summaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/TargetTransformInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Analysis/TargetTransformInfo.cpp')
-rw-r--r--llvm/lib/Analysis/TargetTransformInfo.cpp1386
1 files changed, 1386 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/TargetTransformInfo.cpp b/llvm/lib/Analysis/TargetTransformInfo.cpp
new file mode 100644
index 000000000000..c9c294873ea6
--- /dev/null
+++ b/llvm/lib/Analysis/TargetTransformInfo.cpp
@@ -0,0 +1,1386 @@
+//===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/TargetTransformInfoImpl.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Analysis/CFG.h"
+#include "llvm/Analysis/LoopIterator.h"
+#include <utility>
+
+using namespace llvm;
+using namespace PatternMatch;
+
+#define DEBUG_TYPE "tti"
+
+static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
+ cl::Hidden,
+ cl::desc("Recognize reduction patterns."));
+
+namespace {
+/// No-op implementation of the TTI interface using the utility base
+/// classes.
+///
+/// This is used when no target specific information is available.
+struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
+ explicit NoTTIImpl(const DataLayout &DL)
+ : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
+};
+}
+
+bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
+ // If the loop has irreducible control flow, it can not be converted to
+ // Hardware loop.
+ LoopBlocksRPO RPOT(L);
+ RPOT.perform(&LI);
+ if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
+ return false;
+ return true;
+}
+
+bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
+ LoopInfo &LI, DominatorTree &DT,
+ bool ForceNestedLoop,
+ bool ForceHardwareLoopPHI) {
+ SmallVector<BasicBlock *, 4> ExitingBlocks;
+ L->getExitingBlocks(ExitingBlocks);
+
+ for (BasicBlock *BB : ExitingBlocks) {
+ // If we pass the updated counter back through a phi, we need to know
+ // which latch the updated value will be coming from.
+ if (!L->isLoopLatch(BB)) {
+ if (ForceHardwareLoopPHI || CounterInReg)
+ continue;
+ }
+
+ const SCEV *EC = SE.getExitCount(L, BB);
+ if (isa<SCEVCouldNotCompute>(EC))
+ continue;
+ if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
+ if (ConstEC->getValue()->isZero())
+ continue;
+ } else if (!SE.isLoopInvariant(EC, L))
+ continue;
+
+ if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
+ continue;
+
+ // If this exiting block is contained in a nested loop, it is not eligible
+ // for insertion of the branch-and-decrement since the inner loop would
+ // end up messing up the value in the CTR.
+ if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
+ continue;
+
+ // We now have a loop-invariant count of loop iterations (which is not the
+ // constant zero) for which we know that this loop will not exit via this
+ // existing block.
+
+ // We need to make sure that this block will run on every loop iteration.
+ // For this to be true, we must dominate all blocks with backedges. Such
+ // blocks are in-loop predecessors to the header block.
+ bool NotAlways = false;
+ for (BasicBlock *Pred : predecessors(L->getHeader())) {
+ if (!L->contains(Pred))
+ continue;
+
+ if (!DT.dominates(BB, Pred)) {
+ NotAlways = true;
+ break;
+ }
+ }
+
+ if (NotAlways)
+ continue;
+
+ // Make sure this blocks ends with a conditional branch.
+ Instruction *TI = BB->getTerminator();
+ if (!TI)
+ continue;
+
+ if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+ if (!BI->isConditional())
+ continue;
+
+ ExitBranch = BI;
+ } else
+ continue;
+
+ // Note that this block may not be the loop latch block, even if the loop
+ // has a latch block.
