diff options
Diffstat (limited to 'llvm/lib/Bitcode/Writer')
| -rw-r--r-- | llvm/lib/Bitcode/Writer/BitWriter.cpp | 49 | ||||
| -rw-r--r-- | llvm/lib/Bitcode/Writer/BitcodeWriter.cpp | 4673 | ||||
| -rw-r--r-- | llvm/lib/Bitcode/Writer/BitcodeWriterPass.cpp | 85 | ||||
| -rw-r--r-- | llvm/lib/Bitcode/Writer/ValueEnumerator.cpp | 1041 | ||||
| -rw-r--r-- | llvm/lib/Bitcode/Writer/ValueEnumerator.h | 303 | 
5 files changed, 6151 insertions, 0 deletions
| diff --git a/llvm/lib/Bitcode/Writer/BitWriter.cpp b/llvm/lib/Bitcode/Writer/BitWriter.cpp new file mode 100644 index 000000000000..be59c1f92836 --- /dev/null +++ b/llvm/lib/Bitcode/Writer/BitWriter.cpp @@ -0,0 +1,49 @@ +//===-- BitWriter.cpp -----------------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#include "llvm-c/BitWriter.h" +#include "llvm/Bitcode/BitcodeWriter.h" +#include "llvm/IR/Module.h" +#include "llvm/Support/FileSystem.h" +#include "llvm/Support/MemoryBuffer.h" +#include "llvm/Support/raw_ostream.h" +using namespace llvm; + + +/*===-- Operations on modules ---------------------------------------------===*/ + +int LLVMWriteBitcodeToFile(LLVMModuleRef M, const char *Path) { +  std::error_code EC; +  raw_fd_ostream OS(Path, EC, sys::fs::OF_None); + +  if (EC) +    return -1; + +  WriteBitcodeToFile(*unwrap(M), OS); +  return 0; +} + +int LLVMWriteBitcodeToFD(LLVMModuleRef M, int FD, int ShouldClose, +                         int Unbuffered) { +  raw_fd_ostream OS(FD, ShouldClose, Unbuffered); + +  WriteBitcodeToFile(*unwrap(M), OS); +  return 0; +} + +int LLVMWriteBitcodeToFileHandle(LLVMModuleRef M, int FileHandle) { +  return LLVMWriteBitcodeToFD(M, FileHandle, true, false); +} + +LLVMMemoryBufferRef LLVMWriteBitcodeToMemoryBuffer(LLVMModuleRef M) { +  std::string Data; +  raw_string_ostream OS(Data); + +  WriteBitcodeToFile(*unwrap(M), OS); +  return wrap(MemoryBuffer::getMemBufferCopy(OS.str()).release()); +} diff --git a/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp b/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp new file mode 100644 index 000000000000..deb4019ea8ba --- /dev/null +++ b/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp @@ -0,0 +1,4673 @@ +//===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Bitcode writer implementation. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Bitcode/BitcodeWriter.h" +#include "ValueEnumerator.h" +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringMap.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/Triple.h" +#include "llvm/Bitstream/BitCodes.h" +#include "llvm/Bitstream/BitstreamWriter.h" +#include "llvm/Bitcode/LLVMBitCodes.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/Comdat.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalIFunc.h" +#include "llvm/IR/GlobalObject.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/ModuleSummaryIndex.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/UseListOrder.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueSymbolTable.h" +#include "llvm/MC/StringTableBuilder.h" +#include "llvm/Object/IRSymtab.h" +#include "llvm/Support/AtomicOrdering.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Endian.h" +#include "llvm/Support/Error.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/SHA1.h" +#include "llvm/Support/TargetRegistry.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <iterator> +#include <map> +#include <memory> +#include <string> +#include <utility> +#include <vector> + +using namespace llvm; + +static cl::opt<unsigned> +    IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), +                   cl::desc("Number of metadatas above which we emit an index " +                            "to enable lazy-loading")); + +static cl::opt<bool> WriteRelBFToSummary( +    "write-relbf-to-summary", cl::Hidden, cl::init(false), +    cl::desc("Write relative block frequency to function summary ")); + +extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; + +namespace { + +/// These are manifest constants used by the bitcode writer. They do not need to +/// be kept in sync with the reader, but need to be consistent within this file. +enum { +  // VALUE_SYMTAB_BLOCK abbrev id's. +  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, +  VST_ENTRY_7_ABBREV, +  VST_ENTRY_6_ABBREV, +  VST_BBENTRY_6_ABBREV, + +  // CONSTANTS_BLOCK abbrev id's. +  CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, +  CONSTANTS_INTEGER_ABBREV, +  CONSTANTS_CE_CAST_Abbrev, +  CONSTANTS_NULL_Abbrev, + +  // FUNCTION_BLOCK abbrev id's. +  FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, +  FUNCTION_INST_UNOP_ABBREV, +  FUNCTION_INST_UNOP_FLAGS_ABBREV, +  FUNCTION_INST_BINOP_ABBREV, +  FUNCTION_INST_BINOP_FLAGS_ABBREV, +  FUNCTION_INST_CAST_ABBREV, +  FUNCTION_INST_RET_VOID_ABBREV, +  FUNCTION_INST_RET_VAL_ABBREV, +  FUNCTION_INST_UNREACHABLE_ABBREV, +  FUNCTION_INST_GEP_ABBREV, +}; + +/// Abstract class to manage the bitcode writing, subclassed for each bitcode +/// file type. +class BitcodeWriterBase { +protected: +  /// The stream created and owned by the client. +  BitstreamWriter &Stream; + +  StringTableBuilder &StrtabBuilder; + +public: +  /// Constructs a BitcodeWriterBase object that writes to the provided +  /// \p Stream. +  BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) +      : Stream(Stream), StrtabBuilder(StrtabBuilder) {} + +protected: +  void writeBitcodeHeader(); +  void writeModuleVersion(); +}; + +void BitcodeWriterBase::writeModuleVersion() { +  // VERSION: [version#] +  Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); +} + +/// Base class to manage the module bitcode writing, currently subclassed for +/// ModuleBitcodeWriter and ThinLinkBitcodeWriter. +class ModuleBitcodeWriterBase : public BitcodeWriterBase { +protected: +  /// The Module to write to bitcode. +  const Module &M; + +  /// Enumerates ids for all values in the module. +  ValueEnumerator VE; + +  /// Optional per-module index to write for ThinLTO. +  const ModuleSummaryIndex *Index; + +  /// Map that holds the correspondence between GUIDs in the summary index, +  /// that came from indirect call profiles, and a value id generated by this +  /// class to use in the VST and summary block records. +  std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; + +  /// Tracks the last value id recorded in the GUIDToValueMap. +  unsigned GlobalValueId; + +  /// Saves the offset of the VSTOffset record that must eventually be +  /// backpatched with the offset of the actual VST. +  uint64_t VSTOffsetPlaceholder = 0; + +public: +  /// Constructs a ModuleBitcodeWriterBase object for the given Module, +  /// writing to the provided \p Buffer. +  ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, +                          BitstreamWriter &Stream, +                          bool ShouldPreserveUseListOrder, +                          const ModuleSummaryIndex *Index) +      : BitcodeWriterBase(Stream, StrtabBuilder), M(M), +        VE(M, ShouldPreserveUseListOrder), Index(Index) { +    // Assign ValueIds to any callee values in the index that came from +    // indirect call profiles and were recorded as a GUID not a Value* +    // (which would have been assigned an ID by the ValueEnumerator). +    // The starting ValueId is just after the number of values in the +    // ValueEnumerator, so that they can be emitted in the VST. +    GlobalValueId = VE.getValues().size(); +    if (!Index) +      return; +    for (const auto &GUIDSummaryLists : *Index) +      // Examine all summaries for this GUID. +      for (auto &Summary : GUIDSummaryLists.second.SummaryList) +        if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) +          // For each call in the function summary, see if the call +          // is to a GUID (which means it is for an indirect call, +          // otherwise we would have a Value for it). If so, synthesize +          // a value id. +          for (auto &CallEdge : FS->calls()) +            if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) +              assignValueId(CallEdge.first.getGUID()); +  } + +protected: +  void writePerModuleGlobalValueSummary(); + +private: +  void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, +                                           GlobalValueSummary *Summary, +                                           unsigned ValueID, +                                           unsigned FSCallsAbbrev, +                                           unsigned FSCallsProfileAbbrev, +                                           const Function &F); +  void writeModuleLevelReferences(const GlobalVariable &V, +                                  SmallVector<uint64_t, 64> &NameVals, +                                  unsigned FSModRefsAbbrev, +                                  unsigned FSModVTableRefsAbbrev); + +  void assignValueId(GlobalValue::GUID ValGUID) { +    GUIDToValueIdMap[ValGUID] = ++GlobalValueId; +  } + +  unsigned getValueId(GlobalValue::GUID ValGUID) { +    const auto &VMI = GUIDToValueIdMap.find(ValGUID); +    // Expect that any GUID value had a value Id assigned by an +    // earlier call to assignValueId. +    assert(VMI != GUIDToValueIdMap.end() && +           "GUID does not have assigned value Id"); +    return VMI->second; +  } + +  // Helper to get the valueId for the type of value recorded in VI. +  unsigned getValueId(ValueInfo VI) { +    if (!VI.haveGVs() || !VI.getValue()) +      return getValueId(VI.getGUID()); +    return VE.getValueID(VI.getValue()); +  } + +  std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } +}; + +/// Class to manage the bitcode writing for a module. +class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { +  /// Pointer to the buffer allocated by caller for bitcode writing. +  const SmallVectorImpl<char> &Buffer; + +  /// True if a module hash record should be written. +  bool GenerateHash; + +  /// If non-null, when GenerateHash is true, the resulting hash is written +  /// into ModHash. +  ModuleHash *ModHash; + +  SHA1 Hasher; + +  /// The start bit of the identification block. +  uint64_t BitcodeStartBit; + +public: +  /// Constructs a ModuleBitcodeWriter object for the given Module, +  /// writing to the provided \p Buffer. +  ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, +                      StringTableBuilder &StrtabBuilder, +                      BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, +                      const ModuleSummaryIndex *Index, bool GenerateHash, +                      ModuleHash *ModHash = nullptr) +      : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, +                                ShouldPreserveUseListOrder, Index), +        Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), +        BitcodeStartBit(Stream.GetCurrentBitNo()) {} + +  /// Emit the current module to the bitstream. +  void write(); + +private: +  uint64_t bitcodeStartBit() { return BitcodeStartBit; } + +  size_t addToStrtab(StringRef Str); + +  void writeAttributeGroupTable(); +  void writeAttributeTable(); +  void writeTypeTable(); +  void writeComdats(); +  void writeValueSymbolTableForwardDecl(); +  void writeModuleInfo(); +  void writeValueAsMetadata(const ValueAsMetadata *MD, +                            SmallVectorImpl<uint64_t> &Record); +  void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, +                    unsigned Abbrev); +  unsigned createDILocationAbbrev(); +  void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, +                       unsigned &Abbrev); +  unsigned createGenericDINodeAbbrev(); +  void writeGenericDINode(const GenericDINode *N, +                          SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); +  void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, +                       unsigned Abbrev); +  void writeDIEnumerator(const DIEnumerator *N, +                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); +  void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, +                        unsigned Abbrev); +  void writeDIDerivedType(const DIDerivedType *N, +                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); +  void writeDICompositeType(const DICompositeType *N, +                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); +  void writeDISubroutineType(const DISubroutineType *N, +                             SmallVectorImpl<uint64_t> &Record, +                             unsigned Abbrev); +  void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, +                   unsigned Abbrev); +  void writeDICompileUnit(const DICompileUnit *N, +                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); +  void writeDISubprogram(const DISubprogram *N, +                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); +  void writeDILexicalBlock(const DILexicalBlock *N, +                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); +  void writeDILexicalBlockFile(const DILexicalBlockFile *N, +                               SmallVectorImpl<uint64_t> &Record, +                               unsigned Abbrev); +  void writeDICommonBlock(const DICommonBlock *N, +                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); +  void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, +                        unsigned Abbrev); +  void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, +                    unsigned Abbrev); +  void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, +                        unsigned Abbrev); +  void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, +                     unsigned Abbrev); +  void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, +                                    SmallVectorImpl<uint64_t> &Record, +                                    unsigned Abbrev); +  void writeDITemplateValueParameter(const DITemplateValueParameter *N, +                                     SmallVectorImpl<uint64_t> &Record, +                                     unsigned Abbrev); +  void writeDIGlobalVariable(const DIGlobalVariable *N, +                             SmallVectorImpl<uint64_t> &Record, +                             unsigned Abbrev); +  void writeDILocalVariable(const DILocalVariable *N, +                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); +  void writeDILabel(const DILabel *N, +                    SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); +  void writeDIExpression(const DIExpression *N, +                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); +  void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, +                                       SmallVectorImpl<uint64_t> &Record, +                                       unsigned Abbrev); +  void writeDIObjCProperty(const DIObjCProperty *N, +                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); +  void writeDIImportedEntity(const DIImportedEntity *N, +                             SmallVectorImpl<uint64_t> &Record, +                             unsigned Abbrev); +  unsigned createNamedMetadataAbbrev(); +  void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); +  unsigned createMetadataStringsAbbrev(); +  void writeMetadataStrings(ArrayRef<const Metadata *> Strings, +                            SmallVectorImpl<uint64_t> &Record); +  void writeMetadataRecords(ArrayRef<const Metadata *> MDs, +                            SmallVectorImpl<uint64_t> &Record, +                            std::vector<unsigned> *MDAbbrevs = nullptr, +                            std::vector<uint64_t> *IndexPos = nullptr); +  void writeModuleMetadata(); +  void writeFunctionMetadata(const Function &F); +  void writeFunctionMetadataAttachment(const Function &F); +  void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); +  void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, +                                    const GlobalObject &GO); +  void writeModuleMetadataKinds(); +  void writeOperandBundleTags(); +  void writeSyncScopeNames(); +  void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); +  void writeModuleConstants(); +  bool pushValueAndType(const Value *V, unsigned InstID, +                        SmallVectorImpl<unsigned> &Vals); +  void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); +  void pushValue(const Value *V, unsigned InstID, +                 SmallVectorImpl<unsigned> &Vals); +  void pushValueSigned(const Value *V, unsigned InstID, +                       SmallVectorImpl<uint64_t> &Vals); +  void writeInstruction(const Instruction &I, unsigned InstID, +                        SmallVectorImpl<unsigned> &Vals); +  void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); +  void writeGlobalValueSymbolTable( +      DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); +  void writeUseList(UseListOrder &&Order); +  void writeUseListBlock(const Function *F); +  void +  writeFunction(const Function &F, +                DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); +  void writeBlockInfo(); +  void writeModuleHash(size_t BlockStartPos); + +  unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { +    return unsigned(SSID); +  } +}; + +/// Class to manage the bitcode writing for a combined index. +class IndexBitcodeWriter : public BitcodeWriterBase { +  /// The combined index to write to bitcode. +  const ModuleSummaryIndex &Index; + +  /// When writing a subset of the index for distributed backends, client +  /// provides a map of modules to the corresponding GUIDs/summaries to write. +  const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; + +  /// Map that holds the correspondence between the GUID used in the combined +  /// index and a value id generated by this class to use in references. +  std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; + +  /// Tracks the last value id recorded in the GUIDToValueMap. +  unsigned GlobalValueId = 0; + +public: +  /// Constructs a IndexBitcodeWriter object for the given combined index, +  /// writing to the provided \p Buffer. When writing a subset of the index +  /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. +  IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, +                     const ModuleSummaryIndex &Index, +                     const std::map<std::string, GVSummaryMapTy> +                         *ModuleToSummariesForIndex = nullptr) +      : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), +        ModuleToSummariesForIndex(ModuleToSummariesForIndex) { +    // Assign unique value ids to all summaries to be written, for use +    // in writing out the call graph edges. Save the mapping from GUID +    // to the new global value id to use when writing those edges, which +    // are currently saved in the index in terms of GUID. +    forEachSummary([&](GVInfo I, bool) { +      GUIDToValueIdMap[I.first] = ++GlobalValueId; +    }); +  } + +  /// The below iterator returns the GUID and associated summary. +  using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; + +  /// Calls the callback for each value GUID and summary to be written to +  /// bitcode. This hides the details of whether they are being pulled from the +  /// entire index or just those in a provided ModuleToSummariesForIndex map. +  template<typename Functor> +  void forEachSummary(Functor Callback) { +    if (ModuleToSummariesForIndex) { +      for (auto &M : *ModuleToSummariesForIndex) +        for (auto &Summary : M.second) { +          Callback(Summary, false); +          // Ensure aliasee is handled, e.g. for assigning a valueId, +          // even if we are not importing the aliasee directly (the +          // imported alias will contain a copy of aliasee). +          if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) +            Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); +        } +    } else { +      for (auto &Summaries : Index) +        for (auto &Summary : Summaries.second.SummaryList) +          