diff options
Diffstat (limited to 'llvm/lib/Bitcode/Writer/ValueEnumerator.cpp')
-rw-r--r-- | llvm/lib/Bitcode/Writer/ValueEnumerator.cpp | 1041 |
1 files changed, 1041 insertions, 0 deletions
diff --git a/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp b/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp new file mode 100644 index 000000000000..f59c906c7b75 --- /dev/null +++ b/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp @@ -0,0 +1,1041 @@ +//===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the ValueEnumerator class. +// +//===----------------------------------------------------------------------===// + +#include "ValueEnumerator.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalIFunc.h" +#include "llvm/IR/GlobalObject.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/UseListOrder.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueSymbolTable.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <iterator> +#include <tuple> +#include <utility> +#include <vector> + +using namespace llvm; + +namespace { + +struct OrderMap { + DenseMap<const Value *, std::pair<unsigned, bool>> IDs; + unsigned LastGlobalConstantID = 0; + unsigned LastGlobalValueID = 0; + + OrderMap() = default; + + bool isGlobalConstant(unsigned ID) const { + return ID <= LastGlobalConstantID; + } + + bool isGlobalValue(unsigned ID) const { + return ID <= LastGlobalValueID && !isGlobalConstant(ID); + } + + unsigned size() const { return IDs.size(); } + std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } + + std::pair<unsigned, bool> lookup(const Value *V) const { + return IDs.lookup(V); + } + + void index(const Value *V) { + // Explicitly sequence get-size and insert-value operations to avoid UB. + unsigned ID = IDs.size() + 1; + IDs[V].first = ID; + } +}; + +} // end anonymous namespace + +static void orderValue(const Value *V, OrderMap &OM) { + if (OM.lookup(V).first) + return; + + if (const Constant *C = dyn_cast<Constant>(V)) + if (C->getNumOperands() && !isa<GlobalValue>(C)) + for (const Value *Op : C->operands()) + if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) + orderValue(Op, OM); + + // Note: we cannot cache this lookup above, since inserting into the map + // changes the map's size, and thus affects the other IDs. + OM.index(V); +} + +static OrderMap orderModule(const Module &M) { + // This needs to match the order used by ValueEnumerator::ValueEnumerator() + // and ValueEnumerator::incorporateFunction(). + OrderMap OM; + + // In the reader, initializers of GlobalValues are set *after* all the + // globals have been read. Rather than awkwardly modeling this behaviour + // directly in predictValueUseListOrderImpl(), just assign IDs to + // initializers of GlobalValues before GlobalValues themselves to model this + // implicitly. + for (const GlobalVariable &G : M.globals()) + if (G.hasInitializer()) + if (!isa<GlobalValue>(G.getInitializer())) + orderValue(G.getInitializer(), OM); + for (const GlobalAlias &A : M.aliases()) + if (!isa<GlobalValue>(A.getAliasee())) + orderValue(A.getAliasee(), OM); + for (const GlobalIFunc &I : M.ifuncs()) + if (!isa<GlobalValue>(I.getResolver())) + orderValue(I.getResolver(), OM); + for (const Function &F : M) { + for (const Use &U : F.operands()) + if (!isa<GlobalValue>(U.get())) + orderValue(U.get(), OM); + } + OM.LastGlobalConstantID = OM.size(); + + // Initializers of GlobalValues are processed in + // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather + // than ValueEnumerator, and match the code in predictValueUseListOrderImpl() + // by giving IDs in reverse order. + // + // Since GlobalValues never reference each other directly (just through + // initializers), their relative IDs only matter for determining order of + // uses in their initializers. + for (const Function &F : M) + orderValue(&F, OM); + for (const GlobalAlias &A : M.aliases()) + orderValue(&A, OM); + for (const GlobalIFunc &I : M.ifuncs()) + orderValue(&I, OM); + for (const GlobalVariable &G : M.globals()) + orderValue(&G, OM); + OM.LastGlobalValueID = OM.size(); + + for (const Function &F : M) { + if (F.isDeclaration()) + continue; + // Here we need to match the union of ValueEnumerator::incorporateFunction() + // and WriteFunction(). Basic blocks are implicitly declared before + // anything else (by declaring their size). + for (const BasicBlock &BB : F) + orderValue(&BB, OM); + for (const Argument &A : F.args()) + orderValue(&A, OM); + for (const BasicBlock &BB : F) + for (const Instruction &I : BB) + for (const Value *Op : I.operands()) + if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || + isa<InlineAsm>(*Op)) + orderValue(Op, OM); + for (const BasicBlock &BB : F) + for (const Instruction &I : BB) + orderValue(&I, OM); + } + return OM; +} + +static void predictValueUseListOrderImpl(const Value *V, const Function *F, + unsigned ID, const OrderMap &OM, + UseListOrderStack &Stack) { + // Predict use-list order for this one. + using Entry = std::pair<const Use *, unsigned>; + SmallVector<Entry, 64> List; + for (const Use &U : V->uses()) + // Check if this user will be serialized. + if (OM.lookup(U.getUser()).first) + List.push_back(std::make_pair(&U, List.size())); + + if (List.size() < 2) + // We may have lost some users. + return; + + bool IsGlobalValue = OM.isGlobalValue(ID); + llvm::sort(List, [&](const Entry &L, const Entry &R) { + const Use *LU = L.first; + const Use *RU = R.first; + if (LU == RU) + return false; + + auto LID = OM.lookup(LU->getUser()).first; + auto RID = OM.lookup(RU->getUser()).first; + + // Global values are processed in reverse order. + // + // Moreover, initializers of GlobalValues are set *after* all the globals + // have been read (despite having earlier IDs). Rather than awkwardly + // modeling this behaviour here, orderModule() has assigned IDs to + // initializers of GlobalValues before GlobalValues themselves. + if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID)) + return LID < RID; + + // If ID is 4, then expect: 7 6 5 1 2 3. + if (LID < RID) { + if (RID <= ID) + if (!IsGlobalValue) // GlobalValue uses don't get reversed. + return true; + return false; + } + if (RID < LID) { + if (LID <= ID) + if (!IsGlobalValue) // GlobalValue uses don't get reversed. + return false; + return true; + } + + // LID and RID are equal, so we have different operands of the same user. + // Assume operands are added in order for all instructions. + if (LID <= ID) + if (!IsGlobalValue) // GlobalValue uses don't get reversed. + return LU->getOperandNo() < RU->getOperandNo(); + return LU->getOperandNo() > RU->getOperandNo(); + }); + + if (std::is_sorted( + List.begin(), List.end(), + [](const Entry &L, const Entry &R) { return L.second < R.second; })) + // Order is already correct. + return; + + // Store the shuffle. + Stack.emplace_back(V, F, List.size()); + assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); + for (size_t I = 0, E = List.size(); I != E; ++I) + Stack.back().Shuffle[I] = List[I].second; +} + +static void predictValueUseListOrder(const Value *V, const Function *F, + OrderMap &OM, UseListOrderStack &Stack) { + auto &IDPair = OM[V]; + assert(IDPair.first && "Unmapped value"); + if (IDPair.second) + // Already predicted. + return; + + // Do the actual prediction. + IDPair.second = true; + if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) + predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); + + // Recursive descent into constants. + if (const Constant *C = dyn_cast<Constant>(V)) + if (C->getNumOperands()) // Visit GlobalValues. + for (const Value *Op : C->operands()) + if (isa<Constant>(Op)) // Visit GlobalValues. + predictValueUseListOrder(Op, F, OM, Stack); +} + +static UseListOrderStack predictUseListOrder(const Module &M) { + OrderMap OM = orderModule(M); + + // Use-list orders need to be serialized after all the users have been added + // to a value, or else the shuffles will be incomplete. Store them per + // function in a stack. + // + // Aside from function order, the order of values doesn't matter much here. + UseListOrderStack