+ ExitBlock = BB;
+ ExitCount = EC;
+ break;
+ }
+
+ if (!ExitBlock)
+ return false;
+ return true;
+}
+
+TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
+ : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
+
+TargetTransformInfo::~TargetTransformInfo() {}
+
+TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
+ : TTIImpl(std::move(Arg.TTIImpl)) {}
+
+TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
+ TTIImpl = std::move(RHS.TTIImpl);
+ return *this;
+}
+
+int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty,
+ Type *OpTy) const {
+ int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs,
+ const User *U) const {
+ int Cost = TTIImpl->getCallCost(FTy, NumArgs, U);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+int TargetTransformInfo::getCallCost(const Function *F,
+ ArrayRef<const Value *> Arguments,
+ const User *U) const {
+ int Cost = TTIImpl->getCallCost(F, Arguments, U);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
+ return TTIImpl->getInliningThresholdMultiplier();
+}
+
+int TargetTransformInfo::getInlinerVectorBonusPercent() const {
+ return TTIImpl->getInlinerVectorBonusPercent();
+}
+
+int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
+ ArrayRef<const Value *> Operands) const {
+ return TTIImpl->getGEPCost(PointeeType, Ptr, Operands);
+}
+
+int TargetTransformInfo::getExtCost(const Instruction *I,
+ const Value *Src) const {
+ return TTIImpl->getExtCost(I, Src);
+}
+
+int TargetTransformInfo::getIntrinsicCost(
+ Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments,
+ const User *U) const {
+ int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments, U);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+unsigned
+TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
+ unsigned &JTSize) const {
+ return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize);
+}
+
+int TargetTransformInfo::getUserCost(const User *U,
+ ArrayRef<const Value *> Operands) const {
+ int Cost = TTIImpl->getUserCost(U, Operands);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+bool TargetTransformInfo::hasBranchDivergence() const {
+ return TTIImpl->hasBranchDivergence();
+}
+
+bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
+ return TTIImpl->isSourceOfDivergence(V);
+}
+
+bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
+ return TTIImpl->isAlwaysUniform(V);
+}
+
+unsigned TargetTransformInfo::getFlatAddressSpace() const {
+ return TTIImpl->getFlatAddressSpace();
+}
+
+bool TargetTransformInfo::collectFlatAddressOperands(
+ SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const {
+ return TTIImpl->collectFlatAddressOperands(OpIndexes, IID);
+}
+
+bool TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
+ IntrinsicInst *II, Value *OldV, Value *NewV) const {
+ return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
+}
+
+bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
+ return TTIImpl->isLoweredToCall(F);
+}
+
+bool TargetTransformInfo::isHardwareLoopProfitable(
+ Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
+ TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
+ return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
+}
+
+void TargetTransformInfo::getUnrollingPreferences(
+ Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const {
+ return TTIImpl->getUnrollingPreferences(L, SE, UP);
+}
+
+bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
+ return TTIImpl->isLegalAddImmediate(Imm);
+}
+
+bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
+ return TTIImpl->isLegalICmpImmediate(Imm);
+}
+
+bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
+ int64_t BaseOffset,
+ bool HasBaseReg,
+ int64_t Scale,
+ unsigned AddrSpace,
+ Instruction *I) const {
+ return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
+ Scale, AddrSpace, I);
+}
+
+bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
+ return TTIImpl->isLSRCostLess(C1, C2);
+}
+
+bool TargetTransformInfo::canMacroFuseCmp() const {
+ return TTIImpl->canMacroFuseCmp();
+}
+
+bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
+ ScalarEvolution *SE, LoopInfo *LI,
+ DominatorTree *DT, AssumptionCache *AC,
+ TargetLibraryInfo *LibInfo) const {
+ return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
+}
+
+bool TargetTransformInfo::shouldFavorPostInc() const {
+ return TTIImpl->shouldFavorPostInc();
+}
+
+bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const {
+ return TTIImpl->shouldFavorBackedgeIndex(L);
+}
+
+bool TargetTransformInfo::isLegalMaskedStore(Type *DataType,
+ MaybeAlign Alignment) const {
+ return TTIImpl->isLegalMaskedStore(DataType, Alignment);
+}
+
+bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType,
+ MaybeAlign Alignment) const {
+ return TTIImpl->isLegalMaskedLoad(DataType, Alignment);
+}
+
+bool TargetTransformInfo::isLegalNTStore(Type *DataType,
+ Align Alignment) const {
+ return TTIImpl->isLegalNTStore(DataType, Alignment);
+}
+
+bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const {
+ return TTIImpl->isLegalNTLoad(DataType, Alignment);
+}
+
+bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const {
+ return TTIImpl->isLegalMaskedGather(DataType);
+}
+
+bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const {
+ return TTIImpl->isLegalMaskedScatter(DataType);
+}
+
+bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
+ return TTIImpl->isLegalMaskedCompressStore(DataType);
+}
+
+bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
+ return TTIImpl->isLegalMaskedExpandLoad(DataType);
+}
+
+bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
+ return TTIImpl->hasDivRemOp(DataType, IsSigned);
+}
+
+bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
+ unsigned AddrSpace) const {
+ return TTIImpl->hasVolatileVariant(I, AddrSpace);
+}
+