Callback({Summaries.first, Summary.get()}, false); +    } +  } + +  /// Calls the callback for each entry in the modulePaths StringMap that +  /// should be written to the module path string table. This hides the details +  /// of whether they are being pulled from the entire index or just those in a +  /// provided ModuleToSummariesForIndex map. +  template <typename Functor> void forEachModule(Functor Callback) { +    if (ModuleToSummariesForIndex) { +      for (const auto &M : *ModuleToSummariesForIndex) { +        const auto &MPI = Index.modulePaths().find(M.first); +        if (MPI == Index.modulePaths().end()) { +          // This should only happen if the bitcode file was empty, in which +          // case we shouldn't be importing (the ModuleToSummariesForIndex +          // would only include the module we are writing and index for). +          assert(ModuleToSummariesForIndex->size() == 1); +          continue; +        } +        Callback(*MPI); +      } +    } else { +      for (const auto &MPSE : Index.modulePaths()) +        Callback(MPSE); +    } +  } + +  /// Main entry point for writing a combined index to bitcode. +  void write(); + +private: +  void writeModStrings(); +  void writeCombinedGlobalValueSummary(); + +  Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { +    auto VMI = GUIDToValueIdMap.find(ValGUID); +    if (VMI == GUIDToValueIdMap.end()) +      return None; +    return VMI->second; +  } + +  std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } +}; + +} // end anonymous namespace + +static unsigned getEncodedCastOpcode(unsigned Opcode) { +  switch (Opcode) { +  default: llvm_unreachable("Unknown cast instruction!"); +  case Instruction::Trunc   : return bitc::CAST_TRUNC; +  case Instruction::ZExt    : return bitc::CAST_ZEXT; +  case Instruction::SExt    : return bitc::CAST_SEXT; +  case Instruction::FPToUI  : return bitc::CAST_FPTOUI; +  case Instruction::FPToSI  : return bitc::CAST_FPTOSI; +  case Instruction::UIToFP  : return bitc::CAST_UITOFP; +  case Instruction::SIToFP  : return bitc::CAST_SITOFP; +  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; +  case Instruction::FPExt   : return bitc::CAST_FPEXT; +  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; +  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; +  case Instruction::BitCast : return bitc::CAST_BITCAST; +  case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; +  } +} + +static unsigned getEncodedUnaryOpcode(unsigned Opcode) { +  switch (Opcode) { +  default: llvm_unreachable("Unknown binary instruction!"); +  case Instruction::FNeg: return bitc::UNOP_FNEG; +  } +} + +static unsigned getEncodedBinaryOpcode(unsigned Opcode) { +  switch (Opcode) { +  default: llvm_unreachable("Unknown binary instruction!"); +  case Instruction::Add: +  case Instruction::FAdd: return bitc::BINOP_ADD; +  case Instruction::Sub: +  case Instruction::FSub: return bitc::BINOP_SUB; +  case Instruction::Mul: +  case Instruction::FMul: return bitc::BINOP_MUL; +  case Instruction::UDiv: return bitc::BINOP_UDIV; +  case Instruction::FDiv: +  case Instruction::SDiv: return bitc::BINOP_SDIV; +  case Instruction::URem: return bitc::BINOP_UREM; +  case Instruction::FRem: +  case Instruction::SRem: return bitc::BINOP_SREM; +  case Instruction::Shl:  return bitc::BINOP_SHL; +  case Instruction::LShr: return bitc::BINOP_LSHR; +  case Instruction::AShr: return bitc::BINOP_ASHR; +  case Instruction::And:  return bitc::BINOP_AND; +  case Instruction::Or:   return bitc::BINOP_OR; +  case Instruction::Xor:  return bitc::BINOP_XOR; +  } +} + +static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { +  switch (Op) { +  default: llvm_unreachable("Unknown RMW operation!"); +  case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; +  case AtomicRMWInst::Add: return bitc::RMW_ADD; +  case AtomicRMWInst::Sub: return bitc::RMW_SUB; +  case AtomicRMWInst::And: return bitc::RMW_AND; +  case AtomicRMWInst::Nand: return bitc::RMW_NAND; +  case AtomicRMWInst::Or: return bitc::RMW_OR; +  case AtomicRMWInst::Xor: return bitc::RMW_XOR; +  case AtomicRMWInst::Max: return bitc::RMW_MAX; +  case AtomicRMWInst::Min: return bitc::RMW_MIN; +  case AtomicRMWInst::UMax: return bitc::RMW_UMAX; +  case AtomicRMWInst::UMin: return bitc::RMW_UMIN; +  case AtomicRMWInst::FAdd: return bitc::RMW_FADD; +  case AtomicRMWInst::FSub: return bitc::RMW_FSUB; +  } +} + +static unsigned getEncodedOrdering(AtomicOrdering Ordering) { +  switch (Ordering) { +  case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; +  case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; +  case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; +  case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; +  case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; +  case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; +  case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; +  } +  llvm_unreachable("Invalid ordering"); +} + +static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, +                              StringRef Str, unsigned AbbrevToUse) { +  SmallVector<unsigned, 64> Vals; + +  // Code: [strchar x N] +  for (unsigned i = 0, e = Str.size(); i != e; ++i) { +    if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) +      AbbrevToUse = 0; +    Vals.push_back(Str[i]); +  } + +  // Emit the finished record. +  Stream.EmitRecord(Code, Vals, AbbrevToUse); +} + +static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { +  switch (Kind) { +  case Attribute::Alignment: +    return bitc::ATTR_KIND_ALIGNMENT; +  case Attribute::AllocSize: +    return bitc::ATTR_KIND_ALLOC_SIZE; +  case Attribute::AlwaysInline: +    return bitc::ATTR_KIND_ALWAYS_INLINE; +  case Attribute::ArgMemOnly: +    return bitc::ATTR_KIND_ARGMEMONLY; +  case Attribute::Builtin: +    return bitc::ATTR_KIND_BUILTIN; +  case Attribute::ByVal: +    return bitc::ATTR_KIND_BY_VAL; +  case Attribute::Convergent: +    return bitc::ATTR_KIND_CONVERGENT; +  case Attribute::InAlloca: +    return bitc::ATTR_KIND_IN_ALLOCA; +  case Attribute::Cold: +    return bitc::ATTR_KIND_COLD; +  case Attribute::InaccessibleMemOnly: +    return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; +  case Attribute::InaccessibleMemOrArgMemOnly: +    return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; +  case Attribute::InlineHint: +    return bitc::ATTR_KIND_INLINE_HINT; +  case Attribute::InReg: +    return bitc::ATTR_KIND_IN_REG; +  case Attribute::JumpTable: +    return bitc::ATTR_KIND_JUMP_TABLE; +  case Attribute::MinSize: +    return bitc::ATTR_KIND_MIN_SIZE; +  case Attribute::Naked: +    return bitc::ATTR_KIND_NAKED; +  case Attribute::Nest: +    return bitc::ATTR_KIND_NEST; +  case Attribute::NoAlias: +    return bitc::ATTR_KIND_NO_ALIAS; +  case Attribute::NoBuiltin: +    return bitc::ATTR_KIND_NO_BUILTIN; +  case Attribute::NoCapture: +    return bitc::ATTR_KIND_NO_CAPTURE; +  case Attribute::NoDuplicate: +    return bitc::ATTR_KIND_NO_DUPLICATE; +  case Attribute::NoFree: +    return bitc::ATTR_KIND_NOFREE; +  case Attribute::NoImplicitFloat: +    return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; +  case Attribute::NoInline: +    return bitc::ATTR_KIND_NO_INLINE; +  case Attribute::NoRecurse: +    return bitc::ATTR_KIND_NO_RECURSE; +  case Attribute::NonLazyBind: +    return bitc::ATTR_KIND_NON_LAZY_BIND; +  case Attribute::NonNull: +    return bitc::ATTR_KIND_NON_NULL; +  case Attribute::Dereferenceable: +    return bitc::ATTR_KIND_DEREFERENCEABLE; +  case Attribute::DereferenceableOrNull: +    return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; +  case Attribute::NoRedZone: +    return bitc::ATTR_KIND_NO_RED_ZONE; +  case Attribute::NoReturn: +    return bitc::ATTR_KIND_NO_RETURN; +  case Attribute::NoSync: +    return bitc::ATTR_KIND_NOSYNC; +  case Attribute::NoCfCheck: +    return bitc::ATTR_KIND_NOCF_CHECK; +  case Attribute::NoUnwind: +    return bitc::ATTR_KIND_NO_UNWIND; +  case Attribute::OptForFuzzing: +    return bitc::ATTR_KIND_OPT_FOR_FUZZING; +  case Attribute::OptimizeForSize: +    return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; +  case Attribute::OptimizeNone: +    return bitc::ATTR_KIND_OPTIMIZE_NONE; +  case Attribute::ReadNone: +    return bitc::ATTR_KIND_READ_NONE; +  case Attribute::ReadOnly: +    return bitc::ATTR_KIND_READ_ONLY; +  case Attribute::Returned: +    return bitc::ATTR_KIND_RETURNED; +  case Attribute::ReturnsTwice: +    return bitc::ATTR_KIND_RETURNS_TWICE; +  case Attribute::SExt: +    return bitc::ATTR_KIND_S_EXT; +  case Attribute::Speculatable: +    return bitc::ATTR_KIND_SPECULATABLE; +  case Attribute::StackAlignment: +    return bitc::ATTR_KIND_STACK_ALIGNMENT; +  case Attribute::StackProtect: +    return bitc::ATTR_KIND_STACK_PROTECT; +  case Attribute::StackProtectReq: +    return bitc::ATTR_KIND_STACK_PROTECT_REQ; +  case Attribute::StackProtectStrong: +    return bitc::ATTR_KIND_STACK_PROTECT_STRONG; +  case Attribute::SafeStack: +    return bitc::ATTR_KIND_SAFESTACK; +  case Attribute::ShadowCallStack: +    return bitc::ATTR_KIND_SHADOWCALLSTACK; +  case Attribute::StrictFP: +    return bitc::ATTR_KIND_STRICT_FP; +  case Attribute::StructRet: +    return bitc::ATTR_KIND_STRUCT_RET; +  case Attribute::SanitizeAddress: +    return bitc::ATTR_KIND_SANITIZE_ADDRESS; +  case Attribute::SanitizeHWAddress: +    return bitc::ATTR_KIND_SANITIZE_HWADDRESS; +  case Attribute::SanitizeThread: +    return bitc::ATTR_KIND_SANITIZE_THREAD; +  case Attribute::SanitizeMemory: +    return bitc::ATTR_KIND_SANITIZE_MEMORY; +  case Attribute::SpeculativeLoadHardening: +    return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; +  case Attribute::SwiftError: +    return bitc::ATTR_KIND_SWIFT_ERROR; +  case Attribute::SwiftSelf: +    return bitc::ATTR_KIND_SWIFT_SELF; +  case Attribute::UWTable: +    return bitc::ATTR_KIND_UW_TABLE; +  case Attribute::WillReturn: +    return bitc::ATTR_KIND_WILLRETURN; +  case Attribute::WriteOnly: +    return bitc::ATTR_KIND_WRITEONLY; +  case Attribute::ZExt: +    return bitc::ATTR_KIND_Z_EXT; +  case Attribute::ImmArg: +    return bitc::ATTR_KIND_IMMARG; +  case Attribute::SanitizeMemTag: +    return bitc::ATTR_KIND_SANITIZE_MEMTAG; +  case Attribute::EndAttrKinds: +    llvm_unreachable("Can not encode end-attribute kinds marker."); +  case Attribute::None: +    llvm_unreachable("Can not encode none-attribute."); +  } + +  llvm_unreachable("Trying to encode unknown attribute"); +} + +void ModuleBitcodeWriter::writeAttributeGroupTable() { +  const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = +      VE.getAttributeGroups(); +  if (AttrGrps.empty()) return; + +  Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); + +  SmallVector<uint64_t, 64> Record; +  for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { +    unsigned AttrListIndex = Pair.first; +    AttributeSet AS = Pair.second; +    Record.push_back(VE.getAttributeGroupID(Pair)); +    Record.push_back(AttrListIndex); + +    for (Attribute Attr : AS) { +      if (Attr.isEnumAttribute()) { +        Record.push_back(0); +        Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); +      } else if (Attr.isIntAttribute()) { +        Record.push_back(1); +        Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); +        Record.push_back(Attr.getValueAsInt()); +      } else if (Attr.isStringAttribute()) { +        StringRef Kind = Attr.getKindAsString(); +        StringRef Val = Attr.getValueAsString(); + +        Record.push_back(Val.empty() ? 3 : 4); +        Record.append(Kind.begin(), Kind.end()); +        Record.push_back(0); +        if (!Val.empty()) { +          Record.append(Val.begin(), Val.end()); +          Record.push_back(0); +        } +      } else { +        assert(Attr.isTypeAttribute()); +        Type *Ty = Attr.getValueAsType(); +        Record.push_back(Ty ? 6 : 5); +        Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); +        if (Ty) +          Record.push_back(VE.getTypeID(Attr.getValueAsType())); +      } +    } + +    Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); +    Record.clear(); +  } + +  Stream.ExitBlock(); +} + +void ModuleBitcodeWriter::writeAttributeTable() { +  const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); +  if (Attrs.empty()) return; + +  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); + +  SmallVector<uint64_t, 64> Record; +  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { +    AttributeList AL = Attrs[i]; +    for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { +      AttributeSet AS = AL.getAttributes(i); +      if (AS.hasAttributes()) +        Record.push_back(VE.getAttributeGroupID({i, AS})); +    } + +    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); +    Record.clear(); +  } + +  Stream.ExitBlock(); +} + +/// WriteTypeTable - Write out the type table for a module. +void ModuleBitcodeWriter::writeTypeTable() { +  const ValueEnumerator::TypeList &TypeList = VE.getTypes(); + +  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); +  SmallVector<uint64_t, 64> TypeVals; + +  uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); + +  // Abbrev for TYPE_CODE_POINTER. +  auto Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); +  Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0 +  unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + +  // Abbrev for TYPE_CODE_FUNCTION. +  Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); +  unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + +  // Abbrev for TYPE_CODE_STRUCT_ANON. +  Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); +  unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + +  // Abbrev for TYPE_CODE_STRUCT_NAME. +  Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); +  unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + +  // Abbrev for TYPE_CODE_STRUCT_NAMED. +  Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); +  unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + +  // Abbrev for TYPE_CODE_ARRAY. +  Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); +  unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + +  // Emit an entry count so the reader can reserve space. +  TypeVals.push_back(TypeList.size()); +  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); +  TypeVals.clear(); + +  // Loop over all of the types, emitting each in turn. +  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { +    Type *T = TypeList[i]; +    int AbbrevToUse = 0; +    unsigned Code = 0; + +    switch (T->getTypeID()) { +    case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break; +    case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break; +    case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break; +    case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break; +    case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break; +    case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break; +    case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; +    case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break; +    case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break; +    case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break; +    case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break; +    case Type::IntegerTyID: +      // INTEGER: [width] +      Code = bitc::TYPE_CODE_INTEGER; +      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); +      break; +    case Type::PointerTyID: { +      PointerType *PTy = cast<PointerType>(T); +      // POINTER: [pointee type, address space] +      Code = bitc::TYPE_CODE_POINTER; +      TypeVals.push_back(VE.getTypeID(PTy->getElementType())); +      unsigned AddressSpace = PTy->getAddressSpace(); +      TypeVals.push_back(AddressSpace); +      if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; +      break; +    } +    case Type::FunctionTyID: { +      FunctionType *FT = cast<FunctionType>(T); +      // FUNCTION: [isvararg, retty, paramty x N] +      Code = bitc::TYPE_CODE_FUNCTION; +      TypeVals.push_back(FT->isVarArg()); +      TypeVals.push_back(VE.getTypeID(FT->getReturnType())); +      for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) +        TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); +      AbbrevToUse = FunctionAbbrev; +      break; +    } +    case Type::StructTyID: { +      StructType *ST = cast<StructType>(T); +      // STRUCT: [ispacked, eltty x N] +      TypeVals.push_back(ST->isPacked()); +      // Output all of the element types. +      for (StructType::element_iterator I = ST->element_begin(), +           E = ST->element_end(); I != E; ++I) +        TypeVals.push_back(VE.getTypeID(*I)); + +      if (ST->isLiteral()) { +        Code = bitc::TYPE_CODE_STRUCT_ANON; +        AbbrevToUse = StructAnonAbbrev; +      } else { +        if (ST->isOpaque()) { +          Code = bitc::TYPE_CODE_OPAQUE; +        } else { +          Code = bitc::TYPE_CODE_STRUCT_NAMED; +          AbbrevToUse = StructNamedAbbrev; +        } + +        // Emit the name if it is present. +        if (!ST->getName().empty()) +          writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), +                            StructNameAbbrev); +      } +      break; +    } +    case Type::ArrayTyID: { +      ArrayType *AT = cast<ArrayType>(T); +      // ARRAY: [numelts, eltty] +      Code = bitc::TYPE_CODE_ARRAY; +      TypeVals.push_back(AT->getNumElements()); +      TypeVals.push_back(VE.getTypeID(AT->getElementType())); +      AbbrevToUse = ArrayAbbrev; +      break; +    } +    case Type::VectorTyID: { +      VectorType *VT = cast<VectorType>(T); +      // VECTOR [numelts, eltty] or +      //        [numelts, eltty, scalable] +      Code = bitc::TYPE_CODE_VECTOR; +      TypeVals.push_back(VT->getNumElements()); +      TypeVals.push_back(VE.getTypeID(VT->getElementType())); +      if (VT->isScalable()) +        TypeVals.push_back(VT->isScalable()); +      break; +    } +    } + +    // Emit the finished record. +    Stream.EmitRecord(Code, TypeVals, AbbrevToUse); +    TypeVals.clear(); +  } + +  Stream.ExitBlock(); +} + +static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { +  switch (Linkage) { +  case GlobalValue::ExternalLinkage: +    return 0; +  case GlobalValue::WeakAnyLinkage: +    return 16; +  case GlobalValue::AppendingLinkage: +    return 2; +  case GlobalValue::InternalLinkage: +    return 3; +  case GlobalValue::LinkOnceAnyLinkage: +    return 18; +  case GlobalValue::ExternalWeakLinkage: +    return 7; +  case GlobalValue::CommonLinkage: +    return 8; +  case GlobalValue::PrivateLinkage: +    return 9; +  case GlobalValue::WeakODRLinkage: +    return 17; +  case GlobalValue::LinkOnceODRLinkage: +    return 19; +  case GlobalValue::AvailableExternallyLinkage: +    return 12; +  } +  llvm_unreachable("Invalid linkage"); +} + +static unsigned getEncodedLinkage(const GlobalValue &GV) { +  return getEncodedLinkage(GV.getLinkage()); +} + +static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { +  uint64_t RawFlags = 0; +  RawFlags |= Flags.ReadNone; +  RawFlags |= (Flags.ReadOnly << 1); +  RawFlags |= (Flags.NoRecurse << 2); +  RawFlags |= (Flags.ReturnDoesNotAlias << 3); +  RawFlags |= (Flags.NoInline << 4); +  return RawFlags; +} + +// Decode the flags for GlobalValue in the summary +static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { +  uint64_t RawFlags = 0; + +  RawFlags |= Flags.NotEligibleToImport; // bool +  RawFlags |= (Flags.Live << 1); +  RawFlags |= (Flags.DSOLocal << 2); +  RawFlags |= (Flags.CanAutoHide << 3); + +  // Linkage don't need to be remapped at that time for the summary. Any future +  // change to the getEncodedLinkage() function will need to be taken into +  // account here as well. +  RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits + +  return RawFlags; +} + +static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { +  uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1); +  