Cannot truncate or zero extend with non-integer arguments!");
+ if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
+ return V; // No conversion
+ if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
+ return getTruncateExpr(V, Ty, Depth);
+ return getZeroExtendExpr(V, Ty, Depth);
+}
+
+const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
+ unsigned Depth) {
+ Type *SrcTy = V->getType();
+ assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
+ "Cannot truncate or zero extend with non-integer arguments!");
+ if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
+ return V; // No conversion
+ if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
+ return getTruncateExpr(V, Ty, Depth);
+ return getSignExtendExpr(V, Ty, Depth);
+}
+
+const SCEV *
+ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
+ Type *SrcTy = V->getType();
+ assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
+ "Cannot noop or zero extend with non-integer arguments!");
+ assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
+ "getNoopOrZeroExtend cannot truncate!");
+ if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
+ return V; // No conversion
+ return getZeroExtendExpr(V, Ty);
+}
+
+const SCEV *
+ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
+ Type *SrcTy = V->getType();
+ assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
+ "Cannot noop or sign extend with non-integer arguments!");
+ assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
+ "getNoopOrSignExtend cannot truncate!");
+ if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
+ return V; // No conversion
+ return getSignExtendExpr(V, Ty);
+}
+
+const SCEV *
+ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
+ Type *SrcTy = V->getType();
+ assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
+ "Cannot noop or any extend with non-integer arguments!");
+ assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
+ "getNoopOrAnyExtend cannot truncate!");
+ if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
+ return V; // No conversion
+ return getAnyExtendExpr(V, Ty);
+}
+
+const SCEV *
+ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
+ Type *SrcTy = V->getType();
+ assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
+ "Cannot truncate or noop with non-integer arguments!");
+ assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
+ "getTruncateOrNoop cannot extend!");
+ if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
+ return V; // No conversion
+ return getTruncateExpr(V, Ty);
+}
+
+const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
+ const SCEV *RHS) {
+ const SCEV *PromotedLHS = LHS;
+ const SCEV *PromotedRHS = RHS;
+
+ if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
+ PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
+ else
+ PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
+
+ return getUMaxExpr(PromotedLHS, PromotedRHS);
+}
+
+const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
+ const SCEV *RHS) {
+ SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
+ return getUMinFromMismatchedTypes(Ops);
+}
+
+const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
+ SmallVectorImpl<const SCEV *> &Ops) {
+ assert(!Ops.empty() && "At least one operand must be!");
+ // Trivial case.
+ if (Ops.size() == 1)
+ return Ops[0];
+
+ // Find the max type first.
+ Type *MaxType = nullptr;
+ for (auto *S : Ops)
+ if (MaxType)
+ MaxType = getWiderType(MaxType, S->getType());
+ else
+ MaxType = S->getType();
+
+ // Extend all ops to max type.
+ SmallVector<const SCEV *, 2> PromotedOps;
+ for (auto *S : Ops)
+ PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
+
+ // Generate umin.
+ return getUMinExpr(PromotedOps);
+}
+
+const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
+ // A pointer operand may evaluate to a nonpointer expression, such as null.
+ if (!V->getType()->isPointerTy())
+ return V;
+
+ if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
+ return getPointerBase(Cast->getOperand());
+ } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
+ const SCEV *PtrOp = nullptr;
+ for (const SCEV *NAryOp : NAry->operands()) {
+ if (NAryOp->getType()->isPointerTy()) {
+ // Cannot find the base of an expression with multiple pointer operands.
+ if (PtrOp)
+ return V;
+ PtrOp = NAryOp;
+ }
+ }
+ if (!PtrOp)
+ return V;
+ return getPointerBase(PtrOp);
+ }
+ return V;
+}
+
+/// Push users of the given Instruction onto the given Worklist.
+static void
+PushDefUseChildren(Instruction *I,
+ SmallVectorImpl<Instruction *> &Worklist) {
+ // Push the def-use children onto the Worklist stack.
+ for (User *U : I->users())
+ Worklist.push_back(cast<Instruction>(U));
+}
+
+void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
+ SmallVector<Instruction *, 16> Worklist;
+ PushDefUseChildren(PN, Worklist);
+
+ SmallPtrSet<Instruction *, 8> Visited;
+ Visited.insert(PN);
+ while (!Worklist.empty()) {
+ Instruction *I = Worklist.pop_back_val();
+ if (!Visited.insert(I).second)
+ continue;
+
+ auto It = ValueExprMap.find_as(static_cast<Value *>(I));
+ if (It != ValueExprMap.end()) {
+ const SCEV *Old = It->second;
+
+ // Short-circuit the def-use traversal if the symbolic name
+ // ceases to appear in expressions.
+ if (Old != SymName && !hasOperand(Old, SymName))
+ continue;
+
+ // SCEVUnknown for a PHI either means that it has an unrecognized
+ // structure, it's a PHI that's in the progress of being computed
+ // by createNodeForPHI, or it's a single-value PHI. In the first case,
+ // additional loop trip count information isn't going to change anything.
+ // In the second case, createNodeForPHI will perform the necessary
+ // updates on its own when it gets to that point. In the third, we do
+ // want to forget the SCEVUnknown.
+ if (!isa<PHINode>(I) ||
+ !isa<SCEVUnknown>(Old) ||
+ (I != PN && Old == SymName)) {
+ eraseValueFromMap(It->first);
+ forgetMemoizedResults(Old);
+ }
+ }
+
+ PushDefUseChildren(I, Worklist);
+ }
+}
+
+namespace {
+
+/// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
+/// expression in case its Loop is L. If it is not L then
+/// if IgnoreOtherLoops is true then use AddRec itself
+/// otherwise rewrite cannot be done.
+/// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
+class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
+public:
+ static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
+ bool IgnoreOtherLoops = true) {
+ SCEVInitRewriter Rewriter(L, SE);
+ const SCEV *Result = Rewriter.visit(S);
+ if (Rewriter.hasSeenLoopVariantSCEVUnknown())
+ return SE.getCouldNotCompute();
+ return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
+ ? SE.getCouldNotCompute()
+ : Result;
+ }
+
+ const SCEV *visitUnknown(const SCEVUnknown *Expr) {
+ if (!SE.isLoopInvariant(Expr, L))
+ SeenLoopVariantSCEVUnknown = true;
+ return Expr;
+ }
+
+ const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
+ // Only re-write AddRecExprs for this loop.
+ if (Expr->getLoop() == L)
+ return Expr->getStart();
+ SeenOtherLoops = true;
+ return Expr;
+ }
+
+ bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
+
+ bool hasSeenOtherLoops() { return SeenOtherLoops; }
+
+private:
+ explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
+ : SCEVRewriteVisitor(SE), L(L) {}
+
+ const Loop *L;
+ bool SeenLoopVariantSCEVUnknown = false;
+ bool SeenOtherLoops = false;
+};
+
+/// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
+/// increment expression in case its Loop is L. If it is not L then
+/// use AddRec itself.
+/// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
+class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
+public:
+ static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
+ SCEVPostIncRewriter Rewriter(L, SE);
+ const SCEV *Result = Rewriter.visit(S);
+ return Rewriter.hasSeenLoopVariantSCEVUnknown()
+ ? SE.getCouldNotCompute()
+ : Result;
+ }
+
+ const SCEV *visitUnknown(const SCEVUnknown *Expr) {
+ if (!SE.isLoopInvariant(Expr, L))
+ SeenLoopVariantSCEVUnknown = true;
+ return Expr;
+ }
+
+ const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
+ // Only re-write AddRecExprs for this loop.
+ if (Expr->getLoop() == L)
+ return Expr->getPostIncExpr(SE);
+ SeenOtherLoops = true;
+ return Expr;
+ }
+
+ bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
+
+ bool hasSeenOtherLoops() { return SeenOtherLoops; }
+
+private:
+ explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
+ : SCEVRewriteVisitor(SE), L(L) {}
+
+ const Loop *L;
+ bool SeenLoopVariantSCEVUnknown = false;
+ bool SeenOtherLoops = false;
+};
+
+/// This class evaluates the compare condition by matching it against the
+/// condition of loop latch. If there is a match we assume a true value
+/// for the condition while building SCEV nodes.
+class SCEVBackedgeConditionFolder
+ : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
+public:
+ static const SCEV *rewrite(const SCEV *S, const Loop *L,
+ ScalarEvolution &SE) {
+ bool IsPosBECond = false;
+ Value *BECond = nullptr;
+ if (BasicBlock *Latch = L->getLoopLatch()) {
+ BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
+ if (BI && BI->isConditional()) {
+ assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
+ "Both outgoing branches should not target same header!");
+ BECond = BI->getCondition();
+ IsPosBECond = BI->getSuccessor(0) == L->getHeader();
+ } else {
+ return S;
+ }
+ }
+ SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
+ return Rewriter.visit(S);
+ }
+
+ const SCEV *visitUnknown(const SCEVUnknown *Expr) {
+ const SCEV *Result = Expr;
+ bool InvariantF = SE.isLoopInvariant(Expr, L);
+
+ if (!InvariantF) {
+ Instruction *I = cast<Instruction>(Expr->getValue());
+ switch (I->getOpcode()) {
+ case Instruction::Select: {
+ SelectInst *SI = cast<SelectInst>(I);
+ Optional<const SCEV *> Res =
+ compareWithBackedgeCondition(SI->getCondition());
+ if (Res.hasValue()) {
+ bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
+ Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
+ }
+ break;
+ }
+ default: {
+ Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
+ if (Res.hasValue())
+ Result = Res.getValue();
+ break;
+ }
+ }
+ }
+ return Result;
+ }
+
+private:
+ explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
+ bool IsPosBECond, ScalarEvolution &SE)
+ : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
+ IsPositiveBECond(IsPosBECond) {}
+
+ Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
+
+ const Loop *L;
+ /// Loop back condition.
+ Value *BackedgeCond = nullptr;
+ /// Set to true if loop back is on positive branch condition.
+ bool IsPositiveBECond;
+};
+
+Optional<const SCEV *>
+SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
+
+ // If value matches the backedge condition for loop latch,
+ // then return a constant evolution node based on loopback
+ // branch taken.
+ if (BackedgeCond == IC)
+ return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
+ : SE.getZero(Type::getInt1Ty(SE.getContext()));
+ return None;
+}
+
+class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
+public:
+ static const SCEV *rewrite(const SCEV *S, const Loop *L,
+ ScalarEvolution &SE) {
+ SCEVShiftRewriter Rewriter(L, SE);
+ const SCEV *Result = Rewriter.visit(S);
+ return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
+ }
+
+ const SCEV *visitUnknown(const SCEVUnknown *Expr) {
+ // Only allow AddRecExprs for this loop.
+ if (!SE.isLoopInvariant(Expr, L))
+ Valid = false;
+ return Expr;
+ }
+
+ const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
+ if (Expr->getLoop() == L && Expr->isAffine())
+ return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
+ Valid = false;
+ return Expr;
+ }
+
+ bool isValid() { return Valid; }
+
+private:
+ explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
+ : SCEVRewriteVisitor(SE), L(L) {}
+
+ const Loop *L;
+ bool Valid = true;
+};
+
+} // end anonymous namespace
+
+SCEV::NoWrapFlags
+ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
+ if (!AR->isAffine())
+ return SCEV::FlagAnyWrap;
+
+ using OBO = OverflowingBinaryOperator;
+
+ SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
+
+ if (!AR->hasNoSignedWrap()) {
+ ConstantRange AddRecRange = getSignedRange(AR);
+ ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
+
+ auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
+ Instruction::Add, IncRange, OBO::NoSignedWrap);
+ if (NSWRegion.contains(AddRecRange))
+ Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
+ }
+
+ if (!AR->hasNoUnsignedWrap()) {
+ ConstantRange AddRecRange = getUnsignedRange(AR);
+ ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
+
+ auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
+ Instruction::Add, IncRange, OBO::NoUnsignedWrap);
+ if (NUWRegion.contains(AddRecRange))
+ Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
+ }
+
+ return Result;
+}
+
+namespace {
+
+/// Represents an abstract binary operation. This may exist as a
+/// normal instruction or constant expression, or may have been
+/// derived from an expression tree.
+struct BinaryOp {
+ unsigned Opcode;
+ Value *LHS;
+ Value *RHS;
+ bool IsNSW = false;
+ bool IsNUW = false;
+
+ /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
+ /// constant expression.
+ Operator *Op = nullptr;
+
+ explicit BinaryOp(Operator *Op)
+ : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
+ Op(Op) {
+ if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
+ IsNSW = OBO->hasNoSignedWrap();
+ IsNUW = OBO->hasNoUnsignedWrap();
+ }
+ }
+
+ explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
+ bool IsNUW = false)
+ : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
+};
+
+} // end anonymous namespace
+
+/// Try to map \p V into a BinaryOp, and return \c None on failure.
+static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
+ auto *Op = dyn_cast<Operator>(V);
+ if (!Op)
+ return None;
+
+ // Implementation detail: all the cleverness here should happen without
+ // creating new SCEV expressions -- our caller knowns tricks to avoid creating
+ // SCEV expressions when possible, and we should not break that.
+
+ switch (Op->getOpcode()) {
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::UDiv:
+ case Instruction::URem:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::AShr:
+ case Instruction::Shl:
+ return BinaryOp(Op);
+
+ case Instruction::Xor:
+ if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
+ // If the RHS of the xor is a signmask, then this is just an add.
+ // Instcombine turns add of signmask into xor as a strength reduction step.
+ if (RHSC->getValue().isSignMask())
+ return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
+ return BinaryOp(Op);
+
+ case Instruction::LShr:
+ // Turn logical shift right of a constant into a unsigned divide.
+ if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
+ uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
+
+ // If the shift count is not less than the bitwidth, the result of
+ // the shift is undefined. Don't try to analyze it, because the
+ // resolution chosen here may differ from the resolution chosen in
+ // other parts of the compiler.
+ if (SA->getValue().ult(BitWidth)) {
+ Constant *X =
+ ConstantInt::get(SA->getContext(),
+ APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
+ return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
+ }
+ }
+ return BinaryOp(Op);
+
+ case Instruction::ExtractValue: {
+ auto *EVI = cast<ExtractValueInst>(Op);
+ if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
+ break;
+
+ auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
+ if (!WO)
+ break;
+
+ Instruction::BinaryOps BinOp = WO->getBinaryOp();
+ bool Signed = WO->isSigned();
+ // TODO: Should add nuw/nsw flags for mul as well.
+ if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
+ return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
+
+ // Now that we know that all uses of the arithmetic-result component of
+ // CI are guarded by the overflow check, we can go ahead and pretend
+ // that the arithmetic is non-overflowing.
+ return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
+ /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
+ }
+
+ default:
+ break;
+ }
+
+ return None;
+}
+
+/// Helper function to createAddRecFromPHIWithCasts. We have a phi
+/// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
+/// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
+/// way. This function checks if \p Op, an operand of this SCEVAddExpr,
+/// follows one of the following patterns:
+/// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
+/// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
+/// If the SCEV expression of \p Op conforms with one of the expected patterns
+/// we return the type of the truncation operation, and indicate whether the
+/// truncated type should be treated as signed/unsigned by setting
+/// \p Signed to true/false, respectively.
+static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
+ bool &Signed, ScalarEvolution &SE) {
+ // The case where Op == SymbolicPHI (that is, with no type conversions on
+ // the way) is handled by the regular add recurrence creating logic and
+ // would have already been triggered in createAddRecForPHI. Reaching it here
+ // means that createAddRecFromPHI had failed for this PHI before (e.g.,
+ // because one of the other operands of the SCEVAddExpr updating this PHI is
+ // not invariant).
+ //
+ // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
+ // this case predicates that allow us to prove that Op == SymbolicPHI will
+ // be added.
+ if (Op == SymbolicPHI)
+ return nullptr;
+
+ unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
+ unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
+ if (SourceBits != NewBits)
+ return nullptr;
+
+ const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
+ const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
+ if (!SExt && !ZExt)
+ return nullptr;
+ const SCEVTruncateExpr *Trunc =
+ SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
+ : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
+ if (!Trunc)
+ return nullptr;
+ const SCEV *X = Trunc->getOperand();
+ if (X != SymbolicPHI)
+ return nullptr;
+ Signed = SExt != nullptr;
+ return Trunc->getType();
+}
+
+static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
+ if (!PN->getType()->isIntegerTy())
+ return nullptr;
+ const Loop *L = LI.getLoopFor(PN->getParent());
+ if (!L || L->getHeader() != PN->getParent())
+ return nullptr;
+ return L;
+}
+
+// Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
+// computation that updates the phi follows the following pattern:
+// (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
+// which correspond to a phi->trunc->sext/zext->add->phi update chain.
+// If so, try to see if it can be rewritten as an AddRecExpr under some
+// Predicates. If successful, return them as a pair. Also cache the results
+// of the analysis.
+//
+// Example usage scenario:
+// Say the Rewriter is called for the following SCEV:
+// 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
+// where:
+// %X = phi i64 (%Start, %BEValue)
+// It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
+// and call this function with %SymbolicPHI = %X.
+//
+// The analysis will find that the value coming around the backedge has
+// the following SCEV:
+// BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
+// Upon concluding that this matches the desired pattern, the function
+// will return the pair {NewAddRec, SmallPredsVec} where:
+// NewAddRec = {%Start,+,%Step}
+// SmallPredsVec = {P1, P2, P3} as follows:
+// P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
+// P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
+// P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
+// The returned pair means that SymbolicPHI can be rewritten into NewAddRec
+// under the predicates {P1,P2,P3}.
+// This predicated rewrite will be cached in PredicatedSCEVRewrites:
+// PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
+//
+// TODO's:
+//
+// 1) Extend the Induction descriptor to also support inductions that involve
+// casts: When needed (namely, when we are called in the context of the
+// vectorizer induction analysis), a Set of cast instructions will be
+// populated by this method, and provided back to isInductionPHI. This is
+// needed to allow the vectorizer to properly record them to be ignored by
+// the cost model and to avoid vectorizing them (otherwise these casts,
+// which are redundant under the runtime overflow checks, will be
+// vectorized, which can be costly).
+//
+// 2) Support additional induction/PHISCEV patterns: We also want to support
+// inductions where the sext-trunc / zext-trunc operations (partly) occur
+// after the induction update operation (the induction increment):
+//
+// (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
+// which correspond to a phi->add->trunc->sext/zext->phi update chain.
+//
+// (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
+// which correspond to a phi->trunc->add->sext/zext->phi update chain.
+//
+// 3) Outline common code with createAddRecFromPHI to avoid duplication.
+Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
+ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
+ SmallVector<const SCEVPredicate *, 3> Predicates;
+
+ // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
+ // return an AddRec expression under some predicate.
+
+ auto *PN = cast<PHINode>(SymbolicPHI->getValue());
+ const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
+ assert(L && "Expecting an integer loop header phi");
+
+ // The loop may have multiple entrances or multiple exits; we can analyze
+ // this phi as an addrec if it has a unique entry value and a unique
+ // backedge value.
+ Value *BEValueV = nullptr, *StartValueV = nullptr;
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ Value *V = PN->getIncomingValue(i);
+ if (L->contains(PN->getIncomingBlock(i))) {
+ if (!BEValueV) {
+ BEValueV = V;
+ } else if (BEValueV != V) {
+ BEValueV = nullptr;
+ break;
+ }
+ } else if (!StartValueV) {
+ StartValueV = V;
+ } else if (StartValueV != V) {
+ StartValueV = nullptr;
+ break;
+ }
+ }
+ if (!BEValueV || !StartValueV)
+ return None;
+
+ const SCEV *BEValue = getSCEV(BEValueV);
+
+ // If the value coming around the backedge is an add with the symbolic
+ // value we just inserted, possibly with casts that we can ignore under
+ // an appropriate runtime guard, then we found a simple induction variable!
+ const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
+ if (!Add)
+ return None;
+
+ // If there is a single occurrence of the symbolic value, possibly
+ // casted, replace it with a recurrence.
+ unsigned FoundIndex = Add->getNumOperands();
+ Type *TruncTy = nullptr;
+ bool Signed;
+ for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
+ if ((TruncTy =
+ isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
+ if (FoundIndex == e) {
+ FoundIndex = i;
+ break;
+ }
+
+ if (FoundIndex == Add->getNumOperands())
+ return None;
+
+ // Create an add with everything but the specified operand.
+ SmallVector<const SCEV *, 8> Ops;
+ for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
+ if (i != FoundIndex)
+ Ops.push_back(Add->getOperand(i));
+ const SCEV *Accum = getAddExpr(Ops);
+
+ // The runtime checks will not be valid if the step amount is
+ // varying inside the loop.
+ if (!isLoopInvariant(Accum, L))
+ return None;
+
+ // *** Part2: Create the predicates
+
+ // Analysis was successful: we have a phi-with-cast pattern for which we
+ // can return an AddRec expression under the following predicates:
+ //
+ // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
+ // fits within the truncated type (does not overflow) for i = 0 to n-1.
+ // P2: An Equal predicate that guarantees that
+ // Start = (Ext ix (Trunc iy (Start) to ix) to iy)
+ // P3: An Equal predicate that guarantees that
+ // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
+ //
+ // As we next prove, the above predicates guarantee that:
+ // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
+ //
+ //
+ // More formally, we want to prove that:
+ // Expr(i+1) = Start + (i+1) * Accum
+ // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
+ //
+ // Given that:
+ // 1) Expr(0) = Start
+ // 2) Expr(1) = Start + Accum
+ // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
+ // 3) Induction hypothesis (step i):
+ // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
+ //
+ // Proof:
+ // Expr(i+1) =
+ // = Start + (i+1)*Accum
+ // = (Start + i*Accum) + Accum
+ // = Expr(i) + Accum
+ // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
+ // :: from step i
+ //
+ // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
+ //
+ // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
+ // + (Ext ix (Trunc iy (Accum) to ix) to iy)
+ // + Accum :: from P3
+ //
+ // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
+ // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
+ //
+ // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
+ // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
+ //
+ // By induction, the same applies to all iterations 1<=i<n:
+ //
+
+ // Create a truncated addrec for which we will add a no overflow check (P1).
+ const SCEV *StartVal = getSCEV(StartValueV);
+ const SCEV *PHISCEV =
+ getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
+ getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
+
+ // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
+ // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
+ // will be constant.
+ //
+ // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
+ // add P1.
+ if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
+ SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
+ Signed ? SCEVWrapPredicate::IncrementNSSW
+ : SCEVWrapPredicate::IncrementNUSW;
+ const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
+ Predicates.push_back(AddRecPred);
+ }
+
+ // Create the Equal Predicates P2,P3:
+
+ // It is possible that the predicates P2 and/or P3 are computable at
+ // compile time due to StartVal and/or Accum being constants.
+ // If either one is, then we can check that now and escape if either P2
+ // or P3 is false.
+
+ // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
+ // for each of StartVal and Accum
+ auto getExtendedExpr = [&](const SCEV *Expr,
+ bool CreateSignExtend) -> const SCEV * {
+ assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
+ const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
+ const SCEV *ExtendedExpr =
+ CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
+ : getZeroExtendExpr(TruncatedExpr, Expr->getType());
+ return ExtendedExpr;
+ };
+
+ // Given:
+ // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
+ // = getExtendedExpr(Expr)
+ // Determine whether the predicate P: Expr == ExtendedExpr
+ // is known to be false at compile time
+ auto PredIsKnownFalse = [&](const SCEV *Expr,
+ const SCEV *ExtendedExpr) -> bool {
+ return Expr != ExtendedExpr &&
+ isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
+ };
+
+ const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
+ if (PredIsKnownFalse(StartVal, StartExtended)) {
+ LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
+ return None;
+ }
+
+ // The Step is always Signed (because the overflow checks are either
+ // NSSW or NUSW)
+ const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
+ if (PredIsKnownFalse(Accum, AccumExtended)) {
+ LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
+ return None;
+ }
+
+ auto AppendPredicate = [&](const SCEV *Expr,
+ const SCEV *ExtendedExpr) -> void {
+ if (Expr != ExtendedExpr &&
+ !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
+ const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
+ LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
+ Predicates.push_back(Pred);
+ }
+ };
+
+ AppendPredicate(StartVal, StartExtended);
+ AppendPredicate(Accum, AccumExtended);
+
+ // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
+ // which the casts had been folded away. The caller can rewrite SymbolicPHI
+ // into NewAR if it will also add the runtime overflow checks specified in
+ // Predicates.
+ auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
+
+ std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
+ std::make_pair(NewAR, Predicates);
+ // Remember the result of the analysis for this SCEV at this locayyytion.
+ PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
+ return PredRewrite;
+}
+
+Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
+ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
+ auto *PN = cast<PHINode>(SymbolicPHI->getValue());
+ const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
+ if (!L)
+ return None;
+
+ // Check to see if we already analyzed this PHI.
+ auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
+ if (I != PredicatedSCEVRewrites.end()) {
+ std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
+ I->second;
+ // Analysis was done before and failed to create an AddRec:
+ if (Rewrite.first == SymbolicPHI)
+ return None;
+ // Analysis was done before and succeeded to create an AddRec under
+ // a predicate:
+ assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
+ assert(!(Rewrite.second).empty() && "Expected to find Predicates");
+ return Rewrite;
+ }
+
+ Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
+ Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
+
+ // Record in the cache that the analysis failed
+ if (!Rewrite) {
+ SmallVector<const SCEVPredicate *, 3> Predicates;
+ PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
+ return None;
+ }
+
+ return Rewrite;
+}
+
+// FIXME: This utility is currently required because the Rewriter currently
+// does not rewrite this expression:
+// {0, +, (sext ix (trunc iy to ix) to iy)}
+// into {0, +, %step},
+// even when the following Equal predicate exists:
+// "%step == (sext ix (trunc iy to ix) to iy)".
+bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
+ const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
+ if (AR1 == AR2)
+ return true;
+
+ auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
+ if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
+ !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
+ return false;
+ return true;
+ };
+
+ if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
+ !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
+ return false;
+ return true;
+}
+
+/// A helper function for createAddRecFromPHI to handle simple cases.
+///
+/// This function tries to find an AddRec expression for the simplest (yet most
+/// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
+/// If it fails, createAddRecFromPHI will use a more general, but slow,
+/// technique for finding the AddRec expression.
+const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
+ Value *BEValueV,
+ Value *StartValueV) {
+ const Loop *L = LI.getLoopFor(PN->getParent());
+ assert(L && L->getHeader() == PN->getParent());
+ assert(BEValueV && StartValueV);
+
+ auto BO = MatchBinaryOp(BEValueV, DT);
+ if (!BO)
+ return nullptr;
+
+ if (BO->Opcode != Instruction::Add)
+ return nullptr;
+
+ const SCEV *Accum = nullptr;
+ if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
+ Accum = getSCEV(BO->RHS);
+ else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
+ Accum = getSCEV(BO->LHS);
+
+ if (!Accum)
+ return nullptr;
+
+ SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
+ if (BO->IsNUW)
+ Flags = setFlags(Flags, SCEV::FlagNUW);
+ if (BO->IsNSW)
+ Flags = setFlags(Flags, SCEV::FlagNSW);
+
+ const SCEV *StartVal = getSCEV(StartValueV);
+ const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
+
+ ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
+
+ // We can add Flags to the post-inc expression only if we
+ // know that it is *undefined behavior* for BEValueV to
+ // overflow.
+ if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
+ if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
+ (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
+
+ return PHISCEV;
+}
+
+const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
+ const Loop *L = LI.getLoopFor(PN->getParent());
+ if (!L || L->getHeader() != PN->getParent())
+ return nullptr;
+
+ // The loop may have multiple entrances or multiple exits; we can analyze
+ // this phi as an addrec if it has a unique entry value and a unique
+ // backedge value.
+ Value *BEValueV = nullptr, *StartValueV = nullptr;
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ Value *V = PN->getIncomingValue(i);
+ if (L->contains(PN->getIncomingBlock(i))) {
+ if (!BEValueV) {
+ BEValueV = V;
+ } else if (BEValueV != V) {
+ BEValueV = nullptr;
+ break;
+ }
+ } else if (!StartValueV) {
+ StartValueV = V;
+ } else if (StartValueV != V) {
+ StartValueV = nullptr;
+ break;
+ }
+ }
+ if (!BEValueV || !StartValueV)
+ return nullptr;
+
+ assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
+ "PHI node already processed?");
+
+ // First, try to find AddRec expression without creating a fictituos symbolic
+ // value for PN.
+ if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
+ return S;
+
+ // Handle PHI node value symbolically.
+ const SCEV *SymbolicName = getUnknown(PN);
+ ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
+
+ // Using this symbolic name for the PHI, analyze the value coming around
+ // the back-edge.
+ const SCEV *BEValue = getSCEV(BEValueV);
+
+ // NOTE: If BEValue is loop invariant, we know that the PHI node just
+ // has a special value for the first iteration of the loop.
+
+ // If the value coming around the backedge is an add with the symbolic
+ // value we just inserted, then we found a simple induction variable!
+ if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
+ // If there is a single occurrence of the symbolic value, replace it
+ // with a recurrence.
+ unsigned FoundIndex = Add->getNumOperands();
+ for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
+ if (Add->getOperand(i) == SymbolicName)
+ if (FoundIndex == e) {
+ FoundIndex = i;
+ break;
+ }
+
+ if (FoundIndex != Add->getNumOperands()) {
+ // Create an add with everything but the specified operand.
+ SmallVector<const SCEV *, 8> Ops;
+ for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
+ if (i != FoundIndex)
+ Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
+ L, *this));
+ const SCEV *Accum = getAddExpr(Ops);
+
+ // This is not a valid addrec if the step amount is varying each
+ // loop iteration, but is not itself an addrec in this loop.
+ if (isLoopInvariant(Accum, L) ||
+ (isa<SCEVAddRecExpr>(Accum) &&
+ cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
+ SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
+
+ if (auto BO = MatchBinaryOp(BEValueV, DT)) {
+ if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
+ if (BO->IsNUW)
+ Flags = setFlags(Flags, SCEV::FlagNUW);
+ if (BO->IsNSW)
+ Flags = setFlags(Flags, SCEV::FlagNSW);
+ }
+ } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
+ // If the increment is an inbounds GEP, then we know the address
+ // space cannot be wrapped around. We cannot make any guarantee
+ // about signed or unsigned overflow because pointers are
+ // unsigned but we may have a negative index from the base
+ // pointer. We can guarantee that no unsigned wrap occurs if the
+ // indices form a positive value.
+ if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
+ Flags = setFlags(Flags, SCEV::FlagNW);
+
+ const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
+ if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
+ Flags = setFlags(Flags, SCEV::FlagNUW);
+ }
+
+ // We cannot transfer nuw and nsw flags from subtraction
+ // operations -- sub nuw X, Y is not the same as add nuw X, -Y
+ // for instance.
+ }
+
+ const SCEV *StartVal = getSCEV(StartValueV);
+ const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
+
+ // Okay, for the entire analysis of this edge we assumed the PHI
+ // to be symbolic. We now need to go back and purge all of the
+ // entries for the scalars that use the symbolic expression.
+ forgetSymbolicName(PN, SymbolicName);
+ ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
+
+ // We can add Flags to the post-inc expression only if we
+ // know that it is *undefined behavior* for BEValueV to
+ // overflow.
+ if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
+ if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
+ (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
+
+ return PHISCEV;
+ }
+ }
+ } else {
+ // Otherwise, this could be a loop like this:
+ // i = 0; for (j = 1; ..; ++j) { .... i = j; }
+ // In this case, j = {1,+,1} and BEValue is j.
+ // Because the other in-value of i (0) fits the evolution of BEValue
+ // i really is an addrec evolution.
+ //
+ // We can generalize this saying that i is the shifted value of BEValue
+ // by one iteration:
+ // PHI(f(0), f({1,+,1})) --> f({0,+,1})
+ const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
+ const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
+ if (Shifted != getCouldNotCompute() &&
+ Start != getCouldNotCompute()) {
+ const SCEV *StartVal = getSCEV(StartValueV);
+ if (Start == StartVal) {
+ // Okay, for the entire analysis of this edge we assumed the PHI
+ // to be symbolic. We now need to go back and purge all of the
+ // entries for the scalars that use the symbolic expression.
+ forgetSymbolicName(PN, SymbolicName);
+ ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
+ return Shifted;
+ }
+ }
+ }
+
+ // Remove the temporary PHI node SCEV that has been inserted while intending
+ // to create an AddRecExpr for this PHI node. We can not keep this temporary
+ // as it will prevent later (possibly simpler) SCEV expressions to be added
+ // to the ValueExprMap.