+bool TargetTransformInfo::prefersVectorizedAddressing() const {
+ return TTIImpl->prefersVectorizedAddressing();
+}
+
+int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
+ int64_t BaseOffset,
+ bool HasBaseReg,
+ int64_t Scale,
+ unsigned AddrSpace) const {
+ int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
+ Scale, AddrSpace);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+bool TargetTransformInfo::LSRWithInstrQueries() const {
+ return TTIImpl->LSRWithInstrQueries();
+}
+
+bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
+ return TTIImpl->isTruncateFree(Ty1, Ty2);
+}
+
+bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
+ return TTIImpl->isProfitableToHoist(I);
+}
+
+bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
+
+bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
+ return TTIImpl->isTypeLegal(Ty);
+}
+
+bool TargetTransformInfo::shouldBuildLookupTables() const {
+ return TTIImpl->shouldBuildLookupTables();
+}
+bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const {
+ return TTIImpl->shouldBuildLookupTablesForConstant(C);
+}
+
+bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
+ return TTIImpl->useColdCCForColdCall(F);
+}
+
+unsigned TargetTransformInfo::
+getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const {
+ return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract);
+}
+
+unsigned TargetTransformInfo::
+getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
+ unsigned VF) const {
+ return TTIImpl->getOperandsScalarizationOverhead(Args, VF);
+}
+
+bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
+ return TTIImpl->supportsEfficientVectorElementLoadStore();
+}
+
+bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const {
+ return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
+}
+
+TargetTransformInfo::MemCmpExpansionOptions
+TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
+ return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
+}
+
+bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
+ return TTIImpl->enableInterleavedAccessVectorization();
+}
+
+bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
+ return TTIImpl->enableMaskedInterleavedAccessVectorization();
+}
+
+bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
+ return TTIImpl->isFPVectorizationPotentiallyUnsafe();
+}
+
+bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
+ unsigned BitWidth,
+ unsigned AddressSpace,
+ unsigned Alignment,
+ bool *Fast) const {
+ return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
+ Alignment, Fast);
+}
+
+TargetTransformInfo::PopcntSupportKind
+TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
+ return TTIImpl->getPopcntSupport(IntTyWidthInBit);
+}
+
+bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
+ return TTIImpl->haveFastSqrt(Ty);
+}
+
+bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
+ return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
+}
+
+int TargetTransformInfo::getFPOpCost(Type *Ty) const {
+ int Cost = TTIImpl->getFPOpCost(Ty);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
+ const APInt &Imm,
+ Type *Ty) const {
+ int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const {
+ int Cost = TTIImpl->getIntImmCost(Imm, Ty);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx,
+ const APInt &Imm, Type *Ty) const {
+ int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
+ const APInt &Imm, Type *Ty) const {
+ int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const {
+ return TTIImpl->getNumberOfRegisters(ClassID);
+}
+
+unsigned TargetTransformInfo::getRegisterClassForType(bool Vector, Type *Ty) const {
+ return TTIImpl->getRegisterClassForType(Vector, Ty);
+}
+
+const char* TargetTransformInfo::getRegisterClassName(unsigned ClassID) const {
+ return TTIImpl->getRegisterClassName(ClassID);
+}
+
+unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
+ return TTIImpl->getRegisterBitWidth(Vector);
+}
+
+unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
+ return TTIImpl->getMinVectorRegisterBitWidth();
+}
+
+bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const {
+ return TTIImpl->shouldMaximizeVectorBandwidth(OptSize);
+}
+
+unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const {
+ return TTIImpl->getMinimumVF(ElemWidth);
+}
+
+bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
+ const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
+ return TTIImpl->shouldConsiderAddressTypePromotion(
+ I, AllowPromotionWithoutCommonHeader);
+}
+
+unsigned TargetTransformInfo::getCacheLineSize() const {
+ return TTIImpl->getCacheLineSize();
+}
+
+llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level)
+ const {
+ return TTIImpl->getCacheSize(Level);
+}
+
+llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity(
+ CacheLevel Level) const {
+ return TTIImpl->getCacheAssociativity(Level);
+}
+
+unsigned TargetTransformInfo::getPrefetchDistance() const {
+ return TTIImpl->getPrefetchDistance();
+}
+
+unsigned TargetTransformInfo::getMinPrefetchStride() const {
+ return TTIImpl->getMinPrefetchStride();
+}
+
+unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
+ return TTIImpl->getMaxPrefetchIterationsAhead();
+}
+
+unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
+ return TTIImpl->getMaxInterleaveFactor(VF);
+}
+
+TargetTransformInfo::OperandValueKind
+TargetTransformInfo::getOperandInfo(Value *V, OperandValueProperties &OpProps) {
+ OperandValueKind OpInfo = OK_AnyValue;
+ OpProps = OP_None;
+
+ if (auto *CI = dyn_cast<ConstantInt>(V)) {
+ if (CI->getValue().isPowerOf2())
+ OpProps = OP_PowerOf2;
+ return OK_UniformConstantValue;
+ }
+
+ // A broadcast shuffle creates a uniform value.
+ // TODO: Add support for non-zero index broadcasts.
+ // TODO: Add support for different source vector width.