return RawFlags; +} + +static unsigned getEncodedVisibility(const GlobalValue &GV) { +  switch (GV.getVisibility()) { +  case GlobalValue::DefaultVisibility:   return 0; +  case GlobalValue::HiddenVisibility:    return 1; +  case GlobalValue::ProtectedVisibility: return 2; +  } +  llvm_unreachable("Invalid visibility"); +} + +static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { +  switch (GV.getDLLStorageClass()) { +  case GlobalValue::DefaultStorageClass:   return 0; +  case GlobalValue::DLLImportStorageClass: return 1; +  case GlobalValue::DLLExportStorageClass: return 2; +  } +  llvm_unreachable("Invalid DLL storage class"); +} + +static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { +  switch (GV.getThreadLocalMode()) { +    case GlobalVariable::NotThreadLocal:         return 0; +    case GlobalVariable::GeneralDynamicTLSModel: return 1; +    case GlobalVariable::LocalDynamicTLSModel:   return 2; +    case GlobalVariable::InitialExecTLSModel:    return 3; +    case GlobalVariable::LocalExecTLSModel:      return 4; +  } +  llvm_unreachable("Invalid TLS model"); +} + +static unsigned getEncodedComdatSelectionKind(const Comdat &C) { +  switch (C.getSelectionKind()) { +  case Comdat::Any: +    return bitc::COMDAT_SELECTION_KIND_ANY; +  case Comdat::ExactMatch: +    return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; +  case Comdat::Largest: +    return bitc::COMDAT_SELECTION_KIND_LARGEST; +  case Comdat::NoDuplicates: +    return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; +  case Comdat::SameSize: +    return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; +  } +  llvm_unreachable("Invalid selection kind"); +} + +static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { +  switch (GV.getUnnamedAddr()) { +  case GlobalValue::UnnamedAddr::None:   return 0; +  case GlobalValue::UnnamedAddr::Local:  return 2; +  case GlobalValue::UnnamedAddr::Global: return 1; +  } +  llvm_unreachable("Invalid unnamed_addr"); +} + +size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { +  if (GenerateHash) +    Hasher.update(Str); +  return StrtabBuilder.add(Str); +} + +void ModuleBitcodeWriter::writeComdats() { +  SmallVector<unsigned, 64> Vals; +  for (const Comdat *C : VE.getComdats()) { +    // COMDAT: [strtab offset, strtab size, selection_kind] +    Vals.push_back(addToStrtab(C->getName())); +    Vals.push_back(C->getName().size()); +    Vals.push_back(getEncodedComdatSelectionKind(*C)); +    Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); +    Vals.clear(); +  } +} + +/// Write a record that will eventually hold the word offset of the +/// module-level VST. For now the offset is 0, which will be backpatched +/// after the real VST is written. Saves the bit offset to backpatch. +void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { +  // Write a placeholder value in for the offset of the real VST, +  // which is written after the function blocks so that it can include +  // the offset of each function. The placeholder offset will be +  // updated when the real VST is written. +  auto Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); +  // Blocks are 32-bit aligned, so we can use a 32-bit word offset to +  // hold the real VST offset. Must use fixed instead of VBR as we don't +  // know how many VBR chunks to reserve ahead of time. +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); +  unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + +  // Emit the placeholder +  uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; +  Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); + +  // Compute and save the bit offset to the placeholder, which will be +  // patched when the real VST is written. We can simply subtract the 32-bit +  // fixed size from the current bit number to get the location to backpatch. +  VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; +} + +enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; + +/// Determine the encoding to use for the given string name and length. +static StringEncoding getStringEncoding(StringRef Str) { +  bool isChar6 = true; +  for (char C : Str) { +    if (isChar6) +      isChar6 = BitCodeAbbrevOp::isChar6(C); +    if ((unsigned char)C & 128) +      // don't bother scanning the rest. +      return SE_Fixed8; +  } +  if (isChar6) +    return SE_Char6; +  return SE_Fixed7; +} + +/// Emit top-level description of module, including target triple, inline asm, +/// descriptors for global variables, and function prototype info. +/// Returns the bit offset to backpatch with the location of the real VST. +void ModuleBitcodeWriter::writeModuleInfo() { +  // Emit various pieces of data attached to a module. +  if (!M.getTargetTriple().empty()) +    writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), +                      0 /*TODO*/); +  const std::string &DL = M.getDataLayoutStr(); +  if (!DL.empty()) +    writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); +  if (!M.getModuleInlineAsm().empty()) +    writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), +                      0 /*TODO*/); + +  // Emit information about sections and GC, computing how many there are. Also +  // compute the maximum alignment value. +  std::map<std::string, unsigned> SectionMap; +  std::map<std::string, unsigned> GCMap; +  unsigned MaxAlignment = 0; +  unsigned MaxGlobalType = 0; +  for (const GlobalValue &GV : M.globals()) { +    MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); +    MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); +    if (GV.hasSection()) { +      // Give section names unique ID's. +      unsigned &Entry = SectionMap[GV.getSection()]; +      if (!Entry) { +        writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), +                          0 /*TODO*/); +        Entry = SectionMap.size(); +      } +    } +  } +  for (const Function &F : M) { +    MaxAlignment = std::max(MaxAlignment, F.getAlignment()); +    if (F.hasSection()) { +      // Give section names unique ID's. +      unsigned &Entry = SectionMap[F.getSection()]; +      if (!Entry) { +        writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), +                          0 /*TODO*/); +        Entry = SectionMap.size(); +      } +    } +    if (F.hasGC()) { +      // Same for GC names. +      unsigned &Entry = GCMap[F.getGC()]; +      if (!Entry) { +        writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), +                          0 /*TODO*/); +        Entry = GCMap.size(); +      } +    } +  } + +  // Emit abbrev for globals, now that we know # sections and max alignment. +  unsigned SimpleGVarAbbrev = 0; +  if (!M.global_empty()) { +    // Add an abbrev for common globals with no visibility or thread localness. +    auto Abbv = std::make_shared<BitCodeAbbrev>(); +    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, +                              Log2_32_Ceil(MaxGlobalType+1))); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2 +                                                           //| explicitType << 1 +                                                           //| constant +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer. +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. +    if (MaxAlignment == 0)                                 // Alignment. +      Abbv->Add(BitCodeAbbrevOp(0)); +    else { +      unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; +      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, +                               Log2_32_Ceil(MaxEncAlignment+1))); +    } +    if (SectionMap.empty())                                    // Section. +      Abbv->Add(BitCodeAbbrevOp(0)); +    else +      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, +                               Log2_32_Ceil(SectionMap.size()+1))); +    // Don't bother emitting vis + thread local. +    SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); +  } + +  SmallVector<unsigned, 64> Vals; +  // Emit the module's source file name. +  { +    StringEncoding Bits = getStringEncoding(M.getSourceFileName()); +    BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); +    if (Bits == SE_Char6) +      AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); +    else if (Bits == SE_Fixed7) +      AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); + +    // MODULE_CODE_SOURCE_FILENAME: [namechar x N] +    auto Abbv = std::make_shared<BitCodeAbbrev>(); +    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(AbbrevOpToUse); +    unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + +    for (const auto P : M.getSourceFileName()) +      Vals.push_back((unsigned char)P); + +    // Emit the finished record. +    Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); +    Vals.clear(); +  } + +  // Emit the global variable information. +  for (const GlobalVariable &GV : M.globals()) { +    unsigned AbbrevToUse = 0; + +    // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, +    //             linkage, alignment, section, visibility, threadlocal, +    //             unnamed_addr, externally_initialized, dllstorageclass, +    //             comdat, attributes, DSO_Local] +    Vals.push_back(addToStrtab(GV.getName())); +    Vals.push_back(GV.getName().size()); +    Vals.push_back(VE.getTypeID(GV.getValueType())); +    Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); +    Vals.push_back(GV.isDeclaration() ? 0 : +                   (VE.getValueID(GV.getInitializer()) + 1)); +    Vals.push_back(getEncodedLinkage(GV)); +    Vals.push_back(Log2_32(GV.getAlignment())+1); +    Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); +    if (GV.isThreadLocal() || +        GV.getVisibility() != GlobalValue::DefaultVisibility || +        GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || +        GV.isExternallyInitialized() || +        GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || +        GV.hasComdat() || +        GV.hasAttributes() || +        GV.isDSOLocal() || +        GV.hasPartition()) { +      Vals.push_back(getEncodedVisibility(GV)); +      Vals.push_back(getEncodedThreadLocalMode(GV)); +      Vals.push_back(getEncodedUnnamedAddr(GV)); +      Vals.push_back(GV.isExternallyInitialized()); +      Vals.push_back(getEncodedDLLStorageClass(GV)); +      Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); + +      auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); +      Vals.push_back(VE.getAttributeListID(AL)); + +      Vals.push_back(GV.isDSOLocal()); +      Vals.push_back(addToStrtab(GV.getPartition())); +      Vals.push_back(GV.getPartition().size()); +    } else { +      AbbrevToUse = SimpleGVarAbbrev; +    } + +    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); +    Vals.clear(); +  } + +  // Emit the function proto information. +  for (const Function &F : M) { +    // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto, +    //             linkage, paramattrs, alignment, section, visibility, gc, +    //             unnamed_addr, prologuedata, dllstorageclass, comdat, +    //             prefixdata, personalityfn, DSO_Local, addrspace] +    Vals.push_back(addToStrtab(F.getName())); +    Vals.push_back(F.getName().size()); +    Vals.push_back(VE.getTypeID(F.getFunctionType())); +    Vals.push_back(F.getCallingConv()); +    Vals.push_back(F.isDeclaration()); +    Vals.push_back(getEncodedLinkage(F)); +    Vals.push_back(VE.getAttributeListID(F.getAttributes())); +    Vals.push_back(Log2_32(F.getAlignment())+1); +    Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); +    Vals.push_back(getEncodedVisibility(F)); +    Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); +    Vals.push_back(getEncodedUnnamedAddr(F)); +    Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) +                                       : 0); +    Vals.push_back(getEncodedDLLStorageClass(F)); +    Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); +    Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) +                                     : 0); +    Vals.push_back( +        F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); + +    Vals.push_back(F.isDSOLocal()); +    Vals.push_back(F.getAddressSpace()); +    Vals.push_back(addToStrtab(F.getPartition())); +    Vals.push_back(F.getPartition().size()); + +    unsigned AbbrevToUse = 0; +    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); +    Vals.clear(); +  } + +  // Emit the alias information. +  for (const GlobalAlias &A : M.aliases()) { +    // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, +    //         visibility, dllstorageclass, threadlocal, unnamed_addr, +    //         DSO_Local] +    Vals.push_back(addToStrtab(A.getName())); +    Vals.push_back(A.getName().size()); +    Vals.push_back(VE.getTypeID(A.getValueType())); +    Vals.push_back(A.getType()->getAddressSpace()); +    Vals.push_back(VE.getValueID(A.getAliasee())); +    Vals.push_back(getEncodedLinkage(A)); +    Vals.push_back(getEncodedVisibility(A)); +    Vals.push_back(getEncodedDLLStorageClass(A)); +    Vals.push_back(getEncodedThreadLocalMode(A)); +    Vals.push_back(getEncodedUnnamedAddr(A)); +    Vals.push_back(A.isDSOLocal()); +    Vals.push_back(addToStrtab(A.getPartition())); +    Vals.push_back(A.getPartition().size()); + +    unsigned AbbrevToUse = 0; +    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); +    Vals.clear(); +  } + +  // Emit the ifunc information. +  for (const GlobalIFunc &I : M.ifuncs()) { +    // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver +    //         val#, linkage, visibility, DSO_Local] +    Vals.push_back(addToStrtab(I.getName())); +    Vals.push_back(I.getName().size()); +    Vals.push_back(VE.getTypeID(I.getValueType())); +    Vals.push_back(I.getType()->getAddressSpace()); +    Vals.push_back(VE.getValueID(I.getResolver())); +    Vals.push_back(getEncodedLinkage(I)); +    Vals.push_back(getEncodedVisibility(I)); +    Vals.push_back(I.isDSOLocal()); +    Vals.push_back(addToStrtab(I.getPartition())); +    Vals.push_back(I.getPartition().size()); +    Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); +    Vals.clear(); +  } + +  writeValueSymbolTableForwardDecl(); +} + +static uint64_t getOptimizationFlags(const Value *V) { +  uint64_t Flags = 0; + +  if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { +    if (OBO->hasNoSignedWrap()) +      Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; +    if (OBO->hasNoUnsignedWrap()) +      Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; +  } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { +    if (PEO->isExact()) +      Flags |= 1 << bitc::PEO_EXACT; +  } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { +    if (FPMO->hasAllowReassoc()) +      Flags |= bitc::AllowReassoc; +    if (FPMO->hasNoNaNs()) +      Flags |= bitc::NoNaNs; +    if (FPMO->hasNoInfs()) +      Flags |= bitc::NoInfs; +    if (FPMO->hasNoSignedZeros()) +      Flags |= bitc::NoSignedZeros; +    if (FPMO->hasAllowReciprocal()) +      Flags |= bitc::AllowReciprocal; +    if (FPMO->hasAllowContract()) +      Flags |= bitc::AllowContract; +    if (FPMO->hasApproxFunc()) +      Flags |= bitc::ApproxFunc; +  } + +  return Flags; +} + +void ModuleBitcodeWriter::writeValueAsMetadata( +    const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { +  // Mimic an MDNode with a value as one operand. +  Value *V = MD->getValue(); +  Record.push_back(VE.getTypeID(V->getType())); +  Record.push_back(VE.getValueID(V)); +  Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); +  Record.clear(); +} + +void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, +                                       SmallVectorImpl<uint64_t> &Record, +                                       unsigned Abbrev) { +  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { +    Metadata *MD = N->getOperand(i); +    assert(!(MD && isa<LocalAsMetadata>(MD)) && +           "Unexpected function-local metadata"); +    Record.push_back(VE.getMetadataOrNullID(MD)); +  } +  Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE +                                    : bitc::METADATA_NODE, +                    Record, Abbrev); +  Record.clear(); +} + +unsigned ModuleBitcodeWriter::createDILocationAbbrev() { +  // Assume the column is usually under 128, and always output the inlined-at +  // location (it's never more expensive than building an array size 1). +  auto Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); +  return Stream.EmitAbbrev(std::move(Abbv)); +} + +void ModuleBitcodeWriter::writeDILocation(const DILocation *N, +                                          SmallVectorImpl<uint64_t> &Record, +                                          unsigned &Abbrev) { +  if (!Abbrev) +    Abbrev = createDILocationAbbrev(); + +  Record.push_back(N->isDistinct()); +  Record.push_back(N->getLine()); +  Record.push_back(N->getColumn()); +  Record.push_back(VE.getMetadataID(N->getScope())); +  Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); +  Record.push_back(N->isImplicitCode()); + +  Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); +  Record.clear(); +} + +unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { +  // Assume the column is usually under 128, and always output the inlined-at +  // location (it's never more expensive than building an array size 1). +  auto Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); +  return Stream.EmitAbbrev(std::move(Abbv)); +} + +void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, +                                             SmallVectorImpl<uint64_t> &Record, +                                             unsigned &Abbrev) { +  if (!Abbrev) +    Abbrev = createGenericDINodeAbbrev(); + +  Record.push_back(N->isDistinct()); +  Record.push_back(N->getTag()); +  Record.push_back(0); // Per-tag version field; unused for now. + +  for (auto &I : N->operands()) +    Record.push_back(VE.getMetadataOrNullID(I)); + +  Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); +  Record.clear(); +} + +static uint64_t rotateSign(int64_t I) { +  uint64_t U = I; +  return I < 0 ? ~(U << 1) : U << 1; +} + +void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, +                                          SmallVectorImpl<uint64_t> &Record, +                                          unsigned Abbrev) { +  const uint64_t Version = 1 << 1; +  Record.push_back((uint64_t)N->isDistinct() | Version); +  Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); +  Record.push_back(rotateSign(N->getLowerBound())); + +  Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); +  Record.clear(); +} + +void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, +                                            SmallVectorImpl<uint64_t> &Record, +                                            unsigned Abbrev) { +  Record.push_back((N->isUnsigned() << 1) | N->isDistinct()); +  Record.push_back(rotateSign(N->getValue())); +  Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + +  Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); +  Record.clear(); +} + +void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, +                                           SmallVectorImpl<uint64_t> &Record, +                                           unsigned Abbrev) { +  Record.push_back(N->isDistinct()); +  Record.push_back(N->getTag()); +  Record.push_back(VE.getMetadataOrNullID(N->getRawName())); +  Record.push_back(N->getSizeInBits()); +  Record.push_back(N->getAlignInBits()); +  Record.push_back(N->getEncoding()); +  Record.push_back(N->getFlags()); + +  Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); +  Record.clear(); +} + +void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, +                                             SmallVectorImpl<uint64_t> &Record, +                                             unsigned Abbrev) { +  Record.push_back(N->isDistinct()); +  Record.push_back(N->getTag()); +  