Stack; + + // We want to visit the functions backward now so we can list function-local + // constants in the last Function they're used in. Module-level constants + // have already been visited above. + for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) { + const Function &F = *I; + if (F.isDeclaration()) + continue; + for (const BasicBlock &BB : F) + predictValueUseListOrder(&BB, &F, OM, Stack); + for (const Argument &A : F.args()) + predictValueUseListOrder(&A, &F, OM, Stack); + for (const BasicBlock &BB : F) + for (const Instruction &I : BB) + for (const Value *Op : I.operands()) + if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. + predictValueUseListOrder(Op, &F, OM, Stack); + for (const BasicBlock &BB : F) + for (const Instruction &I : BB) + predictValueUseListOrder(&I, &F, OM, Stack); + } + + // Visit globals last, since the module-level use-list block will be seen + // before the function bodies are processed. + for (const GlobalVariable &G : M.globals()) + predictValueUseListOrder(&G, nullptr, OM, Stack); + for (const Function &F : M) + predictValueUseListOrder(&F, nullptr, OM, Stack); + for (const GlobalAlias &A : M.aliases()) + predictValueUseListOrder(&A, nullptr, OM, Stack); + for (const GlobalIFunc &I : M.ifuncs()) + predictValueUseListOrder(&I, nullptr, OM, Stack); + for (const GlobalVariable &G : M.globals()) + if (G.hasInitializer()) + predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); + for (const GlobalAlias &A : M.aliases()) + predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); + for (const GlobalIFunc &I : M.ifuncs()) + predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack); + for (const Function &F : M) { + for (const Use &U : F.operands()) + predictValueUseListOrder(U.get(), nullptr, OM, Stack); + } + + return Stack; +} + +static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) { + return V.first->getType()->isIntOrIntVectorTy(); +} + +ValueEnumerator::ValueEnumerator(const Module &M, + bool ShouldPreserveUseListOrder) + : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { + if (ShouldPreserveUseListOrder) + UseListOrders = predictUseListOrder(M); + + // Enumerate the global variables. + for (const GlobalVariable &GV : M.globals()) + EnumerateValue(&GV); + + // Enumerate the functions. + for (const Function & F : M) { + EnumerateValue(&F); + EnumerateAttributes(F.getAttributes()); + } + + // Enumerate the aliases. + for (const GlobalAlias &GA : M.aliases()) + EnumerateValue(&GA); + + // Enumerate the ifuncs. + for (const GlobalIFunc &GIF : M.ifuncs()) + EnumerateValue(&GIF); + + // Remember what is the cutoff between globalvalue's and other constants. + unsigned FirstConstant = Values.size(); + + // Enumerate the global variable initializers and attributes. + for (const GlobalVariable &GV : M.globals()) { + if (GV.hasInitializer()) + EnumerateValue(GV.getInitializer()); + if (GV.hasAttributes()) + EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex)); + } + + // Enumerate the aliasees. + for (const GlobalAlias &GA : M.aliases()) + EnumerateValue(GA.getAliasee()); + + // Enumerate the ifunc resolvers. + for (const GlobalIFunc &GIF : M.ifuncs()) + EnumerateValue(GIF.getResolver()); + + // Enumerate any optional Function data. + for (const Function &F : M) + for (const Use &U : F.operands()) + EnumerateValue(U.get()); + + // Enumerate the metadata type. + // + // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode + // only encodes the metadata type when it's used as a value. + EnumerateType(Type::getMetadataTy(M.getContext())); + + // Insert constants and metadata that are named at module level into the slot + // pool so that the module symbol table can refer to them... + EnumerateValueSymbolTable(M.getValueSymbolTable()); + EnumerateNamedMetadata(M); + + SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; + for (const GlobalVariable &GV : M.globals()) { + MDs.clear(); + GV.getAllMetadata(MDs); + for (const auto &I : MDs) + // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer + // to write metadata to the global variable's own metadata block + // (PR28134). + EnumerateMetadata(nullptr, I.second); + } + + // Enumerate types used by function bodies and argument lists. + for (const Function &F : M) { + for (const Argument &A : F.args()) + EnumerateType(A.getType()); + + // Enumerate metadata attached to this function. + MDs.clear(); + F.getAllMetadata(MDs); + for (const auto &I : MDs) + EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second); + + for (const BasicBlock &BB : F) + for (const Instruction &I : BB) { + for (const Use &Op : I.operands()) { + auto *MD = dyn_cast<MetadataAsValue>(&Op); + if (!MD) { + EnumerateOperandType(Op); + continue; + } + + // Local metadata is enumerated during function-incorporation. + if (isa<LocalAsMetadata>(MD->getMetadata())) + continue; + + EnumerateMetadata(&F, MD->getMetadata()); + } + EnumerateType(I.getType()); + if (const auto *Call = dyn_cast<CallBase>(&I)) + EnumerateAttributes(Call->getAttributes()); + + // Enumerate metadata attached with this instruction. + MDs.clear(); + I.getAllMetadataOtherThanDebugLoc(MDs); + for (unsigned i = 0, e = MDs.size(); i != e; ++i) + EnumerateMetadata(&F, MDs[i].second); + + // Don't enumerate the location directly -- it has a special record + // type -- but enumerate its operands. + if (DILocation *L = I.getDebugLoc()) + for (const Metadata *Op : L->operands()) + EnumerateMetadata(&F, Op); + } + } + + // Optimize constant ordering. + OptimizeConstants(FirstConstant, Values.size()); + + // Organize metadata ordering. + organizeMetadata(); +} + +unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { + InstructionMapType::const_iterator I = InstructionMap.find(Inst); + assert(I != InstructionMap.end() && "Instruction is not mapped!"); + return I->second; +} + +unsigned ValueEnumerator::getComdatID(const Comdat *C) const { + unsigned ComdatID = Comdats.idFor(C); + assert(ComdatID && "Comdat not found!"); + return ComdatID; +} + +void ValueEnumerator::setInstructionID(const Instruction *I) { + InstructionMap[I] = InstructionCount++; +} + +unsigned ValueEnumerator::getValueID(const Value *V) const { + if (auto *MD = dyn_cast<MetadataAsValue>(V)) + return getMetadataID(MD->getMetadata()); + + ValueMapType::const_iterator I = ValueMap.find(V); + assert(I != ValueMap.end() && "Value not in slotcalculator!"); + return I->second-1; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void ValueEnumerator::dump() const { + print(dbgs(), ValueMap, "Default"); + dbgs() << '\n'; + print(dbgs(), MetadataMap, "MetaData"); + dbgs() << '\n'; +} +#endif + +void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map, + const char *Name) const { + OS << "Map Name: " << Name << "\n"; + OS << "Size: " << Map.size() << "\n"; + for (ValueMapType::const_iterator I = Map.begin(), + E = Map.end(); I != E; ++I) { + const Value *V = I->first; + if (V->hasName()) + OS << "Value: " << V->getName(); + else + OS << "Value: [null]\n"; + V->print(errs()); + errs() << '\n'; + + OS << " Uses(" << V->getNumUses() << "):"; + for (const Use &U : V->uses()) { + if (&U != &*V->use_begin()) + OS << ","; + if(U->hasName()) + OS << " " << U->getName(); + else + OS << " [null]"; + + } + OS << "\n\n"; + } +} + +void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map, + const char *Name) const { + OS << "Map Name: " << Name << "\n"; + OS << "Size: " << Map.size() << "\n"; + for (auto I = Map.begin(), E = Map.end(); I != E; ++I) { + const Metadata *MD = I->first; + OS << "Metadata: slot = " << I->second.ID << "\n"; + OS << "Metadata: function = " << I->second.F << "\n"; + MD->print(OS); + OS << "\n"; + } +} + +/// OptimizeConstants - Reorder constant pool for denser encoding. +void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { + if (CstStart == CstEnd || CstStart+1 == CstEnd) return; + + if (ShouldPreserveUseListOrder) + // Optimizing constants makes the use-list order difficult to predict. + // Disable it for now when trying to preserve the