+ if (auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
+ if (ShuffleInst->isZeroEltSplat())
+ OpInfo = OK_UniformValue;
+
+ const Value *Splat = getSplatValue(V);
+
+ // Check for a splat of a constant or for a non uniform vector of constants
+ // and check if the constant(s) are all powers of two.
+ if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
+ OpInfo = OK_NonUniformConstantValue;
+ if (Splat) {
+ OpInfo = OK_UniformConstantValue;
+ if (auto *CI = dyn_cast<ConstantInt>(Splat))
+ if (CI->getValue().isPowerOf2())
+ OpProps = OP_PowerOf2;
+ } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
+ OpProps = OP_PowerOf2;
+ for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
+ if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
+ if (CI->getValue().isPowerOf2())
+ continue;
+ OpProps = OP_None;
+ break;
+ }
+ }
+ }
+
+ // Check for a splat of a uniform value. This is not loop aware, so return
+ // true only for the obviously uniform cases (argument, globalvalue)
+ if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
+ OpInfo = OK_UniformValue;
+
+ return OpInfo;
+}
+
+int TargetTransformInfo::getArithmeticInstrCost(
+ unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
+ OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
+ OperandValueProperties Opd2PropInfo,
+ ArrayRef<const Value *> Args) const {
+ int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
+ Opd1PropInfo, Opd2PropInfo, Args);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index,
+ Type *SubTp) const {
+ int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst,
+ Type *Src, const Instruction *I) const {
+ assert ((I == nullptr || I->getOpcode() == Opcode) &&
+ "Opcode should reflect passed instruction.");
+ int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
+ VectorType *VecTy,
+ unsigned Index) const {
+ int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const {
+ int Cost = TTIImpl->getCFInstrCost(Opcode);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
+ Type *CondTy, const Instruction *I) const {
+ assert ((I == nullptr || I->getOpcode() == Opcode) &&
+ "Opcode should reflect passed instruction.");
+ int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
+ unsigned Index) const {
+ int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
+ unsigned Alignment,
+ unsigned AddressSpace,
+ const Instruction *I) const {
+ assert ((I == nullptr || I->getOpcode() == Opcode) &&
+ "Opcode should reflect passed instruction.");
+ int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
+ unsigned Alignment,
+ unsigned AddressSpace) const {
+ int Cost =
+ TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
+ Value *Ptr, bool VariableMask,
+ unsigned Alignment) const {
+ int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
+ Alignment);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+int TargetTransformInfo::getInterleavedMemoryOpCost(
+ unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
+ unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond,
+ bool UseMaskForGaps) const {
+ int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
+ Alignment, AddressSpace,
+ UseMaskForCond,
+ UseMaskForGaps);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
+ ArrayRef<Type *> Tys, FastMathFlags FMF,
+ unsigned ScalarizationCostPassed) const {
+ int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
+ ScalarizationCostPassed);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
+ ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const {
+ int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
+ ArrayRef<Type *> Tys) const {
+ int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
+ return TTIImpl->getNumberOfParts(Tp);
+}
+
+int TargetTransformInfo::getAddressComputationCost(Type *Tp,
+ ScalarEvolution *SE,
+ const SCEV *Ptr) const {
+ int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+int TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
+ int Cost = TTIImpl->getMemcpyCost(I);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty,
+ bool IsPairwiseForm) const {
+ int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy,
+ bool IsPairwiseForm,
+ bool IsUnsigned) const {
+ int Cost =
+ TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned);
+ assert(Cost >= 0 && "TTI should not produce negative costs!");
+ return Cost;
+}
+
+unsigned
+TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
+ return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
+}
+
+bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
+ MemIntrinsicInfo &Info) const {
+ return TTIImpl->getTgtMemIntrinsic(Inst, Info);
+}
+
+unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
+ return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
+}
+
+Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
+ IntrinsicInst *Inst, Type *ExpectedType) const {
+ return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
+}
+
+Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context,
+ Value *Length,
+ unsigned SrcAlign,
+ unsigned DestAlign) const {
+ return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign,
+ DestAlign);
+}
+
+void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
+ SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
+ unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const {
+ TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
+ SrcAlign, DestAlign);
+}
+
+bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
+ const Function *Callee) const {
+ return TTIImpl->areInlineCompatible(Caller, Callee);
+}
+
+bool TargetTransformInfo::areFunctionArgsABICompatible(
+ const Function *Caller, const Function *Callee,
+ SmallPtrSetImpl<Argument *> &Args) const {
+ return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args);
+}
+
+bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
+ Type *Ty) const {
+ return TTIImpl->isIndexedLoadLegal(Mode, Ty);
+}
+
+bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
+ Type *Ty) const {
+ return TTIImpl->isIndexedStoreLegal(Mode, Ty);
+}
+
+unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
+ return TTIImpl->getLoadStoreVecRegBitWidth(AS);
+}
+
+bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
+ return TTIImpl->isLegalToVectorizeLoad(LI);
+}
+
+bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
+ return TTIImpl->isLegalToVectorizeStore(SI);
+}
+
+bool TargetTransformInfo::isLegalToVectorizeLoadChain(
+ unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
+ return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
+ AddrSpace);
+}
+
+bool TargetTransformInfo::isLegalToVectorizeStoreChain(
+ unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
+ return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
+ AddrSpace);
+}
+
+unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
+ unsigned LoadSize,
+ unsigned ChainSizeInBytes,
+ VectorType *VecTy) const {
+ return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
+}
+
+unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
+ unsigned StoreSize,
+ unsigned ChainSizeInBytes,
+ VectorType *VecTy) const {
+ return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
+}
+
+bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode,
+ Type *Ty, ReductionFlags Flags) const {
+ return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags);
+}
+
+bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
+ return TTIImpl->shouldExpandReduction(II);
+}
+
+unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
+ return TTIImpl->getGISelRematGlobalCost();
+}
+
+int TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
+ return TTIImpl->getInstructionLatency(I);
+}
+
+static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
+ unsigned Level) {
+ // We don't need a shuffle if we just want to have element 0 in position 0 of
+ // the vector.