Record.push_back(VE.getMetadataOrNullID(N->getRawName())); +  Record.push_back(VE.getMetadataOrNullID(N->getFile())); +  Record.push_back(N->getLine()); +  Record.push_back(VE.getMetadataOrNullID(N->getScope())); +  Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); +  Record.push_back(N->getSizeInBits()); +  Record.push_back(N->getAlignInBits()); +  Record.push_back(N->getOffsetInBits()); +  Record.push_back(N->getFlags()); +  Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); + +  // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means +  // that there is no DWARF address space associated with DIDerivedType. +  if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) +    Record.push_back(*DWARFAddressSpace + 1); +  else +    Record.push_back(0); + +  Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); +  Record.clear(); +} + +void ModuleBitcodeWriter::writeDICompositeType( +    const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, +    unsigned Abbrev) { +  const unsigned IsNotUsedInOldTypeRef = 0x2; +  Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); +  Record.push_back(N->getTag()); +  Record.push_back(VE.getMetadataOrNullID(N->getRawName())); +  Record.push_back(VE.getMetadataOrNullID(N->getFile())); +  Record.push_back(N->getLine()); +  Record.push_back(VE.getMetadataOrNullID(N->getScope())); +  Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); +  Record.push_back(N->getSizeInBits()); +  Record.push_back(N->getAlignInBits()); +  Record.push_back(N->getOffsetInBits()); +  Record.push_back(N->getFlags()); +  Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); +  Record.push_back(N->getRuntimeLang()); +  Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); +  Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); +  Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); +  Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); + +  Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); +  Record.clear(); +} + +void ModuleBitcodeWriter::writeDISubroutineType( +    const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, +    unsigned Abbrev) { +  const unsigned HasNoOldTypeRefs = 0x2; +  Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); +  Record.push_back(N->getFlags()); +  Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); +  Record.push_back(N->getCC()); + +  Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); +  Record.clear(); +} + +void ModuleBitcodeWriter::writeDIFile(const DIFile *N, +                                      SmallVectorImpl<uint64_t> &Record, +                                      unsigned Abbrev) { +  Record.push_back(N->isDistinct()); +  Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); +  Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); +  if (N->getRawChecksum()) { +    Record.push_back(N->getRawChecksum()->Kind); +    Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); +  } else { +    // Maintain backwards compatibility with the old internal representation of +    // CSK_None in ChecksumKind by writing nulls here when Checksum is None. +    Record.push_back(0); +    Record.push_back(VE.getMetadataOrNullID(nullptr)); +  } +  auto Source = N->getRawSource(); +  if (Source) +    Record.push_back(VE.getMetadataOrNullID(*Source)); + +  Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); +  Record.clear(); +} + +void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, +                                             SmallVectorImpl<uint64_t> &Record, +                                             unsigned Abbrev) { +  assert(N->isDistinct() && "Expected distinct compile units"); +  Record.push_back(/* IsDistinct */ true); +  Record.push_back(N->getSourceLanguage()); +  Record.push_back(VE.getMetadataOrNullID(N->getFile())); +  Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); +  Record.push_back(N->isOptimized()); +  Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); +  Record.push_back(N->getRuntimeVersion()); +  Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); +  Record.push_back(N->getEmissionKind()); +  Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); +  Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); +  Record.push_back(/* subprograms */ 0); +  Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); +  Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); +  Record.push_back(N->getDWOId()); +  Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); +  Record.push_back(N->getSplitDebugInlining()); +  Record.push_back(N->getDebugInfoForProfiling()); +  Record.push_back((unsigned)N->getNameTableKind()); + +  Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); +  Record.clear(); +} + +void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, +                                            SmallVectorImpl<uint64_t> &Record, +                                            unsigned Abbrev) { +  const uint64_t HasUnitFlag = 1 << 1; +  const uint64_t HasSPFlagsFlag = 1 << 2; +  Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); +  Record.push_back(VE.getMetadataOrNullID(N->getScope())); +  Record.push_back(VE.getMetadataOrNullID(N->getRawName())); +  Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); +  Record.push_back(VE.getMetadataOrNullID(N->getFile())); +  Record.push_back(N->getLine()); +  Record.push_back(VE.getMetadataOrNullID(N->getType())); +  Record.push_back(N->getScopeLine()); +  Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); +  Record.push_back(N->getSPFlags()); +  Record.push_back(N->getVirtualIndex()); +  Record.push_back(N->getFlags()); +  Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); +  Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); +  Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); +  Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); +  Record.push_back(N->getThisAdjustment()); +  Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); + +  Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); +  Record.clear(); +} + +void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, +                                              SmallVectorImpl<uint64_t> &Record, +                                              unsigned Abbrev) { +  Record.push_back(N->isDistinct()); +  Record.push_back(VE.getMetadataOrNullID(N->getScope())); +  Record.push_back(VE.getMetadataOrNullID(N->getFile())); +  Record.push_back(N->getLine()); +  Record.push_back(N->getColumn()); + +  Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); +  Record.clear(); +} + +void ModuleBitcodeWriter::writeDILexicalBlockFile( +    const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, +    unsigned Abbrev) { +  Record.push_back(N->isDistinct()); +  Record.push_back(VE.getMetadataOrNullID(N->getScope())); +  Record.push_back(VE.getMetadataOrNullID(N->getFile())); +  Record.push_back(N->getDiscriminator()); + +  Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); +  Record.clear(); +} + +void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, +                                             SmallVectorImpl<uint64_t> &Record, +                                             unsigned Abbrev) { +  Record.push_back(N->isDistinct()); +  Record.push_back(VE.getMetadataOrNullID(N->getScope())); +  Record.push_back(VE.getMetadataOrNullID(N->getDecl())); +  Record.push_back(VE.getMetadataOrNullID(N->getRawName())); +  Record.push_back(VE.getMetadataOrNullID(N->getFile())); +  Record.push_back(N->getLineNo()); + +  Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); +  Record.clear(); +} + +void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, +                                           SmallVectorImpl<uint64_t> &Record, +                                           unsigned Abbrev) { +  Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); +  Record.push_back(VE.getMetadataOrNullID(N->getScope())); +  Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + +  Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); +  Record.clear(); +} + +void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, +                                       SmallVectorImpl<uint64_t> &Record, +                                       unsigned Abbrev) { +  Record.push_back(N->isDistinct()); +  Record.push_back(N->getMacinfoType()); +  Record.push_back(N->getLine()); +  Record.push_back(VE.getMetadataOrNullID(N->getRawName())); +  Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); + +  Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); +  Record.clear(); +} + +void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, +                                           SmallVectorImpl<uint64_t> &Record, +                                           unsigned Abbrev) { +  Record.push_back(N->isDistinct()); +  Record.push_back(N->getMacinfoType()); +  Record.push_back(N->getLine()); +  Record.push_back(VE.getMetadataOrNullID(N->getFile())); +  Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); + +  Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); +  Record.clear(); +} + +void ModuleBitcodeWriter::writeDIModule(const DIModule *N, +                                        SmallVectorImpl<uint64_t> &Record, +                                        unsigned Abbrev) { +  Record.push_back(N->isDistinct()); +  for (auto &I : N->operands()) +    Record.push_back(VE.getMetadataOrNullID(I)); + +  Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); +  Record.clear(); +} + +void ModuleBitcodeWriter::writeDITemplateTypeParameter( +    const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, +    unsigned Abbrev) { +  Record.push_back(N->isDistinct()); +  Record.push_back(VE.getMetadataOrNullID(N->getRawName())); +  Record.push_back(VE.getMetadataOrNullID(N->getType())); + +  Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); +  Record.clear(); +} + +void ModuleBitcodeWriter::writeDITemplateValueParameter( +    const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, +    unsigned Abbrev) { +  Record.push_back(N->isDistinct()); +  Record.push_back(N->getTag()); +  Record.push_back(VE.getMetadataOrNullID(N->getRawName())); +  Record.push_back(VE.getMetadataOrNullID(N->getType())); +  Record.push_back(VE.getMetadataOrNullID(N->getValue())); + +  Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); +  Record.clear(); +} + +void ModuleBitcodeWriter::writeDIGlobalVariable( +    const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, +    unsigned Abbrev) { +  const uint64_t Version = 2 << 1; +  Record.push_back((uint64_t)N->isDistinct() | Version); +  Record.push_back(VE.getMetadataOrNullID(N->getScope())); +  Record.push_back(VE.getMetadataOrNullID(N->getRawName())); +  Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); +  Record.push_back(VE.getMetadataOrNullID(N->getFile())); +  Record.push_back(N->getLine()); +  Record.push_back(VE.getMetadataOrNullID(N->getType())); +  Record.push_back(N->isLocalToUnit()); +  Record.push_back(N->isDefinition()); +  Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); +  Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); +  Record.push_back(N->getAlignInBits()); + +  Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); +  Record.clear(); +} + +void ModuleBitcodeWriter::writeDILocalVariable( +    const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, +    unsigned Abbrev) { +  // In order to support all possible bitcode formats in BitcodeReader we need +  // to distinguish the following cases: +  // 1) Record has no artificial tag (Record[1]), +  //   has no obsolete inlinedAt field (Record[9]). +  //   In this case Record size will be 8, HasAlignment flag is false. +  // 2) Record has artificial tag (Record[1]), +  //   has no obsolete inlignedAt field (Record[9]). +  //   In this case Record size will be 9, HasAlignment flag is false. +  // 3) Record has both artificial tag (Record[1]) and +  //   obsolete inlignedAt field (Record[9]). +  //   In this case Record size will be 10, HasAlignment flag is false. +  // 4) Record has neither artificial tag, nor inlignedAt field, but +  //   HasAlignment flag is true and Record[8] contains alignment value. +  const uint64_t HasAlignmentFlag = 1 << 1; +  Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); +  Record.push_back(VE.getMetadataOrNullID(N->getScope())); +  Record.push_back(VE.getMetadataOrNullID(N->getRawName())); +  Record.push_back(VE.getMetadataOrNullID(N->getFile())); +  Record.push_back(N->getLine()); +  Record.push_back(VE.getMetadataOrNullID(N->getType())); +  Record.push_back(N->getArg()); +  Record.push_back(N->getFlags()); +  Record.push_back(N->getAlignInBits()); + +  Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); +  Record.clear(); +} + +void ModuleBitcodeWriter::writeDILabel( +    const DILabel *N, SmallVectorImpl<uint64_t> &Record, +    unsigned Abbrev) { +  Record.push_back((uint64_t)N->isDistinct()); +  Record.push_back(VE.getMetadataOrNullID(N->getScope())); +  Record.push_back(VE.getMetadataOrNullID(N->getRawName())); +  Record.push_back(VE.getMetadataOrNullID(N->getFile())); +  Record.push_back(N->getLine()); + +  Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); +  Record.clear(); +} + +void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, +                                            SmallVectorImpl<uint64_t> &Record, +                                            unsigned Abbrev) { +  Record.reserve(N->getElements().size() + 1); +  const uint64_t Version = 3 << 1; +  Record.push_back((uint64_t)N->isDistinct() | Version); +  Record.append(N->elements_begin(), N->elements_end()); + +  Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); +  Record.clear(); +} + +void ModuleBitcodeWriter::writeDIGlobalVariableExpression( +    const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, +    unsigned Abbrev) { +  Record.push_back(N->isDistinct()); +  Record.push_back(VE.getMetadataOrNullID(N->getVariable())); +  Record.push_back(VE.getMetadataOrNullID(N->getExpression())); + +  Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); +  Record.clear(); +} + +void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, +                                              SmallVectorImpl<uint64_t> &Record, +                                              unsigned Abbrev) { +  Record.push_back(N->isDistinct()); +  Record.push_back(VE.getMetadataOrNullID(N->getRawName())); +  Record.push_back(VE.getMetadataOrNullID(N->getFile())); +  Record.push_back(N->getLine()); +  Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); +  Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); +  Record.push_back(N->getAttributes()); +  Record.push_back(VE.getMetadataOrNullID(N->getType())); + +  Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); +  Record.clear(); +} + +void ModuleBitcodeWriter::writeDIImportedEntity( +    const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, +    unsigned Abbrev) { +  Record.push_back(N->isDistinct()); +  Record.push_back(N->getTag()); +  Record.push_back(VE.getMetadataOrNullID(N->getScope())); +  Record.push_back(VE.getMetadataOrNullID(N->getEntity())); +  Record.push_back(N->getLine()); +  Record.push_back(VE.getMetadataOrNullID(N->getRawName())); +  Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); + +  Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); +  Record.clear(); +} + +unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { +  auto Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); +  return Stream.EmitAbbrev(std::move(Abbv)); +} + +void ModuleBitcodeWriter::writeNamedMetadata( +    SmallVectorImpl<uint64_t> &Record) { +  if (M.named_metadata_empty()) +    return; + +  unsigned Abbrev = createNamedMetadataAbbrev(); +  for (const NamedMDNode &NMD : M.named_metadata()) { +    // Write name. +    StringRef Str = NMD.getName(); +    Record.append(Str.bytes_begin(), Str.bytes_end()); +    Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); +    Record.clear(); + +    // Write named metadata operands. +    for (const MDNode *N : NMD.operands()) +      Record.push_back(VE.getMetadataID(N)); +    Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); +    Record.clear(); +  } +} + +unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { +  auto Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); +  return Stream.EmitAbbrev(std::move(Abbv)); +} + +/// Write out a record for MDString. +/// +/// All the metadata strings in a metadata block are emitted in a single +/// record.  The sizes and strings themselves are shoved into a blob. +void ModuleBitcodeWriter::writeMetadataStrings( +    ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { +  if (Strings.empty()) +    return; + +  // Start the record with the number of strings. +  Record.push_back(bitc::METADATA_STRINGS); +  Record.push_back(Strings.size()); + +  // Emit the sizes of the strings in the blob. +  SmallString<256> Blob; +  { +    BitstreamWriter W(Blob); +    for (const Metadata *MD : Strings) +      W.EmitVBR(cast<MDString>(MD)->getLength(), 6); +    W.FlushToWord(); +  } + +  // Add the offset to the strings to the record. +  Record.push_back(Blob.size()); + +  // Add the strings to the blob. +  for (const Metadata *MD : Strings) +    Blob.append(cast<MDString>(MD)->getString()); + +  // Emit the final record. +  Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); +  Record.clear(); +} + +// Generates an enum to use as an index in the Abbrev array of Metadata record. +enum MetadataAbbrev : unsigned { +#define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, +#include "llvm/IR/Metadata.def" +  LastPlusOne +}; + +void ModuleBitcodeWriter::writeMetadataRecords( +    ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, +    std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { +  if (MDs.empty()) +    return; + +  // Initialize MDNode abbreviations. +#define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; +#include "llvm/IR/Metadata.def" + +  for (const Metadata *MD : MDs) { +    if (IndexPos) +      IndexPos->push_back(Stream.GetCurrentBitNo()); +    if (const MDNode *N = dyn_cast<MDNode>(MD)) { +      assert(N->isResolved() && "Expected forward references to be resolved"); + +      switch (N->getMetadataID()) { +      default: +        llvm_unreachable("Invalid MDNode subclass"); +#define HANDLE_MDNODE_LEAF(CLASS)                                              \ +  case Metadata::CLASS##Kind:                                                  \ +    if (MDAbbrevs)                                                             \ +      write##CLASS(cast<CLASS>(N), Record,                                     \ +                   (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \ +    else                                                                       \ +      write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \ +    continue; +#include "llvm/IR/Metadata.def" +      } +    } +    writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); +  } +} + +void ModuleBitcodeWriter::writeModuleMetadata() { +  if (!VE.hasMDs() && M.named_metadata_empty()) +    return; + +  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); +  SmallVector<uint64_t, 64> Record; + +  // Emit all abbrevs upfront, so that the reader can jump in the middle of the +  // block and load any metadata. +  std::vector<unsigned> MDAbbrevs; + +  MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); +  MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); +  MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = +      createGenericDINodeAbbrev(); + +  auto Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); +  unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + +  Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); +  unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + +  // Emit MDStrings together upfront. +  writeMetadataStrings(VE.getMDStrings(), Record); + +  // We only emit an index for the metadata