order. + return; + + std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd, + [this](const std::pair<const Value *, unsigned> &LHS, + const std::pair<const Value *, unsigned> &RHS) { + // Sort by plane. + if (LHS.first->getType() != RHS.first->getType()) + return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType()); + // Then by frequency. + return LHS.second > RHS.second; + }); + + // Ensure that integer and vector of integer constants are at the start of the + // constant pool. This is important so that GEP structure indices come before + // gep constant exprs. + std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd, + isIntOrIntVectorValue); + + // Rebuild the modified portion of ValueMap. + for (; CstStart != CstEnd; ++CstStart) + ValueMap[Values[CstStart].first] = CstStart+1; +} + +/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol +/// table into the values table. +void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { + for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); + VI != VE; ++VI) + EnumerateValue(VI->getValue()); +} + +/// Insert all of the values referenced by named metadata in the specified +/// module. +void ValueEnumerator::EnumerateNamedMetadata(const Module &M) { + for (const auto &I : M.named_metadata()) + EnumerateNamedMDNode(&I); +} + +void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { + for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) + EnumerateMetadata(nullptr, MD->getOperand(i)); +} + +unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const { + return F ? getValueID(F) + 1 : 0; +} + +void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) { + EnumerateMetadata(getMetadataFunctionID(F), MD); +} + +void ValueEnumerator::EnumerateFunctionLocalMetadata( + const Function &F, const LocalAsMetadata *Local) { + EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local); +} + +void ValueEnumerator::dropFunctionFromMetadata( + MetadataMapType::value_type &FirstMD) { + SmallVector<const MDNode *, 64> Worklist; + auto push = [&Worklist](MetadataMapType::value_type &MD) { + auto &Entry = MD.second; + + // Nothing to do if this metadata isn't tagged. + if (!Entry.F) + return; + + // Drop the function tag. + Entry.F = 0; + + // If this is has an ID and is an MDNode, then its operands have entries as + // well. We need to drop the function from them too. + if (Entry.ID) + if (auto *N = dyn_cast<MDNode>(MD.first)) + Worklist.push_back(N); + }; + push(FirstMD); + while (!Worklist.empty()) + for (const Metadata *Op : Worklist.pop_back_val()->operands()) { + if (!Op) + continue; + auto MD = MetadataMap.find(Op); + if (MD != MetadataMap.end()) + push(*MD); + } +} + +void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) { + // It's vital for reader efficiency that uniqued subgraphs are done in + // post-order; it's expensive when their operands have forward references. + // If a distinct node is referenced from a uniqued node, it'll be delayed + // until the uniqued subgraph has been completely traversed. + SmallVector<const MDNode *, 32> DelayedDistinctNodes; + + // Start by enumerating MD, and then work through its transitive operands in + // post-order. This requires a depth-first search. + SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist; + if (const MDNode *N = enumerateMetadataImpl(F, MD)) + Worklist.push_back(std::make_pair(N, N->op_begin())); + + while (!Worklist.empty()) { + const MDNode *N = Worklist.back().first; + + // Enumerate operands until we hit a new node. We need to traverse these + // nodes' operands before visiting the rest of N's operands. + MDNode::op_iterator I = std::find_if( + Worklist.back().second, N->op_end(), + [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); }); + if (I != N->op_end()) { + auto *Op = cast<MDNode>(*I); + Worklist.back().second = ++I; + + // Delay traversing Op if it's a distinct node and N is uniqued. + if (Op->isDistinct() && !N->isDistinct()) + DelayedDistinctNodes.push_back(Op); + else + Worklist.push_back(std::make_pair(Op, Op->op_begin())); + continue; + } + + // All