+ if (!SI && Level == 0 && IsLeft)
+ return true;
+ else if (!SI)
+ return false;
+
+ SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1);
+
+ // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
+ // we look at the left or right side.
+ for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
+ Mask[i] = val;
+
+ SmallVector<int, 16> ActualMask = SI->getShuffleMask();
+ return Mask == ActualMask;
+}
+
+namespace {
+/// Kind of the reduction data.
+enum ReductionKind {
+ RK_None, /// Not a reduction.
+ RK_Arithmetic, /// Binary reduction data.
+ RK_MinMax, /// Min/max reduction data.
+ RK_UnsignedMinMax, /// Unsigned min/max reduction data.
+};
+/// Contains opcode + LHS/RHS parts of the reduction operations.
+struct ReductionData {
+ ReductionData() = delete;
+ ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS)
+ : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) {
+ assert(Kind != RK_None && "expected binary or min/max reduction only.");
+ }
+ unsigned Opcode = 0;
+ Value *LHS = nullptr;
+ Value *RHS = nullptr;
+ ReductionKind Kind = RK_None;
+ bool hasSameData(ReductionData &RD) const {
+ return Kind == RD.Kind && Opcode == RD.Opcode;
+ }
+};
+} // namespace
+
+static Optional<ReductionData> getReductionData(Instruction *I) {
+ Value *L, *R;
+ if (m_BinOp(m_Value(L), m_Value(R)).match(I))
+ return ReductionData(RK_Arithmetic, I->getOpcode(), L, R);
+ if (auto *SI = dyn_cast<SelectInst>(I)) {
+ if (m_SMin(m_Value(L), m_Value(R)).match(SI) ||
+ m_SMax(m_Value(L), m_Value(R)).match(SI) ||
+ m_OrdFMin(m_Value(L), m_Value(R)).match(SI) ||
+ m_OrdFMax(m_Value(L), m_Value(R)).match(SI) ||
+ m_UnordFMin(m_Value(L), m_Value(R)).match(SI) ||
+ m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) {
+ auto *CI = cast<CmpInst>(SI->getCondition());
+ return ReductionData(RK_MinMax, CI->getOpcode(), L, R);
+ }
+ if (m_UMin(m_Value(L), m_Value(R)).match(SI) ||
+ m_UMax(m_Value(L), m_Value(R)).match(SI)) {
+ auto *CI = cast<CmpInst>(SI->getCondition());
+ return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R);
+ }
+ }
+ return llvm::None;
+}
+
+static ReductionKind matchPairwiseReductionAtLevel(Instruction *I,
+ unsigned Level,
+ unsigned NumLevels) {
+ // Match one level of pairwise operations.
+ // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
+ // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
+ // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
+ // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
+ // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
+ if (!I)
+ return RK_None;
+
+ assert(I->getType()->isVectorTy() && "Expecting a vector type");
+
+ Optional<ReductionData> RD = getReductionData(I);
+ if (!RD)
+ return RK_None;
+
+ ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS);
+ if (!LS && Level)
+ return RK_None;
+ ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS);
+ if (!RS && Level)
+ return RK_None;
+
+ // On level 0 we can omit one shufflevector instruction.
+ if (!Level && !RS && !LS)
+ return RK_None;
+
+ // Shuffle inputs must match.
+ Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
+ Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
+ Value *NextLevelOp = nullptr;
+ if (NextLevelOpR && NextLevelOpL) {
+ // If we have two shuffles their operands must match.
+ if (NextLevelOpL != NextLevelOpR)
+ return RK_None;
+
+ NextLevelOp = NextLevelOpL;
+ } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
+ // On the first level we can omit the shufflevector <0, undef,...>. So the
+ // input to the other shufflevector <1, undef> must match with one of the
+ // inputs to the current binary operation.
+ // Example:
+ // %NextLevelOpL = shufflevector %R, <1, undef ...>
+ // %BinOp = fadd %NextLevelOpL, %R
+ if (NextLevelOpL && NextLevelOpL != RD->RHS)
+ return RK_None;
+ else if (NextLevelOpR && NextLevelOpR != RD->LHS)
+ return RK_None;
+
+ NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS;
+ } else
+ return RK_None;
+
+ // Check that the next levels binary operation exists and matches with the
+ // current one.
+ if (Level + 1 != NumLevels) {
+ Optional<ReductionData> NextLevelRD =
+ getReductionData(cast<Instruction>(NextLevelOp));
+ if (!NextLevelRD || !RD->hasSameData(*NextLevelRD))
+ return RK_None;
+ }
+
+ // Shuffle mask for pairwise operation must match.
+ if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) {
+ if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level))
+ return RK_None;
+ } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) {
+ if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level))
+ return RK_None;
+ } else {
+ return RK_None;
+ }
+
+ if (++Level == NumLevels)
+ return RD->Kind;
+
+ // Match next level.
+ return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level,
+ NumLevels);
+}
+
+static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot,
+ unsigned &Opcode, Type *&Ty) {
+ if (!EnableReduxCost)
+ return RK_None;
+
+ // Need to extract the first element.
+ ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
+ unsigned Idx = ~0u;
+ if (CI)
+ Idx = CI->getZExtValue();
+ if (Idx != 0)
+ return RK_None;
+
+ auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
+ if (!RdxStart)
+ return RK_None;
+ Optional<ReductionData> RD = getReductionData(RdxStart);
+ if (!RD)
+ return RK_None;
+
+ Type *VecTy = RdxStart->getType();
+ unsigned NumVecElems = VecTy->getVectorNumElements();
+ if (!isPowerOf2_32(NumVecElems))
+ return RK_None;
+
+ // We look for a sequence of shuffle,shuffle,add triples like the following
+ // that builds a pairwise reduction tree.
+ //
+ // (X0, X1, X2, X3)
+ // (X0 + X1, X2 + X3, undef, undef)
+ // ((X0 + X1) + (X2 + X3), undef, undef, undef)
+ //
+ // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
+ // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
+ // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
+ // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
+ // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
+ // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
+ // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
+ // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
+ // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
+ // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
+ // %r = extractelement <4 x float> %bin.rdx8, i32 0
+ if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) ==
+ RK_None)
+ return RK_None;
+
+ Opcode = RD->Opcode;
+ Ty = VecTy;
+
+ return RD->Kind;
+}
+
+static std::pair<Value *, ShuffleVectorInst *>
+getShuffleAndOtherOprd(Value *L, Value *R) {
+ ShuffleVectorInst *S = nullptr;
+
+ if ((S = dyn_cast<ShuffleVectorInst>(L)))
+ return std::make_pair(R, S);
+
+ S = dyn_cast<ShuffleVectorInst>(R);
+ return std::make_pair(L, S);
+}
+
+static ReductionKind
+matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot,
+ unsigned &Opcode, Type *&Ty) {
+ if (!EnableReduxCost)
+ return RK_None;
+
+ // Need to extract the first element.
+ ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
+ unsigned Idx = ~0u;
+ if (CI)
+ Idx = CI->getZExtValue();
+ if (Idx != 0)
+ return RK_None;
+
+ auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
+ if (!RdxStart)
+ return RK_None;
+ Optional<ReductionData> RD = getReductionData(RdxStart);
+ if (!RD)
+ return RK_None;
+
+ Type *VecTy = ReduxRoot->getOperand(0)->getType();
+ unsigned NumVecElems = VecTy->getVectorNumElements();
+ if (!isPowerOf2_32(NumVecElems))
+ return RK_None;
+
+ // We look for a sequence of shuffles and adds like the following matching one
+ // fadd, shuffle vector pair at a time.
+ //
+ // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
+ // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
+ // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
+ // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
+ // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
+ // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
+ // %r = extractelement <4 x float> %bin.rdx8, i32 0
+
+ unsigned MaskStart = 1;
+ Instruction *RdxOp = RdxStart;
+ SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
+ unsigned NumVecElemsRemain = NumVecElems;
+ while (NumVecElemsRemain - 1) {
+ // Check for the right reduction operation.