+ eraseValueFromMap(PN);
+
+ return nullptr;
+}
+
+// Checks if the SCEV S is available at BB. S is considered available at BB
+// if S can be materialized at BB without introducing a fault.
+static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
+ BasicBlock *BB) {
+ struct CheckAvailable {
+ bool TraversalDone = false;
+ bool Available = true;
+
+ const Loop *L = nullptr; // The loop BB is in (can be nullptr)
+ BasicBlock *BB = nullptr;
+ DominatorTree &DT;
+
+ CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
+ : L(L), BB(BB), DT(DT) {}
+
+ bool setUnavailable() {
+ TraversalDone = true;
+ Available = false;
+ return false;
+ }
+
+ bool follow(const SCEV *S) {
+ switch (S->getSCEVType()) {
+ case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
+ case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
+ case scUMinExpr:
+ case scSMinExpr:
+ // These expressions are available if their operand(s) is/are.
+ return true;
+
+ case scAddRecExpr: {
+ // We allow add recurrences that are on the loop BB is in, or some
+ // outer loop. This guarantees availability because the value of the
+ // add recurrence at BB is simply the "current" value of the induction
+ // variable. We can relax this in the future; for instance an add
+ // recurrence on a sibling dominating loop is also available at BB.
+ const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
+ if (L && (ARLoop == L || ARLoop->contains(L)))
+ return true;
+
+ return setUnavailable();
+ }
+
+ case scUnknown: {
+ // For SCEVUnknown, we check for simple dominance.
+ const auto *SU = cast<SCEVUnknown>(S);
+ Value *V = SU->getValue();
+
+ if (isa<Argument>(V))
+ return false;
+
+ if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
+ return false;
+
+ return setUnavailable();
+ }
+
+ case scUDivExpr:
+ case scCouldNotCompute:
+ // We do not try to smart about these at all.
+ return setUnavailable();
+ }
+ llvm_unreachable("switch should be fully covered!");
+ }
+
+ bool isDone() { return TraversalDone; }
+ };
+
+ CheckAvailable CA(L, BB, DT);
+ SCEVTraversal<CheckAvailable> ST(CA);
+
+ ST.visitAll(S);
+ return CA.Available;
+}
+
+// Try to match a control flow sequence that branches out at BI and merges back
+// at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
+// match.
+static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
+ Value *&C, Value *&LHS, Value *&RHS) {
+ C = BI->getCondition();
+
+ BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
+ BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
+
+ if (!LeftEdge.isSingleEdge())
+ return false;
+
+ assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
+
+ Use &LeftUse = Merge->getOperandUse(0);
+ Use &RightUse = Merge->getOperandUse(1);
+
+ if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
+ LHS = LeftUse;
+ RHS = RightUse;
+ return true;
+ }
+
+ if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
+ LHS = RightUse;
+ RHS = LeftUse;
+ return true;
+ }
+
+ return false;
+}
+
+const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
+ auto IsReachable =
+ [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
+ if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
+ const Loop *L = LI.getLoopFor(PN->getParent());
+
+ // We don't want to break LCSSA, even in a SCEV expression tree.
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
+ return nullptr;
+
+ // Try to match
+ //
+ // br %cond, label %left, label %right
+ // left:
+ // br label %merge
+ // right:
+ // br label %merge
+ // merge:
+ // V = phi [ %x, %left ], [ %y, %right ]
+ //
+ // as "select %cond, %x, %y"
+
+ BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
+ assert(IDom && "At least the entry block should dominate PN");
+
+ auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
+ Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
+
+ if (BI && BI->isConditional() &&
+ BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
+ IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
+ IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
+ return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
+ }
+
+ return nullptr;
+}
+
+const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
+ if (const SCEV *S = createAddRecFromPHI(PN))
+ return S;
+
+ if (const SCEV *S = createNodeFromSelectLikePHI(PN))
+ return S;
+
+ // If the PHI has a single incoming value, follow that value, unless the
+ // PHI's incoming blocks are in a different loop, in which case doing so
+ // risks breaking LCSSA form. Instcombine would normally zap these, but
+ // it doesn't have DominatorTree information, so it may miss cases.
+ if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
+ if (LI.replacementPreservesLCSSAForm(PN, V))
+ return getSCEV(V);
+
+ // If it's not a loop phi, we can't handle it yet.
+ return getUnknown(PN);
+}
+
+const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
+ Value *Cond,
+ Value *TrueVal,
+ Value *FalseVal) {
+ // Handle "constant" branch or select. This can occur for instance when a
+ // loop pass transforms an inner loop and moves on to process the outer loop.
+ if (auto *CI = dyn_cast<ConstantInt>(Cond))
+ return getSCEV(CI->isOne() ? TrueVal : FalseVal);
+
+ // Try to match some simple smax or umax patterns.
+ auto *ICI = dyn_cast<ICmpInst>(Cond);
+ if (!ICI)
+ return getUnknown(I);
+
+ Value *LHS = ICI->getOperand(0);
+ Value *RHS = ICI->getOperand(1);
+
+ switch (ICI->getPredicate()) {
+ case ICmpInst::ICMP_SLT:
+ case ICmpInst::ICMP_SLE:
+ std::swap(LHS, RHS);
+ LLVM_FALLTHROUGH;
+ case ICmpInst::ICMP_SGT:
+ case ICmpInst::ICMP_SGE:
+ // a >s b ? a+x : b+x -> smax(a, b)+x
+ // a >s b ? b+x : a+x -> smin(a, b)+x
+ if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
+ const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
+ const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
+ const SCEV *LA = getSCEV(TrueVal);
+ const SCEV *RA = getSCEV(FalseVal);
+ const SCEV *LDiff = getMinusSCEV(LA, LS);
+ const SCEV *RDiff = getMinusSCEV(RA, RS);
+ if (LDiff == RDiff)
+ return getAddExpr(getSMaxExpr(LS, RS), LDiff);
+ LDiff = getMinusSCEV(LA, RS);
+ RDiff = getMinusSCEV(RA, LS);
+ if (LDiff == RDiff)
+ return getAddExpr(getSMinExpr(LS, RS), LDiff);
+ }
+ break;
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_ULE:
+ std::swap(LHS, RHS);
+ LLVM_FALLTHROUGH;
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_UGE:
+ // a >u b ? a+x : b+x -> umax(a, b)+x
+ // a >u b ? b+x : a+x -> umin(a, b)+x
+ if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
+ const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
+ const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
+ const SCEV *LA = getSCEV(TrueVal);
+ const SCEV *RA = getSCEV(FalseVal);
+ const SCEV *LDiff = getMinusSCEV(LA, LS);
+ const SCEV *RDiff = getMinusSCEV(RA, RS);
+ if (LDiff == RDiff)
+ return getAddExpr(getUMaxExpr(LS, RS), LDiff);
+ LDiff = getMinusSCEV(LA, RS);
+ RDiff = getMinusSCEV(RA, LS);
+ if (LDiff == RDiff)
+ return getAddExpr(getUMinExpr(LS, RS), LDiff);
+ }
+ break;
+ case ICmpInst::ICMP_NE:
+ // n != 0 ? n+x : 1+x -> umax(n, 1)+x
+ if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
+ isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
+ const SCEV *One = getOne(I->getType());
+ const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
+ const SCEV *LA = getSCEV(TrueVal);
+ const SCEV *RA = getSCEV(FalseVal);
+ const SCEV *LDiff = getMinusSCEV(LA, LS);
+ const SCEV *RDiff = getMinusSCEV(RA, One);
+ if (LDiff == RDiff)
+ return getAddExpr(getUMaxExpr(One, LS), LDiff);
+ }
+ break;
+ case ICmpInst::ICMP_EQ:
+ // n == 0 ? 1+x : n+x -> umax(n, 1)+x
+ if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
+ isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
+ const SCEV *One = getOne(I->getType());
+ const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
+ const SCEV *LA = getSCEV(TrueVal);
+ const SCEV *RA = getSCEV(FalseVal);
+ const SCEV *LDiff = getMinusSCEV(LA, One);
+ const SCEV *RDiff = getMinusSCEV(RA, LS);
+ if (LDiff == RDiff)
+ return getAddExpr(getUMaxExpr(One, LS), LDiff);
+ }
+ break;
+ default:
+ break;
+ }
+
+ return getUnknown(I);
+}
+
+/// Expand GEP instructions into add and multiply operations. This allows them
+/// to be analyzed by regular SCEV code.
+const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
+ // Don't attempt to analyze GEPs over unsized objects.
+ if (!GEP->getSourceElementType()->isSized())
+ return getUnknown(GEP);
+
+ SmallVector<const SCEV *, 4> IndexExprs;
+ for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
+ IndexExprs.push_back(getSCEV(*Index));
+ return getGEPExpr(GEP, IndexExprs);
+}
+
+uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
+ if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
+ return C->getAPInt().countTrailingZeros();
+
+ if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
+ return std::min(GetMinTrailingZeros(T->getOperand()),
+ (uint32_t)getTypeSizeInBits(T->getType()));
+
+ if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
+ uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
+ return OpRes == getTypeSizeInBits(E->getOperand()->getType())
+ ? getTypeSizeInBits(E->getType())
+ : OpRes;
+ }
+
+ if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
+ uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
+ return OpRes == getTypeSizeInBits(E->getOperand()->getType())
+ ? getTypeSizeInBits(E->getType())
+ : OpRes;
+ }
+
+ if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
+ // The result is the min of all operands results.
+ uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
+ for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
+ MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
+ return MinOpRes;
+ }
+
+ if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
+ // The result is the sum of all operands results.
+ uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
+ uint32_t BitWidth = getTypeSizeInBits(M->getType());
+ for (unsigned i = 1, e = M->getNumOperands();
+ SumOpRes != BitWidth && i != e; ++i)
+ SumOpRes =
+ std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
+ return SumOpRes;
+ }
+
+ if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
+ // The result is the min of all operands results.
+ uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
+ for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
+ MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
+ return MinOpRes;
+ }
+
+ if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
+ // The result is the min of all operands results.
+ uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
+ for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
+ MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
+ return MinOpRes;
+ }
+
+ if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
+ // The result is the min of all operands results.
+ uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
+ for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
+ MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
+ return MinOpRes;
+ }
+
+ if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
+ // For a SCEVUnknown, ask ValueTracking.
+ KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
+ return Known.countMinTrailingZeros();
+ }
+
+ // SCEVUDivExpr
+ return 0;
+}
+
+uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
+ auto I = MinTrailingZerosCache.find(S);
+ if (I != MinTrailingZerosCache.end())
+ return I->second;
+
+ uint32_t Result = GetMinTrailingZerosImpl(S);
+ auto InsertPair = MinTrailingZerosCache.insert({S, Result});
+ assert(InsertPair.second && "Should insert a new key");
+ return InsertPair.first->second;
+}
+
+/// Helper method to assign a range to V from metadata present in the IR.
+static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
+ return getConstantRangeFromMetadata(*MD);
+
+ return None;
+}
+
+/// Determine the range for a particular SCEV. If SignHint is
+/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
+/// with a "cleaner" unsigned (resp. signed) representation.
+const ConstantRange &
+ScalarEvolution::getRangeRef(const SCEV *S,
+ ScalarEvolution::RangeSignHint SignHint) {
+ DenseMap<const SCEV *, ConstantRange> &Cache =
+ SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
+ : SignedRanges;
+ ConstantRange::PreferredRangeType RangeType =
+ SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
+ ? ConstantRange::Unsigned : ConstantRange::Signed;
+
+ // See if we've computed this range already.
+ DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
+ if (I != Cache.end())
+ return I->second;
+
+ if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
+ return setRange(C, SignHint, ConstantRange(C->getAPInt()));
+
+ unsigned BitWidth = getTypeSizeInBits(S->getType());
+ ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
+
+ // If the value has known zeros, the maximum value will have those known zeros
+ // as well.
+ uint32_t TZ = GetMinTrailingZeros(S);
+ if (TZ != 0) {
+ if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
+ ConservativeResult =
+ ConstantRange(APInt::getMinValue(BitWidth),
+ APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
+ else
+ ConservativeResult = ConstantRange(
+ APInt::getSignedMinValue(BitWidth),
+ APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
+ }
+
+ if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
+ ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
+ for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
+ X = X.add(getRangeRef(Add->getOperand(i), SignHint));
+ return setRange(Add, SignHint,
+ ConservativeResult.intersectWith(X, RangeType));
+ }
+
+ if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
+ ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
+ for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
+ X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
+ return setRange(Mul, SignHint,
+ ConservativeResult.intersectWith(X, RangeType));
+ }
+
+ if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
+ ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
+ for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
+ X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
+ return setRange(SMax, SignHint,
+ ConservativeResult.intersectWith(X, RangeType));
+ }
+
+ if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
+ ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
+ for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
+ X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
+ return setRange(UMax, SignHint,
+ ConservativeResult.intersectWith(X, RangeType));
+ }
+
+ if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
+ ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
+ for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
+ X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
+ return setRange(SMin, SignHint,
+ ConservativeResult.intersectWith(X, RangeType));
+ }
+
+ if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
+ ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
+ for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
+ X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
+ return setRange(UMin, SignHint,
+ ConservativeResult.intersectWith(X, RangeType));
+ }
+
+ if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
+ ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
+ ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
+ return setRange(UDiv, SignHint,
+ ConservativeResult.intersectWith(X.udiv(Y), RangeType));
+ }
+
+ if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
+ ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
+ return setRange(ZExt, SignHint,
+ ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
+ RangeType));
+ }
+
+ if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
+ ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
+ return setRange(SExt, SignHint,
+ ConservativeResult.intersectWith(X.signExtend(BitWidth),
+ RangeType));
+ }
+
+ if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
+ ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
+ return setRange(Trunc, SignHint,
+ ConservativeResult.intersectWith(X.truncate(BitWidth),
+ RangeType));
+ }
+
+ if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
+ // If there's no unsigned wrap, the value will never be less than its
+ // initial value.
+ if (AddRec->hasNoUnsignedWrap())
+ if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
+ if (!C->getValue()->isZero())
+ ConservativeResult = ConservativeResult.intersectWith(
+ ConstantRange(C->getAPInt(), APInt(BitWidth, 0)), RangeType);
+
+ // If there's no signed wrap, and all the operands have the same sign or
+ // zero, the value won't ever change sign.
+ if (AddRec->hasNoSignedWrap()) {
+ bool AllNonNeg = true;
+ bool AllNonPos = true;
+ for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
+ if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
+ if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
+ }
+ if (AllNonNeg)
+ ConservativeResult = ConservativeResult.intersectWith(
+ ConstantRange(APInt(BitWidth, 0),
+ APInt::getSignedMinValue(BitWidth)), RangeType);
+ else if (AllNonPos)
+ ConservativeResult = ConservativeResult.intersectWith(
+ ConstantRange(APInt::getSignedMinValue(BitWidth),
+ APInt(BitWidth, 1)), RangeType);
+ }
+
+ // TODO: non-affine addrec
+ if (AddRec->isAffine()) {
+ const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
+ if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
+ getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
+ auto RangeFromAffine = getRangeForAffineAR(
+ AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
+ BitWidth);
+ if (!RangeFromAffine.isFullSet())
+ ConservativeResult =
+ ConservativeResult.intersectWith(RangeFromAffine, RangeType);
+
+ auto RangeFromFactoring = getRangeViaFactoring(
+ AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
+ BitWidth);
+ if (!RangeFromFactoring.isFullSet())
+ ConservativeResult =
+ ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
+ }
+ }
+
+ return setRange(AddRec, SignHint, std::move(ConservativeResult));
+ }
+
+ if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
+ // Check if the IR explicitly contains !range metadata.
+ Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
+ if (MDRange.hasValue())
+ ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
+ RangeType);
+
+ // Split here to avoid paying the compile-time cost of calling both
+ // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
+ // if needed.
+ const DataLayout &DL = getDataLayout();
+ if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
+ // For a SCEVUnknown, ask ValueTracking.
+ KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
+ if (Known.One != ~Known.Zero + 1)
+ ConservativeResult =
+ ConservativeResult.intersectWith(
+ ConstantRange(Known.One, ~Known.Zero + 1), RangeType);
+ } else {
+ assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
+ "generalize as needed!");
+ unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
+ if (NS > 1)
+ ConservativeResult = ConservativeResult.intersectWith(
+ ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
+ APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
+ RangeType);
+ }
+
+ // A range of Phi is a subset of union of all ranges of its input.
+ if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
+ // Make sure that we do not run over cycled Phis.
+ if (PendingPhiRanges.insert(Phi).second) {
+ ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
+ for (auto &Op : Phi->operands()) {
+ auto OpRange = getRangeRef(getSCEV(Op), SignHint);
+ RangeFromOps = RangeFromOps.unionWith(OpRange);
+ // No point to continue if we already have a full set.
+ if (RangeFromOps.isFullSet())
+ break;
+ }
+ ConservativeResult =
+ ConservativeResult.intersectWith(RangeFromOps, RangeType);
+ bool Erased = PendingPhiRanges.erase(Phi);
+ assert(Erased && "Failed to erase Phi properly?");
+ (void) Erased;
+ }
+ }
+
+ return setRange(U, SignHint, std::move(ConservativeResult));
+ }
+
+ return setRange(S, SignHint, std::move(ConservativeResult));
+}
+
+// Given a StartRange, Step and MaxBECount for an expression compute a range of
+// values that the expression can take. Initially, the expression has a value
+// from StartRange and then is changed by Step up to MaxBECount times. Signed
+// argument defines if we treat Step as signed or unsigned.
+static ConstantRange getRangeForAffineARHelper(APInt Step,
+ const ConstantRange &StartRange,
+ const APInt &MaxBECount,
+ unsigned BitWidth, bool Signed) {
+ // If either Step or MaxBECount is 0, then the expression won't change, and we
+ // just need to return the initial range.
+ if (Step == 0 || MaxBECount == 0)
+ return StartRange;
+
+ // If we don't know anything about the initial value (i.e. StartRange is
+ // FullRange), then we don't know anything about the final range either.
+ // Return FullRange.
+ if (StartRange.isFullSet())
+ return ConstantRange::getFull(BitWidth);
+
+ // If Step is signed and negative, then we use its absolute value, but we also
+ // note that we're moving in the opposite direction.
+ bool Descending = Signed && Step.isNegative();
+
+ if (Signed)
+ // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
+ // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
+ // This equations hold true due to the well-defined wrap-around behavior of
+ // APInt.
+ Step = Step.abs();
+
+ // Check if Offset is more than full span of BitWidth. If it is, the
+ // expression is guaranteed to overflow.
+ if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
+ return ConstantRange::getFull(BitWidth);
+
+ // Offset is by how much the expression can change. Checks above guarantee no
+ // overflow here.
+ APInt Offset = Step * MaxBECount;
+
+ // Minimum value of the final range will match the minimal value of StartRange
+ // if the expression is increasing and will be decreased by Offset otherwise.
+ // Maximum value of the final range will match the maximal value of StartRange
+ // if the expression is decreasing and will be increased by Offset otherwise.
+ APInt StartLower = StartRange.getLower();
+ APInt StartUpper = StartRange.getUpper() - 1;
+ APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
+ : (StartUpper + std::move(Offset));
+
+ // It's possible that the new minimum/maximum value will fall into the initial
+ // range (due to wrap around). This means that the expression can take any
+ // value in this bitwidth, and we have to return full range.
+ if (StartRange.contains(MovedBoundary))
+ return ConstantRange::getFull(BitWidth);
+
+ APInt NewLower =
+ Descending ? std::move(MovedBoundary) : std::move(StartLower);
+ APInt NewUpper =
+ Descending ? std::move(StartUpper) : std::move(MovedBoundary);
+ NewUpper += 1;
+
+ // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
+ return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
+}
+
+ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
+ const SCEV *Step,
+ const SCEV *MaxBECount,
+ unsigned BitWidth) {
+ assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
+ getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
+ "Precondition!");
+
+ MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
+ APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
+
+ // First, consider step signed.
+ ConstantRange StartSRange = getSignedRange(Start);
+ ConstantRange StepSRange = getSignedRange(Step);
+
+ // If Step can be both positive and negative, we need to find ranges for the
+ // maximum absolute step values in both directions and union them.
+ ConstantRange SR =
+ getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
+ MaxBECountValue, BitWidth, /* Signed = */ true);
+ SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
+ StartSRange, MaxBECountValue,
+ BitWidth, /* Signed = */ true));
+
+ // Next, consider step unsigned.
+ ConstantRange UR = getRangeForAffineARHelper(
+ getUnsignedRangeMax(Step), getUnsignedRange(Start),
+ MaxBECountValue, BitWidth, /* Signed = */ false);
+
+ // Finally, intersect signed and unsigned ranges.
+ return SR.intersectWith(UR, ConstantRange::Smallest);
+}
+
+ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
+ const SCEV *Step,
+ const SCEV *MaxBECount,
+ unsigned BitWidth) {
+ // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
+ // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
+
+ struct SelectPattern {
+ Value *Condition = nullptr;
+ APInt TrueValue;
+ APInt FalseValue;
+
+ explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
+ const SCEV *S) {
+ Optional<unsigned> CastOp;
+ APInt Offset(BitWidth, 0);
+
+ assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
+ "Should be!");
+
+ // Peel off a constant offset:
+ if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
+ // In the future we could consider being smarter here and handle
+ // {Start+Step,+,Step} too.
+ if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
+ return;
+
+ Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
+ S = SA->getOperand(1);
+ }
+
+ // Peel off a cast operation
+ if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
+ CastOp = SCast->getSCEVType();
+ S = SCast->getOperand();
+ }
+
+ using namespace llvm::PatternMatch;
+
+ auto *SU = dyn_cast<SCEVUnknown>(S);
+ const APInt *TrueVal, *FalseVal;
+ if (!SU ||
+ !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
+ m_APInt(FalseVal)))) {
+ Condition = nullptr;
+ return;
+ }
+
+ TrueValue = *TrueVal;
+ FalseValue = *FalseVal;
+
+ // Re-apply the cast we peeled off earlier
+ if (CastOp.hasValue())
+ switch (*CastOp) {
+ default:
+ llvm_unreachable("Unknown SCEV cast type!");
+
+ case scTruncate:
+ TrueValue = TrueValue.trunc(BitWidth);
+ FalseValue = FalseValue.trunc(BitWidth);
+ break;
+ case scZeroExtend:
+ TrueValue = TrueValue.zext(BitWidth);
+ FalseValue = FalseValue.zext(BitWidth);
+ break;
+ case scSignExtend:
+ TrueValue = TrueValue.sext(BitWidth);
+ FalseValue = FalseValue.sext(BitWidth);
+ break;
+ }
+
+ // Re-apply the constant offset we peeled off earlier
+ TrueValue += Offset;
+ FalseValue += Offset;
+ }
+
+ bool isRecognized() { return Condition != nullptr; }
+ };
+
+ SelectPattern StartPattern(*this, BitWidth, Start);
+ if (!StartPattern.isRecognized())
+ return ConstantRange::getFull(BitWidth);
+
+ SelectPattern StepPattern(*this, BitWidth, Step);
+ if (!StepPattern.isRecognized())
+ return ConstantRange::getFull(BitWidth);
+
+ if (StartPattern.Condition != StepPattern.Condition) {
+ // We don't handle this case today; but we could, by considering four
+ // possibilities below instead of two. I'm not sure if there are cases where
+ // that will help over what getRange already does, though.
+ return ConstantRange::getFull(BitWidth);
+ }
+
+ // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
+ // construct arbitrary general SCEV expressions here. This function is called
+ // from deep in the call stack, and calling getSCEV (on a sext instruction,
+ // say) can end up caching a suboptimal value.
+
+ // FIXME: without the explicit `this` receiver below, MSVC errors out with
+ // C2352 and C2512 (otherwise it isn't needed).
+
+ const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
+ const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
+ const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
+ const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
+
+ ConstantRange TrueRange =
+ this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
+ ConstantRange FalseRange =
+ this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
+
+ return TrueRange.unionWith(FalseRange);
+}
+
+SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
+ if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
+ const BinaryOperator *BinOp = cast<BinaryOperator>(V);
+
+ // Return early if there are no flags to propagate to the SCEV.
+ SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
+ if (BinOp->hasNoUnsignedWrap())
+ Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
+ if (BinOp->hasNoSignedWrap())
+ Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
+ if (Flags == SCEV::FlagAnyWrap)
+ return SCEV::FlagAnyWrap;
+
+ return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
+}
+
+bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
+ // Here we check that I is in the header of the innermost loop containing I,
+ // since we only deal with instructions in the loop header. The actual loop we
+ // need to check later will come from an add recurrence, but getting that
+ // requires computing the SCEV of the operands, which can be expensive. This
+ // check we can do cheaply to rule out some cases early.
+ Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
+ if (InnermostContainingLoop == nullptr ||
+ InnermostContainingLoop->getHeader() != I->getParent())
+ return false;
+
+ // Only proceed if we can prove that I does not yield poison.
+ if (!programUndefinedIfFullPoison(I))
+ return false;
+
+ // At this point we know that if I is executed, then it does not wrap
+ // according to at least one of NSW or NUW. If I is not executed, then we do
+ // not know if the calculation that I represents would wrap. Multiple
+ // instructions can map to the same SCEV. If we apply NSW or NUW from I to
+ // the SCEV, we must guarantee no wrapping for that SCEV also when it is
+ // derived from other instructions that map to the same SCEV. We cannot make
+ // that guarantee for cases where I is not executed. So we need to find the
+ // loop that I is considered in relation to and prove that I is executed for
+ // every iteration of that loop. That implies that the value that I
+ // calculates does not wrap anywhere in the loop, so then we can apply the
+ // flags to the SCEV.
+ //
+ // We check isLoopInvariant to disambiguate in case we are adding recurrences
+ // from different loops, so that we know which loop to prove that I is
+ // executed in.
+ for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
+ // I could be an extractvalue from a call to an overflow intrinsic.
+ // TODO: We can do better here in some cases.
+ if (!isSCEVable(I->getOperand(OpIndex)->getType()))
+ return false;
+ const SCEV *Op = getSCEV(I->getOperand(OpIndex));
+ if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
+ bool AllOtherOpsLoopInvariant = true;
+ for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
+ ++OtherOpIndex) {
+ if (OtherOpIndex != OpIndex) {
+ const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
+ if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
+ AllOtherOpsLoopInvariant = false;
+ break;
+ }
+ }
+ }
+ if (AllOtherOpsLoopInvariant &&
+ isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
+ return true;
+ }
+ }
+ return false;
+}
+
+bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
+ // If we know that \c I can never be poison period, then that's enough.
+ if (isSCEVExprNeverPoison(I))
+ return true;
+
+ // For an add recurrence specifically, we assume that infinite loops without
+ // side effects are undefined behavior, and then reason as follows:
+ //
+ // If the add recurrence is poison in any iteration, it is poison on all
+ // future iterations (since incrementing poison yields poison). If the result
+ // of the add recurrence is fed into the loop latch condition and the loop
+ // does not contain any throws or exiting blocks other than the latch, we now
+ // have the ability to "choose" whether the backedge is taken or not (by
+ // choosing a sufficiently evil value for the poison feeding into the branch)
+ // for every iteration including and after the one in which \p I first became
+ // poison. There are two possibilities (let's call the iteration in which \p
+ // I first became poison as K):
+ //
+ // 1. In the set of iterations including and after K, the loop body executes
+ // no side effects. In this case executing the backege an infinte number
+ // of times will yield undefined behavior.
+ //
+ // 2. In the set of iterations including and after K, the loop body executes
+ // at least one side effect. In this case, that specific instance of side
+ // effect is control dependent on poison, which also yields undefined
+ // behavior.
+
+ auto *ExitingBB = L->getExitingBlock();
+ auto *LatchBB = L->getLoopLatch();
+ if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
+ return false;
+
+ SmallPtrSet<const Instruction *, 16> Pushed;
+ SmallVector<const Instruction *, 8> PoisonStack;
+
+ // We start by assuming \c I, the post-inc add recurrence, is poison. Only
+ // things that are known to be fully poison under that assumption go on the
+ // PoisonStack.
+ Pushed.insert(I);
+ PoisonStack.push_back(I);
+
+ bool LatchControlDependentOnPoison = false;
+ while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
+ const Instruction *Poison = PoisonStack.pop_back_val();
+
+ for (auto *PoisonUser : Poison->users()) {
+ if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
+ if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
+ PoisonStack.push_back(cast<Instruction>(PoisonUser));
+ } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
+ assert(BI->isConditional() && "Only possibility!");
+ if (BI->getParent() == LatchBB) {
+ LatchControlDependentOnPoison = true;
+ break;
+ }
+ }
+ }
+ }
+
+ return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
+}
+
+ScalarEvolution::LoopProperties
+ScalarEvolution::getLoopProperties(const Loop *L) {
+ using LoopProperties = ScalarEvolution::LoopProperties;
+
+ auto Itr = LoopPropertiesCache.find(L);
+ if (Itr == LoopPropertiesCache.end()) {
+ auto HasSideEffects = [](Instruction *I) {
+ if (auto *SI = dyn_cast<StoreInst>(I))
+ return !SI->isSimple();
+
+ return I->mayHaveSideEffects();
+ };
+
+ LoopProperties LP = {/* HasNoAbnormalExits */ true,
+ /*HasNoSideEffects*/ true};
+
+ for (auto *BB : L->getBlocks())
+ for (auto &I : *BB) {
+ if (!isGuaranteedToTransferExecutionToSuccessor(&I))
+ LP.HasNoAbnormalExits = false;
+ if (HasSideEffects(&I))
+ LP.HasNoSideEffects = false;
+ if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
+ break; // We're already as pessimistic as we can get.
+ }
+
+ auto InsertPair = LoopPropertiesCache.insert({L, LP});
+ assert(InsertPair.second && "We just checked!");
+ Itr = InsertPair.first;
+ }
+
+ return Itr->second;
+}
+
+const SCEV *ScalarEvolution::createSCEV(Value *V) {
+ if (!isSCEVable(V->getType()))
+ return getUnknown(V);
+
+ if (Instruction *I = dyn_cast<Instruction>(V)) {
+ // Don't attempt to analyze instructions in blocks that aren't
+ // reachable. Such instructions don't matter, and they aren't required
+ // to obey basic rules for definitions dominating uses which this
+ // analysis depends on.
+ if (!DT.isReachableFromEntry(I->getParent()))
+ return getUnknown(UndefValue::get(V->getType()));
+ } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
+ return getConstant(CI);
+ else if (isa<ConstantPointerNull>(V))
+ return getZero(V->getType());
+ else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
+ return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
+ else if (!isa<ConstantExpr>(V))
+ return getUnknown(V);
+
+ Operator *U = cast<Operator>(V);
+ if (auto BO = MatchBinaryOp(U, DT)) {
+ switch (BO->Opcode) {
+ case Instruction::Add: {
+ // The simple thing to do would be to just call getSCEV on both operands
+ // and call getAddExpr with the result. However if we're looking at a
+ // bunch of things all added together, this can be quite inefficient,
+ // because it leads to N-1 getAddExpr calls for N ultimate operands.
+ // Instead, gather up all the operands and make a single getAddExpr call.
+ // LLVM IR canonical form means we need only traverse the left operands.
+ SmallVector<const SCEV *, 4> AddOps;
+ do {
+ if (BO->Op) {
+ if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
+ AddOps.push_back(OpSCEV);
+ break;
+ }
+
+ // If a NUW or NSW flag can be applied to the SCEV for this
+ // addition, then compute the SCEV for this addition by itself
+ // with a separate call to getAddExpr. We need to do that
+ // instead of pushing the operands of the addition onto AddOps,
+ // since the flags are only known to apply to this particular
+ // addition - they may not apply to other additions that can be
+ // formed with operands from AddOps.