record if we have more than a given +  // (naive) threshold of metadatas, otherwise it is not worth it. +  if (VE.getNonMDStrings().size() > IndexThreshold) { +    // Write a placeholder value in for the offset of the metadata index, +    // which is written after the records, so that it can include +    // the offset of each entry. The placeholder offset will be +    // updated after all records are emitted. +    uint64_t Vals[] = {0, 0}; +    Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); +  } + +  // Compute and save the bit offset to the current position, which will be +  // patched when we emit the index later. We can simply subtract the 64-bit +  // fixed size from the current bit number to get the location to backpatch. +  uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); + +  // This index will contain the bitpos for each individual record. +  std::vector<uint64_t> IndexPos; +  IndexPos.reserve(VE.getNonMDStrings().size()); + +  // Write all the records +  writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); + +  if (VE.getNonMDStrings().size() > IndexThreshold) { +    // Now that we have emitted all the records we will emit the index. But +    // first +    // backpatch the forward reference so that the reader can skip the records +    // efficiently. +    Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, +                           Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); + +    // Delta encode the index. +    uint64_t PreviousValue = IndexOffsetRecordBitPos; +    for (auto &Elt : IndexPos) { +      auto EltDelta = Elt - PreviousValue; +      PreviousValue = Elt; +      Elt = EltDelta; +    } +    // Emit the index record. +    Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); +    IndexPos.clear(); +  } + +  // Write the named metadata now. +  writeNamedMetadata(Record); + +  auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { +    SmallVector<uint64_t, 4> Record; +    Record.push_back(VE.getValueID(&GO)); +    pushGlobalMetadataAttachment(Record, GO); +    Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); +  }; +  for (const Function &F : M) +    if (F.isDeclaration() && F.hasMetadata()) +      AddDeclAttachedMetadata(F); +  // FIXME: Only store metadata for declarations here, and move data for global +  // variable definitions to a separate block (PR28134). +  for (const GlobalVariable &GV : M.globals()) +    if (GV.hasMetadata()) +      AddDeclAttachedMetadata(GV); + +  Stream.ExitBlock(); +} + +void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { +  if (!VE.hasMDs()) +    return; + +  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); +  SmallVector<uint64_t, 64> Record; +  writeMetadataStrings(VE.getMDStrings(), Record); +  writeMetadataRecords(VE.getNonMDStrings(), Record); +  Stream.ExitBlock(); +} + +void ModuleBitcodeWriter::pushGlobalMetadataAttachment( +    SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { +  // [n x [id, mdnode]] +  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; +  GO.getAllMetadata(MDs); +  for (const auto &I : MDs) { +    Record.push_back(I.first); +    Record.push_back(VE.getMetadataID(I.second)); +  } +} + +void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { +  Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); + +  SmallVector<uint64_t, 64> Record; + +  if (F.hasMetadata()) { +    pushGlobalMetadataAttachment(Record, F); +    Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); +    Record.clear(); +  } + +  // Write metadata attachments +  // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] +  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; +  for (const BasicBlock &BB : F) +    for (const Instruction &I : BB) { +      MDs.clear(); +      I.getAllMetadataOtherThanDebugLoc(MDs); + +      // If no metadata, ignore instruction. +      if (MDs.empty()) continue; + +      Record.push_back(VE.getInstructionID(&I)); + +      for (unsigned i = 0, e = MDs.size(); i != e; ++i) { +        Record.push_back(MDs[i].first); +        Record.push_back(VE.getMetadataID(MDs[i].second)); +      } +      Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); +      Record.clear(); +    } + +  Stream.ExitBlock(); +} + +void ModuleBitcodeWriter::writeModuleMetadataKinds() { +  SmallVector<uint64_t, 64> Record; + +  // Write metadata kinds +  // METADATA_KIND - [n x [id, name]] +  SmallVector<StringRef, 8> Names; +  M.getMDKindNames(Names); + +  if (Names.empty()) return; + +  Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); + +  for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { +    Record.push_back(MDKindID); +    StringRef KName = Names[MDKindID]; +    Record.append(KName.begin(), KName.end()); + +    Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); +    Record.clear(); +  } + +  Stream.ExitBlock(); +} + +void ModuleBitcodeWriter::writeOperandBundleTags() { +  // Write metadata kinds +  // +  // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG +  // +  // OPERAND_BUNDLE_TAG - [strchr x N] + +  SmallVector<StringRef, 8> Tags; +  M.getOperandBundleTags(Tags); + +  if (Tags.empty()) +    return; + +  Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); + +  SmallVector<uint64_t, 64> Record; + +  for (auto Tag : Tags) { +    Record.append(Tag.begin(), Tag.end()); + +    Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); +    Record.clear(); +  } + +  Stream.ExitBlock(); +} + +void ModuleBitcodeWriter::writeSyncScopeNames() { +  SmallVector<StringRef, 8> SSNs; +  M.getContext().getSyncScopeNames(SSNs); +  if (SSNs.empty()) +    return; + +  Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); + +  SmallVector<uint64_t, 64> Record; +  for (auto SSN : SSNs) { +    Record.append(SSN.begin(), SSN.end()); +    Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); +    Record.clear(); +  } + +  Stream.ExitBlock(); +} + +static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { +  if ((int64_t)V >= 0) +    Vals.push_back(V << 1); +  else +    Vals.push_back((-V << 1) | 1); +} + +void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, +                                         bool isGlobal) { +  if (FirstVal == LastVal) return; + +  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); + +  unsigned AggregateAbbrev = 0; +  unsigned String8Abbrev = 0; +  unsigned CString7Abbrev = 0; +  unsigned CString6Abbrev = 0; +  // If this is a constant pool for the module, emit module-specific abbrevs. +  if (isGlobal) { +    // Abbrev for CST_CODE_AGGREGATE. +    auto Abbv = std::make_shared<BitCodeAbbrev>(); +    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); +    AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + +    // Abbrev for CST_CODE_STRING. +    Abbv = std::make_shared<BitCodeAbbrev>(); +    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); +    String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); +    // Abbrev for CST_CODE_CSTRING. +    Abbv = std::make_shared<BitCodeAbbrev>(); +    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); +    CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); +    // Abbrev for CST_CODE_CSTRING. +    Abbv = std::make_shared<BitCodeAbbrev>(); +    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); +    CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); +  } + +  SmallVector<uint64_t, 64> Record; + +  const ValueEnumerator::ValueList &Vals = VE.getValues(); +  Type *LastTy = nullptr; +  for (unsigned i = FirstVal; i != LastVal; ++i) { +    const Value *V = Vals[i].first; +    // If we need to switch types, do so now. +    if (V->getType() != LastTy) { +      LastTy = V->getType(); +      Record.push_back(VE.getTypeID(LastTy)); +      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, +                        CONSTANTS_SETTYPE_ABBREV); +      Record.clear(); +    } + +    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { +      Record.push_back(unsigned(IA->hasSideEffects()) | +                       unsigned(IA->isAlignStack()) << 1 | +                       unsigned(IA->getDialect()&1) << 2); + +      // Add the asm string. +      const std::string &AsmStr = IA->getAsmString(); +      Record.push_back(AsmStr.size()); +      Record.append(AsmStr.begin(), AsmStr.end()); + +      // Add the constraint string. +      const std::string &ConstraintStr = IA->getConstraintString(); +      Record.push_back(ConstraintStr.size()); +      Record.append(ConstraintStr.begin(), ConstraintStr.end()); +      Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); +      Record.clear(); +      continue; +    } +    const Constant *C = cast<Constant>(V); +    unsigned Code = -1U; +    unsigned AbbrevToUse = 0; +    if (C->isNullValue()) { +      Code = bitc::CST_CODE_NULL; +    } else if (isa<UndefValue>(C)) { +      Code = bitc::CST_CODE_UNDEF; +    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { +      if (IV->getBitWidth() <= 64) { +        uint64_t V = IV->getSExtValue(); +        emitSignedInt64(Record, V); +        Code = bitc::CST_CODE_INTEGER; +        AbbrevToUse = CONSTANTS_INTEGER_ABBREV; +      } else {                             // Wide integers, > 64 bits in size. +        // We have an arbitrary precision integer value to write whose +        // bit width is > 64. However, in canonical unsigned integer +        // format it is likely that the high bits are going to be zero. +        // So, we only write the number of active words. +        unsigned NWords = IV->getValue().getActiveWords(); +        const uint64_t *RawWords = IV->getValue().getRawData(); +        for (unsigned i = 0; i != NWords; ++i) { +          emitSignedInt64(Record, RawWords[i]); +        } +        Code = bitc::CST_CODE_WIDE_INTEGER; +      } +    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { +      Code = bitc::CST_CODE_FLOAT; +      Type *Ty = CFP->getType(); +      if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { +        Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); +      } else if (Ty->isX86_FP80Ty()) { +        // api needed to prevent premature destruction +        // bits are not in the same order as a normal i80 APInt, compensate. +        APInt api = CFP->getValueAPF().bitcastToAPInt(); +        const uint64_t *p = api.getRawData(); +        Record.push_back((p[1] << 48) | (p[0] >> 16)); +        Record.push_back(p[0] & 0xffffLL); +      } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { +        APInt api = CFP->getValueAPF().bitcastToAPInt(); +        const uint64_t *p = api.getRawData(); +        Record.push_back(p[0]); +        Record.push_back(p[1]); +      } else { +        assert(0 && "Unknown FP type!"); +      } +    } else if (isa<ConstantDataSequential>(C) && +               cast<ConstantDataSequential>(C)->isString()) { +      const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); +      // Emit constant strings specially. +      unsigned NumElts = Str->getNumElements(); +      // If this is a null-terminated string, use the denser CSTRING encoding. +      if (Str->isCString()) { +        Code = bitc::CST_CODE_CSTRING; +        --NumElts;  // Don't encode the null, which isn't allowed by char6. +      } else { +        Code = bitc::CST_CODE_STRING; +        AbbrevToUse = String8Abbrev; +      } +      bool isCStr7 = Code == bitc::CST_CODE_CSTRING; +      bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; +      for (unsigned i = 0; i != NumElts; ++i) { +        unsigned char V = Str->getElementAsInteger(i); +        Record.push_back(V); +        isCStr7 &= (V & 128) == 0; +        if (isCStrChar6) +          isCStrChar6 = BitCodeAbbrevOp::isChar6(V); +      } + +      if (isCStrChar6) +        AbbrevToUse = CString6Abbrev; +      else if (isCStr7) +        AbbrevToUse = CString7Abbrev; +    } else if (const ConstantDataSequential *CDS = +                  dyn_cast<ConstantDataSequential>(C)) { +      Code = bitc::CST_CODE_DATA; +      Type *EltTy = CDS->getType()->getElementType(); +      if (isa<IntegerType>(EltTy)) { +        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) +          Record.push_back(CDS->getElementAsInteger(i)); +      } else { +        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) +          Record.push_back( +              CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); +      } +    } else if (isa<ConstantAggregate>(C)) { +      Code = bitc::CST_CODE_AGGREGATE; +      for (const Value *Op : C->operands()) +        Record.push_back(VE.getValueID(Op)); +      AbbrevToUse = AggregateAbbrev; +    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { +      switch (CE->getOpcode()) { +      default: +        if (Instruction::isCast(CE->getOpcode())) { +          Code = bitc::CST_CODE_CE_CAST; +          Record.push_back(getEncodedCastOpcode(CE->getOpcode())); +          Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); +          Record.push_back(VE.getValueID(C->getOperand(0))); +          AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; +        } else { +          assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); +          Code = bitc::CST_CODE_CE_BINOP; +          Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); +          Record.push_back(VE.getValueID(C->getOperand(0))); +          Record.push_back(VE.getValueID(C->getOperand(1))); +          uint64_t Flags = getOptimizationFlags(CE); +          if (Flags != 0) +            Record.push_back(Flags); +        } +        break; +      case Instruction::FNeg: { +        assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); +        Code = bitc::CST_CODE_CE_UNOP; +        Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); +        Record.push_back(VE.getValueID(C->getOperand(0))); +        uint64_t Flags = getOptimizationFlags(CE); +        if (Flags != 0) +          Record.push_back(Flags); +        break; +      } +      case Instruction::GetElementPtr: { +        Code = bitc::CST_CODE_CE_GEP; +        const auto *GO = cast<GEPOperator>(C); +        Record.push_back(VE.getTypeID(GO->getSourceElementType())); +        if (Optional<unsigned> Idx = GO->getInRangeIndex()) { +          Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; +          Record.push_back((*Idx << 1) | GO->isInBounds()); +        } else if (GO->isInBounds()) +          Code = bitc::CST_CODE_CE_INBOUNDS_GEP; +        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { +          Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); +          Record.push_back(VE.getValueID(C->getOperand(i))); +        } +        break; +      } +      case Instruction::Select: +        Code = bitc::CST_CODE_CE_SELECT; +        Record.push_back(VE.getValueID(C->getOperand(0))); +        Record.push_back(VE.getValueID(C->getOperand(1))); +        Record.push_back(VE.getValueID(C->getOperand(2))); +        break; +      case Instruction::ExtractElement: +        Code = bitc::CST_CODE_CE_EXTRACTELT; +        Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); +        Record.push_back(VE.getValueID(C->getOperand(0))); +        Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); +        Record.push_back(VE.getValueID(C->getOperand(1))); +        break; +      case Instruction::InsertElement: +        Code = bitc::CST_CODE_CE_INSERTELT; +        Record.push_back(VE.getValueID(C->getOperand(0))); +        Record.push_back(VE.getValueID(C->getOperand(1))); +        Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); +        Record.push_back(VE.getValueID(C->getOperand(2))); +        break; +      case Instruction::ShuffleVector: +        // If the return type and argument types are the same, this is a +        // standard shufflevector instruction.  If the types are different, +        // then the shuffle is widening or truncating the input vectors, and +        // the argument type must also be encoded. +        if (C->getType() == C->getOperand(0)->getType()) { +          Code = bitc::CST_CODE_CE_SHUFFLEVEC; +        } else { +          Code = bitc::CST_CODE_CE_SHUFVEC_EX; +          Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); +        } +        Record.push_back(VE.getValueID(C->getOperand(0))); +        Record.push_back(VE.getValueID(C->getOperand(1))); +        Record.push_back(VE.getValueID(C->getOperand(2))); +        break; +      case Instruction::ICmp: +      case Instruction::FCmp: +        Code = bitc::CST_CODE_CE_CMP; +        Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); +        Record.push_back(VE.getValueID(C->getOperand(0))); +        Record.push_back(VE.getValueID(C->getOperand(1))); +        Record.push_back(CE->getPredicate()); +        break; +      } +    } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { +      Code = bitc::CST_CODE_BLOCKADDRESS; +      Record.push_back(VE.getTypeID(BA->getFunction()->getType())); +      Record.push_back(VE.getValueID(BA->getFunction())); +      Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); +    } else { +#ifndef NDEBUG +      C->dump(); +#endif +      llvm_unreachable("Unknown constant!"); +    } +    Stream.EmitRecord(Code, Record, AbbrevToUse); +    Record.clear(); +  } + +  Stream.ExitBlock(); +} + +void ModuleBitcodeWriter::writeModuleConstants() { +  const ValueEnumerator::ValueList &Vals = VE.getValues(); + +  // Find the first constant to emit, which is the first non-globalvalue value. +  // We know globalvalues have been emitted by WriteModuleInfo. +  for (unsigned i = 0, e = Vals.size(); i != e; ++i) { +    if (!isa<GlobalValue>(Vals[i].first)) { +      writeConstants(i, Vals.size(), true); +      return; +    } +  } +} + +/// pushValueAndType - The file has to encode both the value and type id for +/// many values, because we need to know what type to create for forward +/// references.  However, most operands are not forward references, so this type +/// field is not needed. +/// +/// This function adds V's value ID to Vals.  If the value ID is higher than the +/// instruction ID, then it is a forward reference, and it also includes the +/// type ID.  