the operands have been visited. Now assign an ID. + Worklist.pop_back(); + MDs.push_back(N); + MetadataMap[N].ID = MDs.size(); + + // Flush out any delayed distinct nodes; these are all the distinct nodes + // that are leaves in last uniqued subgraph. + if (Worklist.empty() || Worklist.back().first->isDistinct()) { + for (const MDNode *N : DelayedDistinctNodes) + Worklist.push_back(std::make_pair(N, N->op_begin())); + DelayedDistinctNodes.clear(); + } + } +} + +const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) { + if (!MD) + return nullptr; + + assert( + (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) && + "Invalid metadata kind"); + + auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F))); + MDIndex &Entry = Insertion.first->second; + if (!Insertion.second) { + // Already mapped. If F doesn't match the function tag, drop it. + if (Entry.hasDifferentFunction(F)) + dropFunctionFromMetadata(*Insertion.first); + return nullptr; + } + + // Don't assign IDs to metadata nodes. + if (auto *N = dyn_cast<MDNode>(MD)) + return N; + + // Save the metadata. + MDs.push_back(MD); + Entry.ID = MDs.size(); + + // Enumerate the constant, if any. + if (auto *C = dyn_cast<ConstantAsMetadata>(MD)) + EnumerateValue(C->getValue()); + + return nullptr; +} + +/// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata +/// information reachable from the metadata. +void ValueEnumerator::EnumerateFunctionLocalMetadata( + unsigned F, const LocalAsMetadata *Local) { + assert(F && "Expected a function"); + + // Check to see if it's already in! + MDIndex &Index = MetadataMap[Local]; + if (Index.ID) { + assert(Index.F == F && "Expected the same function"); + return; + } + + MDs.push_back(Local); + Index.F = F; + Index.ID = MDs.size(); + + EnumerateValue(Local->getValue()); +} + +static unsigned getMetadataTypeOrder(const Metadata *MD) { + // Strings are emitted in bulk and must come first. + if (isa<MDString>(MD)) + return 0; + + // ConstantAsMetadata doesn't reference anything. We may as well shuffle it + // to the front since we can detect it. + auto *N = dyn_cast<MDNode>(MD); + if (!N) + return 1; + + // The reader is fast forward references for distinct node operands, but slow + // when uniqued operands are unresolved. + return N->isDistinct() ? 2 : 3; +} + +void ValueEnumerator::organizeMetadata() { + assert(MetadataMap.size() == MDs.size() && + "Metadata map and vector out of sync"); + + if (MDs.empty()) + return; + + // Copy out the index information from MetadataMap in order to choose a new + // order. + SmallVector<MDIndex, 64> Order; + Order.reserve(MetadataMap.size()); + for (const Metadata *MD : MDs) + Order.push_back(MetadataMap.lookup(MD)); + + // Partition: + // - by function, then + // - by isa<MDString> + // and then sort by the original/current ID. Since the IDs are guaranteed to + // be unique, the result of std::sort will be deterministic. There's no need + // for std::stable_sort. + llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) { + return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) < + std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID); + }); + + // Rebuild MDs, index the metadata ranges for each function in FunctionMDs, + // and fix up MetadataMap. + std::vector<const Metadata *> OldMDs; + MDs.swap(OldMDs); + MDs.reserve(OldMDs.size()); + for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) { + auto *MD = Order[I].get(OldMDs); + MDs.push_back(MD); + MetadataMap[MD].ID = I + 1; + if (isa<MDString>(MD)) + ++NumMDStrings; + } + + // Return early if there's nothing for the functions. + if (MDs.size() == Order.size()) + return; + + // Build the function metadata ranges. + MDRange R; + FunctionMDs.reserve(OldMDs.size()); + unsigned PrevF = 0; + for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E; + ++I) { + unsigned F = Order[I].F; + if (!PrevF) { + PrevF = F; + } else if (PrevF != F) { + R.Last = FunctionMDs.size(); + std::swap(R, FunctionMDInfo[PrevF]); + R.First = FunctionMDs.size(); + + ID = MDs.size(); + PrevF = F; + } + + auto *MD = Order[I].get(OldMDs); + FunctionMDs.push_back(MD); + MetadataMap[MD].ID = ++ID; + if (isa<MDString>(MD)) + ++R.NumStrings; + } + R.Last = FunctionMDs.size(); + FunctionMDInfo[PrevF] = R; +} + +void ValueEnumerator::incorporateFunctionMetadata(const Function &F) { + NumModuleMDs = MDs.size(); + + auto R = FunctionMDInfo.lookup(getValueID(&F) + 1); + NumMDStrings = R.NumStrings; + MDs.insert(MDs.end(), FunctionMDs.begin() + R.First, + FunctionMDs.begin() + R.Last); +} + +void ValueEnumerator::EnumerateValue(const Value *V) { + assert(!V->getType()->isVoidTy() && "Can't insert void values!"); + assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!"); + + // Check to see if it's already in! + unsigned &ValueID = ValueMap[V]; + if (ValueID) { + // Increment use count. + Values[ValueID-1].second++; + return; + } + + if (auto *GO = dyn_cast<GlobalObject>(V)) + if (const Comdat *C = GO->getComdat()) + Comdats.insert(C); + + // Enumerate the type of this value. + EnumerateType(V->getType()); + + if (const Constant *C = dyn_cast<Constant>(V)) { + if (isa<GlobalValue>(C)) { + // Initializers for globals are handled explicitly elsewhere. + } else if (C->getNumOperands()) { + // If a constant has operands, enumerate them. This makes sure that if a + // constant has uses (for example an array of const ints), that they are + // inserted also. + + // We prefer to enumerate them with values before we enumerate the user + // itself. This makes it more likely that we can avoid forward references + // in the reader. We know that there can be no cycles in the constants + // graph that don't go through a global variable. + for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); + I != E; ++I) + if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress. + EnumerateValue(*I); + + // Finally, add the value. Doing this could make the ValueID reference be + // dangling, don't reuse it. + Values.push_back(std::make_pair(V, 1U)); + ValueMap[V] = Values.size(); + return; + } + } + + // Add the value. + Values.push_back(std::make_pair(V, 1U)); + ValueID = Values.size(); +} + + +void ValueEnumerator::EnumerateType(Type *Ty) { + unsigned *TypeID = &TypeMap[Ty]; + + // We've already seen this type. + if (*TypeID) + return; + + // If it is a non-anonymous struct, mark the type as being visited so that we + // don't recursively visit it. This is safe because we allow forward + // references of these in the bitcode reader. + if (StructType *STy = dyn_cast<StructType>(Ty)) + if (!STy->isLiteral()) + *TypeID = ~0U; + + // Enumerate all of the subtypes before we enumerate this type. This ensures + // that the type will be enumerated in an order that can be directly built. + for (Type *SubTy : Ty->subtypes()) + EnumerateType(SubTy); + + // Refresh the TypeID pointer in case the table rehashed. + TypeID = &TypeMap[Ty]; + + // Check to see if we got the pointer another way. This can happen when + // enumerating recursive types that hit the base case deeper than they start. + // + // If this is actually a struct that we are treating as forward ref'able, + // then emit the definition now that all of its contents are available. + if (*TypeID && *TypeID != ~0U) + return; + + // Add this type now that its contents are all happily enumerated. + Types.push_back(Ty); + + *TypeID = Types.size(); +} + +// Enumerate the types for the specified value. If the value is a constant, +// walk through it, enumerating the types of the constant. +void ValueEnumerator::EnumerateOperandType(const Value *V) { + EnumerateType(V->getType()); + + assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand"); + + const Constant *C = dyn_cast<Constant>(V); + if (!C) + return; + + // If this constant is already enumerated, ignore it, we know its type must + // be enumerated. + if (ValueMap.count(C)) + return; + + // This constant may have operands, make sure to enumerate the types in + // them. + for (const Value *Op : C->operands()) { + // Don't enumerate basic blocks here, this happens as operands