+ const SCEV *RHS = getSCEV(BO->RHS);
+ SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
+ if (Flags != SCEV::FlagAnyWrap) {
+ const SCEV *LHS = getSCEV(BO->LHS);
+ if (BO->Opcode == Instruction::Sub)
+ AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
+ else
+ AddOps.push_back(getAddExpr(LHS, RHS, Flags));
+ break;
+ }
+ }
+
+ if (BO->Opcode == Instruction::Sub)
+ AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
+ else
+ AddOps.push_back(getSCEV(BO->RHS));
+
+ auto NewBO = MatchBinaryOp(BO->LHS, DT);
+ if (!NewBO || (NewBO->Opcode != Instruction::Add &&
+ NewBO->Opcode != Instruction::Sub)) {
+ AddOps.push_back(getSCEV(BO->LHS));
+ break;
+ }
+ BO = NewBO;
+ } while (true);
+
+ return getAddExpr(AddOps);
+ }
+
+ case Instruction::Mul: {
+ SmallVector<const SCEV *, 4> MulOps;
+ do {
+ if (BO->Op) {
+ if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
+ MulOps.push_back(OpSCEV);
+ break;
+ }
+
+ SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
+ if (Flags != SCEV::FlagAnyWrap) {
+ MulOps.push_back(
+ getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
+ break;
+ }
+ }
+
+ MulOps.push_back(getSCEV(BO->RHS));
+ auto NewBO = MatchBinaryOp(BO->LHS, DT);
+ if (!NewBO || NewBO->Opcode != Instruction::Mul) {
+ MulOps.push_back(getSCEV(BO->LHS));
+ break;
+ }
+ BO = NewBO;
+ } while (true);
+
+ return getMulExpr(MulOps);
+ }
+ case Instruction::UDiv:
+ return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
+ case Instruction::URem:
+ return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
+ case Instruction::Sub: {
+ SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
+ if (BO->Op)
+ Flags = getNoWrapFlagsFromUB(BO->Op);
+ return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
+ }
+ case Instruction::And:
+ // For an expression like x&255 that merely masks off the high bits,
+ // use zext(trunc(x)) as the SCEV expression.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
+ if (CI->isZero())
+ return getSCEV(BO->RHS);
+ if (CI->isMinusOne())
+ return getSCEV(BO->LHS);
+ const APInt &A = CI->getValue();
+
+ // Instcombine's ShrinkDemandedConstant may strip bits out of
+ // constants, obscuring what would otherwise be a low-bits mask.
+ // Use computeKnownBits to compute what ShrinkDemandedConstant
+ // knew about to reconstruct a low-bits mask value.
+ unsigned LZ = A.countLeadingZeros();
+ unsigned TZ = A.countTrailingZeros();
+ unsigned BitWidth = A.getBitWidth();
+ KnownBits Known(BitWidth);
+ computeKnownBits(BO->LHS, Known, getDataLayout(),
+ 0, &AC, nullptr, &DT);
+
+ APInt EffectiveMask =
+ APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
+ if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
+ const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
+ const SCEV *LHS = getSCEV(BO->LHS);
+ const SCEV *ShiftedLHS = nullptr;
+ if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
+ if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
+ // For an expression like (x * 8) & 8, simplify the multiply.
+ unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
+ unsigned GCD = std::min(MulZeros, TZ);
+ APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
+ SmallVector<const SCEV*, 4> MulOps;
+ MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
+ MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
+ auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
+ ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
+ }
+ }
+ if (!ShiftedLHS)
+ ShiftedLHS = getUDivExpr(LHS, MulCount);
+ return getMulExpr(
+ getZeroExtendExpr(
+ getTruncateExpr(ShiftedLHS,
+ IntegerType::get(getContext(), BitWidth - LZ - TZ)),
+ BO->LHS->getType()),
+ MulCount);
+ }
+ }
+ break;
+
+ case Instruction::Or:
+ // If the RHS of the Or is a constant, we may have something like:
+ // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
+ // optimizations will transparently handle this case.
+ //
+ // In order for this transformation to be safe, the LHS must be of the
+ // form X*(2^n) and the Or constant must be less than 2^n.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
+ const SCEV *LHS = getSCEV(BO->LHS);
+ const APInt &CIVal = CI->getValue();
+ if (GetMinTrailingZeros(LHS) >=
+ (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
+ // Build a plain add SCEV.
+ const SCEV *S = getAddExpr(LHS, getSCEV(CI));
+ // If the LHS of the add was an addrec and it has no-wrap flags,
+ // transfer the no-wrap flags, since an or won't introduce a wrap.
+ if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
+ const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
+ const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
+ OldAR->getNoWrapFlags());
+ }
+ return S;
+ }
+ }
+ break;
+
+ case Instruction::Xor:
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
+ // If the RHS of xor is -1, then this is a not operation.
+ if (CI->isMinusOne())
+ return getNotSCEV(getSCEV(BO->LHS));
+
+ // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
+ // This is a variant of the check for xor with -1, and it handles
+ // the case where instcombine has trimmed non-demanded bits out
+ // of an xor with -1.
+ if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
+ if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
+ if (LBO->getOpcode() == Instruction::And &&
+ LCI->getValue() == CI->getValue())
+ if (const SCEVZeroExtendExpr *Z =
+ dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
+ Type *UTy = BO->LHS->getType();
+ const SCEV *Z0 = Z->getOperand();
+ Type *Z0Ty = Z0->getType();
+ unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
+
+ // If C is a low-bits mask, the zero extend is serving to
+ // mask off the high bits. Complement the operand and
+ // re-apply the zext.
+ if (CI->getValue().isMask(Z0TySize))
+ return getZeroExtendExpr(getNotSCEV(Z0), UTy);
+
+ // If C is a single bit, it may be in the sign-bit position
+ // before the zero-extend. In this case, represent the xor
+ // using an add, which is equivalent, and re-apply the zext.
+ APInt Trunc = CI->getValue().trunc(Z0TySize);
+ if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
+ Trunc.isSignMask())
+ return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
+ UTy);
+ }
+ }
+ break;
+
+ case Instruction::Shl:
+ // Turn shift left of a constant amount into a multiply.
+ if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
+ uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
+
+ // If the shift count is not less than the bitwidth, the result of
+ // the shift is undefined. Don't try to analyze it, because the
+ // resolution chosen here may differ from the resolution chosen in
+ // other parts of the compiler.
+ if (SA->getValue().uge(BitWidth))
+ break;
+
+ // It is currently not resolved how to interpret NSW for left
+ // shift by BitWidth - 1, so we avoid applying flags in that
+ // case. Remove this check (or this comment) once the situation
+ // is resolved. See
+ // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
+ // and http://reviews.llvm.org/D8890 .
+ auto Flags = SCEV::FlagAnyWrap;
+ if (BO->Op && SA->getValue().ult(BitWidth - 1))
+ Flags = getNoWrapFlagsFromUB(BO->Op);
+
+ Constant *X = ConstantInt::get(
+ getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
+ return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
+ }
+ break;
+
+ case Instruction::AShr: {
+ // AShr X, C, where C is a constant.
+ ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
+ if (!CI)
+ break;
+
+ Type *OuterTy = BO->LHS->getType();
+ uint64_t BitWidth = getTypeSizeInBits(OuterTy);
+ // If the shift count is not less than the bitwidth, the result of
+ // the shift is undefined. Don't try to analyze it, because the
+ // resolution chosen here may differ from the resolution chosen in
+ // other parts of the compiler.
+ if (CI->getValue().uge(BitWidth))
+ break;
+
+ if (CI->isZero())
+ return getSCEV(BO->LHS); // shift by zero --> noop
+
+ uint64_t AShrAmt = CI->getZExtValue();
+ Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
+
+ Operator *L = dyn_cast<Operator>(BO->LHS);
+ if (L && L->getOpcode() == Instruction::Shl) {
+ // X = Shl A, n
+ // Y = AShr X, m
+ // Both n and m are constant.
+
+ const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
+ if (L->getOperand(1) == BO->RHS)
+ // For a two-shift sext-inreg, i.e. n = m,
+ // use sext(trunc(x)) as the SCEV expression.
+ return getSignExtendExpr(
+ getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
+
+ ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
+ if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
+ uint64_t ShlAmt = ShlAmtCI->getZExtValue();
+ if (ShlAmt > AShrAmt) {
+ // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
+ // expression. We already checked that ShlAmt < BitWidth, so
+ // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
+ // ShlAmt - AShrAmt < Amt.
+ APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
+ ShlAmt - AShrAmt);
+ return getSignExtendExpr(
+ getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
+ getConstant(Mul)), OuterTy);
+ }
+ }
+ }
+ break;
+ }
+ }
+ }
+
+ switch (U->getOpcode()) {
+ case Instruction::Trunc:
+ return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
+
+ case Instruction::ZExt:
+ return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
+
+ case Instruction::SExt:
+ if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
+ // The NSW flag of a subtract does not always survive the conversion to
+ // A + (-1)*B. By pushing sign extension onto its operands we are much
+ // more likely to preserve NSW and allow later AddRec optimisations.
+ //
+ // NOTE: This is effectively duplicating this logic from getSignExtend:
+ // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
+ // but by that point the NSW information has potentially been lost.
+ if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
+ Type *Ty = U->getType();
+ auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
+ auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
+ return getMinusSCEV(V1, V2, SCEV::FlagNSW);
+ }
+ }
+ return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
+
+ case Instruction::BitCast:
+ // BitCasts are no-op casts so we just eliminate the cast.
+ if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
+ return getSCEV(U->getOperand(0));
+ break;
+
+ // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
+ // lead to pointer expressions which cannot safely be expanded to GEPs,
+ // because ScalarEvolution doesn't respect the GEP aliasing rules when
+ // simplifying integer expressions.
+
+ case Instruction::GetElementPtr:
+ return createNodeForGEP(cast<GEPOperator>(U));
+
+ case Instruction::PHI:
+ return createNodeForPHI(cast<PHINode>(U));
+
+ case Instruction::Select:
+ // U can also be a select constant expr, which let fall through. Since
+ // createNodeForSelect only works for a condition that is an `ICmpInst`, and
+ // constant expressions cannot have instructions as operands, we'd have
+ // returned getUnknown for a select constant expressions anyway.
+ if (isa<Instruction>(U))
+ return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
+ U->getOperand(1), U->getOperand(2));
+ break;
+
+ case Instruction::Call:
+ case Instruction::Invoke:
+ if (Value *RV = CallSite(U).getReturnedArgOperand())
+ return getSCEV(RV);
+ break;
+ }
+
+ return getUnknown(V);
+}
+
+//===----------------------------------------------------------------------===//
+// Iteration Count Computation Code
+//
+
+static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
+ if (!ExitCount)
+ return 0;
+
+ ConstantInt *ExitConst = ExitCount->getValue();
+
+ // Guard against huge trip counts.
+ if (ExitConst->getValue().getActiveBits() > 32)
+ return 0;
+
+ // In case of integer overflow, this returns 0, which is correct.
+ return ((unsigned)ExitConst->getZExtValue()) + 1;
+}
+
+unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
+ if (BasicBlock *ExitingBB = L->getExitingBlock())
+ return getSmallConstantTripCount(L, ExitingBB);
+
+ // No trip count information for multiple exits.
+ return 0;
+}
+
+unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L,
+ BasicBlock *ExitingBlock) {
+ assert(ExitingBlock && "Must pass a non-null exiting block!");
+ assert(L->isLoopExiting(ExitingBlock) &&
+ "Exiting block must actually branch out of the loop!");
+ const SCEVConstant *ExitCount =
+ dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
+ return getConstantTripCount(ExitCount);
+}
+
+unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
+ const auto *MaxExitCount =
+ dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
+ return getConstantTripCount(MaxExitCount);
+}
+
+unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
+ if (BasicBlock *ExitingBB = L->getExitingBlock())
+ return getSmallConstantTripMultiple(L, ExitingBB);
+
+ // No trip multiple information for multiple exits.
+ return 0;
+}
+
+/// Returns the largest constant divisor of the trip count of this loop as a
+/// normal unsigned value, if possible. This means that the actual trip count is
+/// always a multiple of the returned value (don't forget the trip count could
+/// very well be zero as well!).
+///
+/// Returns 1 if the trip count is unknown or not guaranteed to be the
+/// multiple of a constant (which is also the case if the trip count is simply
+/// constant, use getSmallConstantTripCount for that case), Will also return 1
+/// if the trip count is very large (>= 2^32).
+///
+/// As explained in the comments for getSmallConstantTripCount, this assumes
+/// that control exits the loop via ExitingBlock.
+unsigned
+ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
+ BasicBlock *ExitingBlock) {
+ assert(ExitingBlock && "Must pass a non-null exiting block!");
+ assert(L->isLoopExiting(ExitingBlock) &&
+ "Exiting block must actually branch out of the loop!");
+ const SCEV *ExitCount = getExitCount(L, ExitingBlock);
+ if (ExitCount == getCouldNotCompute())
+ return 1;
+
+ // Get the trip count from the BE count by adding 1.
+ const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
+
+ const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
+ if (!TC)
+ // Attempt to factor more general cases. Returns the greatest power of
+ // two divisor. If overflow happens, the trip count expression is still
+ // divisible by the greatest power of 2 divisor returned.
+ return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
+
+ ConstantInt *Result = TC->getValue();
+
+ // Guard against huge trip counts (this requires checking
+ // for zero to handle the case where the trip count == -1 and the
+ // addition wraps).
+ if (!Result || Result->getValue().getActiveBits() > 32 ||
+ Result->getValue().getActiveBits() == 0)
+ return 1;
+
+ return (unsigned)Result->getZExtValue();
+}
+
+/// Get the expression for the number of loop iterations for which this loop is
+/// guaranteed not to exit via ExitingBlock. Otherwise return
+/// SCEVCouldNotCompute.
+const SCEV *ScalarEvolution::getExitCount(const Loop *L,
+ BasicBlock *ExitingBlock) {
+ return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
+}
+
+const SCEV *
+ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
+ SCEVUnionPredicate &Preds) {
+ return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
+}
+
+const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
+ return getBackedgeTakenInfo(L).getExact(L, this);
+}
+
+/// Similar to getBackedgeTakenCount, except return the least SCEV value that is
+/// known never to be less than the actual backedge taken count.
+const SCEV *ScalarEvolution::getConstantMaxBackedgeTakenCount(const Loop *L) {
+ return getBackedgeTakenInfo(L).getMax(this);
+}
+
+bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
+ return getBackedgeTakenInfo(L).isMaxOrZero(this);
+}
+
+/// Push PHI nodes in the header of the given loop onto the given Worklist.
+static void
+PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
+ BasicBlock *Header = L->getHeader();
+
+ // Push all Loop-header PHIs onto the Worklist stack.
+ for (PHINode &PN : Header->phis())
+ Worklist.push_back(&PN);
+}
+
+const ScalarEvolution::BackedgeTakenInfo &
+ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
+ auto &BTI = getBackedgeTakenInfo(L);
+ if (BTI.hasFullInfo())
+ return BTI;
+
+ auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
+
+ if (!Pair.second)
+ return Pair.first->second;
+
+ BackedgeTakenInfo Result =
+ computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
+
+ return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
+}
+
+const ScalarEvolution::BackedgeTakenInfo &
+ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
+ // Initially insert an invalid entry for this loop. If the insertion
+ // succeeds, proceed to actually compute a backedge-taken count and
+ // update the value. The temporary CouldNotCompute value tells SCEV
+ // code elsewhere that it shouldn't attempt to request a new
+ // backedge-taken count, which could result in infinite recursion.
+ std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
+ BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
+ if (!Pair.second)
+ return Pair.first->second;
+
+ // computeBackedgeTakenCount may allocate memory for its result. Inserting it
+ // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
+ // must be cleared in this scope.
+ BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
+
+ // In product build, there are no usage of statistic.
+ (void)NumTripCountsComputed;
+ (void)NumTripCountsNotComputed;
+#if LLVM_ENABLE_STATS || !defined(NDEBUG)
+ const SCEV *BEExact = Result.getExact(L, this);
+ if (BEExact != getCouldNotCompute()) {
+ assert(isLoopInvariant(BEExact, L) &&
+ isLoopInvariant(Result.getMax(this), L) &&
+ "Computed backedge-taken count isn't loop invariant for loop!");
+ ++NumTripCountsComputed;
+ }
+ else if (Result.getMax(this) == getCouldNotCompute() &&
+ isa<PHINode>(L->getHeader()->begin())) {
+ // Only count loops that have phi nodes as not being computable.
+ ++NumTripCountsNotComputed;
+ }
+#endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
+
+ // Now that we know more about the trip count for this loop, forget any
+ // existing SCEV values for PHI nodes in this loop since they are only
+ // conservative estimates made without the benefit of trip count
+ // information. This is similar to the code in forgetLoop, except that
+ // it handles SCEVUnknown PHI nodes specially.
+ if (Result.hasAnyInfo()) {
+ SmallVector<Instruction *, 16> Worklist;
+ PushLoopPHIs(L, Worklist);
+
+ SmallPtrSet<Instruction *, 8> Discovered;
+ while (!Worklist.empty()) {
+ Instruction *I = Worklist.pop_back_val();
+
+ ValueExprMapType::iterator It =
+ ValueExprMap.find_as(static_cast<Value *>(I));
+ if (It != ValueExprMap.end()) {
+ const SCEV *Old = It->second;
+
+ // SCEVUnknown for a PHI either means that it has an unrecognized
+ // structure, or it's a PHI that's in the progress of being computed
+ // by createNodeForPHI. In the former case, additional loop trip
+ // count information isn't going to change anything. In the later
+ // case, createNodeForPHI will perform the necessary updates on its
+ // own when it gets to that point.
+ if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
+ eraseValueFromMap(It->first);
+ forgetMemoizedResults(Old);
+ }
+ if (PHINode *PN = dyn_cast<PHINode>(I))
+ ConstantEvolutionLoopExitValue.erase(PN);
+ }
+
+ // Since we don't need to invalidate anything for correctness and we're
+ // only invalidating to make SCEV's results more precise, we get to stop
+ // early to avoid invalidating too much. This is especially important in
+ // cases like:
+ //
+ // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
+ // loop0:
+ // %pn0 = phi
+ // ...
+ // loop1:
+ // %pn1 = phi
+ // ...
+ //
+ // where both loop0 and loop1's backedge taken count uses the SCEV
+ // expression for %v. If we don't have the early stop below then in cases
+ // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
+ // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
+ // count for loop1, effectively nullifying SCEV's trip count cache.
+ for (auto *U : I->users())
+ if (auto *I = dyn_cast<Instruction>(U)) {
+ auto *LoopForUser = LI.getLoopFor(I->getParent());
+ if (LoopForUser && L->contains(LoopForUser) &&
+ Discovered.insert(I).second)
+ Worklist.push_back(I);
+ }
+ }
+ }
+
+ // Re-lookup the insert position, since the call to
+ // computeBackedgeTakenCount above could result in a
+ // recusive call to getBackedgeTakenInfo (on a different
+ // loop), which would invalidate the iterator computed
+ // earlier.
+ return BackedgeTakenCounts.find(L)->second = std::move(Result);
+}
+
+void ScalarEvolution::forgetAllLoops() {
+ // This method is intended to forget all info about loops. It should
+ // invalidate caches as if the following happened:
+ // - The trip counts of all loops have changed arbitrarily
+ // - Every llvm::Value has been updated in place to produce a different
+ // result.
+ BackedgeTakenCounts.clear();
+ PredicatedBackedgeTakenCounts.clear();
+ LoopPropertiesCache.clear();
+ ConstantEvolutionLoopExitValue.clear();
+ ValueExprMap.clear();
+ ValuesAtScopes.clear();
+ LoopDispositions.clear();
+ BlockDispositions.clear();
+ UnsignedRanges.clear();
+ SignedRanges.clear();
+ ExprValueMap.clear();
+ HasRecMap.clear();
+ MinTrailingZerosCache.clear();
+ PredicatedSCEVRewrites.clear();
+}
+
+void ScalarEvolution::forgetLoop(const Loop *L) {
+ // Drop any stored trip count value.
+ auto RemoveLoopFromBackedgeMap =
+ [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
+ auto BTCPos = Map.find(L);
+ if (BTCPos != Map.end()) {
+ BTCPos->second.clear();
+ Map.erase(BTCPos);
+ }
+ };
+
+ SmallVector<const Loop *, 16> LoopWorklist(1, L);
+ SmallVector<Instruction *, 32> Worklist;
+ SmallPtrSet<Instruction *, 16> Visited;
+
+ // Iterate over all the loops and sub-loops to drop SCEV information.
+ while (!LoopWorklist.empty()) {
+ auto *CurrL = LoopWorklist.pop_back_val();
+
+ RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
+ RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
+
+ // Drop information about predicated SCEV rewrites for this loop.
+ for (auto I = PredicatedSCEVRewrites.begin();
+ I != PredicatedSCEVRewrites.end();) {
+ std::pair<const SCEV *, const Loop *> Entry = I->first;
+ if (Entry.second == CurrL)
+ PredicatedSCEVRewrites.erase(I++);
+ else
+ ++I;
+ }
+
+ auto LoopUsersItr = LoopUsers.find(CurrL);
+ if (LoopUsersItr != LoopUsers.end()) {
+ for (auto *S : LoopUsersItr->second)
+ forgetMemoizedResults(S);
+ LoopUsers.erase(LoopUsersItr);
+ }
+
+ // Drop information about expressions based on loop-header PHIs.
+ PushLoopPHIs(CurrL, Worklist);
+
+ while (!Worklist.empty()) {
+ Instruction *I = Worklist.pop_back_val();
+ if (!Visited.insert(I).second)
+ continue;
+
+ ValueExprMapType::iterator It =
+ ValueExprMap.find_as(static_cast<Value *>(I));
+ if (It != ValueExprMap.end()) {
+ eraseValueFromMap(It->first);
+ forgetMemoizedResults(It->second);
+ if (PHINode *PN = dyn_cast<PHINode>(I))
+ ConstantEvolutionLoopExitValue.erase(PN);
+ }
+
+ PushDefUseChildren(I, Worklist);
+ }
+
+ LoopPropertiesCache.erase(CurrL);
+ // Forget all contained loops too, to avoid dangling entries in the
+ // ValuesAtScopes map.
+ LoopWorklist.append(CurrL->begin(), CurrL->end());
+ }
+}
+
+void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
+ while (Loop *Parent = L->getParentLoop())
+ L = Parent;
+ forgetLoop(L);
+}
+
+void ScalarEvolution::forgetValue(Value *V) {
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I) return;
+
+ // Drop information about expressions based on loop-header PHIs.
+ SmallVector<Instruction *, 16> Worklist;
+ Worklist.push_back(I);
+
+ SmallPtrSet<Instruction *, 8> Visited;
+ while (!Worklist.empty()) {
+ I = Worklist.pop_back_val();
+ if (!Visited.insert(I).second)
+ continue;
+
+ ValueExprMapType::iterator It =
+ ValueExprMap.find_as(static_cast<Value *>(I));
+ if (It != ValueExprMap.end()) {
+ eraseValueFromMap(It->first);
+ forgetMemoizedResults(It->second);
+ if (PHINode *PN = dyn_cast<PHINode>(I))
+ ConstantEvolutionLoopExitValue.erase(PN);
+ }
+
+ PushDefUseChildren(I, Worklist);
+ }
+}
+
+/// Get the exact loop backedge taken count considering all loop exits. A
+/// computable result can only be returned for loops with all exiting blocks
+/// dominating the latch. howFarToZero assumes that the limit of each loop test
+/// is never skipped. This is a valid assumption as long as the loop exits via
+/// that test. For precise results, it is the caller's responsibility to specify
+/// the relevant loop exiting block using getExact(ExitingBlock, SE).
+const SCEV *
+ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
+ SCEVUnionPredicate *Preds) const {
+ // If any exits were not computable, the loop is not computable.
+ if (!isComplete() || ExitNotTaken.empty())
+ return SE->getCouldNotCompute();
+
+ const BasicBlock *Latch = L->getLoopLatch();
+ // All exiting blocks we have collected must dominate the only backedge.
+ if (!Latch)
+ return SE->getCouldNotCompute();
+
+ // All exiting blocks we have gathered dominate loop's latch, so exact trip
+ // count is simply a minimum out of all these calculated exit counts.
+ SmallVector<const SCEV *, 2> Ops;
+ for (auto &ENT : ExitNotTaken) {
+ const SCEV *BECount = ENT.ExactNotTaken;
+ assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
+ assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
+ "We should only have known counts for exiting blocks that dominate "
+ "latch!");
+
+ Ops.push_back(BECount);
+
+ if (Preds && !ENT.hasAlwaysTruePredicate())
+ Preds->add(ENT.Predicate.get());
+
+ assert((Preds || ENT.hasAlwaysTruePredicate()) &&
+ "Predicate should be always true!");
+ }
+
+ return SE->getUMinFromMismatchedTypes(Ops);
+}
+
+/// Get the exact not taken count for this loop exit.
+const SCEV *
+ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
+ ScalarEvolution *SE) const {
+ for (auto &ENT : ExitNotTaken)
+ if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
+ return ENT.ExactNotTaken;
+
+ return SE->getCouldNotCompute();
+}
+
+/// getMax - Get the max backedge taken count for the loop.
+const SCEV *
+ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
+ auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
+ return !ENT.hasAlwaysTruePredicate();
+ };
+
+ if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
+ return SE->getCouldNotCompute();
+
+ assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) &&
+ "No point in having a non-constant max backedge taken count!");
+ return getMax();
+}
+
+bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
+ auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
+ return !ENT.hasAlwaysTruePredicate();
+ };
+ return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
+}
+
+bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
+ ScalarEvolution *SE) const {
+ if (getMax() && getMax() != SE->getCouldNotCompute() &&
+ SE->hasOperand(getMax(), S))
+ return true;
+
+ for (auto &ENT : ExitNotTaken)
+ if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
+ SE->hasOperand(ENT.ExactNotTaken, S))
+ return true;
+
+ return false;
+}
+
+ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
+ : ExactNotTaken(E), MaxNotTaken(E) {
+ assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
+ isa<SCEVConstant>(MaxNotTaken)) &&
+ "No point in having a non-constant max backedge taken count!");
+}
+
+ScalarEvolution::ExitLimit::ExitLimit(
+ const SCEV *E, const SCEV *M, bool MaxOrZero,
+ ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
+ : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
+ assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
+ !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
+ "Exact is not allowed to be less precise than Max");
+ assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
+ isa<SCEVConstant>(MaxNotTaken)) &&
+ "No point in having a non-constant max backedge taken count!");
+ for (auto *PredSet : PredSetList)
+ for (auto *P : *PredSet)
+ addPredicate(P);
+}
+
+ScalarEvolution::ExitLimit::ExitLimit(
+ const SCEV *E, const SCEV *M, bool MaxOrZero,
+ const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
+ : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
+ assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
+ isa<SCEVConstant>(MaxNotTaken)) &&
+ "No point in having a non-constant max backedge taken count!");
+}
+
+ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
+ bool MaxOrZero)
+ : ExitLimit(E, M, MaxOrZero, None) {
+ assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
+ isa<SCEVConstant>(MaxNotTaken)) &&
+ "No point in having a non-constant max backedge taken count!");
+}
+
+/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
+/// computable exit into a persistent ExitNotTakenInfo array.
+ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
+ ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
+ ExitCounts,
+ bool Complete, const SCEV *MaxCount, bool MaxOrZero)
+ : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
+ using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
+
+ ExitNotTaken.reserve(ExitCounts.size());
+ std::transform(
+ ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
+ [&](const EdgeExitInfo &EEI) {
+ BasicBlock *ExitBB = EEI.first;
+ const ExitLimit &EL = EEI.second;
+ if (EL.Predicates.empty())
+ return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr);
+
+ std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
+ for (auto *Pred : EL.Predicates)
+ Predicate->add(Pred);
+
+ return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate));
+ });
+ assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) &&
+ "No point in having a non-constant max backedge taken count!");
+}
+
+/// Invalidate this result and free the ExitNotTakenInfo array.
+void ScalarEvolution::BackedgeTakenInfo::clear() {
+ ExitNotTaken.clear();
+}
+
+/// Compute the number of times the backedge of the specified loop will execute.
+ScalarEvolution::BackedgeTakenInfo
+ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
+ bool AllowPredicates) {
+ SmallVector<BasicBlock *, 8> ExitingBlocks;
+ L->getExitingBlocks(ExitingBlocks);
+
+ using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
+
+ SmallVector<EdgeExitInfo, 4> ExitCounts;
+ bool CouldComputeBECount = true;
+ BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
+ const SCEV *MustExitMaxBECount = nullptr;
+ const SCEV *MayExitMaxBECount = nullptr;
+ bool MustExitMaxOrZero = false;
+
+ // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
+ // and compute maxBECount.
+ // Do a union of all the predicates here.
+ for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
+ BasicBlock *ExitBB = ExitingBlocks[i];
+ ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
+
+ assert((AllowPredicates || EL.Predicates.empty()) &&
+ "Predicated exit limit when predicates are not allowed!");
+
+ // 1. For each exit that can be computed, add an entry to ExitCounts.
+ // CouldComputeBECount is true only if all exits can be computed.
+ if (EL.ExactNotTaken == getCouldNotCompute())
+ // We couldn't compute an exact value for this exit, so
+ // we won't be able to compute an exact value for the loop.
+ CouldComputeBECount = false;
+ else
+ ExitCounts.emplace_back(ExitBB, EL);
+
+ // 2. Derive the loop's MaxBECount from each exit's max number of
+ // non-exiting iterations. Partition the loop exits into two kinds:
+ // LoopMustExits and LoopMayExits.
+ //
+ // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
+ // is a LoopMayExit. If any computable LoopMustExit is found, then
+ // MaxBECount is the minimum EL.MaxNotTaken of computable
+ // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
+ // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
+ // computable EL.MaxNotTaken.
+ if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
+ DT.dominates(ExitBB, Latch)) {
+ if (!MustExitMaxBECount) {
+ MustExitMaxBECount = EL.MaxNotTaken;
+ MustExitMaxOrZero = EL.MaxOrZero;
+ } else {
+ MustExitMaxBECount =
+ getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
+ }
+ } else if (MayExitMaxBECount != getCouldNotCompute()) {
+ if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
+ MayExitMaxBECount = EL.MaxNotTaken;
+ else {
+ MayExitMaxBECount =
+ getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
+ }
+ }
+ }
+ const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
+ (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
+ // The loop backedge will be taken the maximum or zero times if there's
+ // a single exit that must be taken the maximum or zero times.
+ bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
+ return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
+ MaxBECount, MaxOrZero);
+}
+
+ScalarEvolution::ExitLimit
+ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
+ bool AllowPredicates) {
+ assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
+ // If our exiting block does not dominate the latch, then its connection with
+ // loop's exit limit may be far from trivial.
+ const BasicBlock *Latch = L->getLoopLatch();
+ if (!Latch || !DT.dominates(ExitingBlock, Latch))
+ return getCouldNotCompute();
+
+ bool IsOnlyExit = (L->getExitingBlock() != nullptr);
+ Instruction *Term = ExitingBlock->getTerminator();
+ if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
+ assert(BI->isConditional() && "If unconditional, it can't be in loop!");
+ bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
+ assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
+ "It should have one successor in loop and one exit block!");
+ // Proceed to the next level to examine the exit condition expression.
+ return computeExitLimitFromCond(
+ L, BI->getCondition(), ExitIfTrue,
+ /*ControlsExit=*/IsOnlyExit, AllowPredicates);
+ }
+
+ if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
+ // For switch, make sure that there is a single exit from the loop.
+ BasicBlock *Exit = nullptr;
+ for (auto *SBB : successors(ExitingBlock))
+ if (!L->contains(SBB)) {
+ if (Exit) // Multiple exit successors.
+ return getCouldNotCompute();
+ Exit = SBB;
+ }
+ assert(Exit && "Exiting block must have at least one exit");
+ return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
+ /*ControlsExit=*/IsOnlyExit);
+ }
+
+ return getCouldNotCompute();
+}
+
+ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
+ const Loop *L, Value *ExitCond, bool ExitIfTrue,
+ bool ControlsExit, bool AllowPredicates) {
+ ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
+ return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
+ ControlsExit, AllowPredicates);
+}
+
+Optional<ScalarEvolution::ExitLimit>
+ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
+ bool ExitIfTrue, bool ControlsExit,
+ bool AllowPredicates) {
+ (void)this->L;
+ (void)this->ExitIfTrue;
+ (void)this->AllowPredicates;
+
+ assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
+ this->AllowPredicates == AllowPredicates &&
+ "Variance in assumed invariant key components!");
+ auto Itr = TripCountMap.find({ExitCond, ControlsExit});
+ if (Itr == TripCountMap.end())
+ return None;
+ return Itr->second;
+}
+
+void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
+ bool ExitIfTrue,
+ bool ControlsExit,
+ bool AllowPredicates,
+ const ExitLimit &EL) {
+ assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
+ this->AllowPredicates == AllowPredicates &&
+ "Variance in assumed invariant key components!");
+
+ auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
+ assert(InsertResult.second && "Expected successful insertion!");
+ (void)InsertResult;
+ (void)ExitIfTrue;
+}
+
+ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
+ ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
+ bool ControlsExit, bool AllowPredicates) {
+
+ if (auto MaybeEL =
+ Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
+ return *MaybeEL;
+
+ ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
+ ControlsExit, AllowPredicates);
+ Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
+ return EL;
+}
+
+ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
+ ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
+ bool ControlsExit, bool AllowPredicates) {
+ // Check if the controlling expression for this loop is an And or Or.