The value ID that is written is encoded relative to the InstID. +bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, +                                           SmallVectorImpl<unsigned> &Vals) { +  unsigned ValID = VE.getValueID(V); +  // Make encoding relative to the InstID. +  Vals.push_back(InstID - ValID); +  if (ValID >= InstID) { +    Vals.push_back(VE.getTypeID(V->getType())); +    return true; +  } +  return false; +} + +void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, +                                              unsigned InstID) { +  SmallVector<unsigned, 64> Record; +  LLVMContext &C = CS.getInstruction()->getContext(); + +  for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { +    const auto &Bundle = CS.getOperandBundleAt(i); +    Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); + +    for (auto &Input : Bundle.Inputs) +      pushValueAndType(Input, InstID, Record); + +    Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); +    Record.clear(); +  } +} + +/// pushValue - Like pushValueAndType, but where the type of the value is +/// omitted (perhaps it was already encoded in an earlier operand). +void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, +                                    SmallVectorImpl<unsigned> &Vals) { +  unsigned ValID = VE.getValueID(V); +  Vals.push_back(InstID - ValID); +} + +void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, +                                          SmallVectorImpl<uint64_t> &Vals) { +  unsigned ValID = VE.getValueID(V); +  int64_t diff = ((int32_t)InstID - (int32_t)ValID); +  emitSignedInt64(Vals, diff); +} + +/// WriteInstruction - Emit an instruction to the specified stream. +void ModuleBitcodeWriter::writeInstruction(const Instruction &I, +                                           unsigned InstID, +                                           SmallVectorImpl<unsigned> &Vals) { +  unsigned Code = 0; +  unsigned AbbrevToUse = 0; +  VE.setInstructionID(&I); +  switch (I.getOpcode()) { +  default: +    if (Instruction::isCast(I.getOpcode())) { +      Code = bitc::FUNC_CODE_INST_CAST; +      if (!pushValueAndType(I.getOperand(0), InstID, Vals)) +        AbbrevToUse = FUNCTION_INST_CAST_ABBREV; +      Vals.push_back(VE.getTypeID(I.getType())); +      Vals.push_back(getEncodedCastOpcode(I.getOpcode())); +    } else { +      assert(isa<BinaryOperator>(I) && "Unknown instruction!"); +      Code = bitc::FUNC_CODE_INST_BINOP; +      if (!pushValueAndType(I.getOperand(0), InstID, Vals)) +        AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; +      pushValue(I.getOperand(1), InstID, Vals); +      Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); +      uint64_t Flags = getOptimizationFlags(&I); +      if (Flags != 0) { +        if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) +          AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; +        Vals.push_back(Flags); +      } +    } +    break; +  case Instruction::FNeg: { +    Code = bitc::FUNC_CODE_INST_UNOP; +    if (!pushValueAndType(I.getOperand(0), InstID, Vals)) +      AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; +    Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); +    uint64_t Flags = getOptimizationFlags(&I); +    if (Flags != 0) { +      if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) +        AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; +      Vals.push_back(Flags); +    } +    break; +  } +  case Instruction::GetElementPtr: { +    Code = bitc::FUNC_CODE_INST_GEP; +    AbbrevToUse = FUNCTION_INST_GEP_ABBREV; +    auto &GEPInst = cast<GetElementPtrInst>(I); +    Vals.push_back(GEPInst.isInBounds()); +    Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); +    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) +      pushValueAndType(I.getOperand(i), InstID, Vals); +    break; +  } +  case Instruction::ExtractValue: { +    Code = bitc::FUNC_CODE_INST_EXTRACTVAL; +    pushValueAndType(I.getOperand(0), InstID, Vals); +    const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); +    Vals.append(EVI->idx_begin(), EVI->idx_end()); +    break; +  } +  case Instruction::InsertValue: { +    Code = bitc::FUNC_CODE_INST_INSERTVAL; +    pushValueAndType(I.getOperand(0), InstID, Vals); +    pushValueAndType(I.getOperand(1), InstID, Vals); +    const InsertValueInst *IVI = cast<InsertValueInst>(&I); +    Vals.append(IVI->idx_begin(), IVI->idx_end()); +    break; +  } +  case Instruction::Select: { +    Code = bitc::FUNC_CODE_INST_VSELECT; +    pushValueAndType(I.getOperand(1), InstID, Vals); +    pushValue(I.getOperand(2), InstID, Vals); +    pushValueAndType(I.getOperand(0), InstID, Vals); +    uint64_t Flags = getOptimizationFlags(&I); +    if (Flags != 0) +      Vals.push_back(Flags); +    break; +  } +  case Instruction::ExtractElement: +    Code = bitc::FUNC_CODE_INST_EXTRACTELT; +    pushValueAndType(I.getOperand(0), InstID, Vals); +    pushValueAndType(I.getOperand(1), InstID, Vals); +    break; +  case Instruction::InsertElement: +    Code = bitc::FUNC_CODE_INST_INSERTELT; +    pushValueAndType(I.getOperand(0), InstID, Vals); +    pushValue(I.getOperand(1), InstID, Vals); +    pushValueAndType(I.getOperand(2), InstID, Vals); +    break; +  case Instruction::ShuffleVector: +    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; +    pushValueAndType(I.getOperand(0), InstID, Vals); +    pushValue(I.getOperand(1), InstID, Vals); +    pushValue(I.getOperand(2), InstID, Vals); +    break; +  case Instruction::ICmp: +  case Instruction::FCmp: { +    // compare returning Int1Ty or vector of Int1Ty +    Code = bitc::FUNC_CODE_INST_CMP2; +    pushValueAndType(I.getOperand(0), InstID, Vals); +    pushValue(I.getOperand(1), InstID, Vals); +    Vals.push_back(cast<CmpInst>(I).getPredicate()); +    uint64_t Flags = getOptimizationFlags(&I); +    if (Flags != 0) +      Vals.push_back(Flags); +    break; +  } + +  case Instruction::Ret: +    { +      Code = bitc::FUNC_CODE_INST_RET; +      unsigned NumOperands = I.getNumOperands(); +      if (NumOperands == 0) +        AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; +      else if (NumOperands == 1) { +        if (!pushValueAndType(I.getOperand(0), InstID, Vals)) +          AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; +      } else { +        for (unsigned i = 0, e = NumOperands; i != e; ++i) +          pushValueAndType(I.getOperand(i), InstID, Vals); +      } +    } +    break; +  case Instruction::Br: +    { +      Code = bitc::FUNC_CODE_INST_BR; +      const BranchInst &II = cast<BranchInst>(I); +      Vals.push_back(VE.getValueID(II.getSuccessor(0))); +      if (II.isConditional()) { +        Vals.push_back(VE.getValueID(II.getSuccessor(1))); +        pushValue(II.getCondition(), InstID, Vals); +      } +    } +    break; +  case Instruction::Switch: +    { +      Code = bitc::FUNC_CODE_INST_SWITCH; +      const SwitchInst &SI = cast<SwitchInst>(I); +      Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); +      pushValue(SI.getCondition(), InstID, Vals); +      Vals.push_back(VE.getValueID(SI.getDefaultDest())); +      for (auto Case : SI.cases()) { +        Vals.push_back(VE.getValueID(Case.getCaseValue())); +        Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); +      } +    } +    break; +  case Instruction::IndirectBr: +    Code = bitc::FUNC_CODE_INST_INDIRECTBR; +    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); +    // Encode the address operand as relative, but not the basic blocks. +    pushValue(I.getOperand(0), InstID, Vals); +    for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) +      Vals.push_back(VE.getValueID(I.getOperand(i))); +    break; + +  case Instruction::Invoke: { +    const InvokeInst *II = cast<InvokeInst>(&I); +    const Value *Callee = II->getCalledValue(); +    FunctionType *FTy = II->getFunctionType(); + +    if (II->hasOperandBundles()) +      writeOperandBundles(II, InstID); + +    Code = bitc::FUNC_CODE_INST_INVOKE; + +    Vals.push_back(VE.getAttributeListID(II->getAttributes())); +    Vals.push_back(II->getCallingConv() | 1 << 13); +    Vals.push_back(VE.getValueID(II->getNormalDest())); +    Vals.push_back(VE.getValueID(II->getUnwindDest())); +    Vals.push_back(VE.getTypeID(FTy)); +    pushValueAndType(Callee, InstID, Vals); + +    // Emit value #'s for the fixed parameters. +    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) +      pushValue(I.getOperand(i), InstID, Vals); // fixed param. + +    // Emit type/value pairs for varargs params. +    if (FTy->isVarArg()) { +      for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); +           i != e; ++i) +        pushValueAndType(I.getOperand(i), InstID, Vals); // vararg +    } +    break; +  } +  case Instruction::Resume: +    Code = bitc::FUNC_CODE_INST_RESUME; +    pushValueAndType(I.getOperand(0), InstID, Vals); +    break; +  case Instruction::CleanupRet: { +    Code = bitc::FUNC_CODE_INST_CLEANUPRET; +    const auto &CRI = cast<CleanupReturnInst>(I); +    pushValue(CRI.getCleanupPad(), InstID, Vals); +    if (CRI.hasUnwindDest()) +      Vals.push_back(VE.getValueID(CRI.getUnwindDest())); +    break; +  } +  case Instruction::CatchRet: { +    Code = bitc::FUNC_CODE_INST_CATCHRET; +    const auto &CRI = cast<CatchReturnInst>(I); +    pushValue(CRI.getCatchPad(), InstID, Vals); +    Vals.push_back(VE.getValueID(CRI.getSuccessor())); +    break; +  } +  case Instruction::CleanupPad: +  case Instruction::CatchPad: { +    const auto &FuncletPad = cast<FuncletPadInst>(I); +    Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD +                                         : bitc::FUNC_CODE_INST_CLEANUPPAD; +    pushValue(FuncletPad.getParentPad(), InstID, Vals); + +    unsigned NumArgOperands = FuncletPad.getNumArgOperands(); +    Vals.push_back(NumArgOperands); +    for (unsigned Op = 0; Op != NumArgOperands; ++Op) +      pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); +    break; +  } +  case Instruction::CatchSwitch: { +    Code = bitc::FUNC_CODE_INST_CATCHSWITCH; +    const auto &CatchSwitch = cast<CatchSwitchInst>(I); + +    pushValue(CatchSwitch.getParentPad(), InstID, Vals); + +    unsigned NumHandlers = CatchSwitch.getNumHandlers(); +    Vals.push_back(NumHandlers); +    for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) +      Vals.push_back(VE.getValueID(CatchPadBB)); + +    if (CatchSwitch.hasUnwindDest()) +      Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); +    break; +  } +  case Instruction::CallBr: { +    const CallBrInst *CBI = cast<CallBrInst>(&I); +    const Value *Callee = CBI->getCalledValue(); +    FunctionType *FTy = CBI->getFunctionType(); + +    if (CBI->hasOperandBundles()) +      writeOperandBundles(CBI, InstID); + +    Code = bitc::FUNC_CODE_INST_CALLBR; + +    Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); + +    Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | +                   1 << bitc::CALL_EXPLICIT_TYPE); + +    Vals.push_back(VE.getValueID(CBI->getDefaultDest())); +    Vals.push_back(CBI->getNumIndirectDests()); +    for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) +      Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); + +    Vals.push_back(VE.getTypeID(FTy)); +    pushValueAndType(Callee, InstID, Vals); + +    // Emit value #'s for the fixed parameters. +    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) +      pushValue(I.getOperand(i), InstID, Vals); // fixed param. + +    // Emit type/value pairs for varargs params. +    if (FTy->isVarArg()) { +      for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); +           i != e; ++i) +        pushValueAndType(I.getOperand(i), InstID, Vals); // vararg +    } +    break; +  } +  case Instruction::Unreachable: +    Code = bitc::FUNC_CODE_INST_UNREACHABLE; +    AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; +    break; + +  case Instruction::PHI: { +    const PHINode &PN = cast<PHINode>(I); +    Code = bitc::FUNC_CODE_INST_PHI; +    // With the newer instruction encoding, forward references could give +    // negative valued IDs.  This is most common for PHIs, so we use +    // signed VBRs. +    SmallVector<uint64_t, 128> Vals64; +    Vals64.push_back(VE.getTypeID(PN.getType())); +    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { +      pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); +      Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); +    } + +    uint64_t Flags = getOptimizationFlags(&I); +    if (Flags != 0) +      Vals64.push_back(Flags); + +    // Emit a Vals64 vector and exit. +    Stream.EmitRecord(Code, Vals64, AbbrevToUse); +    Vals64.clear(); +    return; +  } + +  case Instruction::LandingPad: { +    const LandingPadInst &LP = cast<LandingPadInst>(I); +    Code = bitc::FUNC_CODE_INST_LANDINGPAD; +    Vals.push_back(VE.getTypeID(LP.getType())); +    Vals.push_back(LP.isCleanup()); +    Vals.push_back(LP.getNumClauses()); +    for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { +      if (LP.isCatch(I)) +        Vals.push_back(LandingPadInst::Catch); +      else +        Vals.push_back(LandingPadInst::Filter); +      pushValueAndType(LP.getClause(I), InstID, Vals); +    } +    break; +  } + +  case Instruction::Alloca: { +    Code = bitc::FUNC_CODE_INST_ALLOCA; +    const AllocaInst &AI = cast<AllocaInst>(I); +    Vals.push_back(VE.getTypeID(AI.getAllocatedType())); +    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); +    Vals.push_back(VE.getValueID(I.getOperand(0))); // size. +    unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; +    assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && +           "not enough bits for maximum alignment"); +    assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); +    AlignRecord |= AI.isUsedWithInAlloca() << 5; +    AlignRecord |= 1 << 6; +    AlignRecord |= AI.isSwiftError() << 7; +    Vals.push_back(AlignRecord); +    break; +  } + +  case Instruction::Load: +    if (cast<LoadInst>(I).isAtomic()) { +      Code = bitc::FUNC_CODE_INST_LOADATOMIC; +      pushValueAndType(I.getOperand(0), InstID, Vals); +    } else { +      Code = bitc::FUNC_CODE_INST_LOAD; +      if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr +        AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; +    } +    Vals.push_back(VE.getTypeID(I.getType())); +    Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); +    Vals.push_back(cast<LoadInst>(I).isVolatile()); +    if (cast<LoadInst>(I).isAtomic()) { +      Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); +      Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); +    } +    break; +  case Instruction::Store: +    if (cast<StoreInst>(I).isAtomic()) +      Code = bitc::FUNC_CODE_INST_STOREATOMIC; +    else +      Code = bitc::FUNC_CODE_INST_STORE; +    pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr +    pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val +    Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); +    Vals.push_back(cast<StoreInst>(I).isVolatile()); +    if (cast<StoreInst>(I).isAtomic()) { +      Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); +      Vals.push_back( +          getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); +    } +    break; +  case Instruction::AtomicCmpXchg: +    Code = bitc::FUNC_CODE_INST_CMPXCHG; +    pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr +    pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. +    pushValue(I.getOperand(2), InstID, Vals);        // newval. +    Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); +    Vals.push_back( +        getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); +    Vals.push_back( +        getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); +    Vals.push_back( +        getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); +    Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); +    break; +  case Instruction::AtomicRMW: +    Code = bitc::FUNC_CODE_INST_ATOMICRMW; +    pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr +    pushValue(I.getOperand(1), InstID, Vals);        // val. +    Vals.push_back( +        getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); +    Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); +    Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); +    Vals.push_back( +        getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); +    break; +  case Instruction::Fence: +    Code = bitc::FUNC_CODE_INST_FENCE; +    Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); +    Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); +    break; +  case Instruction::Call: { +    const CallInst &CI = cast<CallInst>(I); +    FunctionType *FTy = CI.getFunctionType(); + +    if (CI.hasOperandBundles()) +      writeOperandBundles(&CI, InstID); + +    Code = bitc::FUNC_CODE_INST_CALL; + +    Vals.push_back(VE.getAttributeListID(CI.getAttributes())); + +    unsigned Flags = getOptimizationFlags(&I); +    Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | +                   unsigned(CI.isTailCall()) << bitc::CALL_TAIL | +                   unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | +                   1 << bitc::CALL_EXPLICIT_TYPE | +                   unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | +                   unsigned(Flags != 0) << bitc::CALL_FMF); +    if (Flags != 0) +      Vals.push_back(Flags); + +    Vals.push_back(VE.getTypeID(FTy)); +    pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee + +    // Emit value #'s for the fixed parameters. +    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { +      // Check for labels (can happen with asm labels). +      if (FTy->getParamType(i)->isLabelTy()) +        Vals.push_back(VE.getValueID(CI.getArgOperand(i))); +      else +        pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. +    } + +    // Emit type/value pairs for varargs params. +    if (FTy->isVarArg()) { +      for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); +           i != e; ++i) +        pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs +    } +    break; +  } +  case Instruction::VAArg: +    Code = bitc::FUNC_CODE_INST_VAARG; +    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty +    pushValue(I.getOperand(0), InstID, Vals);                   // valist. +    Vals.push_back(VE.getTypeID(I.getType())); // restype. +    break; +  } + +  Stream.EmitRecord(Code, Vals, AbbrevToUse); +  Vals.clear(); +} + +/// Write a GlobalValue VST to the module. The purpose of this data structure is +/// to allow clients to efficiently find the function body. +void ModuleBitcodeWriter::writeGlobalValueSymbolTable( +  DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { +  // Get the offset of the VST we are writing, and backpatch it into +  // the VST forward declaration record. +  uint64_t VSTOffset = Stream.GetCurrentBitNo(); +  // The BitcodeStartBit was the stream offset of the identification block. +  VSTOffset -= bitcodeStartBit(); +  assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); +  // Note that we add 1 here because the offset is relative to one word +  // before the start of the identification block, which was historically +  // always the start of the regular bitcode header. +  Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); + +  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); + +  auto Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset +  unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + +  for (const Function &F : M) { +    uint64_t Record[2]; + +    if (F.isDeclaration()) +      continue; + +    Record[0] = VE.getValueID(&F); + +    // Save the word offset of the function (from the start of the +    // actual bitcode written to the stream). +    uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); +    assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); +    // Note that we add 1 here because the offset is relative to one word +    // before the start of the identification block, which was historically +    // always the start of the regular bitcode header. +    Record[1] = BitcodeIndex / 32 + 1; + +    Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); +  } + +  Stream.ExitBlock(); +} + +/// Emit names for arguments, instructions and basic blocks in a function. +void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( +    const ValueSymbolTable &VST) { +  if (VST.empty()) +    return; + +  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); + +  // FIXME: Set up the abbrev, we know how many values there are! +  // FIXME: We know if the type names can use 7-bit ascii. +  SmallVector<uint64_t, 64> NameVals; + +  for (const ValueName &Name : VST) { +    // Figure out the encoding to use for the name. +    StringEncoding Bits = getStringEncoding(Name.getKey()); + +    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; +    NameVals.push_back(VE.getValueID(Name.getValue())); + +    // VST_CODE_ENTRY:   [valueid, namechar x N] +    // VST_CODE_BBENTRY: [bbid, namechar x N] +    unsigned Code; +    if (isa<BasicBlock>(Name.getValue())) { +      Code = bitc::VST_CODE_BBENTRY; +      if (Bits == SE_Char6) +        AbbrevToUse = VST_BBENTRY_6_ABBREV; +    } else { +      Code = bitc::VST_CODE_ENTRY; +      if (Bits == SE_Char6) +        AbbrevToUse = VST_ENTRY_6_ABBREV; +      else if (Bits == SE_Fixed7) +        AbbrevToUse = VST_ENTRY_7_ABBREV; +    } + +    for (const auto P : Name.getKey()) +      NameVals.push_back((unsigned char)P); + +    // Emit the finished record. +    Stream.EmitRecord(Code, NameVals, AbbrevToUse); +    NameVals.clear(); +  } + +  Stream.ExitBlock(); +} + +void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { +  assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); +  unsigned Code; +  if (isa<BasicBlock>(Order.V)) +    