+ if (!RdxOp)
+ return RK_None;
+ Optional<ReductionData> RDLevel = getReductionData(RdxOp);
+ if (!RDLevel || !RDLevel->hasSameData(*RD))
+ return RK_None;
+
+ Value *NextRdxOp;
+ ShuffleVectorInst *Shuffle;
+ std::tie(NextRdxOp, Shuffle) =
+ getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS);
+
+ // Check the current reduction operation and the shuffle use the same value.
+ if (Shuffle == nullptr)
+ return RK_None;
+ if (Shuffle->getOperand(0) != NextRdxOp)
+ return RK_None;
+
+ // Check that shuffle masks matches.
+ for (unsigned j = 0; j != MaskStart; ++j)
+ ShuffleMask[j] = MaskStart + j;
+ // Fill the rest of the mask with -1 for undef.
+ std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
+
+ SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
+ if (ShuffleMask != Mask)
+ return RK_None;
+
+ RdxOp = dyn_cast<Instruction>(NextRdxOp);
+ NumVecElemsRemain /= 2;
+ MaskStart *= 2;
+ }
+
+ Opcode = RD->Opcode;
+ Ty = VecTy;
+ return RD->Kind;
+}
+
+int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
+ switch (I->getOpcode()) {
+ case Instruction::GetElementPtr:
+ return getUserCost(I);
+
+ case Instruction::Ret:
+ case Instruction::PHI:
+ case Instruction::Br: {
+ return getCFInstrCost(I->getOpcode());
+ }
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ TargetTransformInfo::OperandValueKind Op1VK, Op2VK;
+ TargetTransformInfo::OperandValueProperties Op1VP, Op2VP;
+ Op1VK = getOperandInfo(I->getOperand(0), Op1VP);
+ Op2VK = getOperandInfo(I->getOperand(1), Op2VP);
+ SmallVector<const Value *, 2> Operands(I->operand_values());
+ return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK,
+ Op1VP, Op2VP, Operands);
+ }
+ case Instruction::FNeg: {
+ TargetTransformInfo::OperandValueKind Op1VK, Op2VK;
+ TargetTransformInfo::OperandValueProperties Op1VP, Op2VP;
+ Op1VK = getOperandInfo(I->getOperand(0), Op1VP);
+ Op2VK = OK_AnyValue;
+ Op2VP = OP_None;
+ SmallVector<const Value *, 2> Operands(I->operand_values());
+ return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK,
+ Op1VP, Op2VP, Operands);
+ }
+ case Instruction::Select: {
+ const SelectInst *SI = cast<SelectInst>(I);
+ Type *CondTy = SI->getCondition()->getType();
+ return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I);
+ }
+ case Instruction::ICmp:
+ case Instruction::FCmp: {
+ Type *ValTy = I->getOperand(0)->getType();
+ return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I);
+ }
+ case Instruction::Store: {
+ const StoreInst *SI = cast<StoreInst>(I);
+ Type *ValTy = SI->getValueOperand()->getType();
+ return getMemoryOpCost(I->getOpcode(), ValTy,
+ SI->getAlignment(),
+ SI->getPointerAddressSpace(), I);
+ }
+ case Instruction::Load: {
+ const LoadInst *LI = cast<LoadInst>(I);
+ return getMemoryOpCost(I->getOpcode(), I->getType(),
+ LI->getAlignment(),
+ LI->getPointerAddressSpace(), I);
+ }
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::BitCast:
+ case Instruction::AddrSpaceCast: {
+ Type *SrcTy = I->getOperand(0)->getType();
+ return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I);
+ }
+ case Instruction::ExtractElement: {
+ const ExtractElementInst * EEI = cast<ExtractElementInst>(I);
+ ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
+ unsigned Idx = -1;
+ if (CI)
+ Idx = CI->getZExtValue();
+
+ // Try to match a reduction sequence (series of shufflevector and vector
+ // adds followed by a extractelement).