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
+ if (BO->getOpcode() == Instruction::And) {
+ // Recurse on the operands of the and.
+ bool EitherMayExit = !ExitIfTrue;
+ ExitLimit EL0 = computeExitLimitFromCondCached(
+ Cache, L, BO->getOperand(0), ExitIfTrue,
+ ControlsExit && !EitherMayExit, AllowPredicates);
+ ExitLimit EL1 = computeExitLimitFromCondCached(
+ Cache, L, BO->getOperand(1), ExitIfTrue,
+ ControlsExit && !EitherMayExit, AllowPredicates);
+ const SCEV *BECount = getCouldNotCompute();
+ const SCEV *MaxBECount = getCouldNotCompute();
+ if (EitherMayExit) {
+ // Both conditions must be true for the loop to continue executing.
+ // Choose the less conservative count.
+ if (EL0.ExactNotTaken == getCouldNotCompute() ||
+ EL1.ExactNotTaken == getCouldNotCompute())
+ BECount = getCouldNotCompute();
+ else
+ BECount =
+ getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
+ if (EL0.MaxNotTaken == getCouldNotCompute())
+ MaxBECount = EL1.MaxNotTaken;
+ else if (EL1.MaxNotTaken == getCouldNotCompute())
+ MaxBECount = EL0.MaxNotTaken;
+ else
+ MaxBECount =
+ getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
+ } else {
+ // Both conditions must be true at the same time for the loop to exit.
+ // For now, be conservative.
+ if (EL0.MaxNotTaken == EL1.MaxNotTaken)
+ MaxBECount = EL0.MaxNotTaken;
+ if (EL0.ExactNotTaken == EL1.ExactNotTaken)
+ BECount = EL0.ExactNotTaken;
+ }
+
+ // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
+ // to be more aggressive when computing BECount than when computing
+ // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and
+ // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
+ // to not.
+ if (isa<SCEVCouldNotCompute>(MaxBECount) &&
+ !isa<SCEVCouldNotCompute>(BECount))
+ MaxBECount = getConstant(getUnsignedRangeMax(BECount));
+
+ return ExitLimit(BECount, MaxBECount, false,
+ {&EL0.Predicates, &EL1.Predicates});
+ }
+ if (BO->getOpcode() == Instruction::Or) {
+ // Recurse on the operands of the or.
+ bool EitherMayExit = ExitIfTrue;
+ ExitLimit EL0 = computeExitLimitFromCondCached(
+ Cache, L, BO->getOperand(0), ExitIfTrue,
+ ControlsExit && !EitherMayExit, AllowPredicates);
+ ExitLimit EL1 = computeExitLimitFromCondCached(
+ Cache, L, BO->getOperand(1), ExitIfTrue,
+ ControlsExit && !EitherMayExit, AllowPredicates);
+ const SCEV *BECount = getCouldNotCompute();
+ const SCEV *MaxBECount = getCouldNotCompute();
+ if (EitherMayExit) {
+ // Both conditions must be false for the loop to continue executing.
+ // Choose the less conservative count.
+ if (EL0.ExactNotTaken == getCouldNotCompute() ||
+ EL1.ExactNotTaken == getCouldNotCompute())
+ BECount = getCouldNotCompute();
+ else
+ BECount =
+ getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
+ if (EL0.MaxNotTaken == getCouldNotCompute())
+ MaxBECount = EL1.MaxNotTaken;
+ else if (EL1.MaxNotTaken == getCouldNotCompute())
+ MaxBECount = EL0.MaxNotTaken;
+ else
+ MaxBECount =
+ getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
+ } else {
+ // Both conditions must be false at the same time for the loop to exit.
+ // For now, be conservative.
+ if (EL0.MaxNotTaken == EL1.MaxNotTaken)
+ MaxBECount = EL0.MaxNotTaken;
+ if (EL0.ExactNotTaken == EL1.ExactNotTaken)
+ BECount = EL0.ExactNotTaken;
+ }
+ // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
+ // to be more aggressive when computing BECount than when computing
+ // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and
+ // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
+ // to not.
+ if (isa<SCEVCouldNotCompute>(MaxBECount) &&
+ !isa<SCEVCouldNotCompute>(BECount))
+ MaxBECount = getConstant(getUnsignedRangeMax(BECount));
+
+ return ExitLimit(BECount, MaxBECount, false,
+ {&EL0.Predicates, &EL1.Predicates});
+ }
+ }
+
+ // With an icmp, it may be feasible to compute an exact backedge-taken count.
+ // Proceed to the next level to examine the icmp.
+ if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
+ ExitLimit EL =
+ computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
+ if (EL.hasFullInfo() || !AllowPredicates)
+ return EL;
+
+ // Try again, but use SCEV predicates this time.
+ return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
+ /*AllowPredicates=*/true);
+ }
+
+ // Check for a constant condition. These are normally stripped out by
+ // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
+ // preserve the CFG and is temporarily leaving constant conditions
+ // in place.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
+ if (ExitIfTrue == !CI->getZExtValue())
+ // The backedge is always taken.
+ return getCouldNotCompute();
+ else
+ // The backedge is never taken.
+ return getZero(CI->getType());
+ }
+
+ // If it's not an integer or pointer comparison then compute it the hard way.
+ return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
+}
+
+ScalarEvolution::ExitLimit
+ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
+ ICmpInst *ExitCond,
+ bool ExitIfTrue,
+ bool ControlsExit,
+ bool AllowPredicates) {
+ // If the condition was exit on true, convert the condition to exit on false
+ ICmpInst::Predicate Pred;
+ if (!ExitIfTrue)
+ Pred = ExitCond->getPredicate();
+ else
+ Pred = ExitCond->getInversePredicate();
+ const ICmpInst::Predicate OriginalPred = Pred;
+
+ // Handle common loops like: for (X = "string"; *X; ++X)
+ if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
+ if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
+ ExitLimit ItCnt =
+ computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
+ if (ItCnt.hasAnyInfo())
+ return ItCnt;
+ }
+
+ const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
+ const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
+
+ // Try to evaluate any dependencies out of the loop.
+ LHS = getSCEVAtScope(LHS, L);
+ RHS = getSCEVAtScope(RHS, L);
+
+ // At this point, we would like to compute how many iterations of the
+ // loop the predicate will return true for these inputs.
+ if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
+ // If there is a loop-invariant, force it into the RHS.
+ std::swap(LHS, RHS);
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ }
+
+ // Simplify the operands before analyzing them.
+ (void)SimplifyICmpOperands(Pred, LHS, RHS);
+
+ // If we have a comparison of a chrec against a constant, try to use value
+ // ranges to answer this query.
+ if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
+ if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
+ if (AddRec->getLoop() == L) {
+ // Form the constant range.
+ ConstantRange CompRange =
+ ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
+
+ const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
+ if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
+ }
+
+ switch (Pred) {
+ case ICmpInst::ICMP_NE: { // while (X != Y)
+ // Convert to: while (X-Y != 0)
+ ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
+ AllowPredicates);
+ if (EL.hasAnyInfo()) return EL;
+ break;
+ }
+ case ICmpInst::ICMP_EQ: { // while (X == Y)
+ // Convert to: while (X-Y == 0)
+ ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
+ if (EL.hasAnyInfo()) return EL;
+ break;
+ }
+ case ICmpInst::ICMP_SLT:
+ case ICmpInst::ICMP_ULT: { // while (X < Y)
+ bool IsSigned = Pred == ICmpInst::ICMP_SLT;
+ ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
+ AllowPredicates);
+ if (EL.hasAnyInfo()) return EL;
+ break;
+ }
+ case ICmpInst::ICMP_SGT:
+ case ICmpInst::ICMP_UGT: { // while (X > Y)
+ bool IsSigned = Pred == ICmpInst::ICMP_SGT;
+ ExitLimit EL =
+ howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
+ AllowPredicates);
+ if (EL.hasAnyInfo()) return EL;
+ break;
+ }
+ default:
+ break;
+ }
+
+ auto *ExhaustiveCount =
+ computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
+
+ if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
+ return ExhaustiveCount;
+
+ return computeShiftCompareExitLimit(ExitCond->getOperand(0),
+ ExitCond->getOperand(1), L, OriginalPred);
+}
+
+ScalarEvolution::ExitLimit
+ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
+ SwitchInst *Switch,
+ BasicBlock *ExitingBlock,
+ bool ControlsExit) {
+ assert(!L->contains(ExitingBlock) && "Not an exiting block!");
+
+ // Give up if the exit is the default dest of a switch.
+ if (Switch->getDefaultDest() == ExitingBlock)
+ return getCouldNotCompute();
+
+ assert(L->contains(Switch->getDefaultDest()) &&
+ "Default case must not exit the loop!");
+ const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
+ const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
+
+ // while (X != Y) --> while (X-Y != 0)
+ ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
+ if (EL.hasAnyInfo())
+ return EL;
+
+ return getCouldNotCompute();
+}
+
+static ConstantInt *
+EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
+ ScalarEvolution &SE) {
+ const SCEV *InVal = SE.getConstant(C);
+ const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
+ assert(isa<SCEVConstant>(Val) &&
+ "Evaluation of SCEV at constant didn't fold correctly?");
+ return cast<SCEVConstant>(Val)->getValue();
+}
+
+/// Given an exit condition of 'icmp op load X, cst', try to see if we can
+/// compute the backedge execution count.
+ScalarEvolution::ExitLimit
+ScalarEvolution::computeLoadConstantCompareExitLimit(
+ LoadInst *LI,
+ Constant *RHS,
+ const Loop *L,
+ ICmpInst::Predicate predicate) {
+ if (LI->isVolatile()) return getCouldNotCompute();
+
+ // Check to see if the loaded pointer is a getelementptr of a global.
+ // TODO: Use SCEV instead of manually grubbing with GEPs.
+ GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
+ if (!GEP) return getCouldNotCompute();
+
+ // Make sure that it is really a constant global we are gepping, with an
+ // initializer, and make sure the first IDX is really 0.
+ GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
+ if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
+ GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
+ !cast<Constant>(GEP->getOperand(1))->isNullValue())
+ return getCouldNotCompute();
+
+ // Okay, we allow one non-constant index into the GEP instruction.
+ Value *VarIdx = nullptr;
+ std::vector<Constant*> Indexes;
+ unsigned VarIdxNum = 0;
+ for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
+ Indexes.push_back(CI);
+ } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
+ if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
+ VarIdx = GEP->getOperand(i);
+ VarIdxNum = i-2;
+ Indexes.push_back(nullptr);
+ }
+
+ // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
+ if (!VarIdx)
+ return getCouldNotCompute();
+
+ // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
+ // Check to see if X is a loop variant variable value now.
+ const SCEV *Idx = getSCEV(VarIdx);
+ Idx = getSCEVAtScope(Idx, L);
+
+ // We can only recognize very limited forms of loop index expressions, in
+ // particular, only affine AddRec's like {C1,+,C2}.
+ const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
+ if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
+ !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
+ !isa<SCEVConstant>(IdxExpr->getOperand(1)))
+ return getCouldNotCompute();
+
+ unsigned MaxSteps = MaxBruteForceIterations;
+ for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
+ ConstantInt *ItCst = ConstantInt::get(
+ cast<IntegerType>(IdxExpr->getType()), IterationNum);
+ ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
+
+ // Form the GEP offset.
+ Indexes[VarIdxNum] = Val;
+
+ Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
+ Indexes);
+ if (!Result) break; // Cannot compute!
+
+ // Evaluate the condition for this iteration.
+ Result = ConstantExpr::getICmp(predicate, Result, RHS);
+ if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
+ if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
+ ++NumArrayLenItCounts;
+ return getConstant(ItCst); // Found terminating iteration!
+ }
+ }
+ return getCouldNotCompute();
+}
+
+ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
+ Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
+ ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
+ if (!RHS)
+ return getCouldNotCompute();
+
+ const BasicBlock *Latch = L->getLoopLatch();
+ if (!Latch)
+ return getCouldNotCompute();
+
+ const BasicBlock *Predecessor = L->getLoopPredecessor();
+ if (!Predecessor)
+ return getCouldNotCompute();
+
+ // Return true if V is of the form "LHS `shift_op` <positive constant>".
+ // Return LHS in OutLHS and shift_opt in OutOpCode.
+ auto MatchPositiveShift =
+ [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
+
+ using namespace PatternMatch;
+
+ ConstantInt *ShiftAmt;
+ if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
+ OutOpCode = Instruction::LShr;
+ else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
+ OutOpCode = Instruction::AShr;
+ else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
+ OutOpCode = Instruction::Shl;
+ else
+ return false;
+
+ return ShiftAmt->getValue().isStrictlyPositive();
+ };
+
+ // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
+ //
+ // loop:
+ // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
+ // %iv.shifted = lshr i32 %iv, <positive constant>
+ //
+ // Return true on a successful match. Return the corresponding PHI node (%iv
+ // above) in PNOut and the opcode of the shift operation in OpCodeOut.
+ auto MatchShiftRecurrence =
+ [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
+ Optional<Instruction::BinaryOps> PostShiftOpCode;
+
+ {
+ Instruction::BinaryOps OpC;
+ Value *V;
+
+ // If we encounter a shift instruction, "peel off" the shift operation,
+ // and remember that we did so. Later when we inspect %iv's backedge
+ // value, we will make sure that the backedge value uses the same
+ // operation.
+ //
+ // Note: the peeled shift operation does not have to be the same
+ // instruction as the one feeding into the PHI's backedge value. We only
+ // really care about it being the same *kind* of shift instruction --
+ // that's all that is required for our later inferences to hold.
+ if (MatchPositiveShift(LHS, V, OpC)) {
+ PostShiftOpCode = OpC;
+ LHS = V;
+ }
+ }
+
+ PNOut = dyn_cast<PHINode>(LHS);
+ if (!PNOut || PNOut->getParent() != L->getHeader())
+ return false;
+
+ Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
+ Value *OpLHS;
+
+ return
+ // The backedge value for the PHI node must be a shift by a positive
+ // amount
+ MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
+
+ // of the PHI node itself
+ OpLHS == PNOut &&
+
+ // and the kind of shift should be match the kind of shift we peeled
+ // off, if any.
+ (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
+ };
+
+ PHINode *PN;
+ Instruction::BinaryOps OpCode;
+ if (!MatchShiftRecurrence(LHS, PN, OpCode))
+ return getCouldNotCompute();
+
+ const DataLayout &DL = getDataLayout();
+
+ // The key rationale for this optimization is that for some kinds of shift
+ // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
+ // within a finite number of iterations. If the condition guarding the
+ // backedge (in the sense that the backedge is taken if the condition is true)
+ // is false for the value the shift recurrence stabilizes to, then we know
+ // that the backedge is taken only a finite number of times.
+
+ ConstantInt *StableValue = nullptr;
+ switch (OpCode) {
+ default:
+ llvm_unreachable("Impossible case!");
+
+ case Instruction::AShr: {
+ // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
+ // bitwidth(K) iterations.
+ Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
+ KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
+ Predecessor->getTerminator(), &DT);
+ auto *Ty = cast<IntegerType>(RHS->getType());
+ if (Known.isNonNegative())
+ StableValue = ConstantInt::get(Ty, 0);
+ else if (Known.isNegative())
+ StableValue = ConstantInt::get(Ty, -1, true);
+ else
+ return getCouldNotCompute();
+
+ break;
+ }
+ case Instruction::LShr:
+ case Instruction::Shl:
+ // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
+ // stabilize to 0 in at most bitwidth(K) iterations.
+ StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
+ break;
+ }
+
+ auto *Result =
+ ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
+ assert(Result->getType()->isIntegerTy(1) &&
+ "Otherwise cannot be an operand to a branch instruction");
+
+ if (Result->isZeroValue()) {
+ unsigned BitWidth = getTypeSizeInBits(RHS->getType());
+ const SCEV *UpperBound =
+ getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
+ return ExitLimit(getCouldNotCompute(), UpperBound, false);
+ }
+
+ return getCouldNotCompute();
+}
+
+/// Return true if we can constant fold an instruction of the specified type,
+/// assuming that all operands were constants.
+static bool CanConstantFold(const Instruction *I) {
+ if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
+ isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
+ isa<LoadInst>(I) || isa<ExtractValueInst>(I))
+ return true;
+
+ if (const CallInst *CI = dyn_cast<CallInst>(I))
+ if (const Function *F = CI->getCalledFunction())
+ return canConstantFoldCallTo(CI, F);
+ return false;
+}
+
+/// Determine whether this instruction can constant evolve within this loop
+/// assuming its operands can all constant evolve.
+static bool canConstantEvolve(Instruction *I, const Loop *L) {
+ // An instruction outside of the loop can't be derived from a loop PHI.
+ if (!L->contains(I)) return false;
+
+ if (isa<PHINode>(I)) {
+ // We don't currently keep track of the control flow needed to evaluate
+ // PHIs, so we cannot handle PHIs inside of loops.
+ return L->getHeader() == I->getParent();
+ }
+
+ // If we won't be able to constant fold this expression even if the operands
+ // are constants, bail early.
+ return CanConstantFold(I);
+}
+
+/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
+/// recursing through each instruction operand until reaching a loop header phi.
+static PHINode *
+getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
+ DenseMap<Instruction *, PHINode *> &PHIMap,
+ unsigned Depth) {
+ if (Depth > MaxConstantEvolvingDepth)
+ return nullptr;
+
+ // Otherwise, we can evaluate this instruction if all of its operands are
+ // constant or derived from a PHI node themselves.
+ PHINode *PHI = nullptr;
+ for (Value *Op : UseInst->operands()) {
+ if (isa<Constant>(Op)) continue;
+
+ Instruction *OpInst = dyn_cast<Instruction>(Op);
+ if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
+
+ PHINode *P = dyn_cast<PHINode>(OpInst);
+ if (!P)
+ // If this operand is already visited, reuse the prior result.
+ // We may have P != PHI if this is the deepest point at which the
+ // inconsistent paths meet.
+ P = PHIMap.lookup(OpInst);
+ if (!P) {
+ // Recurse and memoize the results, whether a phi is found or not.
+ // This recursive call invalidates pointers into PHIMap.
+ P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
+ PHIMap[OpInst] = P;
+ }
+ if (!P)
+ return nullptr; // Not evolving from PHI
+ if (PHI && PHI != P)
+ return nullptr; // Evolving from multiple different PHIs.
+ PHI = P;
+ }
+ // This is a expression evolving from a constant PHI!
+ return PHI;
+}
+
+/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
+/// in the loop that V is derived from. We allow arbitrary operations along the
+/// way, but the operands of an operation must either be constants or a value
+/// derived from a constant PHI. If this expression does not fit with these
+/// constraints, return null.
+static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I || !canConstantEvolve(I, L)) return nullptr;
+
+ if (PHINode *PN = dyn_cast<PHINode>(I))
+ return PN;
+
+ // Record non-constant instructions contained by the loop.
+ DenseMap<Instruction *, PHINode *> PHIMap;
+ return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
+}
+
+/// EvaluateExpression - Given an expression that passes the
+/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
+/// in the loop has the value PHIVal. If we can't fold this expression for some
+/// reason, return null.
+static Constant *EvaluateExpression(Value *V, const Loop *L,
+ DenseMap<Instruction *, Constant *> &Vals,
+ const DataLayout &DL,
+ const TargetLibraryInfo *TLI) {
+ // Convenient constant check, but redundant for recursive calls.
+ if (Constant *C = dyn_cast<Constant>(V)) return C;
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I) return nullptr;
+
+ if (Constant *C = Vals.lookup(I)) return C;
+
+ // An instruction inside the loop depends on a value outside the loop that we
+ // weren't given a mapping for, or a value such as a call inside the loop.
+ if (!canConstantEvolve(I, L)) return nullptr;
+
+ // An unmapped PHI can be due to a branch or another loop inside this loop,
+ // or due to this not being the initial iteration through a loop where we
+ // couldn't compute the evolution of this particular PHI last time.
+ if (isa<PHINode>(I)) return nullptr;
+
+ std::vector<Constant*> Operands(I->getNumOperands());
+
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
+ Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
+ if (!Operand) {
+ Operands[i] = dyn_cast<Constant>(I->getOperand(i));
+ if (!Operands[i]) return nullptr;
+ continue;
+ }
+ Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
+ Vals[Operand] = C;
+ if (!C) return nullptr;
+ Operands[i] = C;
+ }
+
+ if (CmpInst *CI = dyn_cast<CmpInst>(I))
+ return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
+ Operands[1], DL, TLI);
+ if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ if (!LI->isVolatile())
+ return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
+ }
+ return ConstantFoldInstOperands(I, Operands, DL, TLI);
+}
+
+
+// If every incoming value to PN except the one for BB is a specific Constant,
+// return that, else return nullptr.
+static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
+ Constant *IncomingVal = nullptr;
+
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ if (PN->getIncomingBlock(i) == BB)
+ continue;
+
+ auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
+ if (!CurrentVal)
+ return nullptr;
+
+ if (IncomingVal != CurrentVal) {
+ if (IncomingVal)
+ return nullptr;
+ IncomingVal = CurrentVal;
+ }
+ }
+
+ return IncomingVal;
+}
+
+/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
+/// in the header of its containing loop, we know the loop executes a
+/// constant number of times, and the PHI node is just a recurrence
+/// involving constants, fold it.
+Constant *
+ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
+ const APInt &BEs,
+ const Loop *L) {
+ auto I = ConstantEvolutionLoopExitValue.find(PN);
+ if (I != ConstantEvolutionLoopExitValue.end())
+ return I->second;
+
+ if (BEs.ugt(MaxBruteForceIterations))
+ return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
+
+ Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
+
+ DenseMap<Instruction *, Constant *> CurrentIterVals;
+ BasicBlock *Header = L->getHeader();
+ assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
+
+ BasicBlock *Latch = L->getLoopLatch();
+ if (!Latch)
+ return nullptr;
+
+ for (PHINode &PHI : Header->phis()) {
+ if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
+ CurrentIterVals[&PHI] = StartCST;
+ }
+ if (!CurrentIterVals.count(PN))
+ return RetVal = nullptr;
+
+ Value *BEValue = PN->getIncomingValueForBlock(Latch);
+
+ // Execute the loop symbolically to determine the exit value.
+ assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
+ "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
+
+ unsigned NumIterations = BEs.getZExtValue(); // must be in range
+ unsigned IterationNum = 0;
+ const DataLayout &DL = getDataLayout();
+ for (; ; ++IterationNum) {
+ if (IterationNum == NumIterations)
+ return RetVal = CurrentIterVals[PN]; // Got exit value!
+
+ // Compute the value of the PHIs for the next iteration.
+ // EvaluateExpression adds non-phi values to the CurrentIterVals map.
+ DenseMap<Instruction *, Constant *> NextIterVals;
+ Constant *NextPHI =
+ EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
+ if (!NextPHI)
+ return nullptr; // Couldn't evaluate!
+ NextIterVals[PN] = NextPHI;
+
+ bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
+
+ // Also evaluate the other PHI nodes. However, we don't get to stop if we
+ // cease to be able to evaluate one of them or if they stop evolving,
+ // because that doesn't necessarily prevent us from computing PN.
+ SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
+ for (const auto &I : CurrentIterVals) {
+ PHINode *PHI = dyn_cast<PHINode>(I.first);
+ if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
+ PHIsToCompute.emplace_back(PHI, I.second);
+ }
+ // We use two distinct loops because EvaluateExpression may invalidate any
+ // iterators into CurrentIterVals.
+ for (const auto &I : PHIsToCompute) {
+ PHINode *PHI = I.first;
+ Constant *&NextPHI = NextIterVals[PHI];
+ if (!NextPHI) { // Not already computed.
+ Value *BEValue = PHI->getIncomingValueForBlock(Latch);
+ NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
+ }
+ if (NextPHI != I.second)
+ StoppedEvolving = false;
+ }
+
+ // If all entries in CurrentIterVals == NextIterVals then we can stop
+ // iterating, the loop can't continue to change.
+ if (StoppedEvolving)
+ return RetVal = CurrentIterVals[PN];
+
+ CurrentIterVals.swap(NextIterVals);
+ }
+}
+
+const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
+ Value *Cond,
+ bool ExitWhen) {
+ PHINode *PN = getConstantEvolvingPHI(Cond, L);
+ if (!PN) return getCouldNotCompute();
+
+ // If the loop is canonicalized, the PHI will have exactly two entries.
+ // That's the only form we support here.
+ if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
+
+ DenseMap<Instruction *, Constant *> CurrentIterVals;
+ BasicBlock *Header = L->getHeader();
+ assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
+
+ BasicBlock *Latch = L->getLoopLatch();
+ assert(Latch && "Should follow from NumIncomingValues == 2!");
+
+ for (PHINode &PHI : Header->phis()) {
+ if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
+ CurrentIterVals[&PHI] = StartCST;
+ }
+ if (!CurrentIterVals.count(PN))
+ return getCouldNotCompute();
+
+ // Okay, we find a PHI node that defines the trip count of this loop. Execute
+ // the loop symbolically to determine when the condition gets a value of
+ // "ExitWhen".
+ unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
+ const DataLayout &DL = getDataLayout();
+ for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
+ auto *CondVal = dyn_cast_or_null<ConstantInt>(
+ EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
+
+ // Couldn't symbolically evaluate.
+ if (!CondVal) return getCouldNotCompute();
+
+ if (CondVal->getValue() == uint64_t(ExitWhen)) {
+ ++NumBruteForceTripCountsComputed;
+ return getConstant(Type::getInt32Ty(getContext()), IterationNum);
+ }
+
+ // Update all the PHI nodes for the next iteration.
+ DenseMap<Instruction *, Constant *> NextIterVals;
+
+ // Create a list of which PHIs we need to compute. We want to do this before
+ // calling EvaluateExpression on them because that may invalidate iterators
+ // into CurrentIterVals.
+ SmallVector<PHINode *, 8> PHIsToCompute;
+ for (const auto &I : CurrentIterVals) {
+ PHINode *PHI = dyn_cast<PHINode>(I.first);
+ if (!PHI || PHI->getParent() != Header) continue;
+ PHIsToCompute.push_back(PHI);
+ }
+ for (PHINode *PHI : PHIsToCompute) {
+ Constant *&NextPHI = NextIterVals[PHI];
+ if (NextPHI) continue; // Already computed!
+
+ Value *BEValue = PHI->getIncomingValueForBlock(Latch);
+ NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
+ }
+ CurrentIterVals.swap(NextIterVals);
+ }
+
+ // Too many iterations were needed to evaluate.
+ return getCouldNotCompute();
+}
+
+const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
+ SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
+ ValuesAtScopes[V];
+ // Check to see if we've folded this expression at this loop before.
+ for (auto &LS : Values)
+ if (LS.first == L)
+ return LS.second ? LS.second : V;
+
+ Values.emplace_back(L, nullptr);
+
+ // Otherwise compute it.
+ const SCEV *C = computeSCEVAtScope(V, L);
+ for (auto &LS : reverse(ValuesAtScopes[V]))
+ if (LS.first == L) {
+ LS.second = C;
+ break;
+ }
+ return C;
+}
+
+/// This builds up a Constant using the ConstantExpr interface. That way, we
+/// will return Constants for objects which aren't represented by a
+/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
+/// Returns NULL if the SCEV isn't representable as a Constant.
+static Constant *BuildConstantFromSCEV(const SCEV *V) {
+ switch (static_cast<SCEVTypes>(V->getSCEVType())) {
+ case scCouldNotCompute:
+ case scAddRecExpr:
+ break;
+ case scConstant:
+ return cast<SCEVConstant>(V)->getValue();
+ case scUnknown:
+ return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
+ case scSignExtend: {
+ const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
+ if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
+ return ConstantExpr::getSExt(CastOp, SS->getType());
+ break;
+ }
+ case scZeroExtend: {
+ const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
+ if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
+ return ConstantExpr::getZExt(CastOp, SZ->getType());
+ break;
+ }
+ case scTruncate: {
+ const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
+ if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
+ return ConstantExpr::getTrunc(CastOp, ST->getType());
+ break;
+ }
+ case scAddExpr: {
+ const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
+ if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
+ if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
+ unsigned AS = PTy->getAddressSpace();
+ Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
+ C = ConstantExpr::getBitCast(C, DestPtrTy);
+ }
+ for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
+ Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
+ if (!C2) return nullptr;
+
+ // First pointer!
+ if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
+ unsigned AS = C2->getType()->getPointerAddressSpace();
+ std::swap(C, C2);
+ Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
+ // The offsets have been converted to bytes. We can add bytes to an
+ // i8* by GEP with the byte count in the first index.
+ C = ConstantExpr::getBitCast(C, DestPtrTy);
+ }
+
+ // Don't bother trying to sum two pointers. We probably can't
+ // statically compute a load that results from it anyway.
+ if (C2->getType()->isPointerTy())
+ return nullptr;
+
+ if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
+ if (PTy->getElementType()->isStructTy())
+ C2 = ConstantExpr::getIntegerCast(
+ C2, Type::getInt32Ty(C->getContext()), true);
+ C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
+ } else
+ C = ConstantExpr::getAdd(C, C2);
+ }
+ return C;
+ }
+ break;
+ }
+ case scMulExpr: {
+ const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
+ if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
+ // Don't bother with pointers at all.
+ if (C->getType()->isPointerTy()) return nullptr;
+ for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
+ Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
+ if (!C2 || C2->getType()->isPointerTy()) return nullptr;
+ C = ConstantExpr::getMul(C, C2);
+ }
+ return C;
+ }
+ break;
+ }
+ case scUDivExpr: {
+ const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
+ if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
+ if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
+ if (LHS->getType() == RHS->getType())
+ return ConstantExpr::getUDiv(LHS, RHS);
+ break;
+ }
+ case scSMaxExpr:
+ case scUMaxExpr:
+ case scSMinExpr:
+ case scUMinExpr:
+ break; // TODO: smax, umax, smin, umax.
+ }
+ return nullptr;
+}
+
+const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
+ if (isa<SCEVConstant>(V)) return V;
+
+ // If this instruction is evolved from a constant-evolving PHI, compute the
+ // exit value from the loop without using SCEVs.
+ if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
+ if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
+ if (PHINode *PN = dyn_cast<PHINode>(I)) {
+ const Loop *LI = this->LI[I->getParent()];
+ // Looking for loop exit value.
+ if (LI && LI->getParentLoop() == L &&
+ PN->getParent() == LI->getHeader()) {
+ // Okay, there is no closed form solution for the PHI node. Check
+ // to see if the loop that contains it has a known backedge-taken
+ // count. If so, we may be able to force computation of the exit
+ // value.
+ const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
+ // This trivial case can show up in some degenerate cases where
+ // the incoming IR has not yet been fully simplified.
+ if (BackedgeTakenCount->isZero()) {
+ Value *InitValue = nullptr;
+ bool MultipleInitValues = false;
+ for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
+ if (!LI->contains(PN->getIncomingBlock(i))) {
+ if (!InitValue)
+ InitValue = PN->getIncomingValue(i);
+ else if (InitValue != PN->getIncomingValue(i)) {
+ MultipleInitValues = true;
+ break;
+ }
+ }
+ }
+ if (!MultipleInitValues && InitValue)
+ return getSCEV(InitValue);
+ }
+ // Do we have a loop invariant value flowing around the backedge
+ // for a loop which must execute the backedge?
+ if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
+ isKnownPositive(BackedgeTakenCount) &&
+ PN->getNumIncomingValues() == 2) {
+ unsigned InLoopPred = LI->contains(PN->getIncomingBlock(0)) ? 0 : 1;
+ const SCEV *OnBackedge = getSCEV(PN->getIncomingValue(InLoopPred));
+ if (IsAvailableOnEntry(LI, DT, OnBackedge, PN->getParent()))
+ return OnBackedge;
+ }
+ if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
+ // Okay, we know how many times the containing loop executes. If
+ // this is a constant evolving PHI node, get the final value at
+ // the specified iteration number.
+ Constant *RV =
+ getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
+ if (RV) return getSCEV(RV);
+ }
+ }
+
+ // If there is a single-input Phi, evaluate it at our scope. If we can
+ // prove that this replacement does not break LCSSA form, use new value.