Code = bitc::USELIST_CODE_BB; +  else +    Code = bitc::USELIST_CODE_DEFAULT; + +  SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); +  Record.push_back(VE.getValueID(Order.V)); +  Stream.EmitRecord(Code, Record); +} + +void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { +  assert(VE.shouldPreserveUseListOrder() && +         "Expected to be preserving use-list order"); + +  auto hasMore = [&]() { +    return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; +  }; +  if (!hasMore()) +    // Nothing to do. +    return; + +  Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); +  while (hasMore()) { +    writeUseList(std::move(VE.UseListOrders.back())); +    VE.UseListOrders.pop_back(); +  } +  Stream.ExitBlock(); +} + +/// Emit a function body to the module stream. +void ModuleBitcodeWriter::writeFunction( +    const Function &F, +    DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { +  // Save the bitcode index of the start of this function block for recording +  // in the VST. +  FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); + +  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); +  VE.incorporateFunction(F); + +  SmallVector<unsigned, 64> Vals; + +  // Emit the number of basic blocks, so the reader can create them ahead of +  // time. +  Vals.push_back(VE.getBasicBlocks().size()); +  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); +  Vals.clear(); + +  // If there are function-local constants, emit them now. +  unsigned CstStart, CstEnd; +  VE.getFunctionConstantRange(CstStart, CstEnd); +  writeConstants(CstStart, CstEnd, false); + +  // If there is function-local metadata, emit it now. +  writeFunctionMetadata(F); + +  // Keep a running idea of what the instruction ID is. +  unsigned InstID = CstEnd; + +  bool NeedsMetadataAttachment = F.hasMetadata(); + +  DILocation *LastDL = nullptr; +  // Finally, emit all the instructions, in order. +  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) +    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); +         I != E; ++I) { +      writeInstruction(*I, InstID, Vals); + +      if (!I->getType()->isVoidTy()) +        ++InstID; + +      // If the instruction has metadata, write a metadata attachment later. +      NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); + +      // If the instruction has a debug location, emit it. +      DILocation *DL = I->getDebugLoc(); +      if (!DL) +        continue; + +      if (DL == LastDL) { +        // Just repeat the same debug loc as last time. +        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); +        continue; +      } + +      Vals.push_back(DL->getLine()); +      Vals.push_back(DL->getColumn()); +      Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); +      Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); +      Vals.push_back(DL->isImplicitCode()); +      Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); +      Vals.clear(); + +      LastDL = DL; +    } + +  // Emit names for all the instructions etc. +  if (auto *Symtab = F.getValueSymbolTable()) +    writeFunctionLevelValueSymbolTable(*Symtab); + +  if (NeedsMetadataAttachment) +    writeFunctionMetadataAttachment(F); +  if (VE.shouldPreserveUseListOrder()) +    writeUseListBlock(&F); +  VE.purgeFunction(); +  Stream.ExitBlock(); +} + +// Emit blockinfo, which defines the standard abbreviations etc. +void ModuleBitcodeWriter::writeBlockInfo() { +  // We only want to emit block info records for blocks that have multiple +  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. +  // Other blocks can define their abbrevs inline. +  Stream.EnterBlockInfoBlock(); + +  { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. +    auto Abbv = std::make_shared<BitCodeAbbrev>(); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); +    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != +        VST_ENTRY_8_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } + +  { // 7-bit fixed width VST_CODE_ENTRY strings. +    auto Abbv = std::make_shared<BitCodeAbbrev>(); +    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); +    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != +        VST_ENTRY_7_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } +  { // 6-bit char6 VST_CODE_ENTRY strings. +    auto Abbv = std::make_shared<BitCodeAbbrev>(); +    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); +    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != +        VST_ENTRY_6_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } +  { // 6-bit char6 VST_CODE_BBENTRY strings. +    auto Abbv = std::make_shared<BitCodeAbbrev>(); +    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); +    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != +        VST_BBENTRY_6_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } + +  { // SETTYPE abbrev for CONSTANTS_BLOCK. +    auto Abbv = std::make_shared<BitCodeAbbrev>(); +    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, +                              VE.computeBitsRequiredForTypeIndicies())); +    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != +        CONSTANTS_SETTYPE_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } + +  { // INTEGER abbrev for CONSTANTS_BLOCK. +    auto Abbv = std::make_shared<BitCodeAbbrev>(); +    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != +        CONSTANTS_INTEGER_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } + +  { // CE_CAST abbrev for CONSTANTS_BLOCK. +    auto Abbv = std::make_shared<BitCodeAbbrev>(); +    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid +                              VE.computeBitsRequiredForTypeIndicies())); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id + +    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != +        CONSTANTS_CE_CAST_Abbrev) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } +  { // NULL abbrev for CONSTANTS_BLOCK. +    auto Abbv = std::make_shared<BitCodeAbbrev>(); +    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); +    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != +        CONSTANTS_NULL_Abbrev) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } + +  // FIXME: This should only use space for first class types! + +  { // INST_LOAD abbrev for FUNCTION_BLOCK. +    auto Abbv = std::make_shared<BitCodeAbbrev>(); +    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty +                              VE.computeBitsRequiredForTypeIndicies())); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile +    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != +        FUNCTION_INST_LOAD_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } +  { // INST_UNOP abbrev for FUNCTION_BLOCK. +    auto Abbv = std::make_shared<BitCodeAbbrev>(); +    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc +    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != +        FUNCTION_INST_UNOP_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } +  { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. +    auto Abbv = std::make_shared<BitCodeAbbrev>(); +    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags +    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != +        FUNCTION_INST_UNOP_FLAGS_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } +  { // INST_BINOP abbrev for FUNCTION_BLOCK. +    auto Abbv = std::make_shared<BitCodeAbbrev>(); +    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc +    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != +        FUNCTION_INST_BINOP_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } +  { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. +    auto Abbv = std::make_shared<BitCodeAbbrev>(); +    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags +    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != +        FUNCTION_INST_BINOP_FLAGS_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } +  { // INST_CAST abbrev for FUNCTION_BLOCK. +    auto Abbv = std::make_shared<BitCodeAbbrev>(); +    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty +                              VE.computeBitsRequiredForTypeIndicies())); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc +    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != +        FUNCTION_INST_CAST_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } + +  { // INST_RET abbrev for FUNCTION_BLOCK. +    auto Abbv = std::make_shared<BitCodeAbbrev>(); +    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); +    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != +        FUNCTION_INST_RET_VOID_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } +  { // INST_RET abbrev for FUNCTION_BLOCK. +    auto Abbv = std::make_shared<BitCodeAbbrev>(); +    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID +    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != +        FUNCTION_INST_RET_VAL_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } +  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. +    auto Abbv = std::make_shared<BitCodeAbbrev>(); +    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); +    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != +        FUNCTION_INST_UNREACHABLE_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } +  { +    auto Abbv = std::make_shared<BitCodeAbbrev>(); +    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty +                              Log2_32_Ceil(VE.getTypes().size() + 1))); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); +    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != +        FUNCTION_INST_GEP_ABBREV) +      llvm_unreachable("Unexpected abbrev ordering!"); +  } + +  Stream.ExitBlock(); +} + +/// Write the module path strings, currently only used when generating +/// a combined index file. +void IndexBitcodeWriter::writeModStrings() { +  Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); + +  // TODO: See which abbrev sizes we actually need to emit + +  // 8-bit fixed-width MST_ENTRY strings. +  auto Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); +  unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); + +  // 7-bit fixed width MST_ENTRY strings. +  Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); +  unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); + +  // 6-bit char6 MST_ENTRY strings. +  Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); +  unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); + +  // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. +  Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); +  unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); + +  SmallVector<unsigned, 64> Vals; +  forEachModule( +      [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { +        StringRef Key = MPSE.getKey(); +        const auto &Value = MPSE.getValue(); +        StringEncoding Bits = getStringEncoding(Key); +        unsigned AbbrevToUse = Abbrev8Bit; +        if (Bits == SE_Char6) +          AbbrevToUse = Abbrev6Bit; +        else if (Bits == SE_Fixed7) +          AbbrevToUse = Abbrev7Bit; + +        Vals.push_back(Value.first); +        Vals.append(Key.begin(), Key.end()); + +        // Emit the finished record. +        Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); + +        // Emit an optional hash for the module now +        const auto &Hash = Value.second; +        if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { +          Vals.assign(Hash.begin(), Hash.end()); +          // Emit the hash record. +          Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); +        } + +        Vals.clear(); +      }); +  Stream.ExitBlock(); +} + +/// Write the function type metadata related records that need to appear before +/// a function summary entry (whether per-module or combined). +static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, +                                             FunctionSummary *FS) { +  if (!FS->type_tests().empty()) +    Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); + +  SmallVector<uint64_t, 64> Record; + +  auto WriteVFuncIdVec = [&](uint64_t Ty, +                             ArrayRef<FunctionSummary::VFuncId> VFs) { +    if (VFs.empty()) +      return; +    Record.clear(); +    for (auto &VF : VFs) { +      Record.push_back(VF.GUID); +      Record.push_back(VF.Offset); +    } +    Stream.EmitRecord(Ty, Record); +  }; + +  WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, +                  FS->type_test_assume_vcalls()); +  WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, +                  FS->type_checked_load_vcalls()); + +  auto WriteConstVCallVec = [&](uint64_t Ty, +                                ArrayRef<FunctionSummary::ConstVCall> VCs) { +    for (auto &VC : VCs) { +      Record.clear(); +      Record.push_back(VC.VFunc.GUID); +      Record.push_back(VC.VFunc.Offset); +      Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); +      Stream.EmitRecord(Ty, Record); +    } +  }; + +  WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, +                     FS->type_test_assume_const_vcalls()); +  WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, +                     FS->type_checked_load_const_vcalls()); +} + +/// Collect type IDs from type tests used by function. +static void +getReferencedTypeIds(FunctionSummary *FS, +                     std::set<GlobalValue::GUID> &ReferencedTypeIds) { +  if (!FS->type_tests().empty()) +    for (auto &TT : FS->type_tests()) +      ReferencedTypeIds.insert(TT); + +  auto GetReferencedTypesFromVFuncIdVec = +      [&](ArrayRef<FunctionSummary::VFuncId> VFs) { +        for (auto &VF : VFs) +          ReferencedTypeIds.insert(VF.GUID); +      }; + +  GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); +  GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); + +  auto GetReferencedTypesFromConstVCallVec = +      [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { +        for (auto &VC : VCs) +          ReferencedTypeIds.insert(VC.VFunc.GUID); +      }; + +  GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); +  GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); +} + +static void writeWholeProgramDevirtResolutionByArg( +    SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, +    const WholeProgramDevirtResolution::ByArg &ByArg) { +  NameVals.push_back(args.size()); +  NameVals.insert(NameVals.end(), args.begin(), args.end()); + +  NameVals.push_back(ByArg.TheKind); +  NameVals.push_back(ByArg.Info); +  NameVals.push_back(ByArg.Byte); +  NameVals.push_back(ByArg.Bit); +} + +static void writeWholeProgramDevirtResolution( +    SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, +    uint64_t Id, const WholeProgramDevirtResolution &Wpd) { +  NameVals.push_back(Id); + +  NameVals.push_back(Wpd.TheKind); +  NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); +  NameVals.push_back(Wpd.SingleImplName.size()); + +  NameVals.push_back(Wpd.ResByArg.size()); +  for (auto &A : Wpd.ResByArg) +    writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); +} + +static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, +                                     StringTableBuilder &StrtabBuilder, +                                     const std::string &Id, +                                     const TypeIdSummary &Summary) { +  NameVals.push_back(StrtabBuilder.add(Id)); +  NameVals.push_back(Id.size()); + +  NameVals.push_back(Summary.TTRes.TheKind); +  NameVals.push_back(Summary.TTRes.SizeM1BitWidth); +  NameVals.push_back(Summary.TTRes.AlignLog2); +  NameVals.push_back(Summary.TTRes.SizeM1); +  NameVals.push_back(Summary.TTRes.BitMask); +  NameVals.push_back(Summary.TTRes.InlineBits); + +  for (auto &W : Summary.WPDRes) +    writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, +                                      W.second); +} + +static void writeTypeIdCompatibleVtableSummaryRecord( +    SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, +    const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, +    ValueEnumerator &VE) { +  NameVals.push_back(StrtabBuilder.add(Id)); +  NameVals.push_back(Id.size()); + +  for (auto &P : Summary) { +    NameVals.push_back(P.AddressPointOffset); +    NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); +  } +} + +// Helper to emit a single function summary record. +void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( +    SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, +    unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, +    const Function &F) { +  NameVals.push_back(ValueID); + +  FunctionSummary *FS = cast<FunctionSummary>(Summary); +  writeFunctionTypeMetadataRecords(Stream, FS); + +  auto SpecialRefCnts = FS->specialRefCounts(); +  NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); +  NameVals.push_back(FS->instCount()); +  NameVals.push_back(getEncodedFFlags(FS->fflags())); +  NameVals.push_back(FS->refs().size()); +  NameVals.push_back(SpecialRefCnts.first);  // rorefcnt +  NameVals.push_back(SpecialRefCnts.second); // worefcnt + +  for (auto &RI : FS->refs()) +    NameVals.push_back(VE.getValueID(RI.getValue())); + +  bool HasProfileData = +      F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; +  for (auto &ECI : FS->calls()) { +    NameVals.push_back(getValueId(ECI.first)); +    if (HasProfileData) +      NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); +    else if (WriteRelBFToSummary) +      NameVals.push_back(ECI.second.RelBlockFreq); +  } + +  unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); +  unsigned Code = +      (HasProfileData ? bitc::FS_PERMODULE_PROFILE +                      : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF +                                             : bitc::FS_PERMODULE)); + +  // Emit the finished record. +  Stream.EmitRecord(Code, NameVals, FSAbbrev); +  NameVals.clear(); +} + +// Collect the global value references in the given variable's initializer, +// and emit them in a summary record. +void ModuleBitcodeWriterBase::writeModuleLevelReferences( +    const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, +    unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { +  auto VI = Index->getValueInfo(V.getGUID()); +  if (!VI || VI.getSummaryList().empty()) { +    // Only declarations should not have a summary (a declaration might however +    // have a summary if the def was in module level asm). +    assert(V.isDeclaration()); +    return; +  } +  auto *Summary = VI.getSummaryList()[0].get(); +  NameVals.push_back(VE.getValueID(&V)); +  GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); +  NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); +  NameVals.push_back(getEncodedGVarFlags(VS->varflags())); + +  auto VTableFuncs = VS->vTableFuncs(); +  if (!VTableFuncs.empty()) +    NameVals.push_back(VS->refs().size()); + +  unsigned SizeBeforeRefs = NameVals.size(); +  for (auto &RI : VS->refs()) +    NameVals.push_back(VE.getValueID(RI.getValue())); +  // Sort the refs for determinism output, the vector returned by FS->refs() has +  // been initialized from a DenseSet. +  llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); + +  if (VTableFuncs.empty()) +    Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, +                      FSModRefsAbbrev); +  else { +    // VTableFuncs pairs should already be sorted by offset. +    for (auto &P : VTableFuncs) { +      NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); +      NameVals.push_back(P.VTableOffset); +    } + +    Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, +                      FSModVTableRefsAbbrev); +  } +  NameVals.clear(); +} + +// Current version for the summary. +// This is bumped whenever we introduce changes in the way some record are +// interpreted, like flags for instance. +static const uint64_t INDEX_VERSION = 7; + +/// Emit the per-module summary section alongside the