to + // blockaddress. + if (isa<BasicBlock>(Op)) + continue; + + EnumerateOperandType(Op); + } +} + +void ValueEnumerator::EnumerateAttributes(AttributeList PAL) { + if (PAL.isEmpty()) return; // null is always 0. + + // Do a lookup. + unsigned &Entry = AttributeListMap[PAL]; + if (Entry == 0) { + // Never saw this before, add it. + AttributeLists.push_back(PAL); + Entry = AttributeLists.size(); + } + + // Do lookups for all attribute groups. + for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) { + AttributeSet AS = PAL.getAttributes(i); + if (!AS.hasAttributes()) + continue; + IndexAndAttrSet Pair = {i, AS}; + unsigned &Entry = AttributeGroupMap[Pair]; + if (Entry == 0) { + AttributeGroups.push_back(Pair); + Entry = AttributeGroups.size(); + } + } +} + +void ValueEnumerator::incorporateFunction(const Function &F) { + InstructionCount = 0; + NumModuleValues = Values.size(); + + // Add global metadata to the function block. This doesn't include + // LocalAsMetadata. + incorporateFunctionMetadata(F); + + // Adding function arguments to the value table. + for (const auto &I : F.args()) { + EnumerateValue(&I); + if (I.hasAttribute(Attribute::ByVal)) + EnumerateType(I.getParamByValType()); + } + FirstFuncConstantID = Values.size(); + + // Add all function-level constants to the value table. + for (const BasicBlock &BB : F) { + for (const Instruction &I : BB) + for (const Use &OI : I.operands()) { + if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI)) + EnumerateValue(OI); + } + BasicBlocks.push_back(&BB); + ValueMap[&BB] = BasicBlocks.size(); + } + + // Optimize the constant layout. + OptimizeConstants(FirstFuncConstantID, Values.size()); + + // Add the function's parameter attributes so they are available for use in + // the function's instruction. + EnumerateAttributes(F.getAttributes()); + + FirstInstID = Values.size(); + + SmallVector<LocalAsMetadata *, 8> FnLocalMDVector; + // Add all of the instructions. + for (const BasicBlock &BB : F) { + for (const Instruction &I : BB) { + for (const Use &OI : I.operands()) { + if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) + if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) + // Enumerate metadata after the instructions they might refer to. + FnLocalMDVector.push_back(Local); + } + + if (!I.getType()->isVoidTy()) + EnumerateValue(&I); + } + } + + // Add all of the function-local metadata. + for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) { + // At this point, every local values have been incorporated, we shouldn't + // have a metadata operand that references a value that hasn't been seen. + assert(ValueMap.count(FnLocalMDVector[i]->getValue()) && + "Missing value for metadata operand"); + EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]); + } +} + +void ValueEnumerator::purgeFunction() { + /// Remove purged values from the ValueMap. + for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) + ValueMap.erase(Values[i].first); + for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i) + MetadataMap.erase(MDs[i]); + for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i) + ValueMap.erase(BasicBlocks[i]); + + Values.resize(NumModuleValues); + MDs.resize(NumModuleMDs); + BasicBlocks.clear(); + NumMDStrings = 0; +} + +static void IncorporateFunctionInfoGlobalBBIDs(const Function *F, + DenseMap<const BasicBlock*, unsigned> &IDMap) { + unsigned Counter = 0; + for (const BasicBlock &BB : *F) + IDMap[&BB] = ++Counter; +} + +/// getGlobalBasicBlockID - This returns the function-specific ID for the +/// specified basic block. This is relatively expensive information, so it +/// should only be used by rare constructs such as address-of-label. +unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { + unsigned &Idx = GlobalBasicBlockIDs[BB]; + if (Idx != 0) + return Idx-1; + + IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); + return getGlobalBasicBlockID(BB); +} + +uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const { + return Log2_32_Ceil(getTypes().size() + 1); +} |