+ if (PN->getNumOperands() == 1) {
+ const SCEV *Input = getSCEV(PN->getOperand(0));
+ const SCEV *InputAtScope = getSCEVAtScope(Input, L);
+ // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
+ // for the simplest case just support constants.
+ if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
+ }
+ }
+
+ // Okay, this is an expression that we cannot symbolically evaluate
+ // into a SCEV. Check to see if it's possible to symbolically evaluate
+ // the arguments into constants, and if so, try to constant propagate the
+ // result. This is particularly useful for computing loop exit values.
+ if (CanConstantFold(I)) {
+ SmallVector<Constant *, 4> Operands;
+ bool MadeImprovement = false;
+ for (Value *Op : I->operands()) {
+ if (Constant *C = dyn_cast<Constant>(Op)) {
+ Operands.push_back(C);
+ continue;
+ }
+
+ // If any of the operands is non-constant and if they are
+ // non-integer and non-pointer, don't even try to analyze them
+ // with scev techniques.
+ if (!isSCEVable(Op->getType()))
+ return V;
+
+ const SCEV *OrigV = getSCEV(Op);
+ const SCEV *OpV = getSCEVAtScope(OrigV, L);
+ MadeImprovement |= OrigV != OpV;
+
+ Constant *C = BuildConstantFromSCEV(OpV);
+ if (!C) return V;
+ if (C->getType() != Op->getType())
+ C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
+ Op->getType(),
+ false),
+ C, Op->getType());
+ Operands.push_back(C);
+ }
+
+ // Check to see if getSCEVAtScope actually made an improvement.
+ if (MadeImprovement) {
+ Constant *C = nullptr;
+ const DataLayout &DL = getDataLayout();
+ if (const CmpInst *CI = dyn_cast<CmpInst>(I))
+ C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
+ Operands[1], DL, &TLI);
+ else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ if (!LI->isVolatile())
+ C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
+ } else
+ C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
+ if (!C) return V;
+ return getSCEV(C);
+ }
+ }
+ }
+
+ // This is some other type of SCEVUnknown, just return it.
+ return V;
+ }
+
+ if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
+ // Avoid performing the look-up in the common case where the specified
+ // expression has no loop-variant portions.
+ for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
+ const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
+ if (OpAtScope != Comm->getOperand(i)) {
+ // Okay, at least one of these operands is loop variant but might be
+ // foldable. Build a new instance of the folded commutative expression.
+ SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
+ Comm->op_begin()+i);
+ NewOps.push_back(OpAtScope);
+
+ for (++i; i != e; ++i) {
+ OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
+ NewOps.push_back(OpAtScope);
+ }
+ if (isa<SCEVAddExpr>(Comm))
+ return getAddExpr(NewOps, Comm->getNoWrapFlags());
+ if (isa<SCEVMulExpr>(Comm))
+ return getMulExpr(NewOps, Comm->getNoWrapFlags());
+ if (isa<SCEVMinMaxExpr>(Comm))
+ return getMinMaxExpr(Comm->getSCEVType(), NewOps);
+ llvm_unreachable("Unknown commutative SCEV type!");
+ }
+ }
+ // If we got here, all operands are loop invariant.
+ return Comm;
+ }
+
+ if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
+ const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
+ const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
+ if (LHS == Div->getLHS() && RHS == Div->getRHS())
+ return Div; // must be loop invariant
+ return getUDivExpr(LHS, RHS);
+ }
+
+ // If this is a loop recurrence for a loop that does not contain L, then we
+ // are dealing with the final value computed by the loop.
+ if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
+ // First, attempt to evaluate each operand.
+ // Avoid performing the look-up in the common case where the specified
+ // expression has no loop-variant portions.
+ for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
+ const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
+ if (OpAtScope == AddRec->getOperand(i))
+ continue;
+
+ // Okay, at least one of these operands is loop variant but might be
+ // foldable. Build a new instance of the folded commutative expression.
+ SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
+ AddRec->op_begin()+i);
+ NewOps.push_back(OpAtScope);
+ for (++i; i != e; ++i)
+ NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
+
+ const SCEV *FoldedRec =
+ getAddRecExpr(NewOps, AddRec->getLoop(),
+ AddRec->getNoWrapFlags(SCEV::FlagNW));
+ AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
+ // The addrec may be folded to a nonrecurrence, for example, if the
+ // induction variable is multiplied by zero after constant folding. Go
+ // ahead and return the folded value.
+ if (!AddRec)
+ return FoldedRec;
+ break;
+ }
+
+ // If the scope is outside the addrec's loop, evaluate it by using the
+ // loop exit value of the addrec.
+ if (!AddRec->getLoop()->contains(L)) {
+ // To evaluate this recurrence, we need to know how many times the AddRec
+ // loop iterates. Compute this now.
+ const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
+ if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
+
+ // Then, evaluate the AddRec.
+ return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
+ }
+
+ return AddRec;
+ }
+
+ if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
+ const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
+ if (Op == Cast->getOperand())
+ return Cast; // must be loop invariant
+ return getZeroExtendExpr(Op, Cast->getType());
+ }
+
+ if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
+ const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
+ if (Op == Cast->getOperand())
+ return Cast; // must be loop invariant
+ return getSignExtendExpr(Op, Cast->getType());
+ }
+
+ if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
+ const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
+ if (Op == Cast->getOperand())
+ return Cast; // must be loop invariant
+ return getTruncateExpr(Op, Cast->getType());
+ }
+
+ llvm_unreachable("Unknown SCEV type!");
+}
+
+const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
+ return getSCEVAtScope(getSCEV(V), L);
+}
+
+const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
+ if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
+ return stripInjectiveFunctions(ZExt->getOperand());
+ if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
+ return stripInjectiveFunctions(SExt->getOperand());
+ return S;
+}
+
+/// Finds the minimum unsigned root of the following equation:
+///
+/// A * X = B (mod N)
+///
+/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
+/// A and B isn't important.
+///
+/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
+static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
+ ScalarEvolution &SE) {
+ uint32_t BW = A.getBitWidth();
+ assert(BW == SE.getTypeSizeInBits(B->getType()));
+ assert(A != 0 && "A must be non-zero.");
+
+ // 1. D = gcd(A, N)
+ //
+ // The gcd of A and N may have only one prime factor: 2. The number of
+ // trailing zeros in A is its multiplicity
+ uint32_t Mult2 = A.countTrailingZeros();
+ // D = 2^Mult2
+
+ // 2. Check if B is divisible by D.
+ //
+ // B is divisible by D if and only if the multiplicity of prime factor 2 for B
+ // is not less than multiplicity of this prime factor for D.
+ if (SE.GetMinTrailingZeros(B) < Mult2)
+ return SE.getCouldNotCompute();
+
+ // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
+ // modulo (N / D).
+ //
+ // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
+ // (N / D) in general. The inverse itself always fits into BW bits, though,
+ // so we immediately truncate it.
+ APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
+ APInt Mod(BW + 1, 0);
+ Mod.setBit(BW - Mult2); // Mod = N / D
+ APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
+
+ // 4. Compute the minimum unsigned root of the equation:
+ // I * (B / D) mod (N / D)
+ // To simplify the computation, we factor out the divide by D:
+ // (I * B mod N) / D
+ const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
+ return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
+}
+
+/// For a given quadratic addrec, generate coefficients of the corresponding
+/// quadratic equation, multiplied by a common value to ensure that they are
+/// integers.
+/// The returned value is a tuple { A, B, C, M, BitWidth }, where
+/// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
+/// were multiplied by, and BitWidth is the bit width of the original addrec
+/// coefficients.
+/// This function returns None if the addrec coefficients are not compile-
+/// time constants.
+static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
+GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
+ assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
+ const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
+ const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
+ const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
+ LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
+ << *AddRec << '\n');
+
+ // We currently can only solve this if the coefficients are constants.
+ if (!LC || !MC || !NC) {
+ LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
+ return None;
+ }
+
+ APInt L = LC->getAPInt();
+ APInt M = MC->getAPInt();
+ APInt N = NC->getAPInt();
+ assert(!N.isNullValue() && "This is not a quadratic addrec");
+
+ unsigned BitWidth = LC->getAPInt().getBitWidth();
+ unsigned NewWidth = BitWidth + 1;
+ LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
+ << BitWidth << '\n');
+ // The sign-extension (as opposed to a zero-extension) here matches the
+ // extension used in SolveQuadraticEquationWrap (with the same motivation).
+ N = N.sext(NewWidth);
+ M = M.sext(NewWidth);
+ L = L.sext(NewWidth);
+
+ // The increments are M, M+N, M+2N, ..., so the accumulated values are
+ // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
+ // L+M, L+2M+N, L+3M+3N, ...
+ // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
+ //
+ // The equation Acc = 0 is then
+ // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0.
+ // In a quadratic form it becomes:
+ // N n^2 + (2M-N) n + 2L = 0.
+
+ APInt A = N;
+ APInt B = 2 * M - A;
+ APInt C = 2 * L;
+ APInt T = APInt(NewWidth, 2);
+ LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
+ << "x + " << C << ", coeff bw: " << NewWidth
+ << ", multiplied by " << T << '\n');
+ return std::make_tuple(A, B, C, T, BitWidth);
+}
+
+/// Helper function to compare optional APInts:
+/// (a) if X and Y both exist, return min(X, Y),
+/// (b) if neither X nor Y exist, return None,
+/// (c) if exactly one of X and Y exists, return that value.
+static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
+ if (X.hasValue() && Y.hasValue()) {
+ unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
+ APInt XW = X->sextOrSelf(W);
+ APInt YW = Y->sextOrSelf(W);
+ return XW.slt(YW) ? *X : *Y;
+ }
+ if (!X.hasValue() && !Y.hasValue())
+ return None;
+ return X.hasValue() ? *X : *Y;
+}
+
+/// Helper function to truncate an optional APInt to a given BitWidth.
+/// When solving addrec-related equations, it is preferable to return a value
+/// that has the same bit width as the original addrec's coefficients. If the
+/// solution fits in the original bit width, truncate it (except for i1).
+/// Returning a value of a different bit width may inhibit some optimizations.
+///
+/// In general, a solution to a quadratic equation generated from an addrec
+/// may require BW+1 bits, where BW is the bit width of the addrec's
+/// coefficients. The reason is that the coefficients of the quadratic
+/// equation are BW+1 bits wide (to avoid truncation when converting from
+/// the addrec to the equation).
+static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
+ if (!X.hasValue())
+ return None;
+ unsigned W = X->getBitWidth();
+ if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
+ return X->trunc(BitWidth);
+ return X;
+}
+
+/// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
+/// iterations. The values L, M, N are assumed to be signed, and they
+/// should all have the same bit widths.
+/// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
+/// where BW is the bit width of the addrec's coefficients.
+/// If the calculated value is a BW-bit integer (for BW > 1), it will be
+/// returned as such, otherwise the bit width of the returned value may
+/// be greater than BW.
+///
+/// This function returns None if
+/// (a) the addrec coefficients are not constant, or
+/// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
+/// like x^2 = 5, no integer solutions exist, in other cases an integer
+/// solution may exist, but SolveQuadraticEquationWrap may fail to find it.
+static Optional<APInt>
+SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
+ APInt A, B, C, M;
+ unsigned BitWidth;
+ auto T = GetQuadraticEquation(AddRec);
+ if (!T.hasValue())
+ return None;
+
+ std::tie(A, B, C, M, BitWidth) = *T;
+ LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
+ Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
+ if (!X.hasValue())
+ return None;
+
+ ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
+ ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
+ if (!V->isZero())
+ return None;
+
+ return TruncIfPossible(X, BitWidth);
+}
+
+/// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
+/// iterations. The values M, N are assumed to be signed, and they
+/// should all have the same bit widths.
+/// Find the least n such that c(n) does not belong to the given range,
+/// while c(n-1) does.
+///
+/// This function returns None if
+/// (a) the addrec coefficients are not constant, or
+/// (b) SolveQuadraticEquationWrap was unable to find a solution for the
+/// bounds of the range.
+static Optional<APInt>
+SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
+ const ConstantRange &Range, ScalarEvolution &SE) {
+ assert(AddRec->getOperand(0)->isZero() &&
+ "Starting value of addrec should be 0");
+ LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
+ << Range << ", addrec " << *AddRec << '\n');
+ // This case is handled in getNumIterationsInRange. Here we can assume that
+ // we start in the range.
+ assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
+ "Addrec's initial value should be in range");
+
+ APInt A, B, C, M;
+ unsigned BitWidth;
+ auto T = GetQuadraticEquation(AddRec);
+ if (!T.hasValue())
+ return None;
+
+ // Be careful about the return value: there can be two reasons for not
+ // returning an actual number. First, if no solutions to the equations
+ // were found, and second, if the solutions don't leave the given range.
+ // The first case means that the actual solution is "unknown", the second
+ // means that it's known, but not valid. If the solution is unknown, we
+ // cannot make any conclusions.
+ // Return a pair: the optional solution and a flag indicating if the
+ // solution was found.
+ auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
+ // Solve for signed overflow and unsigned overflow, pick the lower
+ // solution.
+ LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
+ << Bound << " (before multiplying by " << M << ")\n");
+ Bound *= M; // The quadratic equation multiplier.
+
+ Optional<APInt> SO = None;
+ if (BitWidth > 1) {
+ LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
+ "signed overflow\n");
+ SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
+ }
+ LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
+ "unsigned overflow\n");
+ Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
+ BitWidth+1);
+
+ auto LeavesRange = [&] (const APInt &X) {
+ ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
+ ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
+ if (Range.contains(V0->getValue()))
+ return false;
+ // X should be at least 1, so X-1 is non-negative.
+ ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
+ ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
+ if (Range.contains(V1->getValue()))
+ return true;
+ return false;
+ };
+
+ // If SolveQuadraticEquationWrap returns None, it means that there can
+ // be a solution, but the function failed to find it. We cannot treat it
+ // as "no solution".
+ if (!SO.hasValue() || !UO.hasValue())
+ return { None, false };
+
+ // Check the smaller value first to see if it leaves the range.
+ // At this point, both SO and UO must have values.
+ Optional<APInt> Min = MinOptional(SO, UO);
+ if (LeavesRange(*Min))
+ return { Min, true };
+ Optional<APInt> Max = Min == SO ? UO : SO;
+ if (LeavesRange(*Max))
+ return { Max, true };
+
+ // Solutions were found, but were eliminated, hence the "true".
+ return { None, true };
+ };
+
+ std::tie(A, B, C, M, BitWidth) = *T;
+ // Lower bound is inclusive, subtract 1 to represent the exiting value.
+ APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
+ APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
+ auto SL = SolveForBoundary(Lower);
+ auto SU = SolveForBoundary(Upper);
+ // If any of the solutions was unknown, no meaninigful conclusions can
+ // be made.
+ if (!SL.second || !SU.second)
+ return None;
+
+ // Claim: The correct solution is not some value between Min and Max.
+ //
+ // Justification: Assuming that Min and Max are different values, one of
+ // them is when the first signed overflow happens, the other is when the
+ // first unsigned overflow happens. Crossing the range boundary is only
+ // possible via an overflow (treating 0 as a special case of it, modeling
+ // an overflow as crossing k*2^W for some k).
+ //
+ // The interesting case here is when Min was eliminated as an invalid
+ // solution, but Max was not. The argument is that if there was another
+ // overflow between Min and Max, it would also have been eliminated if
+ // it was considered.
+ //
+ // For a given boundary, it is possible to have two overflows of the same
+ // type (signed/unsigned) without having the other type in between: this
+ // can happen when the vertex of the parabola is between the iterations
+ // corresponding to the overflows. This is only possible when the two
+ // overflows cross k*2^W for the same k. In such case, if the second one
+ // left the range (and was the first one to do so), the first overflow
+ // would have to enter the range, which would mean that either we had left
+ // the range before or that we started outside of it. Both of these cases
+ // are contradictions.
+ //
+ // Claim: In the case where SolveForBoundary returns None, the correct
+ // solution is not some value between the Max for this boundary and the
+ // Min of the other boundary.
+ //
+ // Justification: Assume that we had such Max_A and Min_B corresponding
+ // to range boundaries A and B and such that Max_A < Min_B. If there was
+ // a solution between Max_A and Min_B, it would have to be caused by an
+ // overflow corresponding to either A or B. It cannot correspond to B,
+ // since Min_B is the first occurrence of such an overflow. If it
+ // corresponded to A, it would have to be either a signed or an unsigned
+ // overflow that is larger than both eliminated overflows for A. But
+ // between the eliminated overflows and this overflow, the values would
+ // cover the entire value space, thus crossing the other boundary, which
+ // is a contradiction.
+
+ return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
+}
+
+ScalarEvolution::ExitLimit
+ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
+ bool AllowPredicates) {
+
+ // This is only used for loops with a "x != y" exit test. The exit condition
+ // is now expressed as a single expression, V = x-y. So the exit test is
+ // effectively V != 0. We know and take advantage of the fact that this
+ // expression only being used in a comparison by zero context.
+
+ SmallPtrSet<const SCEVPredicate *, 4> Predicates;
+ // If the value is a constant
+ if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
+ // If the value is already zero, the branch will execute zero times.
+ if (C->getValue()->isZero()) return C;
+ return getCouldNotCompute(); // Otherwise it will loop infinitely.
+ }
+
+ const SCEVAddRecExpr *AddRec =
+ dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
+
+ if (!AddRec && AllowPredicates)
+ // Try to make this an AddRec using runtime tests, in the first X
+ // iterations of this loop, where X is the SCEV expression found by the
+ // algorithm below.
+ AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
+
+ if (!AddRec || AddRec->getLoop() != L)
+ return getCouldNotCompute();
+
+ // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
+ // the quadratic equation to solve it.
+ if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
+ // We can only use this value if the chrec ends up with an exact zero
+ // value at this index. When solving for "X*X != 5", for example, we
+ // should not accept a root of 2.
+ if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
+ const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
+ return ExitLimit(R, R, false, Predicates);
+ }
+ return getCouldNotCompute();
+ }
+
+ // Otherwise we can only handle this if it is affine.
+ if (!AddRec->isAffine())
+ return getCouldNotCompute();
+
+ // If this is an affine expression, the execution count of this branch is
+ // the minimum unsigned root of the following equation:
+ //
+ // Start + Step*N = 0 (mod 2^BW)
+ //
+ // equivalent to:
+ //
+ // Step*N = -Start (mod 2^BW)
+ //
+ // where BW is the common bit width of Start and Step.
+
+ // Get the initial value for the loop.
+ const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
+ const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
+
+ // For now we handle only constant steps.
+ //
+ // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
+ // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
+ // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
+ // We have not yet seen any such cases.
+ const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
+ if (!StepC || StepC->getValue()->isZero())
+ return getCouldNotCompute();
+
+ // For positive steps (counting up until unsigned overflow):
+ // N = -Start/Step (as unsigned)
+ // For negative steps (counting down to zero):
+ // N = Start/-Step
+ // First compute the unsigned distance from zero in the direction of Step.
+ bool CountDown = StepC->getAPInt().isNegative();
+ const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
+
+ // Handle unitary steps, which cannot wraparound.
+ // 1*N = -Start; -1*N = Start (mod 2^BW), so:
+ // N = Distance (as unsigned)
+ if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
+ APInt MaxBECount = getUnsignedRangeMax(Distance);
+
+ // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
+ // we end up with a loop whose backedge-taken count is n - 1. Detect this
+ // case, and see if we can improve the bound.
+ //
+ // Explicitly handling this here is necessary because getUnsignedRange
+ // isn't context-sensitive; it doesn't know that we only care about the
+ // range inside the loop.
+ const SCEV *Zero = getZero(Distance->getType());
+ const SCEV *One = getOne(Distance->getType());
+ const SCEV *DistancePlusOne = getAddExpr(Distance, One);
+ if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
+ // If Distance + 1 doesn't overflow, we can compute the maximum distance
+ // as "unsigned_max(Distance + 1) - 1".
+ ConstantRange CR = getUnsignedRange(DistancePlusOne);
+ MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
+ }
+ return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
+ }
+
+ // If the condition controls loop exit (the loop exits only if the expression
+ // is true) and the addition is no-wrap we can use unsigned divide to
+ // compute the backedge count. In this case, the step may not divide the
+ // distance, but we don't care because if the condition is "missed" the loop
+ // will have undefined behavior due to wrapping.
+ if (ControlsExit && AddRec->hasNoSelfWrap() &&
+ loopHasNoAbnormalExits(AddRec->getLoop())) {
+ const SCEV *Exact =
+ getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
+ const SCEV *Max =
+ Exact == getCouldNotCompute()
+ ? Exact
+ : getConstant(getUnsignedRangeMax(Exact));
+ return ExitLimit(Exact, Max, false, Predicates);
+ }
+
+ // Solve the general equation.
+ const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
+ getNegativeSCEV(Start), *this);
+ const SCEV *M = E == getCouldNotCompute()
+ ? E
+ : getConstant(getUnsignedRangeMax(E));
+ return ExitLimit(E, M, false, Predicates);
+}
+
+ScalarEvolution::ExitLimit
+ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
+ // Loops that look like: while (X == 0) are very strange indeed. We don't
+ // handle them yet except for the trivial case. This could be expanded in the
+ // future as needed.
+
+ // If the value is a constant, check to see if it is known to be non-zero
+ // already. If so, the backedge will execute zero times.
+ if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
+ if (!C->getValue()->isZero())
+ return getZero(C->getType());
+ return getCouldNotCompute(); // Otherwise it will loop infinitely.
+ }
+
+ // We could implement others, but I really doubt anyone writes loops like
+ // this, and if they did, they would already be constant folded.
+ return getCouldNotCompute();
+}
+
+std::pair<BasicBlock *, BasicBlock *>
+ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
+ // If the block has a unique predecessor, then there is no path from the
+ // predecessor to the block that does not go through the direct edge
+ // from the predecessor to the block.
+ if (BasicBlock *Pred = BB->getSinglePredecessor())
+ return {Pred, BB};
+
+ // A loop's header is defined to be a block that dominates the loop.
+ // If the header has a unique predecessor outside the loop, it must be
+ // a block that has exactly one successor that can reach the loop.
+ if (Loop *L = LI.getLoopFor(BB))
+ return {L->getLoopPredecessor(), L->getHeader()};
+
+ return {nullptr, nullptr};
+}
+
+/// SCEV structural equivalence is usually sufficient for testing whether two
+/// expressions are equal, however for the purposes of looking for a condition
+/// guarding a loop, it can be useful to be a little more general, since a
+/// front-end may have replicated the controlling expression.
+static bool HasSameValue(const SCEV *A, const SCEV *B) {
+ // Quick check to see if they are the same SCEV.
+ if (A == B) return true;
+
+ auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
+ // Not all instructions that are "identical" compute the same value. For
+ // instance, two distinct alloca instructions allocating the same type are
+ // identical and do not read memory; but compute distinct values.
+ return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
+ };
+
+ // Otherwise, if they're both SCEVUnknown, it's possible that they hold
+ // two different instructions with the same value. Check for this case.
+ if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
+ if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
+ if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
+ if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
+ if (ComputesEqualValues(AI, BI))
+ return true;
+
+ // Otherwise assume they may have a different value.
+ return false;
+}
+
+bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
+ const SCEV *&LHS, const SCEV *&RHS,
+ unsigned Depth) {
+ bool Changed = false;
+ // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
+ // '0 != 0'.
+ auto TrivialCase = [&](bool TriviallyTrue) {
+ LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
+ Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
+ return true;
+ };
+ // If we hit the max recursion limit bail out.
+ if (Depth >= 3)
+ return false;
+
+ // Canonicalize a constant to the right side.
+ if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
+ // Check for both operands constant.
+ if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
+ if (ConstantExpr::getICmp(Pred,
+ LHSC->getValue(),
+ RHSC->getValue())->isNullValue())
+ return TrivialCase(false);
+ else
+ return TrivialCase(true);
+ }
+ // Otherwise swap the operands to put the constant on the right.
+ std::swap(LHS, RHS);
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ Changed = true;
+ }
+
+ // If we're comparing an addrec with a value which is loop-invariant in the
+ // addrec's loop, put the addrec on the left. Also make a dominance check,
+ // as both operands could be addrecs loop-invariant in each other's loop.
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
+ const Loop *L = AR->getLoop();
+ if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
+ std::swap(LHS, RHS);
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ Changed = true;
+ }
+ }
+
+ // If there's a constant operand, canonicalize comparisons with boundary
+ // cases, and canonicalize *-or-equal comparisons to regular comparisons.
+ if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
+ const APInt &RA = RC->getAPInt();
+
+ bool SimplifiedByConstantRange = false;
+
+ if (!ICmpInst::isEquality(Pred)) {
+ ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
+ if (ExactCR.isFullSet())
+ return TrivialCase(true);
+ else if (ExactCR.isEmptySet())
+ return TrivialCase(false);
+
+ APInt NewRHS;
+ CmpInst::Predicate NewPred;
+ if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
+ ICmpInst::isEquality(NewPred)) {
+ // We were able to convert an inequality to an equality.
+ Pred = NewPred;
+ RHS = getConstant(NewRHS);
+ Changed = SimplifiedByConstantRange = true;
+ }
+ }
+
+ if (!SimplifiedByConstantRange) {
+ switch (Pred) {
+ default:
+ break;
+ case ICmpInst::ICMP_EQ:
+ case ICmpInst::ICMP_NE:
+ // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
+ if (!RA)
+ if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
+ if (const SCEVMulExpr *ME =
+ dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
+ if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
+ ME->getOperand(0)->isAllOnesValue()) {
+ RHS = AE->getOperand(1);
+ LHS = ME->getOperand(1);
+ Changed = true;
+ }
+ break;
+
+
+ // The "Should have been caught earlier!" messages refer to the fact
+ // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
+ // should have fired on the corresponding cases, and canonicalized the
+ // check to trivial case.
+
+ case ICmpInst::ICMP_UGE:
+ assert(!RA.isMinValue() && "Should have been caught earlier!");
+ Pred = ICmpInst::ICMP_UGT;
+ RHS = getConstant(RA - 1);
+ Changed = true;
+ break;
+ case ICmpInst::ICMP_ULE:
+ assert(!RA.isMaxValue() && "Should have been caught earlier!");
+ Pred = ICmpInst::ICMP_ULT;
+ RHS = getConstant(RA + 1);
+ Changed = true;
+ break;
+ case ICmpInst::ICMP_SGE:
+ assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
+ Pred = ICmpInst::ICMP_SGT;
+ RHS = getConstant(RA - 1);
+ Changed = true;
+ break;
+ case ICmpInst::ICMP_SLE:
+ assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
+ Pred = ICmpInst::ICMP_SLT;
+ RHS = getConstant(RA + 1);
+ Changed = true;
+ break;
+ }
+ }
+ }
+
+ // Check for obvious equality.
+ if (HasSameValue(LHS, RHS)) {
+ if (ICmpInst::isTrueWhenEqual(Pred))
+ return TrivialCase(true);
+ if (ICmpInst::isFalseWhenEqual(Pred))
+ return TrivialCase(false);
+ }
+
+ // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
+ // adding or subtracting 1 from one of the operands.
+ switch (Pred) {
+ case ICmpInst::ICMP_SLE:
+ if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
+ RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
+ SCEV::FlagNSW);
+ Pred = ICmpInst::ICMP_SLT;
+ Changed = true;
+ } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
+ LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
+ SCEV::FlagNSW);
+ Pred = ICmpInst::ICMP_SLT;
+ Changed = true;
+ }
+ break;
+ case ICmpInst::ICMP_SGE:
+ if (!getSignedRangeMin(RHS).isMinSignedValue()) {
+ RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
+ SCEV::FlagNSW);
+ Pred = ICmpInst::ICMP_SGT;
+ Changed = true;
+ } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
+ LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
+ SCEV::FlagNSW);
+ Pred = ICmpInst::ICMP_SGT;
+ Changed = true;
+ }
+ break;
+ case ICmpInst::ICMP_ULE:
+ if (!getUnsignedRangeMax(RHS).isMaxValue()) {
+ RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
+ SCEV::FlagNUW);
+ Pred = ICmpInst::ICMP_ULT;
+ Changed = true;
+ } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
+ LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
+ Pred = ICmpInst::ICMP_ULT;
+ Changed = true;
+ }
+ break;
+ case ICmpInst::ICMP_UGE:
+ if (!getUnsignedRangeMin(RHS).isMinValue()) {
+ RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
+ Pred = ICmpInst::ICMP_UGT;
+ Changed = true;
+ } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
+ LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
+ SCEV::FlagNUW);
+ Pred = ICmpInst::ICMP_UGT;
+ Changed = true;
+ }
+ break;
+ default:
+ break;
+ }
+
+ // TODO: More simplifications are possible here.
+
+ // Recursively simplify until we either hit a recursion limit or nothing
+ // changes.
+ if (Changed)
+ return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
+
+ return Changed;
+}
+
+bool ScalarEvolution::isKnownNegative(const SCEV *S) {
+ return getSignedRangeMax(S).isNegative();
+}
+
+bool ScalarEvolution::isKnownPositive(const SCEV *S) {
+ return getSignedRangeMin(S).isStrictlyPositive();
+}
+
+bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
+ return !getSignedRangeMin(S).isNegative();
+}
+
+bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
+ return !getSignedRangeMax(S).isStrictlyPositive();
+}
+
+bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
+ return isKnownNegative(S) || isKnownPositive(S);
+}
+
+std::pair<const SCEV *, const SCEV *>
+ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
+ // Compute SCEV on entry of loop L.
+ const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
+ if (Start == getCouldNotCompute())
+ return { Start, Start };
+ // Compute post increment SCEV for loop L.
+ const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
+ assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
+ return { Start, PostInc };
+}
+
+bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
+ const SCEV *LHS, const SCEV *RHS) {
+ // First collect all loops.
+ SmallPtrSet<const Loop *, 8> LoopsUsed;
+ getUsedLoops(LHS, LoopsUsed);
+ getUsedLoops(RHS, LoopsUsed);
+
+ if (LoopsUsed.empty())
+ return false;
+
+ // Domination relationship must be a linear order on collected loops.
+#ifndef NDEBUG
+ for (auto *L1 : LoopsUsed)
+ for (auto *L2 : LoopsUsed)
+ assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
+ DT.dominates(L2->getHeader(), L1->getHeader())) &&
+ "Domination relationship is not a linear order");
+#endif
+
+ const Loop *MDL =
+ *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
+ [&](const Loop *L1, const Loop *L2) {
+ return DT.properlyDominates(L1->getHeader(), L2->getHeader());
+ });
+
+ // Get init and post increment value for LHS.
+ auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
+ // if LHS contains unknown non-invariant SCEV then bail out.
+ if (SplitLHS.first == getCouldNotCompute())
+ return false;
+ assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
+ // Get init and post increment value for RHS.
+ auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
+ // if RHS contains unknown non-invariant SCEV then bail out.
+ if (SplitRHS.first == getCouldNotCompute())
+ return false;
+ assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
+ // It is possible that init SCEV contains an invariant load but it does
+ // not dominate MDL and is not available at MDL loop entry, so we should
+ // check it here.
+ if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
+ !isAvailableAtLoopEntry(SplitRHS.first, MDL))
+ return false;
+
+ return isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first) &&
+ isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
+ SplitRHS.second);
+}
+
+bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
+ const SCEV *LHS, const SCEV *RHS) {
+ // Canonicalize the inputs first.
+ (void)SimplifyICmpOperands(Pred, LHS, RHS);
+
+ if (isKnownViaInduction(Pred, LHS, RHS))
+ return true;
+
+ if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
+ return true;
+
+ // Otherwise see what can be done with some simple reasoning.
+ return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
+}
+
+bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
+ const SCEVAddRecExpr *LHS,
+ const SCEV *RHS) {
+ const Loop *L = LHS->getLoop();
+ return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
+ isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
+}
+
+bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
+ ICmpInst::Predicate Pred,
+ bool &Increasing) {
+ bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
+
+#ifndef NDEBUG
+ // Verify an invariant: inverting the predicate should turn a monotonically
+ // increasing change to a monotonically decreasing one, and vice versa.
+ bool IncreasingSwapped;
+ bool ResultSwapped = isMonotonicPredicateImpl(
+ LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
+
+ assert(Result == ResultSwapped && "should be able to analyze both!");
+ if (ResultSwapped)
+ assert(Increasing == !IncreasingSwapped &&
+ "monotonicity should flip as we flip the predicate");
+#endif
+
+ return Result;
+}
+
+bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
+ ICmpInst::Predicate Pred,
+ bool &Increasing) {
+
+ // A zero step value for LHS means the induction variable is essentially a
+ // loop invariant value. We don't really depend on the predicate actually
+ // flipping from false to true (for increasing predicates, and the other way
+ // around for decreasing predicates), all we care about is that *if* the
+ // predicate changes then it only changes from false to true.