+ unsigned ReduxOpCode;
+ Type *ReduxType;
+
+ switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) {
+ case RK_Arithmetic:
+ return getArithmeticReductionCost(ReduxOpCode, ReduxType,
+ /*IsPairwiseForm=*/false);
+ case RK_MinMax:
+ return getMinMaxReductionCost(
+ ReduxType, CmpInst::makeCmpResultType(ReduxType),
+ /*IsPairwiseForm=*/false, /*IsUnsigned=*/false);
+ case RK_UnsignedMinMax:
+ return getMinMaxReductionCost(
+ ReduxType, CmpInst::makeCmpResultType(ReduxType),
+ /*IsPairwiseForm=*/false, /*IsUnsigned=*/true);
+ case RK_None:
+ break;
+ }
+
+ switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) {
+ case RK_Arithmetic:
+ return getArithmeticReductionCost(ReduxOpCode, ReduxType,
+ /*IsPairwiseForm=*/true);
+ case RK_MinMax:
+ return getMinMaxReductionCost(
+ ReduxType, CmpInst::makeCmpResultType(ReduxType),
+ /*IsPairwiseForm=*/true, /*IsUnsigned=*/false);
+ case RK_UnsignedMinMax:
+ return getMinMaxReductionCost(
+ ReduxType, CmpInst::makeCmpResultType(ReduxType),
+ /*IsPairwiseForm=*/true, /*IsUnsigned=*/true);
+ case RK_None:
+ break;
+ }
+
+ return getVectorInstrCost(I->getOpcode(),
+ EEI->getOperand(0)->getType(), Idx);
+ }
+ case Instruction::InsertElement: {
+ const InsertElementInst * IE = cast<InsertElementInst>(I);
+ ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
+ unsigned Idx = -1;
+ if (CI)
+ Idx = CI->getZExtValue();
+ return getVectorInstrCost(I->getOpcode(),
+ IE->getType(), Idx);
+ }
+ case Instruction::ExtractValue:
+ return 0; // Model all ExtractValue nodes as free.
+ case Instruction::ShuffleVector: {
+ const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
+ Type *Ty = Shuffle->getType();
+ Type *SrcTy = Shuffle->getOperand(0)->getType();
+
+ // TODO: Identify and add costs for insert subvector, etc.
+ int SubIndex;
+ if (Shuffle->isExtractSubvectorMask(SubIndex))
+ return TTIImpl->getShuffleCost(SK_ExtractSubvector, SrcTy, SubIndex, Ty);
+
+ if (Shuffle->changesLength())
+ return -1;
+
+ if (Shuffle->isIdentity())
+ return 0;
+
+ if (Shuffle->isReverse())
+ return TTIImpl->getShuffleCost(SK_Reverse, Ty, 0, nullptr);
+
+ if (Shuffle->isSelect())
+ return TTIImpl->getShuffleCost(SK_Select, Ty, 0, nullptr);
+
+ if (Shuffle->isTranspose())
+ return TTIImpl->getShuffleCost(SK_Transpose, Ty, 0, nullptr);
+
+ if (Shuffle->isZeroEltSplat())
+ return TTIImpl->getShuffleCost(SK_Broadcast, Ty, 0, nullptr);
+
+ if (Shuffle->isSingleSource())
+ return TTIImpl->getShuffleCost(SK_PermuteSingleSrc, Ty, 0, nullptr);
+
+ return TTIImpl->getShuffleCost(SK_PermuteTwoSrc, Ty, 0, nullptr);
+ }
+ case Instruction::Call:
+ if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+ SmallVector<Value *, 4> Args(II->arg_operands());
+
+ FastMathFlags FMF;
+ if (auto *FPMO = dyn_cast<FPMathOperator>(II))
+ FMF = FPMO->getFastMathFlags();
+
+ return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(),
+ Args, FMF);
+ }
+ return -1;
+ default:
+ // We don't have any information on this instruction.
+ return -1;
+ }
+}
+
+TargetTransformInfo::Concept::~Concept() {}
+
+TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
+
+TargetIRAnalysis::TargetIRAnalysis(
+ std::function<Result(const Function &)> TTICallback)
+ : TTICallback(std::move(TTICallback)) {}
+
+TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
+ FunctionAnalysisManager &) {
+ return TTICallback(F);
+}
+
+AnalysisKey TargetIRAnalysis::Key;
+
+TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
+ return Result(F.getParent()->getDataLayout());
+}
+
+// Register the basic pass.
+INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
+ "Target Transform Information", false, true)
+char TargetTransformInfoWrapperPass::ID = 0;
+
+void TargetTransformInfoWrapperPass::anchor() {}
+
+TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
+ : ImmutablePass(ID) {
+ initializeTargetTransformInfoWrapperPassPass(
+ *PassRegistry::getPassRegistry());
+}
+
+TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
+ TargetIRAnalysis TIRA)
+ : ImmutablePass(ID), TIRA(std::move(TIRA)) {
+ initializeTargetTransformInfoWrapperPassPass(
+ *PassRegistry::getPassRegistry());
+}
+
+TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
+ FunctionAnalysisManager DummyFAM;
+ TTI = TIRA.run(F, DummyFAM);
+ return *TTI;
+}
+
+ImmutablePass *
+llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
+ return new TargetTransformInfoWrapperPass(std::move(TIRA));
+}