+ //
+ // A zero step value in itself is not very useful, but there may be places
+ // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
+ // as general as possible.
+
+ switch (Pred) {
+ default:
+ return false; // Conservative answer
+
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_UGE:
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_ULE:
+ if (!LHS->hasNoUnsignedWrap())
+ return false;
+
+ Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
+ return true;
+
+ case ICmpInst::ICMP_SGT:
+ case ICmpInst::ICMP_SGE:
+ case ICmpInst::ICMP_SLT:
+ case ICmpInst::ICMP_SLE: {
+ if (!LHS->hasNoSignedWrap())
+ return false;
+
+ const SCEV *Step = LHS->getStepRecurrence(*this);
+
+ if (isKnownNonNegative(Step)) {
+ Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
+ return true;
+ }
+
+ if (isKnownNonPositive(Step)) {
+ Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
+ return true;
+ }
+
+ return false;
+ }
+
+ }
+
+ llvm_unreachable("switch has default clause!");
+}
+
+bool ScalarEvolution::isLoopInvariantPredicate(
+ ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
+ ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
+ const SCEV *&InvariantRHS) {
+
+ // If there is a loop-invariant, force it into the RHS, otherwise bail out.
+ if (!isLoopInvariant(RHS, L)) {
+ if (!isLoopInvariant(LHS, L))
+ return false;
+
+ std::swap(LHS, RHS);
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ }
+
+ const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
+ if (!ArLHS || ArLHS->getLoop() != L)
+ return false;
+
+ bool Increasing;
+ if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
+ return false;
+
+ // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
+ // true as the loop iterates, and the backedge is control dependent on
+ // "ArLHS `Pred` RHS" == true then we can reason as follows:
+ //
+ // * if the predicate was false in the first iteration then the predicate
+ // is never evaluated again, since the loop exits without taking the
+ // backedge.
+ // * if the predicate was true in the first iteration then it will
+ // continue to be true for all future iterations since it is
+ // monotonically increasing.
+ //
+ // For both the above possibilities, we can replace the loop varying
+ // predicate with its value on the first iteration of the loop (which is
+ // loop invariant).
+ //
+ // A similar reasoning applies for a monotonically decreasing predicate, by
+ // replacing true with false and false with true in the above two bullets.
+
+ auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
+
+ if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
+ return false;
+
+ InvariantPred = Pred;
+ InvariantLHS = ArLHS->getStart();
+ InvariantRHS = RHS;
+ return true;
+}
+
+bool ScalarEvolution::isKnownPredicateViaConstantRanges(
+ ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
+ if (HasSameValue(LHS, RHS))
+ return ICmpInst::isTrueWhenEqual(Pred);
+
+ // This code is split out from isKnownPredicate because it is called from
+ // within isLoopEntryGuardedByCond.
+
+ auto CheckRanges =
+ [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
+ return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
+ .contains(RangeLHS);
+ };
+
+ // The check at the top of the function catches the case where the values are
+ // known to be equal.
+ if (Pred == CmpInst::ICMP_EQ)
+ return false;
+
+ if (Pred == CmpInst::ICMP_NE)
+ return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
+ CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
+ isKnownNonZero(getMinusSCEV(LHS, RHS));
+
+ if (CmpInst::isSigned(Pred))
+ return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
+
+ return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
+}
+
+bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
+ const SCEV *LHS,
+ const SCEV *RHS) {
+ // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
+ // Return Y via OutY.
+ auto MatchBinaryAddToConst =
+ [this](const SCEV *Result, const SCEV *X, APInt &OutY,
+ SCEV::NoWrapFlags ExpectedFlags) {
+ const SCEV *NonConstOp, *ConstOp;
+ SCEV::NoWrapFlags FlagsPresent;
+
+ if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
+ !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
+ return false;
+
+ OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
+ return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
+ };
+
+ APInt C;
+
+ switch (Pred) {
+ default:
+ break;
+
+ case ICmpInst::ICMP_SGE:
+ std::swap(LHS, RHS);
+ LLVM_FALLTHROUGH;
+ case ICmpInst::ICMP_SLE:
+ // X s<= (X + C)<nsw> if C >= 0
+ if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
+ return true;
+
+ // (X + C)<nsw> s<= X if C <= 0
+ if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
+ !C.isStrictlyPositive())
+ return true;
+ break;
+
+ case ICmpInst::ICMP_SGT:
+ std::swap(LHS, RHS);
+ LLVM_FALLTHROUGH;
+ case ICmpInst::ICMP_SLT:
+ // X s< (X + C)<nsw> if C > 0
+ if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
+ C.isStrictlyPositive())
+ return true;
+
+ // (X + C)<nsw> s< X if C < 0
+ if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
+ return true;
+ break;
+ }
+
+ return false;
+}
+
+bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
+ const SCEV *LHS,
+ const SCEV *RHS) {
+ if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
+ return false;
+
+ // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
+ // the stack can result in exponential time complexity.
+ SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
+
+ // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
+ //
+ // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
+ // isKnownPredicate. isKnownPredicate is more powerful, but also more
+ // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
+ // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
+ // use isKnownPredicate later if needed.
+ return isKnownNonNegative(RHS) &&
+ isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
+ isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
+}
+
+bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
+ ICmpInst::Predicate Pred,
+ const SCEV *LHS, const SCEV *RHS) {
+ // No need to even try if we know the module has no guards.
+ if (!HasGuards)
+ return false;
+
+ return any_of(*BB, [&](Instruction &I) {
+ using namespace llvm::PatternMatch;
+
+ Value *Condition;
+ return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
+ m_Value(Condition))) &&
+ isImpliedCond(Pred, LHS, RHS, Condition, false);
+ });
+}
+
+/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
+/// protected by a conditional between LHS and RHS. This is used to
+/// to eliminate casts.
+bool
+ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
+ ICmpInst::Predicate Pred,
+ const SCEV *LHS, const SCEV *RHS) {
+ // Interpret a null as meaning no loop, where there is obviously no guard
+ // (interprocedural conditions notwithstanding).
+ if (!L) return true;
+
+ if (VerifyIR)
+ assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
+ "This cannot be done on broken IR!");
+
+
+ if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
+ return true;
+
+ BasicBlock *Latch = L->getLoopLatch();
+ if (!Latch)
+ return false;
+
+ BranchInst *LoopContinuePredicate =
+ dyn_cast<BranchInst>(Latch->getTerminator());
+ if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
+ isImpliedCond(Pred, LHS, RHS,
+ LoopContinuePredicate->getCondition(),
+ LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
+ return true;
+
+ // We don't want more than one activation of the following loops on the stack
+ // -- that can lead to O(n!) time complexity.
+ if (WalkingBEDominatingConds)
+ return false;
+
+ SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
+
+ // See if we can exploit a trip count to prove the predicate.
+ const auto &BETakenInfo = getBackedgeTakenInfo(L);
+ const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
+ if (LatchBECount != getCouldNotCompute()) {
+ // We know that Latch branches back to the loop header exactly
+ // LatchBECount times. This means the backdege condition at Latch is
+ // equivalent to "{0,+,1} u< LatchBECount".
+ Type *Ty = LatchBECount->getType();
+ auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
+ const SCEV *LoopCounter =
+ getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
+ if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
+ LatchBECount))
+ return true;
+ }
+
+ // Check conditions due to any @llvm.assume intrinsics.
+ for (auto &AssumeVH : AC.assumptions()) {
+ if (!AssumeVH)
+ continue;
+ auto *CI = cast<CallInst>(AssumeVH);
+ if (!DT.dominates(CI, Latch->getTerminator()))
+ continue;
+
+ if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
+ return true;
+ }
+
+ // If the loop is not reachable from the entry block, we risk running into an
+ // infinite loop as we walk up into the dom tree. These loops do not matter
+ // anyway, so we just return a conservative answer when we see them.
+ if (!DT.isReachableFromEntry(L->getHeader()))
+ return false;
+
+ if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
+ return true;
+
+ for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
+ DTN != HeaderDTN; DTN = DTN->getIDom()) {
+ assert(DTN && "should reach the loop header before reaching the root!");
+
+ BasicBlock *BB = DTN->getBlock();
+ if (isImpliedViaGuard(BB, Pred, LHS, RHS))
+ return true;
+
+ BasicBlock *PBB = BB->getSinglePredecessor();
+ if (!PBB)
+ continue;
+
+ BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
+ if (!ContinuePredicate || !ContinuePredicate->isConditional())
+ continue;
+
+ Value *Condition = ContinuePredicate->getCondition();
+
+ // If we have an edge `E` within the loop body that dominates the only
+ // latch, the condition guarding `E` also guards the backedge. This
+ // reasoning works only for loops with a single latch.
+
+ BasicBlockEdge DominatingEdge(PBB, BB);
+ if (DominatingEdge.isSingleEdge()) {
+ // We're constructively (and conservatively) enumerating edges within the
+ // loop body that dominate the latch. The dominator tree better agree
+ // with us on this:
+ assert(DT.dominates(DominatingEdge, Latch) && "should be!");
+
+ if (isImpliedCond(Pred, LHS, RHS, Condition,
+ BB != ContinuePredicate->getSuccessor(0)))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool
+ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
+ ICmpInst::Predicate Pred,
+ const SCEV *LHS, const SCEV *RHS) {
+ // Interpret a null as meaning no loop, where there is obviously no guard
+ // (interprocedural conditions notwithstanding).
+ if (!L) return false;
+
+ if (VerifyIR)
+ assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
+ "This cannot be done on broken IR!");
+
+ // Both LHS and RHS must be available at loop entry.
+ assert(isAvailableAtLoopEntry(LHS, L) &&
+ "LHS is not available at Loop Entry");
+ assert(isAvailableAtLoopEntry(RHS, L) &&
+ "RHS is not available at Loop Entry");
+
+ if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
+ return true;
+
+ // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
+ // the facts (a >= b && a != b) separately. A typical situation is when the
+ // non-strict comparison is known from ranges and non-equality is known from
+ // dominating predicates. If we are proving strict comparison, we always try
+ // to prove non-equality and non-strict comparison separately.
+ auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
+ const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
+ bool ProvedNonStrictComparison = false;
+ bool ProvedNonEquality = false;
+
+ if (ProvingStrictComparison) {
+ ProvedNonStrictComparison =
+ isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
+ ProvedNonEquality =
+ isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
+ if (ProvedNonStrictComparison && ProvedNonEquality)
+ return true;
+ }
+
+ // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
+ auto ProveViaGuard = [&](BasicBlock *Block) {
+ if (isImpliedViaGuard(Block, Pred, LHS, RHS))
+ return true;
+ if (ProvingStrictComparison) {
+ if (!ProvedNonStrictComparison)
+ ProvedNonStrictComparison =
+ isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
+ if (!ProvedNonEquality)
+ ProvedNonEquality =
+ isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
+ if (ProvedNonStrictComparison && ProvedNonEquality)
+ return true;
+ }
+ return false;
+ };
+
+ // Try to prove (Pred, LHS, RHS) using isImpliedCond.
+ auto ProveViaCond = [&](Value *Condition, bool Inverse) {
+ if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse))
+ return true;
+ if (ProvingStrictComparison) {
+ if (!ProvedNonStrictComparison)
+ ProvedNonStrictComparison =
+ isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse);
+ if (!ProvedNonEquality)
+ ProvedNonEquality =
+ isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse);
+ if (ProvedNonStrictComparison && ProvedNonEquality)
+ return true;
+ }
+ return false;
+ };
+
+ // Starting at the loop predecessor, climb up the predecessor chain, as long
+ // as there are predecessors that can be found that have unique successors
+ // leading to the original header.
+ for (std::pair<BasicBlock *, BasicBlock *>
+ Pair(L->getLoopPredecessor(), L->getHeader());
+ Pair.first;
+ Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
+
+ if (ProveViaGuard(Pair.first))
+ return true;
+
+ BranchInst *LoopEntryPredicate =
+ dyn_cast<BranchInst>(Pair.first->getTerminator());
+ if (!LoopEntryPredicate ||
+ LoopEntryPredicate->isUnconditional())
+ continue;
+
+ if (ProveViaCond(LoopEntryPredicate->getCondition(),
+ LoopEntryPredicate->getSuccessor(0) != Pair.second))
+ return true;
+ }
+
+ // Check conditions due to any @llvm.assume intrinsics.
+ for (auto &AssumeVH : AC.assumptions()) {
+ if (!AssumeVH)
+ continue;
+ auto *CI = cast<CallInst>(AssumeVH);
+ if (!DT.dominates(CI, L->getHeader()))
+ continue;
+
+ if (ProveViaCond(CI->getArgOperand(0), false))
+ return true;
+ }
+
+ return false;
+}
+
+bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
+ const SCEV *LHS, const SCEV *RHS,
+ Value *FoundCondValue,
+ bool Inverse) {
+ if (!PendingLoopPredicates.insert(FoundCondValue).second)
+ return false;
+
+ auto ClearOnExit =
+ make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
+
+ // Recursively handle And and Or conditions.
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
+ if (BO->getOpcode() == Instruction::And) {
+ if (!Inverse)
+ return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
+ isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
+ } else if (BO->getOpcode() == Instruction::Or) {
+ if (Inverse)
+ return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
+ isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
+ }
+ }
+
+ ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
+ if (!ICI) return false;
+
+ // Now that we found a conditional branch that dominates the loop or controls
+ // the loop latch. Check to see if it is the comparison we are looking for.
+ ICmpInst::Predicate FoundPred;
+ if (Inverse)
+ FoundPred = ICI->getInversePredicate();
+ else
+ FoundPred = ICI->getPredicate();
+
+ const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
+ const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
+
+ return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
+}
+
+bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
+ const SCEV *RHS,
+ ICmpInst::Predicate FoundPred,
+ const SCEV *FoundLHS,
+ const SCEV *FoundRHS) {
+ // Balance the types.
+ if (getTypeSizeInBits(LHS->getType()) <
+ getTypeSizeInBits(FoundLHS->getType())) {
+ if (CmpInst::isSigned(Pred)) {
+ LHS = getSignExtendExpr(LHS, FoundLHS->getType());
+ RHS = getSignExtendExpr(RHS, FoundLHS->getType());
+ } else {
+ LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
+ RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
+ }
+ } else if (getTypeSizeInBits(LHS->getType()) >
+ getTypeSizeInBits(FoundLHS->getType())) {
+ if (CmpInst::isSigned(FoundPred)) {
+ FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
+ FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
+ } else {
+ FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
+ FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
+ }
+ }
+
+ // Canonicalize the query to match the way instcombine will have
+ // canonicalized the comparison.
+ if (SimplifyICmpOperands(Pred, LHS, RHS))
+ if (LHS == RHS)
+ return CmpInst::isTrueWhenEqual(Pred);
+ if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
+ if (FoundLHS == FoundRHS)
+ return CmpInst::isFalseWhenEqual(FoundPred);
+
+ // Check to see if we can make the LHS or RHS match.
+ if (LHS == FoundRHS || RHS == FoundLHS) {
+ if (isa<SCEVConstant>(RHS)) {
+ std::swap(FoundLHS, FoundRHS);
+ FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
+ } else {
+ std::swap(LHS, RHS);
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ }
+ }
+
+ // Check whether the found predicate is the same as the desired predicate.
+ if (FoundPred == Pred)
+ return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
+
+ // Check whether swapping the found predicate makes it the same as the
+ // desired predicate.
+ if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
+ if (isa<SCEVConstant>(RHS))
+ return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
+ else
+ return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
+ RHS, LHS, FoundLHS, FoundRHS);
+ }
+
+ // Unsigned comparison is the same as signed comparison when both the operands
+ // are non-negative.
+ if (CmpInst::isUnsigned(FoundPred) &&
+ CmpInst::getSignedPredicate(FoundPred) == Pred &&
+ isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
+ return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
+
+ // Check if we can make progress by sharpening ranges.
+ if (FoundPred == ICmpInst::ICMP_NE &&
+ (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
+
+ const SCEVConstant *C = nullptr;
+ const SCEV *V = nullptr;
+
+ if (isa<SCEVConstant>(FoundLHS)) {
+ C = cast<SCEVConstant>(FoundLHS);
+ V = FoundRHS;
+ } else {
+ C = cast<SCEVConstant>(FoundRHS);
+ V = FoundLHS;
+ }
+
+ // The guarding predicate tells us that C != V. If the known range
+ // of V is [C, t), we can sharpen the range to [C + 1, t). The
+ // range we consider has to correspond to same signedness as the
+ // predicate we're interested in folding.
+
+ APInt Min = ICmpInst::isSigned(Pred) ?
+ getSignedRangeMin(V) : getUnsignedRangeMin(V);
+
+ if (Min == C->getAPInt()) {
+ // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
+ // This is true even if (Min + 1) wraps around -- in case of
+ // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
+
+ APInt SharperMin = Min + 1;
+
+ switch (Pred) {
+ case ICmpInst::ICMP_SGE:
+ case ICmpInst::ICMP_UGE:
+ // We know V `Pred` SharperMin. If this implies LHS `Pred`
+ // RHS, we're done.
+ if (isImpliedCondOperands(Pred, LHS, RHS, V,
+ getConstant(SharperMin)))
+ return true;
+ LLVM_FALLTHROUGH;
+
+ case ICmpInst::ICMP_SGT:
+ case ICmpInst::ICMP_UGT:
+ // We know from the range information that (V `Pred` Min ||
+ // V == Min). We know from the guarding condition that !(V
+ // == Min). This gives us
+ //
+ // V `Pred` Min || V == Min && !(V == Min)
+ // => V `Pred` Min
+ //
+ // If V `Pred` Min implies LHS `Pred` RHS, we're done.
+
+ if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
+ return true;
+ LLVM_FALLTHROUGH;
+
+ default:
+ // No change
+ break;
+ }
+ }
+ }
+
+ // Check whether the actual condition is beyond sufficient.
+ if (FoundPred == ICmpInst::ICMP_EQ)
+ if (ICmpInst::isTrueWhenEqual(Pred))
+ if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
+ return true;
+ if (Pred == ICmpInst::ICMP_NE)
+ if (!ICmpInst::isTrueWhenEqual(FoundPred))
+ if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
+ return true;
+
+ // Otherwise assume the worst.
+ return false;
+}
+
+bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
+ const SCEV *&L, const SCEV *&R,
+ SCEV::NoWrapFlags &Flags) {
+ const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
+ if (!AE || AE->getNumOperands() != 2)
+ return false;
+
+ L = AE->getOperand(0);
+ R = AE->getOperand(1);
+ Flags = AE->getNoWrapFlags();
+ return true;
+}
+
+Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
+ const SCEV *Less) {
+ // We avoid subtracting expressions here because this function is usually
+ // fairly deep in the call stack (i.e. is called many times).
+
+ // X - X = 0.
+ if (More == Less)
+ return APInt(getTypeSizeInBits(More->getType()), 0);
+
+ if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
+ const auto *LAR = cast<SCEVAddRecExpr>(Less);
+ const auto *MAR = cast<SCEVAddRecExpr>(More);
+
+ if (LAR->getLoop() != MAR->getLoop())
+ return None;
+
+ // We look at affine expressions only; not for correctness but to keep
+ // getStepRecurrence cheap.
+ if (!LAR->isAffine() || !MAR->isAffine())
+ return None;
+
+ if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
+ return None;
+
+ Less = LAR->getStart();
+ More = MAR->getStart();
+
+ // fall through
+ }
+
+ if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
+ const auto &M = cast<SCEVConstant>(More)->getAPInt();
+ const auto &L = cast<SCEVConstant>(Less)->getAPInt();
+ return M - L;
+ }
+
+ SCEV::NoWrapFlags Flags;
+ const SCEV *LLess = nullptr, *RLess = nullptr;
+ const SCEV *LMore = nullptr, *RMore = nullptr;
+ const SCEVConstant *C1 = nullptr, *C2 = nullptr;
+ // Compare (X + C1) vs X.
+ if (splitBinaryAdd(Less, LLess, RLess, Flags))
+ if ((C1 = dyn_cast<SCEVConstant>(LLess)))
+ if (RLess == More)
+ return -(C1->getAPInt());
+
+ // Compare X vs (X + C2).
+ if (splitBinaryAdd(More, LMore, RMore, Flags))
+ if ((C2 = dyn_cast<SCEVConstant>(LMore)))
+ if (RMore == Less)
+ return C2->getAPInt();
+
+ // Compare (X + C1) vs (X + C2).
+ if (C1 && C2 && RLess == RMore)
+ return C2->getAPInt() - C1->getAPInt();
+
+ return None;
+}
+
+bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
+ ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
+ const SCEV *FoundLHS, const SCEV *FoundRHS) {
+ if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
+ return false;
+
+ const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
+ if (!AddRecLHS)
+ return false;
+
+ const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
+ if (!AddRecFoundLHS)
+ return false;
+
+ // We'd like to let SCEV reason about control dependencies, so we constrain
+ // both the inequalities to be about add recurrences on the same loop. This
+ // way we can use isLoopEntryGuardedByCond later.
+
+ const Loop *L = AddRecFoundLHS->getLoop();
+ if (L != AddRecLHS->getLoop())
+ return false;
+
+ // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
+ //
+ // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
+ // ... (2)
+ //
+ // Informal proof for (2), assuming (1) [*]:
+ //
+ // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
+ //
+ // Then
+ //
+ // FoundLHS s< FoundRHS s< INT_MIN - C
+ // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
+ // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
+ // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
+ // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
+ // <=> FoundLHS + C s< FoundRHS + C
+ //
+ // [*]: (1) can be proved by ruling out overflow.
+ //
+ // [**]: This can be proved by analyzing all the four possibilities:
+ // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
+ // (A s>= 0, B s>= 0).
+ //
+ // Note:
+ // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
+ // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
+ // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
+ // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
+ // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
+ // C)".
+
+ Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
+ Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
+ if (!LDiff || !RDiff || *LDiff != *RDiff)
+ return false;
+
+ if (LDiff->isMinValue())
+ return true;
+
+ APInt FoundRHSLimit;
+
+ if (Pred == CmpInst::ICMP_ULT) {
+ FoundRHSLimit = -(*RDiff);
+ } else {
+ assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
+ FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
+ }
+
+ // Try to prove (1) or (2), as needed.
+ return isAvailableAtLoopEntry(FoundRHS, L) &&
+ isLoopEntryGuardedByCond(L, Pred, FoundRHS,
+ getConstant(FoundRHSLimit));
+}
+
+bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
+ const SCEV *LHS, const SCEV *RHS,
+ const SCEV *FoundLHS,
+ const SCEV *FoundRHS, unsigned Depth) {
+ const PHINode *LPhi = nullptr, *RPhi = nullptr;
+
+ auto ClearOnExit = make_scope_exit([&]() {
+ if (LPhi) {
+ bool Erased = PendingMerges.erase(LPhi);
+ assert(Erased && "Failed to erase LPhi!");
+ (void)Erased;
+ }
+ if (RPhi) {
+ bool Erased = PendingMerges.erase(RPhi);
+ assert(Erased && "Failed to erase RPhi!");
+ (void)Erased;
+ }
+ });
+
+ // Find respective Phis and check that they are not being pending.
+ if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
+ if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
+ if (!PendingMerges.insert(Phi).second)
+ return false;
+ LPhi = Phi;
+ }
+ if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
+ if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
+ // If we detect a loop of Phi nodes being processed by this method, for
+ // example:
+ //
+ // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
+ // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
+ //
+ // we don't want to deal with a case that complex, so return conservative
+ // answer false.
+ if (!PendingMerges.insert(Phi).second)
+ return false;
+ RPhi = Phi;
+ }
+
+ // If none of LHS, RHS is a Phi, nothing to do here.
+ if (!LPhi && !RPhi)
+ return false;
+
+ // If there is a SCEVUnknown Phi we are interested in, make it left.
+ if (!LPhi) {
+ std::swap(LHS, RHS);
+ std::swap(FoundLHS, FoundRHS);
+ std::swap(LPhi, RPhi);
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ }
+
+ assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
+ const BasicBlock *LBB = LPhi->getParent();
+ const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
+
+ auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
+ return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
+ isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
+ isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
+ };
+
+ if (RPhi && RPhi->getParent() == LBB) {
+ // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
+ // If we compare two Phis from the same block, and for each entry block
+ // the predicate is true for incoming values from this block, then the
+ // predicate is also true for the Phis.
+ for (const BasicBlock *IncBB : predecessors(LBB)) {
+ const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
+ const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
+ if (!ProvedEasily(L, R))
+ return false;
+ }
+ } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
+ // Case two: RHS is also a Phi from the same basic block, and it is an
+ // AddRec. It means that there is a loop which has both AddRec and Unknown
+ // PHIs, for it we can compare incoming values of AddRec from above the loop
+ // and latch with their respective incoming values of LPhi.
+ // TODO: Generalize to handle loops with many inputs in a header.
+ if (LPhi->getNumIncomingValues() != 2) return false;
+
+ auto *RLoop = RAR->getLoop();
+ auto *Predecessor = RLoop->getLoopPredecessor();
+ assert(Predecessor && "Loop with AddRec with no predecessor?");
+ const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
+ if (!ProvedEasily(L1, RAR->getStart()))
+ return false;
+ auto *Latch = RLoop->getLoopLatch();
+ assert(Latch && "Loop with AddRec with no latch?");
+ const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
+ if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
+ return false;
+ } else {
+ // In all other cases go over inputs of LHS and compare each of them to RHS,
+ // the predicate is true for (LHS, RHS) if it is true for all such pairs.
+ // At this point RHS is either a non-Phi, or it is a Phi from some block
+ // different from LBB.
+ for (const BasicBlock *IncBB : predecessors(LBB)) {
+ // Check that RHS is available in this block.
+ if (!dominates(RHS, IncBB))
+ return false;
+ const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
+ if (!ProvedEasily(L, RHS))
+ return false;
+ }
+ }
+ return true;
+}
+
+bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
+ const SCEV *LHS, const SCEV *RHS,
+ const SCEV *FoundLHS,
+ const SCEV *FoundRHS) {
+ if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
+ return true;
+
+ if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
+ return true;
+
+ return isImpliedCondOperandsHelper(Pred, LHS, RHS,
+ FoundLHS, FoundRHS) ||
+ // ~x < ~y --> x > y
+ isImpliedCondOperandsHelper(Pred, LHS, RHS,
+ getNotSCEV(FoundRHS),
+ getNotSCEV(FoundLHS));
+}
+
+/// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
+template <typename MinMaxExprType>
+static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
+ const SCEV *Candidate) {
+ const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
+ if (!MinMaxExpr)
+ return false;
+
+ return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end();
+}
+
+static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
+ ICmpInst::Predicate Pred,
+ const SCEV *LHS, const SCEV *RHS) {
+ // If both sides are affine addrecs for the same loop, with equal
+ // steps, and we know the recurrences don't wrap, then we only
+ // need to check the predicate on the starting values.
+
+ if (!ICmpInst::isRelational(Pred))
+ return false;
+
+ const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
+ if (!LAR)
+ return false;
+ const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
+ if (!RAR)
+ return false;
+ if (LAR->getLoop() != RAR->getLoop())
+ return false;
+ if (!LAR->isAffine() || !RAR->isAffine())
+ return false;
+
+ if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
+ return false;
+
+ SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
+ SCEV::FlagNSW : SCEV::FlagNUW;
+ if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
+ return false;
+
+ return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
+}
+
+/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
+/// expression?
+static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
+ ICmpInst::Predicate Pred,
+ const SCEV *LHS, const SCEV *RHS) {
+ switch (Pred) {
+ default:
+ return false;
+
+ case ICmpInst::ICMP_SGE:
+ std::swap(LHS, RHS);
+ LLVM_FALLTHROUGH;
+ case ICmpInst::ICMP_SLE:
+ return
+ // min(A, ...) <= A
+ IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
+ // A <= max(A, ...)
+ IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
+
+ case ICmpInst::ICMP_UGE:
+ std::swap(LHS, RHS);
+ LLVM_FALLTHROUGH;
+ case ICmpInst::ICMP_ULE:
+ return
+ // min(A, ...) <= A
+ IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
+ // A <= max(A, ...)
+ IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
+ }
+
+ llvm_unreachable("covered switch fell through?!");
+}
+
+bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
+ const SCEV *LHS, const SCEV *RHS,
+ const SCEV *FoundLHS,
+ const SCEV *FoundRHS,
+ unsigned Depth) {
+ assert(getTypeSizeInBits(LHS->getType()) ==
+ getTypeSizeInBits(RHS->getType()) &&
+ "LHS and RHS have different sizes?");
+ assert(getTypeSizeInBits(FoundLHS->getType()) ==
+ getTypeSizeInBits(FoundRHS->getType()) &&
+ "FoundLHS and FoundRHS have different sizes?");
+ // We want to avoid hurting the compile time with analysis of too big trees.
+ if (Depth > MaxSCEVOperationsImplicationDepth)
+ return false;
+ // We only want to work with ICMP_SGT comparison so far.
+ // TODO: Extend to ICMP_UGT?
+ if (Pred == ICmpInst::ICMP_SLT) {
+ Pred = ICmpInst::ICMP_SGT;
+ std::swap(LHS, RHS);
+ std::swap(FoundLHS, FoundRHS);
+ }
+ if (Pred != ICmpInst::ICMP_SGT)
+ return false;
+
+ auto GetOpFromSExt = [&](const SCEV *S) {
+ if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
+ return Ext->getOperand();
+ // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
+ // the constant in some cases.
+ return S;
+ };
+
+ // Acquire values from extensions.
+ auto *OrigLHS = LHS;
+ auto *OrigFoundLHS = FoundLHS;
+ LHS = GetOpFromSExt(LHS);
+ FoundLHS = GetOpFromSExt(FoundLHS);
+
+ // Is the SGT predicate can be proved trivially or using the found context.
+ auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
+ return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
+ isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
+ FoundRHS, Depth + 1);
+ };
+
+ if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
+ // We want to avoid creation of any new non-constant SCEV. Since we are
+ // going to compare the operands to RHS, we should be certain that we don't
+ // need any size extensions for this. So let's decline all cases when the
+ // sizes of types of LHS and RHS do not match.
+ // TODO: Maybe try to get RHS from sext to catch more cases?
+ if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
+ return false;
+
+ // Should not overflow.
+ if (!LHSAddExpr->hasNoSignedWrap())
+ return false;
+
+ auto *LL = LHSAddExpr->getOperand(0);
+ auto *LR = LHSAddExpr->getOperand(1);
+ auto *MinusOne = getNegativeSCEV(getOne(RHS->getType()));
+
+ // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
+ auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
+ return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
+ };
+ // Try to prove the following rule:
+ // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
+ // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
+ if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
+ return true;
+ } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
+ Value *LL, *LR;
+ // FIXME: Once we have SDiv implemented, we can get rid of this matching.
+
+ using namespace llvm::PatternMatch;
+
+ if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
+ // Rules for division.
+ // We are going to perform some comparisons with Denominator and its
+ // derivative expressions. In general case, creating a SCEV for it may
+ // lead to a complex analysis of the entire graph, and in particular it
+ // can request trip count recalculation for the same loop. This would
+ // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
+ // this, we only want to create SCEVs that are constants in this section.
+ // So we bail if Denominator is not a constant.
+ if (!isa<ConstantInt>(LR))
+ return false;
+
+ auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
+
+ // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
+ // then a SCEV for the numerator already exists and matches with FoundLHS.
+ auto *Numerator = getExistingSCEV(LL);
+ if (!Numerator || Numerator->getType() != FoundLHS->getType())
+ return false;
+
+ // Make sure that the numerator matches with FoundLHS and the denominator
+ // is positive.
+ if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
+ return false;
+
+ auto *DTy = Denominator->getType();
+ auto *FRHSTy = FoundRHS->getType();
+ if (DTy->isPointerTy() != FRHSTy->isPointerTy())
+ // One of types is a pointer and another one is not. We cannot extend
+ // them properly to a wider type, so let us just reject this case.
+ // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
+ // to avoid this check.
+ return false;
+
+ // Given that:
+ // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
+ auto *WTy = getWiderType(DTy, FRHSTy);
+ auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
+ auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
+
+ // Try to prove the following rule:
+ // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
+ // For example, given that FoundLHS > 2. It means that FoundLHS is at
+ // least 3. If we divide it by Denominator < 4, we will have at least 1.
+ auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
+ if (isKnownNonPositive(RHS) &&
+ IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
+ return true;
+
+ // Try to prove the following rule:
+ // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
+ // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
+ // If we divide it by Denominator > 2, then:
+ // 1. If FoundLHS is negative, then the result is 0.
+ // 2. If FoundLHS is non-negative, then the result is non-negative.
+ // Anyways, the result is non-negative.
+ auto *MinusOne = getNegativeSCEV(getOne(WTy));
+ auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
+ if (isKnownNegative(RHS) &&
+ IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
+ return true;
+ }
+ }
+
+ // If our expression contained SCEVUnknown Phis, and we split it down and now
+ // need to prove something for them, try to prove the predicate for every
+ // possible incoming values of those Phis.
+ if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
+ return true;
+
+ return false;
+}
+
+static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
+ const SCEV *LHS, const SCEV *RHS) {
+ // zext x u<= sext x, sext x s<= zext x
+ switch (Pred) {
+ case ICmpInst::ICMP_SGE:
+ std::swap(LHS, RHS);
+ LLVM_FALLTHROUGH;
+ case ICmpInst::ICMP_SLE: {
+ // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt.
+ const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
+ const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
+ if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
+ return true;
+ break;
+ }
+ case ICmpInst::ICMP_UGE:
+ std::swap(LHS, RHS);
+ LLVM_FALLTHROUGH;
+ case ICmpInst::ICMP_ULE: {
+ // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt.
+ const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
+ const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
+ if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
+ return true;
+ break;
+ }
+ default:
+ break;
+ };
+ return false;
+}
+
+bool
+ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
+ const SCEV *LHS, const SCEV *RHS) {
+ return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
+ isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
+ IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
+ IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
+ isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
+}
+
+bool
+ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
+ const SCEV *LHS, const SCEV *RHS,
+ const SCEV *FoundLHS,
+ const SCEV *FoundRHS) {
+ switch (Pred) {
+ default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
+ case ICmpInst::ICMP_EQ:
+ case ICmpInst::ICMP_NE:
+ if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
+ return true;
+ break;
+ case ICmpInst::ICMP_SLT:
+ case ICmpInst::ICMP_SLE:
+ if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
+ isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
+ return true;
+ break;
+ case ICmpInst::ICMP_SGT:
+ case ICmpInst::ICMP_SGE:
+ if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
+ isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
+ return true;
+ break;
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_ULE:
+ if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
+ isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
+ return true;
+ break;
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_UGE:
+ if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
+ isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
+ return true;
+ break;
+ }
+
+ // Maybe it can be proved via operations?
+ if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
+ return true;
+
+ return false;
+}
+
+bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
+ const SCEV *LHS,
+ const SCEV *RHS,
+ const SCEV *FoundLHS,
+ const SCEV *FoundRHS) {
+ if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
+ // The restriction on `FoundRHS` be lifted easily -- it exists only to
+ // reduce the compile time impact of this optimization.
+ return false;
+
+ Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
+ if (!Addend)
+ return false;
+
+ const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
+
+ // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
+ // antecedent "`FoundLHS` `Pred` `FoundRHS`".
+ ConstantRange FoundLHSRange =
+ ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
+
+ // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
+ ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
+
+ // We can also compute the range of values for `LHS` that satisfy the
+ // consequent, "`LHS` `Pred` `RHS`":
+ const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
+ ConstantRange SatisfyingLHSRange =
+ ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
+
+ // The antecedent implies the consequent if every value of `LHS` that
+ // satisfies the antecedent also satisfies the consequent.
+ return SatisfyingLHSRange.contains(LHSRange);
+}
+
+bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
+ bool IsSigned, bool NoWrap) {
+ assert(isKnownPositive(Stride) && "Positive stride expected!");
+
+ if (NoWrap) return false;
+
+ unsigned BitWidth = getTypeSizeInBits(RHS->getType());
+ const SCEV *One = getOne(Stride->getType());
+
+ if (IsSigned) {
+ APInt MaxRHS = getSignedRangeMax(RHS);
+ APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
+ APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
+
+ // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
+ return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
+ }
+
+ APInt MaxRHS = getUnsignedRangeMax(RHS);
+ APInt MaxValue = APInt::getMaxValue(BitWidth);
+ APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
+
+ // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
+ return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
+}
+
+bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
+ bool IsSigned, bool NoWrap) {
+ if (NoWrap) return false;
+
+ unsigned BitWidth = getTypeSizeInBits(RHS->getType());
+ const SCEV *One = getOne(Stride->getType());
+
+ if (IsSigned) {
+ APInt MinRHS = getSignedRangeMin(RHS);
+ APInt MinValue = APInt::getSignedMinValue(BitWidth);
+ APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
+
+ // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
+ return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
+ }
+
+ APInt MinRHS = getUnsignedRangeMin(RHS);
+ APInt MinValue = APInt::getMinValue(BitWidth);
+ APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
+
+ // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
+ return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
+}
+
+const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
+ bool Equality) {
+ const SCEV *One = getOne(Step->getType());
+ Delta = Equality ? getAddExpr(Delta, Step)
+ : getAddExpr(Delta, getMinusSCEV(Step, One));
+ return getUDivExpr(Delta, Step);
+}
+
+const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
+ const SCEV *Stride,
+ const SCEV *End,
+ unsigned BitWidth,
+ bool IsSigned) {
+
+ assert(!isKnownNonPositive(Stride) &&
+ "Stride is expected strictly positive!");
+ // Calculate the maximum backedge count based on the range of values
+ // permitted by Start, End, and Stride.
+ const SCEV *MaxBECount;
+ APInt MinStart =
+ IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
+
+ APInt StrideForMaxBECount =
+ IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
+
+ // We already know that the stride is positive, so we paper over conservatism
+ // in our range computation by forcing StrideForMaxBECount to be at least one.
+ // In theory this is unnecessary, but we expect MaxBECount to be a
+ // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
+ // is nothing to constant fold it to).
+ APInt One(BitWidth, 1, IsSigned);
+ StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
+
+ APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
+ : APInt::getMaxValue(BitWidth);
+ APInt Limit = MaxValue - (StrideForMaxBECount - 1);
+
+ // Although End can be a MAX expression we estimate MaxEnd considering only
+ // the case End = RHS of the loop termination condition. This is safe because
+ // in the other case (End - Start) is zero, leading to a zero maximum backedge
+ // taken count.
+ APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
+ : APIntOps::umin(getUnsignedRangeMax(End), Limit);
+
+ MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
+ getConstant(StrideForMaxBECount) /* Step */,
+ false /* Equality */);
+
+ return MaxBECount;
+}
+
+ScalarEvolution::ExitLimit
+ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
+ const Loop *L, bool IsSigned,
+ bool ControlsExit, bool AllowPredicates) {
+ SmallPtrSet<const SCEVPredicate *, 4> Predicates;
+
+ const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
+ bool PredicatedIV = false;
+
+ if (!IV && AllowPredicates) {
+ // Try to make this an AddRec using runtime tests, in the first X
+ // iterations of this loop, where X is the SCEV expression found by the
+ // algorithm below.
+ IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
+ PredicatedIV = true;
+ }
+
+ // Avoid weird loops
+ if (!IV || IV->getLoop() != L || !IV->isAffine())
+ return getCouldNotCompute();
+
+ bool NoWrap = ControlsExit &&
+ IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
+
+ const SCEV *Stride = IV->getStepRecurrence(*this);
+
+ bool PositiveStride = isKnownPositive(Stride);
+
+ // Avoid negative or zero stride values.
+ if (!PositiveStride) {
+ // We can compute the correct backedge taken count for loops with unknown
+ // strides if we can prove that the loop is not an infinite loop with side
+ // effects. Here's the loop structure we are trying to handle -
+ //
+ // i = start
+ // do {
+ // A[i] = i;
+ // i += s;
+ // } while (i < end);
+ //
+ // The backedge taken count for such loops is evaluated as -
+ // (max(end, start + stride) - start - 1) /u stride
+ //
+ // The additional preconditions that we need to check to prove correctness
+ // of the above formula is as follows -
+ //
+ // a) IV is either nuw or nsw depending upon signedness (indicated by the
+ // NoWrap flag).
+ // b) loop is single exit with no side effects.
+ //
+ //
+ // Precondition a) implies that if the stride is negative, this is a single
+ // trip loop. The backedge taken count formula reduces to zero in this case.
+ //
+ // Precondition b) implies that the unknown stride cannot be zero otherwise
+ // we have UB.
+ //
+ // The positive stride case is the same as isKnownPositive(Stride) returning
+ // true (original behavior of the function).
+ //
+ // We want to make sure that the stride is truly unknown as there are edge
+ // cases where ScalarEvolution propagates no wrap flags to the
+ // post-increment/decrement IV even though the increment/decrement operation
+ // itself is wrapping. The computed backedge taken count may be wrong in
+ // such cases. This is prevented by checking that the stride is not known to
+ // be either positive or non-positive. For example, no wrap flags are
+ // propagated to the post-increment IV of this loop with a trip count of 2 -
+ //
+ // unsigned char i;
+ // for(i=127; i<128; i+=129)
+ // A[i] = i;
+ //
+ if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
+ !loopHasNoSideEffects(L))
+ return getCouldNotCompute();
+ } else if (!Stride->isOne() &&
+ doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
+ // Avoid proven overflow cases: this will ensure that the backedge taken
+ // count will not generate any unsigned overflow. Relaxed no-overflow
+ // conditions exploit NoWrapFlags, allowing to optimize in presence of
+ // undefined behaviors like the case of C language.
+ return getCouldNotCompute();
+
+ ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
+ : ICmpInst::ICMP_ULT;
+ const SCEV *Start = IV->getStart();
+ const SCEV *End = RHS;
+ // When the RHS is not invariant, we do not know the end bound of the loop and
+ // cannot calculate the ExactBECount needed by ExitLimit. However, we can
+ // calculate the MaxBECount, given the start, stride and max value for the end
+ // bound of the loop (RHS), and the fact that IV does not overflow (which is
+ // checked above).
+ if (!isLoopInvariant(RHS, L)) {
+ const SCEV *MaxBECount = computeMaxBECountForLT(
+ Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
+ return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
+ false /*MaxOrZero*/, Predicates);
+ }
+ // If the backedge is taken at least once, then it will be taken
+ // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
+ // is the LHS value of the less-than comparison the first time it is evaluated
+ // and End is the RHS.
+ const SCEV *BECountIfBackedgeTaken =
+ computeBECount(getMinusSCEV(End, Start), Stride, false);
+ // If the loop entry is guarded by the result of the backedge test of the
+ // first loop iteration, then we know the backedge will be taken at least
+ // once and so the backedge taken count is as above. If not then we use the
+ // expression (max(End,Start)-Start)/Stride to describe the backedge count,
+ // as if the backedge is taken at least once max(End,Start) is End and so the
+ // result is as above, and if not max(End,Start) is Start so we get a backedge
+ // count of zero.
+ const SCEV *BECount;
+ if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
+ BECount = BECountIfBackedgeTaken;
+ else {
+ End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
+ BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
+ }
+
+ const SCEV *MaxBECount;
+ bool MaxOrZero = false;
+ if (isa<SCEVConstant>(BECount))
+ MaxBECount = BECount;
+ else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
+ // If we know exactly how many times the backedge will be taken if it's
+ // taken at least once, then the backedge count will either be that or
+ // zero.
+ MaxBECount = BECountIfBackedgeTaken;
+ MaxOrZero = true;
+ } else {
+ MaxBECount = computeMaxBECountForLT(
+ Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
+ }
+
+ if (isa<SCEVCouldNotCompute>(MaxBECount) &&
+ !isa<SCEVCouldNotCompute>(BECount))
+ MaxBECount = getConstant(getUnsignedRangeMax(BECount));
+
+ return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
+}
+
+ScalarEvolution::ExitLimit
+ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
+ const Loop *L, bool IsSigned,
+ bool ControlsExit, bool AllowPredicates) {
+ SmallPtrSet<const SCEVPredicate *, 4> Predicates;
+ // We handle only IV > Invariant
+ if (!isLoopInvariant(RHS, L))
+ return getCouldNotCompute();
+
+ const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
+ if (!IV && AllowPredicates)
+ // Try to make this an AddRec using runtime tests, in the first X
+ // iterations of this loop, where X is the SCEV expression found by the
+ // algorithm below.
+ IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
+
+ // Avoid weird loops
+ if (!IV || IV->getLoop() != L || !IV->isAffine())
+ return getCouldNotCompute();
+
+ bool NoWrap = ControlsExit &&
+ IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
+
+ const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
+
+ // Avoid negative or zero stride values
+ if (!isKnownPositive(Stride))
+ return getCouldNotCompute();
+
+ // Avoid proven overflow cases: this will ensure that the backedge taken count
+ // will not generate any unsigned overflow. Relaxed no-overflow conditions
+ // exploit NoWrapFlags, allowing to optimize in presence of undefined
+ // behaviors like the case of C language.
+ if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
+ return getCouldNotCompute();
+
+ ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
+ : ICmpInst::ICMP_UGT;
+
+ const SCEV *Start = IV->getStart();
+ const SCEV *End = RHS;
+ if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
+ End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
+
+ const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
+
+ APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
+ : getUnsignedRangeMax(Start);
+
+ APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
+ : getUnsignedRangeMin(Stride);
+
+ unsigned BitWidth = getTypeSizeInBits(LHS->getType());
+ APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
+ : APInt::getMinValue(BitWidth) + (MinStride - 1);
+
+ // Although End can be a MIN expression we estimate MinEnd considering only
+ // the case End = RHS. This is safe because in the other case (Start - End)
+ // is zero, leading to a zero maximum backedge taken count.
+ APInt MinEnd =
+ IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
+ : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
+
+ const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
+ ? BECount
+ : computeBECount(getConstant(MaxStart - MinEnd),
+ getConstant(MinStride), false);
+
+ if (isa<SCEVCouldNotCompute>(MaxBECount))
+ MaxBECount = BECount;
+
+ return ExitLimit(BECount, MaxBECount, false, Predicates);
+}
+
+const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
+ ScalarEvolution &SE) const {
+ if (Range.isFullSet()) // Infinite loop.
+ return SE.getCouldNotCompute();
+
+ // If the start is a non-zero constant, shift the range to simplify things.
+ if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
+ if (!SC->getValue()->isZero()) {
+ SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
+ Operands[0] = SE.getZero(SC->getType());
+ const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
+ getNoWrapFlags(FlagNW));
+ if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
+ return ShiftedAddRec->getNumIterationsInRange(
+ Range.subtract(SC->getAPInt()), SE);
+ // This is strange and shouldn't happen.
+ return SE.getCouldNotCompute();
+ }
+
+ // The only time we can solve this is when we have all constant indices.
+ // Otherwise, we cannot determine the overflow conditions.
+ if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
+ return SE.getCouldNotCompute();
+
+ // Okay at this point we know that all elements of the chrec are constants and
+ // that the start element is zero.
+
+ // First check to see if the range contains zero. If not, the first
+ // iteration exits.
+ unsigned BitWidth = SE.getTypeSizeInBits(getType());
+ if (!Range.contains(APInt(BitWidth, 0)))
+ return SE.getZero(getType());
+
+ if (isAffine()) {
+ // If this is an affine expression then we have this situation:
+ // Solve {0,+,A} in Range === Ax in Range
+
+ // We know that zero is in the range. If A is positive then we know that
+ // the upper value of the range must be the first possible exit value.
+ // If A is negative then the lower of the range is the last possible loop
+ // value. Also note that we already checked for a full range.
+ APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
+ APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
+
+ // The exit value should be (End+A)/A.
+ APInt ExitVal = (End + A).udiv(A);
+ ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
+
+ // Evaluate at the exit value. If we really did fall out of the valid
+ // range, then we computed our trip count, otherwise wrap around or other
+ // things must have happened.
+ ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
+ if (Range.contains(Val->getValue()))
+ return SE.getCouldNotCompute(); // Something strange happened
+
+ // Ensure that the previous value is in the range. This is a sanity check.
+ assert(Range.contains(
+ EvaluateConstantChrecAtConstant(this,
+ ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
+ "Linear scev computation is off in a bad way!");
+ return SE.getConstant(ExitValue);
+ }
+
+ if (isQuadratic()) {
+ if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
+ return SE.getConstant(S.getValue());
+ }
+
+ return SE.getCouldNotCompute();
+}
+
+const SCEVAddRecExpr *
+SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
+ assert(getNumOperands() > 1 && "AddRec with zero step?");
+ // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
+ // but in this case we cannot guarantee that the value returned will be an
+ // AddRec because SCEV does not have a fixed point where it stops
+ // simplification: it is legal to return ({rec1} + {rec2}). For example, it
+ // may happen if we reach arithmetic depth limit while simplifying. So we
+ // construct the returned value explicitly.
+ SmallVector<const SCEV *, 3> Ops;
+ // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
+ // (this + Step) is {A+B,+,B+C,+...,+,N}.
+ for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
+ Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
+ // We know that the last operand is not a constant zero (otherwise it would
+ // have been popped out earlier). This guarantees us that if the result has
+ // the same last operand, then it will also not be popped out, meaning that
+ // the returned value will be an AddRec.
+ const SCEV *Last = getOperand(getNumOperands() - 1);
+ assert(!Last->isZero() && "Recurrency with zero step?");
+ Ops.push_back(Last);
+ return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
+ SCEV::FlagAnyWrap));
+}
+
+// Return true when S contains at least an undef value.
+static inline bool containsUndefs(const SCEV *S) {
+ return SCEVExprContains(S, [](const SCEV *S) {
+ if (const auto *SU = dyn_cast<SCEVUnknown>(S))
+ return isa<UndefValue>(SU->getValue());
+ return false;
+ });
+}
+
+namespace {
+
+// Collect all steps of SCEV expressions.
+struct SCEVCollectStrides {
+ ScalarEvolution &SE;
+ SmallVectorImpl<const SCEV *> &Strides;
+
+ SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
+ : SE(SE), Strides(S) {}
+
+ bool follow(const SCEV *S) {
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
+ Strides.push_back(AR->getStepRecurrence(SE));
+ return true;
+ }
+
+ bool isDone() const { return false; }
+};
+
+// Collect all SCEVUnknown and SCEVMulExpr expressions.
+struct SCEVCollectTerms {
+ SmallVectorImpl<const SCEV *> &Terms;
+
+ SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
+
+ bool follow(const SCEV *S) {
+ if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
+ isa<SCEVSignExtendExpr>(S)) {
+ if (!containsUndefs(S))
+ Terms.push_back(S);
+
+ // Stop recursion: once we collected a term, do not walk its operands.
+ return false;
+ }
+
+ // Keep looking.
+ return true;
+ }
+
+ bool isDone() const { return false; }
+};
+
+// Check if a SCEV contains an AddRecExpr.
+struct SCEVHasAddRec {
+ bool &ContainsAddRec;
+
+ SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
+ ContainsAddRec = false;
+ }
+
+ bool follow(const SCEV *S) {
+ if (isa<SCEVAddRecExpr>(S)) {
+ ContainsAddRec = true;
+
+ // Stop recursion: once we collected a term, do not walk its operands.
+ return false;
+ }
+
+ // Keep looking.
+ return true;
+ }
+
+ bool isDone() const { return false; }
+};
+
+// Find factors that are multiplied with an expression that (possibly as a
+// subexpression) contains an AddRecExpr. In the expression:
+//
+// 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
+//
+// "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
+// that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
+// parameters as they form a product with an induction variable.
+//
+// This collector expects all array size parameters to be in the same MulExpr.
+// It might be necessary to later add support for collecting parameters that are
+// spread over different nested MulExpr.
+struct SCEVCollectAddRecMultiplies {
+ SmallVectorImpl<const SCEV *> &Terms;
+ ScalarEvolution &SE;
+
+ SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
+ : Terms(T), SE(SE) {}
+
+ bool follow(const SCEV *S) {
+ if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
+ bool HasAddRec = false;
+ SmallVector<const SCEV *, 0> Operands;
+ for (auto Op : Mul->operands()) {
+ const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
+ if (Unknown && !isa<CallInst>(Unknown->getValue())) {
+ Operands.push_back(Op);
+ } else if (Unknown) {
+ HasAddRec = true;
+ } else {
+ bool ContainsAddRec;
+ SCEVHasAddRec ContiansAddRec(ContainsAddRec);
+ visitAll(Op, ContiansAddRec);
+ HasAddRec |= ContainsAddRec;
+ }
+ }
+ if (Operands.size() == 0)
+ return true;
+
+ if (!HasAddRec)
+ return false;
+
+ Terms.push_back(SE.getMulExpr(Operands));
+ // Stop recursion: once we collected a term, do not walk its operands.
+ return false;
+ }
+
+ // Keep looking.
+ return true;
+ }
+
+ bool isDone() const { return false; }
+};
+
+} // end anonymous namespace
+
+/// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
+/// two places:
+/// 1) The strides of AddRec expressions.
+/// 2) Unknowns that are multiplied with AddRec expressions.
+void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
+ SmallVectorImpl<const SCEV *> &Terms) {
+ SmallVector<const SCEV *, 4> Strides;
+ SCEVCollectStrides StrideCollector(*this, Strides);
+ visitAll(Expr, StrideCollector);
+
+ LLVM_DEBUG({
+ dbgs() << "Strides:\n";
+ for (const SCEV *S : Strides)
+ dbgs() << *S << "\n";
+ });
+
+ for (const SCEV *S : Strides) {
+ SCEVCollectTerms TermCollector(Terms);
+ visitAll(S, TermCollector);
+ }
+
+ LLVM_DEBUG({
+ dbgs() << "Terms:\n";
+ for (const SCEV *T : Terms)
+ dbgs() << *T << "\n";
+ });
+
+ SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
+ visitAll(Expr, MulCollector);
+}
+
+static bool findArrayDimensionsRec(ScalarEvolution &SE,
+ SmallVectorImpl<const SCEV *> &Terms,
+ SmallVectorImpl<const SCEV *> &Sizes) {
+ int Last = Terms.size() - 1;
+ const SCEV *Step = Terms[Last];
+
+ // End of recursion.
+ if (Last == 0) {
+ if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
+ SmallVector<const SCEV *, 2> Qs;
+ for (const SCEV *Op : M->operands())
+ if (!isa<SCEVConstant>(Op))
+ Qs.push_back(Op);
+
+ Step = SE.getMulExpr(Qs);
+ }
+
+ Sizes.push_back(Step);
+ return true;
+ }
+
+ for (const SCEV *&Term : Terms) {
+ // Normalize the terms before the next call to findArrayDimensionsRec.
+ const SCEV *Q, *R;
+ SCEVDivision::divide(SE, Term, Step, &Q, &R);
+
+ // Bail out when GCD does not evenly divide one of the terms.
+ if (!R->isZero())
+ return false;
+
+ Term = Q;
+ }
+
+ // Remove all SCEVConstants.
+ Terms.erase(
+ remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
+ Terms.end());
+
+ if (Terms.size() > 0)
+ if (!findArrayDimensionsRec(SE, Terms, Sizes))
+ return false;
+
+ Sizes.push_back(Step);
+ return true;
+}
+
+// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
+static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
+ for (const SCEV *T : Terms)
+ if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>))
+ return true;
+ return false;
+}
+
+// Return the number of product terms in S.
+static inline int numberOfTerms(const SCEV *S) {
+ if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
+ return Expr->getNumOperands();
+ return 1;
+}
+
+static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
+ if (isa<SCEVConstant>(T))
+ return nullptr;
+
+ if (isa<SCEVUnknown>(T))
+ return T;
+
+ if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
+ SmallVector<const SCEV *, 2> Factors;
+ for (const SCEV *Op : M->operands())
+ if (!isa<SCEVConstant>(Op))
+ Factors.push_back(Op);
+
+ return SE.getMulExpr(Factors);
+ }
+
+ return T;
+}
+
+/// Return the size of an element read or written by Inst.
+const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
+ Type *Ty;
+ if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
+ Ty = Store->getValueOperand()->getType();
+ else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
+ Ty = Load->getType();
+ else
+ return nullptr;
+
+ Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
+ return getSizeOfExpr(ETy, Ty);
+}
+
+void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
+ SmallVectorImpl<const SCEV *> &Sizes,
+ const SCEV *ElementSize) {
+ if (Terms.size() < 1 || !ElementSize)
+ return;
+
+ // Early return when Terms do not contain parameters: we do not delinearize
+ // non parametric SCEVs.
+ if (!containsParameters(Terms))
+ return;
+
+ LLVM_DEBUG({
+ dbgs() << "Terms:\n";
+ for (const SCEV *T : Terms)
+ dbgs() << *T << "\n";
+ });
+
+ // Remove duplicates.
+ array_pod_sort(Terms.begin(), Terms.end());
+ Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
+
+ // Put larger terms first.
+ llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
+ return numberOfTerms(LHS) > numberOfTerms(RHS);
+ });
+
+ // Try to divide all terms by the element size. If term is not divisible by
+ // element size, proceed with the original term.
+ for (const SCEV *&Term : Terms) {
+ const SCEV *Q, *R;
+ SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
+ if (!Q->isZero())
+ Term = Q;
+ }
+
+ SmallVector<const SCEV *, 4> NewTerms;
+
+ // Remove constant factors.
+ for (const SCEV *T : Terms)
+ if (const SCEV *NewT = removeConstantFactors(*this, T))
+ NewTerms.push_back(NewT);
+
+ LLVM_DEBUG({
+ dbgs() << "Terms after sorting:\n";
+ for (const SCEV *T : NewTerms)
+ dbgs() << *T << "\n";
+ });
+
+ if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
+ Sizes.clear();
+ return;
+ }
+
+ // The last element to be pushed into Sizes is the size of an element.
+ Sizes.push_back(ElementSize);
+
+ LLVM_DEBUG({
+ dbgs() << "Sizes:\n";
+ for (const SCEV *S : Sizes)
+ dbgs() << *S << "\n";
+ });
+}
+
+void ScalarEvolution::computeAccessFunctions(
+ const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
+ SmallVectorImpl<const SCEV *> &Sizes) {
+ // Early exit in case this SCEV is not an affine multivariate function.
+ if (Sizes.empty())
+ return;
+
+ if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
+ if (!AR->isAffine())
+ return;
+
+ const SCEV *Res = Expr;
+ int Last = Sizes.size() - 1;
+ for (int i = Last; i >= 0; i--) {
+ const SCEV *Q, *R;
+ SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
+
+ LLVM_DEBUG({
+ dbgs() << "Res: " << *Res << "\n";
+ dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
+ dbgs() << "Res divided by Sizes[i]:\n";
+ dbgs() << "Quotient: " << *Q << "\n";
+ dbgs() << "Remainder: " << *R << "\n";
+ });
+
+ Res = Q;
+
+ // Do not record the last subscript corresponding to the size of elements in
+ // the array.
+ if (i == Last) {
+
+ // Bail out if the remainder is too complex.
+ if (isa<SCEVAddRecExpr>(R)) {
+ Subscripts.clear();
+ Sizes.clear();
+ return;
+ }
+
+ continue;
+ }
+
+ // Record the access function for the current subscript.
+ Subscripts.push_back(R);
+ }
+
+ // Also push in last position the remainder of the last division: it will be
+ // the access function of the innermost dimension.
+ Subscripts.push_back(Res);
+
+ std::reverse(Subscripts.begin(), Subscripts.end());
+
+ LLVM_DEBUG({
+ dbgs() << "Subscripts:\n";
+ for (const SCEV *S : Subscripts)
+ dbgs() << *S << "\n";
+ });
+}
+
+/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
+/// sizes of an array access. Returns the remainder of the delinearization that
+/// is the offset start of the array. The SCEV->delinearize algorithm computes
+/// the multiples of SCEV coefficients: that is a pattern matching of sub
+/// expressions in the stride and base of a SCEV corresponding to the
+/// computation of a GCD (greatest common divisor) of base and stride. When
+/// SCEV->delinearize fails, it returns the SCEV unchanged.
+///
+/// For example: when analyzing the memory access A[i][j][k] in this loop nest
+///
+/// void foo(long n, long m, long o, double A[n][m][o]) {
+///
+/// for (long i = 0; i < n; i++)
+/// for (long j = 0; j < m; j++)
+/// for (long k = 0; k < o; k++)
+/// A[i][j][k] = 1.0;
+/// }
+///
+/// the delinearization input is the following AddRec SCEV:
+///
+/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
+///
+/// From this SCEV, we are able to say that the base offset of the access is %A
+/// because it appears as an offset that does not divide any of the strides in
+/// the loops:
+///
+/// CHECK: Base offset: %A
+///
+/// and then SCEV->delinearize determines the size of some of the dimensions of
+/// the array as these are the multiples by which the strides are happening:
+///
+/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
+///
+/// Note that the outermost dimension remains of UnknownSize because there are
+/// no strides that would help identifying the size of the last dimension: when
+/// the array has been statically allocated, one could compute the size of that
+/// dimension by dividing the overall size of the array by the size of the known
+/// dimensions: %m * %o * 8.
+///
+/// Finally delinearize provides the access functions for the array reference
+/// that does correspond to A[i][j][k] of the above C testcase:
+///
+/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
+///
+/// The testcases are checking the output of a function pass:
+/// DelinearizationPass that walks through all loads and stores of a function
+/// asking for the SCEV of the memory access with respect to all enclosing
+/// loops, calling SCEV->delinearize on that and printing the results.
+void ScalarEvolution::delinearize(const SCEV *Expr,
+ SmallVectorImpl<const SCEV *> &Subscripts,
+ SmallVectorImpl<const SCEV *> &Sizes,
+ const SCEV *ElementSize) {
+ // First step: collect parametric terms.
+ SmallVector<const SCEV *, 4> Terms;
+ collectParametricTerms(Expr, Terms);
+
+ if (Terms.empty())
+ return;
+
+ // Second step: find subscript sizes.
+ findArrayDimensions(Terms, Sizes, ElementSize);
+
+ if (Sizes.empty())
+ return;
+
+ // Third step: compute the access functions for each subscript.
+ computeAccessFunctions(Expr, Subscripts, Sizes);
+
+ if (Subscripts.empty())
+ return;
+
+ LLVM_DEBUG({
+ dbgs() << "succeeded to delinearize " << *Expr << "\n";
+ dbgs() << "ArrayDecl[UnknownSize]";
+ for (const SCEV *S : Sizes)
+ dbgs() << "[" << *S << "]";
+
+ dbgs() << "\nArrayRef";
+ for (const SCEV *S : Subscripts)
+ dbgs() << "[" << *S << "]";
+ dbgs() << "\n";
+ });
+}
+
+//===----------------------------------------------------------------------===//
+// SCEVCallbackVH Class Implementation
+//===----------------------------------------------------------------------===//
+
+void ScalarEvolution::SCEVCallbackVH::deleted() {
+ assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
+ if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
+ SE->ConstantEvolutionLoopExitValue.erase(PN);
+ SE->eraseValueFromMap(getValPtr());
+ // this now dangles!
+}
+
+void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
+ assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
+
+ // Forget all the expressions associated with users of the old value,
+ // so that future queries will recompute the expressions using the new
+ // value.
+ Value *Old = getValPtr();
+ SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
+ SmallPtrSet<User *, 8> Visited;
+ while (!Worklist.empty()) {
+ User *U = Worklist.pop_back_val();
+ // Deleting the Old value will cause this to dangle. Postpone
+ // that until everything else is done.
+ if (U == Old)
+ continue;
+ if (!Visited.insert(U).second)
+ continue;
+ if (PHINode *PN = dyn_cast<PHINode>(U))
+ SE->ConstantEvolutionLoopExitValue.erase(PN);
+ SE->eraseValueFromMap(U);
+ Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
+ }
+ // Delete the Old value.
+ if (PHINode *PN = dyn_cast<PHINode>(Old))
+ SE->ConstantEvolutionLoopExitValue.erase(PN);
+ SE->eraseValueFromMap(Old);
+ // this now dangles!
+}
+
+ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
+ : CallbackVH(V), SE(se) {}
+
+//===----------------------------------------------------------------------===//
+// ScalarEvolution Class Implementation
+//===----------------------------------------------------------------------===//
+
+ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
+ AssumptionCache &AC, DominatorTree &DT,
+ LoopInfo &LI)
+ : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
+ CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
+ LoopDispositions(64), BlockDispositions(64) {
+ // To use guards for proving predicates, we need to scan every instruction in
+ // relevant basic blocks, and not just terminators. Doing this is a waste of
+ // time if the IR does not actually contain any calls to
+ // @llvm.experimental.guard, so do a quick check and remember this beforehand.
+ //
+ // This pessimizes the case where a pass that preserves ScalarEvolution wants
+ // to _add_ guards to the module when there weren't any before, and wants
+ // ScalarEvolution to optimize based on those guards. For now we prefer to be
+ // efficient in lieu of being smart in that rather obscure case.
+
+ auto *GuardDecl = F.getParent()->getFunction(
+ Intrinsic::getName(Intrinsic::experimental_guard));
+ HasGuards = GuardDecl && !GuardDecl->use_empty();
+}
+
+ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
+ : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
+ LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
+ ValueExprMap(std::move(Arg.ValueExprMap)),
+ PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
+ PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
+ PendingMerges(std::move(Arg.PendingMerges)),
+ MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
+ BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
+ PredicatedBackedgeTakenCounts(
+ std::move(Arg.PredicatedBackedgeTakenCounts)),
+ ConstantEvolutionLoopExitValue(
+ std::move(Arg.ConstantEvolutionLoopExitValue)),
+ ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
+ LoopDispositions(std::move(Arg.LoopDispositions)),
+ LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
+ BlockDispositions(std::move(Arg.BlockDispositions)),
+ UnsignedRanges(std::move(Arg.UnsignedRanges)),
+ SignedRanges(std::move(Arg.SignedRanges)),
+ UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
+ UniquePreds(std::move(Arg.UniquePreds)),
+ SCEVAllocator(std::move(Arg.SCEVAllocator)),
+ LoopUsers(std::move(Arg.LoopUsers)),
+ PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
+ FirstUnknown(Arg.FirstUnknown) {
+ Arg.FirstUnknown = nullptr;
+}
+
+ScalarEvolution::~ScalarEvolution() {
+ // Iterate through all the SCEVUnknown instances and call their
+ // destructors, so that they release their references to their values.
+ for (SCEVUnknown *U = FirstUnknown; U;) {
+ SCEVUnknown *Tmp = U;
+ U = U->Next;
+ Tmp->~SCEVUnknown();
+ }
+ FirstUnknown = nullptr;
+
+ ExprValueMap.clear();
+ ValueExprMap.clear();
+ HasRecMap.clear();
+
+ // Free any extra memory created for ExitNotTakenInfo in the unlikely event
+ // that a loop had multiple computable exits.
+ for (auto &BTCI : BackedgeTakenCounts)
+ BTCI.second.clear();
+ for (auto &BTCI : PredicatedBackedgeTakenCounts)
+ BTCI.second.clear();
+
+ assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
+ assert(PendingPhiRanges.empty() && "getRangeRef garbage");
+ assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
+ assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
+ assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
+}
+
+bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
+ return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
+}
+
+static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
+ const Loop *L) {
+ // Print all inner loops first
+ for (Loop *I : *L)
+ PrintLoopInfo(OS, SE, I);
+
+ OS << "Loop ";
+ L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
+ OS << ": ";
+
+ SmallVector<BasicBlock *, 8> ExitingBlocks;
+ L->getExitingBlocks(ExitingBlocks);
+ if (ExitingBlocks.size() != 1)
+ OS << "<multiple exits> ";
+
+ if (SE->hasLoopInvariantBackedgeTakenCount(L))
+ OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
+ else
+ OS << "Unpredictable backedge-taken count.\n";
+
+ if (ExitingBlocks.size() > 1)
+ for (BasicBlock *ExitingBlock : ExitingBlocks) {
+ OS << " exit count for " << ExitingBlock->getName() << ": "
+ << *SE->getExitCount(L, ExitingBlock) << "\n";
+ }
+
+ OS << "Loop ";
+ L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
+ OS << ": ";
+
+ if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
+ OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
+ if (SE->isBackedgeTakenCountMaxOrZero(L))
+ OS << ", actual taken count either this or zero.";
+ } else {
+ OS << "Unpredictable max backedge-taken count. ";
+ }
+
+ OS << "\n"
+ "Loop ";
+ L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
+ OS << ": ";
+
+ SCEVUnionPredicate Pred;
+ auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
+ if (!isa<SCEVCouldNotCompute>(PBT)) {
+ OS << "Predicated backedge-taken count is " << *PBT << "\n";
+ OS << " Predicates:\n";
+ Pred.print(OS, 4);
+ } else {
+ OS << "Unpredictable predicated backedge-taken count. ";
+ }
+ OS << "\n";
+
+ if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
+ OS << "Loop ";
+ L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
+ OS << ": ";
+ OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
+ }
+}
+
+static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
+ switch (LD) {
+ case ScalarEvolution::LoopVariant:
+ return "Variant";
+ case ScalarEvolution::LoopInvariant:
+ return "Invariant";
+ case ScalarEvolution::LoopComputable:
+ return "Computable";
+ }
+ llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
+}
+
+void ScalarEvolution::print(raw_ostream &OS) const {
+ // ScalarEvolution's implementation of the print method is to print
+ // out SCEV values of all instructions that are interesting. Doing
+ // this potentially causes it to create new SCEV objects though,
+ // which technically conflicts with the const qualifier. This isn't
+ // observable from outside the class though, so casting away the
+ // const isn't dangerous.
+ ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
+
+ OS << "Classifying expressions for: ";
+ F.printAsOperand(OS, /*PrintType=*/false);
+ OS << "\n";
+ for (Instruction &I : instructions(F))
+ if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
+ OS << I << '\n';
+ OS << " --> ";
+ const SCEV *SV = SE.getSCEV(&I);
+ SV->print(OS);
+ if (!isa<SCEVCouldNotCompute>(SV)) {
+ OS << " U: ";
+ SE.getUnsignedRange(SV).print(OS);
+ OS << " S: ";
+ SE.getSignedRange(SV).print(OS);
+ }
+
+ const Loop *L = LI.getLoopFor(I.getParent());
+
+ const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
+ if (AtUse != SV) {
+ OS << " --> ";
+ AtUse->print(OS);
+ if (!isa<SCEVCouldNotCompute>(AtUse)) {
+ OS << " U: ";
+ SE.getUnsignedRange(AtUse).print(OS);
+ OS << " S: ";
+ SE.getSignedRange(AtUse).print(OS);
+ }
+ }
+
+ if (L) {
+ OS << "\t\t" "Exits: ";
+ const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
+ if (!SE.isLoopInvariant(ExitValue, L)) {
+ OS << "<<Unknown>>";
+ } else {
+ OS << *ExitValue;
+ }
+
+ bool First = true;
+ for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
+ if (First) {
+ OS << "\t\t" "LoopDispositions: { ";
+ First = false;
+ } else {
+ OS << ", ";
+ }
+
+ Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
+ OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
+ }
+
+ for (auto *InnerL : depth_first(L)) {
+ if (InnerL == L)
+ continue;
+ if (First) {
+ OS << "\t\t" "LoopDispositions: { ";
+ First = false;
+ } else {
+ OS << ", ";
+ }
+
+ InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
+ OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
+ }
+
+ OS << " }";
+ }
+
+ OS << "\n";
+ }
+
+ OS << "Determining loop execution counts for: ";
+ F.printAsOperand(OS, /*PrintType=*/false);
+ OS << "\n";
+ for (Loop *I : LI)
+ PrintLoopInfo(OS, &SE, I);
+}
+
+ScalarEvolution::LoopDisposition
+ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
+ auto &Values = LoopDispositions[S];
+ for (auto &V : Values) {
+ if (V.getPointer() == L)
+ return V.getInt();
+ }
+ Values.emplace_back(L, LoopVariant);
+ LoopDisposition D = computeLoopDisposition(S, L);
+ auto &Values2 = LoopDispositions[S];
+ for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
+ if (V.getPointer() == L) {
+ V.setInt(D);
+ break;
+ }
+ }
+ return D;
+}
+
+ScalarEvolution::LoopDisposition
+ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
+ switch (static_cast<SCEVTypes>(S->getSCEVType())) {
+ case scConstant:
+ return LoopInvariant;
+ case scTruncate:
+ case scZeroExtend:
+ case scSignExtend:
+ return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
+ case scAddRecExpr: {
+ const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
+
+ // If L is the addrec's loop, it's computable.
+ if (AR->getLoop() == L)
+ return LoopComputable;
+
+ // Add recurrences are never invariant in the function-body (null loop).
+ if (!L)
+ return LoopVariant;
+
+ // Everything that is not defined at loop entry is variant.
+ if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
+ return LoopVariant;
+ assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
+ " dominate the contained loop's header?");
+
+ // This recurrence is invariant w.r.t. L if AR's loop contains L.
+ if (AR->getLoop()->contains(L))
+ return LoopInvariant;
+
+ // This recurrence is variant w.r.t. L if any of its operands
+ // are variant.
+ for (auto *Op : AR->operands())
+ if (!isLoopInvariant(Op, L))
+ return LoopVariant;
+
+ // Otherwise it's loop-invariant.
+ return LoopInvariant;
+ }
+ case scAddExpr:
+ case scMulExpr:
+ case scUMaxExpr:
+ case scSMaxExpr:
+ case scUMinExpr:
+ case scSMinExpr: {
+ bool HasVarying = false;
+ for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
+ LoopDisposition D = getLoopDisposition(Op, L);
+ if (D == LoopVariant)
+ return LoopVariant;
+ if (D == LoopComputable)
+ HasVarying = true;
+ }
+ return HasVarying ? LoopComputable : LoopInvariant;
+ }
+ case scUDivExpr: {
+ const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
+ LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
+ if (LD == LoopVariant)
+ return LoopVariant;
+ LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
+ if (RD == LoopVariant)
+ return LoopVariant;
+ return (LD == LoopInvariant && RD == LoopInvariant) ?
+ LoopInvariant : LoopComputable;
+ }
+ case scUnknown:
+ // All non-instruction values are loop invariant. All instructions are loop
+ // invariant if they are not contained in the specified loop.
+ // Instructions are never considered invariant in the function body
+ // (null loop) because they are defined within the "loop".
+ if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
+ return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
+ return LoopInvariant;
+ case scCouldNotCompute:
+ llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
+ }
+ llvm_unreachable("Unknown SCEV kind!");
+}
+
+bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
+ return getLoopDisposition(S, L) == LoopInvariant;
+}
+
+bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
+ return getLoopDisposition(S, L) == LoopComputable;
+}
+
+ScalarEvolution::BlockDisposition
+ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
+ auto &Values = BlockDispositions[S];
+ for (auto &V : Values) {
+ if (V.getPointer() == BB)
+ return V.getInt();
+ }
+ Values.emplace_back(BB, DoesNotDominateBlock);
+ BlockDisposition D = computeBlockDisposition(S, BB);
+ auto &Values2 = BlockDispositions[S];
+ for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
+ if (V.getPointer() == BB) {
+ V.setInt(D);
+ break;
+ }
+ }
+ return D;
+}
+
+ScalarEvolution::BlockDisposition
+ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
+ switch (static_cast<SCEVTypes>(S->getSCEVType())) {
+ case scConstant:
+ return ProperlyDominatesBlock;
+ case scTruncate:
+ case scZeroExtend:
+ case scSignExtend:
+ return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
+ case scAddRecExpr: {
+ // This uses a "dominates" query instead of "properly dominates" query
+ // to test for proper dominance too, because the instruction which
+ // produces the addrec's value is a PHI, and a PHI effectively properly
+ // dominates its entire containing block.
+ const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
+ if (!DT.dominates(AR->getLoop()->getHeader(), BB))
+ return DoesNotDominateBlock;
+
+ // Fall through into SCEVNAryExpr handling.
+ LLVM_FALLTHROUGH;
+ }
+ case scAddExpr:
+ case scMulExpr:
+ case scUMaxExpr:
+ case scSMaxExpr:
+ case scUMinExpr:
+ case scSMinExpr: {
+ const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
+ bool Proper = true;
+ for (const SCEV *NAryOp : NAry->operands()) {
+ BlockDisposition D = getBlockDisposition(NAryOp, BB);
+ if (D == DoesNotDominateBlock)
+ return DoesNotDominateBlock;
+ if (D == DominatesBlock)
+ Proper = false;
+ }
+ return Proper ? ProperlyDominatesBlock : DominatesBlock;
+ }
+ case scUDivExpr: {
+ const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
+ const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
+ BlockDisposition LD = getBlockDisposition(LHS, BB);
+ if (LD == DoesNotDominateBlock)
+ return DoesNotDominateBlock;
+ BlockDisposition RD = getBlockDisposition(RHS, BB);
+ if (RD == DoesNotDominateBlock)
+ return DoesNotDominateBlock;
+ return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
+ ProperlyDominatesBlock : DominatesBlock;
+ }
+ case scUnknown:
+ if (Instruction *I =
+ dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
+ if (I->getParent() == BB)
+ return DominatesBlock;
+ if (DT.properlyDominates(I->getParent(), BB))
+ return ProperlyDominatesBlock;
+ return DoesNotDominateBlock;
+ }
+ return ProperlyDominatesBlock;
+ case scCouldNotCompute:
+ llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
+ }
+ llvm_unreachable("Unknown SCEV kind!");
+}
+
+bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
+ return getBlockDisposition(S, BB) >= DominatesBlock;
+}
+
+bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
+ return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
+}
+
+bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
+ return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
+}
+
+bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
+ auto IsS = [&](const SCEV *X) { return S == X; };
+ auto ContainsS = [&](const SCEV *X) {
+ return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
+ };
+ return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
+}
+
+void
+ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
+ ValuesAtScopes.erase(S);
+ LoopDispositions.erase(S);
+ BlockDispositions.erase(S);
+ UnsignedRanges.erase(S);
+ SignedRanges.erase(S);
+ ExprValueMap.erase(S);
+ HasRecMap.erase(S);
+ MinTrailingZerosCache.erase(S);
+
+ for (auto I = PredicatedSCEVRewrites.begin();
+ I != PredicatedSCEVRewrites.end();) {
+ std::pair<const SCEV *, const Loop *> Entry = I->first;
+ if (Entry.first == S)
+ PredicatedSCEVRewrites.erase(I++);
+ else
+ ++I;
+ }
+
+ auto RemoveSCEVFromBackedgeMap =
+ [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
+ for (auto I = Map.begin(), E = Map.end(); I != E;) {
+ BackedgeTakenInfo &BEInfo = I->second;
+ if (BEInfo.hasOperand(S, this)) {
+ BEInfo.clear();
+ Map.erase(I++);
+ } else
+ ++I;
+ }
+ };
+
+ RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
+ RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
+}
+
+void
+ScalarEvolution::getUsedLoops(const SCEV *S,
+ SmallPtrSetImpl<const Loop *> &LoopsUsed) {
+ struct FindUsedLoops {
+ FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
+ : LoopsUsed(LoopsUsed) {}
+ SmallPtrSetImpl<const Loop *> &LoopsUsed;
+ bool follow(const SCEV *S) {
+ if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
+ LoopsUsed.insert(AR->getLoop());
+ return true;
+ }
+
+ bool isDone() const { return false; }
+ };
+
+ FindUsedLoops F(LoopsUsed);
+ SCEVTraversal<FindUsedLoops>(F).visitAll(S);
+}
+
+void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
+ SmallPtrSet<const Loop *, 8> LoopsUsed;
+ getUsedLoops(S, LoopsUsed);
+ for (auto *L : LoopsUsed)
+ LoopUsers[L].push_back(S);
+}
+
+void ScalarEvolution::verify() const {
+ ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
+ ScalarEvolution SE2(F, TLI, AC, DT, LI);
+
+ SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
+
+ // Map's SCEV expressions from one ScalarEvolution "universe" to another.
+ struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
+ SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
+
+ const SCEV *visitConstant(const SCEVConstant *Constant) {
+ return SE.getConstant(Constant->getAPInt());
+ }
+
+ const SCEV *visitUnknown(const SCEVUnknown *Expr) {
+ return SE.getUnknown(Expr->getValue());
+ }
+
+ const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
+ return SE.getCouldNotCompute();
+ }
+ };
+
+ SCEVMapper SCM(SE2);
+
+ while (!LoopStack.empty()) {
+ auto *L = LoopStack.pop_back_val();
+ LoopStack.insert(LoopStack.end(), L->begin(), L->end());
+
+ auto *CurBECount = SCM.visit(
+ const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
+ auto *NewBECount = SE2.getBackedgeTakenCount(L);
+
+ if (CurBECount == SE2.getCouldNotCompute() ||
+ NewBECount == SE2.getCouldNotCompute()) {
+ // NB! This situation is legal, but is very suspicious -- whatever pass
+ // change the loop to make a trip count go from could not compute to
+ // computable or vice-versa *should have* invalidated SCEV. However, we
+ // choose not to assert here (for now) since we don't want false
+ // positives.
+ continue;
+ }
+
+ if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
+ // SCEV treats "undef" as an unknown but consistent value (i.e. it does
+ // not propagate undef aggressively). This means we can (and do) fail
+ // verification in cases where a transform makes the trip count of a loop
+ // go from "undef" to "undef+1" (say). The transform is fine, since in
+ // both cases the loop iterates "undef" times, but SCEV thinks we
+ // increased the trip count of the loop by 1 incorrectly.
+ continue;
+ }
+
+ if (SE.getTypeSizeInBits(CurBECount->getType()) >
+ SE.getTypeSizeInBits(NewBECount->getType()))
+ NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
+ else if (SE.getTypeSizeInBits(CurBECount->getType()) <
+ SE.getTypeSizeInBits(NewBECount->getType()))
+ CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
+
+ const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
+
+ // Unless VerifySCEVStrict is set, we only compare constant deltas.
+ if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
+ dbgs() << "Trip Count for " << *L << " Changed!\n";
+ dbgs() << "Old: " << *CurBECount << "\n";
+ dbgs() << "New: " << *NewBECount << "\n";
+ dbgs() << "Delta: " << *Delta << "\n";
+ std::abort();
+ }
+ }
+}
+
+bool ScalarEvolution::invalidate(
+ Function &F, const PreservedAnalyses &PA,
+ FunctionAnalysisManager::Invalidator &Inv) {
+ // Invalidate the ScalarEvolution object whenever it isn't preserved or one
+ // of its dependencies is invalidated.
+ auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
+ return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
+ Inv.invalidate<AssumptionAnalysis>(F, PA) ||
+ Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
+ Inv.invalidate<LoopAnalysis>(F, PA);
+}
+
+AnalysisKey ScalarEvolutionAnalysis::Key;
+
+ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
+ FunctionAnalysisManager &AM) {
+ return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
+ AM.getResult<AssumptionAnalysis>(F),
+ AM.getResult<DominatorTreeAnalysis>(F),
+ AM.getResult<LoopAnalysis>(F));
+}
+
+PreservedAnalyses
+ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
+ AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
+ return PreservedAnalyses::all();
+}
+
+INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
+ "Scalar Evolution Analysis", false, true)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
+ "Scalar Evolution Analysis", false, true)
+
+char ScalarEvolutionWrapperPass::ID = 0;
+
+ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
+ initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
+}
+
+bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
+ SE.reset(new ScalarEvolution(
+ F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
+ getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
+ getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
+ getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
+ return false;
+}
+
+void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
+
+void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
+ SE->print(OS);
+}
+
+void ScalarEvolutionWrapperPass::verifyAnalysis() const {
+ if (!VerifySCEV)
+ return;
+
+ SE->verify();
+}
+
+void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ AU.addRequiredTransitive<AssumptionCacheTracker>();
+ AU.addRequiredTransitive<LoopInfoWrapperPass>();
+ AU.addRequiredTransitive<DominatorTreeWrapperPass>();
+ AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
+}
+
+const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
+ const SCEV *RHS) {
+ FoldingSetNodeID ID;
+ assert(LHS->getType() == RHS->getType() &&
+ "Type mismatch between LHS and RHS");
+ // Unique this node based on the arguments
+ ID.AddInteger(SCEVPredicate::P_Equal);
+ ID.AddPointer(LHS);
+ ID.AddPointer(RHS);
+ void *IP = nullptr;
+ if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
+ return S;
+ SCEVEqualPredicate *Eq = new (SCEVAllocator)
+ SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
+ UniquePreds.InsertNode(Eq, IP);
+ return Eq;
+}
+
+const SCEVPredicate *ScalarEvolution::getWrapPredicate(
+ const SCEVAddRecExpr *AR,
+ SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
+ FoldingSetNodeID ID;
+ // Unique this node based on the arguments
+ ID.AddInteger(SCEVPredicate::P_Wrap);
+ ID.AddPointer(AR);
+ ID.AddInteger(AddedFlags);
+ void *IP = nullptr;
+ if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
+ return S;
+ auto *OF = new (SCEVAllocator)
+ SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
+ UniquePreds.InsertNode(OF, IP);
+ return OF;
+}
+
+namespace {
+
+class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
+public:
+
+ /// Rewrites \p S in the context of a loop L and the SCEV predication
+ /// infrastructure.
+ ///
+ /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
+ /// equivalences present in \p Pred.
+ ///
+ /// If \p NewPreds is non-null, rewrite is free to add further predicates to
+ /// \p NewPreds such that the result will be an AddRecExpr.
+ static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
+ SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
+ SCEVUnionPredicate *Pred) {
+ SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
+ return Rewriter.visit(S);
+ }
+
+ const SCEV *visitUnknown(const SCEVUnknown *Expr) {
+ if (Pred) {
+ auto ExprPreds = Pred->getPredicatesForExpr(Expr);
+ for (auto *Pred : ExprPreds)
+ if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
+ if (IPred->getLHS() == Expr)
+ return IPred->getRHS();
+ }
+ return convertToAddRecWithPreds(Expr);
+ }
+
+ const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
+ const SCEV *Operand = visit(Expr->getOperand());
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
+ if (AR && AR->getLoop() == L && AR->isAffine()) {
+ // This couldn't be folded because the operand didn't have the nuw
+ // flag. Add the nusw flag as an assumption that we could make.
+ const SCEV *Step = AR->getStepRecurrence(SE);
+ Type *Ty = Expr->getType();
+ if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
+ return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
+ SE.getSignExtendExpr(Step, Ty), L,
+ AR->getNoWrapFlags());
+ }
+ return SE.getZeroExtendExpr(Operand, Expr->getType());
+ }
+
+ const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
+ const SCEV *Operand = visit(Expr->getOperand());
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
+ if (AR && AR->getLoop() == L && AR->isAffine()) {
+ // This couldn't be folded because the operand didn't have the nsw
+ // flag. Add the nssw flag as an assumption that we could make.
+ const SCEV *Step = AR->getStepRecurrence(SE);
+ Type *Ty = Expr->getType();
+ if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
+ return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
+ SE.getSignExtendExpr(Step, Ty), L,
+ AR->getNoWrapFlags());
+ }
+ return SE.getSignExtendExpr(Operand, Expr->getType());
+ }
+
+private:
+ explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
+ SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
+ SCEVUnionPredicate *Pred)
+ : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
+
+ bool addOverflowAssumption(const SCEVPredicate *P) {
+ if (!NewPreds) {
+ // Check if we've already made this assumption.
+ return Pred && Pred->implies(P);
+ }
+ NewPreds->insert(P);
+ return true;
+ }
+
+ bool addOverflowAssumption(const SCEVAddRecExpr *AR,
+ SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
+ auto *A = SE.getWrapPredicate(AR, AddedFlags);
+ return addOverflowAssumption(A);
+ }
+
+ // If \p Expr represents a PHINode, we try to see if it can be represented
+ // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
+ // to add this predicate as a runtime overflow check, we return the AddRec.
+ // If \p Expr does not meet these conditions (is not a PHI node, or we
+ // couldn't create an AddRec for it, or couldn't add the predicate), we just
+ // return \p Expr.
+ const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
+ if (!isa<PHINode>(Expr->getValue()))
+ return Expr;
+ Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
+ PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
+ if (!PredicatedRewrite)
+ return Expr;
+ for (auto *P : PredicatedRewrite->second){
+ // Wrap predicates from outer loops are not supported.
+ if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
+ auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
+ if (L != AR->getLoop())
+ return Expr;
+ }
+ if (!addOverflowAssumption(P))
+ return Expr;
+ }
+ return PredicatedRewrite->first;
+ }
+
+ SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
+ SCEVUnionPredicate *Pred;
+ const Loop *L;
+};
+
+} // end anonymous namespace
+
+const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
+ SCEVUnionPredicate &Preds) {
+ return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
+}
+
+const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
+ const SCEV *S, const Loop *L,
+ SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
+ SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
+ S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
+ auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
+
+ if (!AddRec)
+ return nullptr;
+
+ // Since the transformation was successful, we can now transfer the SCEV
+ // predicates.
+ for (auto *P : TransformPreds)
+ Preds.insert(P);
+
+ return AddRec;
+}
+
+/// SCEV predicates
+SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
+ SCEVPredicateKind Kind)
+ : FastID(ID), Kind(Kind) {}
+
+SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
+ const SCEV *LHS, const SCEV *RHS)
+ : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
+ assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
+ assert(LHS != RHS && "LHS and RHS are the same SCEV");
+}
+
+bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
+ const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
+
+ if (!Op)
+ return false;
+
+ return Op->LHS == LHS && Op->RHS == RHS;
+}
+
+bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
+
+const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
+
+void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
+ OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
+}
+
+SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
+ const SCEVAddRecExpr *AR,
+ IncrementWrapFlags Flags)
+ : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
+
+const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
+
+bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
+ const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
+
+ return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
+}
+
+bool SCEVWrapPredicate::isAlwaysTrue() const {
+ SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
+ IncrementWrapFlags IFlags = Flags;
+
+ if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
+ IFlags = clearFlags(IFlags, IncrementNSSW);
+
+ return IFlags == IncrementAnyWrap;
+}
+
+void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
+ OS.indent(Depth) << *getExpr() << " Added Flags: ";
+ if (SCEVWrapPredicate::IncrementNUSW & getFlags())
+ OS << "<nusw>";
+ if (SCEVWrapPredicate::IncrementNSSW & getFlags())
+ OS << "<nssw>";
+ OS << "\n";
+}
+
+SCEVWrapPredicate::IncrementWrapFlags
+SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
+ ScalarEvolution &SE) {
+ IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
+ SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
+
+ // We can safely transfer the NSW flag as NSSW.
+ if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
+ ImpliedFlags = IncrementNSSW;
+
+ if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
+ // If the increment is positive, the SCEV NUW flag will also imply the
+ // WrapPredicate NUSW flag.
+ if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
+ if (Step->getValue()->getValue().isNonNegative())
+ ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
+ }
+
+ return ImpliedFlags;
+}
+
+/// Union predicates don't get cached so create a dummy set ID for it.
+SCEVUnionPredicate::SCEVUnionPredicate()
+ : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
+
+bool SCEVUnionPredicate::isAlwaysTrue() const {
+ return all_of(Preds,
+ [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
+}
+
+ArrayRef<const SCEVPredicate *>
+SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
+ auto I = SCEVToPreds.find(Expr);
+ if (I == SCEVToPreds.end())
+ return ArrayRef<const SCEVPredicate *>();
+ return I->second;
+}
+
+bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
+ if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
+ return all_of(Set->Preds,
+ [this](const SCEVPredicate *I) { return this->implies(I); });
+
+ auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
+ if (ScevPredsIt == SCEVToPreds.end())
+ return false;
+ auto &SCEVPreds = ScevPredsIt->second;
+
+ return any_of(SCEVPreds,
+ [N](const SCEVPredicate *I) { return I->implies(N); });
+}
+
+const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
+
+void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
+ for (auto Pred : Preds)
+ Pred->print(OS, Depth);
+}
+
+void SCEVUnionPredicate::add(const SCEVPredicate *N) {
+ if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
+ for (auto Pred : Set->Preds)
+ add(Pred);
+ return;
+ }
+
+ if (implies(N))
+ return;
+
+ const SCEV *Key = N->getExpr();
+ assert(Key && "Only SCEVUnionPredicate doesn't have an "
+ " associated expression!");
+
+ SCEVToPreds[Key].push_back(N);
+ Preds.push_back(N);
+}
+
+PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
+ Loop &L)
+ : SE(SE), L(L) {}
+
+const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
+ const SCEV *Expr = SE.getSCEV(V);
+ RewriteEntry &Entry = RewriteMap[Expr];
+
+ // If we already have an entry and the version matches, return it.
+ if (Entry.second && Generation == Entry.first)
+ return Entry.second;
+
+ // We found an entry but it's stale. Rewrite the stale entry
+ // according to the current predicate.
+ if (Entry.second)
+ Expr = Entry.second;
+
+ const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
+ Entry = {Generation, NewSCEV};
+
+ return NewSCEV;
+}
+
+const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
+ if (!BackedgeCount) {
+ SCEVUnionPredicate BackedgePred;
+ BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
+ addPredicate(BackedgePred);
+ }
+ return BackedgeCount;
+}
+
+void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
+ if (Preds.implies(&Pred))
+ return;
+ Preds.add(&Pred);
+ updateGeneration();
+}
+
+const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
+ return Preds;
+}
+
+void PredicatedScalarEvolution::updateGeneration() {
+ // If the generation number wrapped recompute everything.
+ if (++Generation == 0) {
+ for (auto &II : RewriteMap) {
+ const SCEV *Rewritten = II.second.second;
+ II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
+ }
+ }
+}
+
+void PredicatedScalarEvolution::setNoOverflow(
+ Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
+ const SCEV *Expr = getSCEV(V);
+ const auto *AR = cast<SCEVAddRecExpr>(Expr);
+
+ auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
+
+ // Clear the statically implied flags.
+ Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
+ addPredicate(*SE.getWrapPredicate(AR, Flags));
+
+ auto II = FlagsMap.insert({V, Flags});
+ if (!II.second)
+ II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
+}
+
+bool PredicatedScalarEvolution::hasNoOverflow(
+ Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
+ const SCEV *Expr = getSCEV(V);
+ const auto *AR = cast<SCEVAddRecExpr>(Expr);
+
+ Flags = SCEVWrapPredicate::clearFlags(
+ Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
+
+ auto II = FlagsMap.find(V);
+
+ if (II != FlagsMap.end())
+ Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
+
+ return Flags == SCEVWrapPredicate::IncrementAnyWrap;
+}
+
+const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
+ const SCEV *Expr = this->getSCEV(V);
+ SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
+ auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
+
+ if (!New)
+ return nullptr;
+
+ for (auto *P : NewPreds)
+ Preds.add(P);
+
+ updateGeneration();
+ RewriteMap[SE.getSCEV(V)] = {Generation, New};
+ return New;
+}
+
+PredicatedScalarEvolution::PredicatedScalarEvolution(
+ const PredicatedScalarEvolution &Init)
+ : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
+ Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
+ for (const auto &I : Init.FlagsMap)
+ FlagsMap.insert(I);
+}
+
+void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
+ // For each block.
+ for (auto *BB : L.getBlocks())
+ for (auto &I : *BB) {
+ if (!SE.isSCEVable(I.getType()))
+ continue;
+
+ auto *Expr = SE.getSCEV(&I);
+ auto II = RewriteMap.find(Expr);
+
+ if (II == RewriteMap.end())
+ continue;
+
+ // Don't print things that are not interesting.
+ if (II->second.second == Expr)
+ continue;
+
+ OS.indent(Depth) << "[PSE]" << I << ":\n";
+ OS.indent(Depth + 2) << *Expr << "\n";
+ OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
+ }
+}
+
+// Match the mathematical pattern A - (A / B) * B, where A and B can be
+// arbitrary expressions.
+// It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
+// 4, A / B becomes X / 8).
+bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
+ const SCEV *&RHS) {
+ const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
+ if (Add == nullptr || Add->getNumOperands() != 2)
+ return false;
+
+ const SCEV *A = Add->getOperand(1);
+ const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
+
+ if (Mul == nullptr)
+ return false;
+
+ const auto MatchURemWithDivisor = [&](const SCEV *B) {
+ // (SomeExpr + (-(SomeExpr / B) * B)).
+ if (Expr == getURemExpr(A, B)) {
+ LHS = A;
+ RHS = B;
+ return true;
+ }
+ return false;
+ };
+
+ // (SomeExpr + (-1 * (SomeExpr / B) * B)).
+ if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
+ return MatchURemWithDivisor(Mul->getOperand(1)) ||
+ MatchURemWithDivisor(Mul->getOperand(2));
+
+ // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
+ if (Mul->getNumOperands() == 2)
+ return MatchURemWithDivisor(Mul->getOperand(1)) ||
+ MatchURemWithDivisor(Mul->getOperand(0)) ||
+ MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
+ MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
+ return false;
+}