rest of +/// the module's bitcode. +void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { +  // By default we compile with ThinLTO if the module has a summary, but the +  // client can request full LTO with a module flag. +  bool IsThinLTO = true; +  if (auto *MD = +          mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) +    IsThinLTO = MD->getZExtValue(); +  Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID +                                 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, +                       4); + +  Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); + +  // Write the index flags. +  uint64_t Flags = 0; +  // Bits 1-3 are set only in the combined index, skip them. +  if (Index->enableSplitLTOUnit()) +    Flags |= 0x8; +  Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); + +  if (Index->begin() == Index->end()) { +    Stream.ExitBlock(); +    return; +  } + +  for (const auto &GVI : valueIds()) { +    Stream.EmitRecord(bitc::FS_VALUE_GUID, +                      ArrayRef<uint64_t>{GVI.second, GVI.first}); +  } + +  // Abbrev for FS_PERMODULE_PROFILE. +  auto Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt +  // numrefs x valueid, n x (valueid, hotness) +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +  unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + +  // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. +  Abbv = std::make_shared<BitCodeAbbrev>(); +  if (WriteRelBFToSummary) +    Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); +  else +    Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt +  // numrefs x valueid, n x (valueid [, rel_block_freq]) +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +  unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + +  // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. +  Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +  unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + +  // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. +  Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs +  // numrefs x valueid, n x (valueid , offset) +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +  unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + +  // Abbrev for FS_ALIAS. +  Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid +  unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + +  // Abbrev for FS_TYPE_ID_METADATA +  Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length +  // n x (valueid , offset) +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +  unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + +  SmallVector<uint64_t, 64> NameVals; +  // Iterate over the list of functions instead of the Index to +  // ensure the ordering is stable. +  for (const Function &F : M) { +    // Summary emission does not support anonymous functions, they have to +    // renamed using the anonymous function renaming pass. +    if (!F.hasName()) +      report_fatal_error("Unexpected anonymous function when writing summary"); + +    ValueInfo VI = Index->getValueInfo(F.getGUID()); +    if (!VI || VI.getSummaryList().empty()) { +      // Only declarations should not have a summary (a declaration might +      // however have a summary if the def was in module level asm). +      assert(F.isDeclaration()); +      continue; +    } +    auto *Summary = VI.getSummaryList()[0].get(); +    writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), +                                        FSCallsAbbrev, FSCallsProfileAbbrev, F); +  } + +  // Capture references from GlobalVariable initializers, which are outside +  // of a function scope. +  for (const GlobalVariable &G : M.globals()) +    writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, +                               FSModVTableRefsAbbrev); + +  for (const GlobalAlias &A : M.aliases()) { +    auto *Aliasee = A.getBaseObject(); +    if (!Aliasee->hasName()) +      // Nameless function don't have an entry in the summary, skip it. +      continue; +    auto AliasId = VE.getValueID(&A); +    auto AliaseeId = VE.getValueID(Aliasee); +    NameVals.push_back(AliasId); +    auto *Summary = Index->getGlobalValueSummary(A); +    AliasSummary *AS = cast<AliasSummary>(Summary); +    NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); +    NameVals.push_back(AliaseeId); +    Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); +    NameVals.clear(); +  } + +  for (auto &S : Index->typeIdCompatibleVtableMap()) { +    writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, +                                             S.second, VE); +    Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, +                      TypeIdCompatibleVtableAbbrev); +    NameVals.clear(); +  } + +  Stream.ExitBlock(); +} + +/// Emit the combined summary section into the combined index file. +void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { +  Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); +  Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); + +  // Write the index flags. +  uint64_t Flags = 0; +  if (Index.withGlobalValueDeadStripping()) +    Flags |= 0x1; +  if (Index.skipModuleByDistributedBackend()) +    Flags |= 0x2; +  if (Index.hasSyntheticEntryCounts()) +    Flags |= 0x4; +  if (Index.enableSplitLTOUnit()) +    Flags |= 0x8; +  if (Index.partiallySplitLTOUnits()) +    Flags |= 0x10; +  Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); + +  for (const auto &GVI : valueIds()) { +    Stream.EmitRecord(bitc::FS_VALUE_GUID, +                      ArrayRef<uint64_t>{GVI.second, GVI.first}); +  } + +  // Abbrev for FS_COMBINED. +  auto Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt +  // numrefs x valueid, n x (valueid) +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +  unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + +  // Abbrev for FS_COMBINED_PROFILE. +  Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt +  // numrefs x valueid, n x (valueid, hotness) +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +  unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + +  // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. +  Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); +  unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + +  // Abbrev for FS_COMBINED_ALIAS. +  Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid +  unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + +  // The aliases are emitted as a post-pass, and will point to the value +  // id of the aliasee. Save them in a vector for post-processing. +  SmallVector<AliasSummary *, 64> Aliases; + +  // Save the value id for each summary for alias emission. +  DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; + +  SmallVector<uint64_t, 64> NameVals; + +  // Set that will be populated during call to writeFunctionTypeMetadataRecords +  // with the type ids referenced by this index file. +  std::set<GlobalValue::GUID> ReferencedTypeIds; + +  // For local linkage, we also emit the original name separately +  // immediately after the record. +  auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { +    if (!GlobalValue::isLocalLinkage(S.linkage())) +      return; +    NameVals.push_back(S.getOriginalName()); +    Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); +    NameVals.clear(); +  }; + +  std::set<GlobalValue::GUID> DefOrUseGUIDs; +  forEachSummary([&](GVInfo I, bool IsAliasee) { +    GlobalValueSummary *S = I.second; +    assert(S); +    DefOrUseGUIDs.insert(I.first); +    for (const ValueInfo &VI : S->refs()) +      DefOrUseGUIDs.insert(VI.getGUID()); + +    auto ValueId = getValueId(I.first); +    assert(ValueId); +    SummaryToValueIdMap[S] = *ValueId; + +    // If this is invoked for an aliasee, we want to record the above +    // mapping, but then not emit a summary entry (if the aliasee is +    // to be imported, we will invoke this separately with IsAliasee=false). +    if (IsAliasee) +      return; + +    if (auto *AS = dyn_cast<AliasSummary>(S)) { +      // Will process aliases as a post-pass because the reader wants all +      // global to be loaded first. +      Aliases.push_back(AS); +      return; +    } + +    if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { +      NameVals.push_back(*ValueId); +      NameVals.push_back(Index.getModuleId(VS->modulePath())); +      NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); +      NameVals.push_back(getEncodedGVarFlags(VS->varflags())); +      for (auto &RI : VS->refs()) { +        auto RefValueId = getValueId(RI.getGUID()); +        if (!RefValueId) +          continue; +        NameVals.push_back(*RefValueId); +      } + +      // Emit the finished record. +      Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, +                        FSModRefsAbbrev); +      NameVals.clear(); +      MaybeEmitOriginalName(*S); +      return; +    } + +    auto *FS = cast<FunctionSummary>(S); +    writeFunctionTypeMetadataRecords(Stream, FS); +    getReferencedTypeIds(FS, ReferencedTypeIds); + +    NameVals.push_back(*ValueId); +    NameVals.push_back(Index.getModuleId(FS->modulePath())); +    NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); +    NameVals.push_back(FS->instCount()); +    NameVals.push_back(getEncodedFFlags(FS->fflags())); +    NameVals.push_back(FS->entryCount()); + +    // Fill in below +    NameVals.push_back(0); // numrefs +    NameVals.push_back(0); // rorefcnt +    NameVals.push_back(0); // worefcnt + +    unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; +    for (auto &RI : FS->refs()) { +      auto RefValueId = getValueId(RI.getGUID()); +      if (!RefValueId) +        continue; +      NameVals.push_back(*RefValueId); +      if (RI.isReadOnly()) +        RORefCnt++; +      else if (RI.isWriteOnly()) +        WORefCnt++; +      Count++; +    } +    NameVals[6] = Count; +    NameVals[7] = RORefCnt; +    NameVals[8] = WORefCnt; + +    bool HasProfileData = false; +    for (auto &EI : FS->calls()) { +      HasProfileData |= +          EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; +      if (HasProfileData) +        break; +    } + +    for (auto &EI : FS->calls()) { +      // If this GUID doesn't have a value id, it doesn't have a function +      // summary and we don't need to record any calls to it. +      GlobalValue::GUID GUID = EI.first.getGUID(); +      auto CallValueId = getValueId(GUID); +      if (!CallValueId) { +        // For SamplePGO, the indirect call targets for local functions will +        // have its original name annotated in profile. We try to find the +        // corresponding PGOFuncName as the GUID. +        GUID = Index.getGUIDFromOriginalID(GUID); +        if (GUID == 0) +          continue; +        CallValueId = getValueId(GUID); +        if (!CallValueId) +          continue; +        // The mapping from OriginalId to GUID may return a GUID +        // that corresponds to a static variable. Filter it out here. +        // This can happen when +        // 1) There is a call to a library function which does not have +        // a CallValidId; +        // 2) There is a static variable with the  OriginalGUID identical +        // to the GUID of the library function in 1); +        // When this happens, the logic for SamplePGO kicks in and +        // the static variable in 2) will be found, which needs to be +        // filtered out. +        auto *GVSum = Index.getGlobalValueSummary(GUID, false); +        if (GVSum && +            GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) +          continue; +      } +      NameVals.push_back(*CallValueId); +      if (HasProfileData) +        NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); +    } + +    unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); +    unsigned Code = +        (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); + +    // Emit the finished record. +    Stream.EmitRecord(Code, NameVals, FSAbbrev); +    NameVals.clear(); +    MaybeEmitOriginalName(*S); +  }); + +  for (auto *AS : Aliases) { +    auto AliasValueId = SummaryToValueIdMap[AS]; +    assert(AliasValueId); +    NameVals.push_back(AliasValueId); +    NameVals.push_back(Index.getModuleId(AS->modulePath())); +    NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); +    auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; +    assert(AliaseeValueId); +    NameVals.push_back(AliaseeValueId); + +    // Emit the finished record. +    Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); +    NameVals.clear(); +    MaybeEmitOriginalName(*AS); + +    if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) +      getReferencedTypeIds(FS, ReferencedTypeIds); +  } + +  if (!Index.cfiFunctionDefs().empty()) { +    for (auto &S : Index.cfiFunctionDefs()) { +      if (DefOrUseGUIDs.count( +              GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { +        NameVals.push_back(StrtabBuilder.add(S)); +        NameVals.push_back(S.size()); +      } +    } +    if (!NameVals.empty()) { +      Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); +      NameVals.clear(); +    } +  } + +  if (!Index.cfiFunctionDecls().empty()) { +    for (auto &S : Index.cfiFunctionDecls()) { +      if (DefOrUseGUIDs.count( +              GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { +        NameVals.push_back(StrtabBuilder.add(S)); +        NameVals.push_back(S.size()); +      } +    } +    if (!NameVals.empty()) { +      Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); +      NameVals.clear(); +    } +  } + +  // Walk the GUIDs that were referenced, and write the +  // corresponding type id records. +  for (auto &T : ReferencedTypeIds) { +    auto TidIter = Index.typeIds().equal_range(T); +    for (auto It = TidIter.first; It != TidIter.second; ++It) { +      writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, +                               It->second.second); +      Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); +      NameVals.clear(); +    } +  } + +  Stream.ExitBlock(); +} + +/// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the +/// current llvm version, and a record for the epoch number. +static void writeIdentificationBlock(BitstreamWriter &Stream) { +  Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); + +  // Write the "user readable" string identifying the bitcode producer +  auto Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); +  auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); +  writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, +                    "LLVM" LLVM_VERSION_STRING, StringAbbrev); + +  // Write the epoch version +  Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); +  auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); +  SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; +  Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); +  Stream.ExitBlock(); +} + +void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { +  // Emit the module's hash. +  // MODULE_CODE_HASH: [5*i32] +  if (GenerateHash) { +    uint32_t Vals[5]; +    Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], +                                    Buffer.size() - BlockStartPos)); +    StringRef Hash = Hasher.result(); +    for (int Pos = 0; Pos < 20; Pos += 4) { +      Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); +    } + +    // Emit the finished record. +    Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); + +    if (ModHash) +      // Save the written hash value. +      llvm::copy(Vals, std::begin(*ModHash)); +  } +} + +void ModuleBitcodeWriter::write() { +  writeIdentificationBlock(Stream); + +  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); +  size_t BlockStartPos = Buffer.size(); + +  writeModuleVersion(); + +  // Emit blockinfo, which defines the standard abbreviations etc. +  writeBlockInfo(); + +  // Emit information describing all of the types in the module. +  writeTypeTable(); + +  // Emit information about attribute groups. +  writeAttributeGroupTable(); + +  // Emit information about parameter attributes. +  writeAttributeTable(); + +  writeComdats(); + +  // Emit top-level description of module, including target triple, inline asm, +  // descriptors for global variables, and function prototype info. +  writeModuleInfo(); + +  // Emit constants. +  writeModuleConstants(); + +  // Emit metadata kind names. +  writeModuleMetadataKinds(); + +  // Emit metadata. +  writeModuleMetadata(); + +  // Emit module-level use-lists. +  if (VE.shouldPreserveUseListOrder()) +    writeUseListBlock(nullptr); + +  writeOperandBundleTags(); +  writeSyncScopeNames(); + +  // Emit function bodies. +  DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; +  for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) +    if (!F->isDeclaration()) +      writeFunction(*F, FunctionToBitcodeIndex); + +  // Need to write after the above call to WriteFunction which populates +  // the summary information in the index. +  if (Index) +    writePerModuleGlobalValueSummary(); + +  writeGlobalValueSymbolTable(FunctionToBitcodeIndex); + +  writeModuleHash(BlockStartPos); + +  Stream.ExitBlock(); +} + +static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, +                               uint32_t &Position) { +  support::endian::write32le(&Buffer[Position], Value); +  Position += 4; +} + +/// If generating a bc file on darwin, we have to emit a +/// header and trailer to make it compatible with the system archiver.  To do +/// this we emit the following header, and then emit a trailer that pads the +/// file out to be a multiple of 16 bytes. +/// +/// struct bc_header { +///   uint32_t Magic;         // 0x0B17C0DE +///   uint32_t Version;       // Version, currently always 0. +///   uint32_t BitcodeOffset; // Offset to traditional bitcode file. +///   uint32_t BitcodeSize;   // Size of traditional bitcode file. +///   uint32_t CPUType;       // CPU specifier. +///   ... potentially more later ... +/// }; +static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, +                                         const Triple &TT) { +  unsigned CPUType = ~0U; + +  // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, +  // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic +  // number from /usr/include/mach/machine.h.  It is ok to reproduce the +  // specific constants here because they are implicitly part of the Darwin ABI. +  enum { +    DARWIN_CPU_ARCH_ABI64      = 0x01000000, +    DARWIN_CPU_TYPE_X86        = 7, +    DARWIN_CPU_TYPE_ARM        = 12, +    DARWIN_CPU_TYPE_POWERPC    = 18 +  }; + +  Triple::ArchType Arch = TT.getArch(); +  if (Arch == Triple::x86_64) +    CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; +  else if (Arch == Triple::x86) +    CPUType = DARWIN_CPU_TYPE_X86; +  else if (Arch == Triple::ppc) +    CPUType = DARWIN_CPU_TYPE_POWERPC; +  else if (Arch == Triple::ppc64) +    CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; +  else if (Arch == Triple::arm || Arch == Triple::thumb) +    CPUType = DARWIN_CPU_TYPE_ARM; + +  // Traditional Bitcode starts after header. +  assert(Buffer.size() >= BWH_HeaderSize && +         "Expected header size to be reserved"); +  unsigned BCOffset = BWH_HeaderSize; +  unsigned BCSize = Buffer.size() - BWH_HeaderSize; + +  // Write the magic and version. +  unsigned Position = 0; +  writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); +  writeInt32ToBuffer(0, Buffer, Position); // Version. +  writeInt32ToBuffer(BCOffset, Buffer, Position); +  writeInt32ToBuffer(BCSize, Buffer, Position); +  writeInt32ToBuffer(CPUType, Buffer, Position); + +  // If the file is not a multiple of 16 bytes, insert dummy padding. +  while (Buffer.size() & 15) +    Buffer.push_back(0); +} + +/// Helper to write the header common to all bitcode files. +static void writeBitcodeHeader(BitstreamWriter &Stream) { +  // Emit the file header. +  Stream.Emit((unsigned)'B', 8); +  Stream.Emit((unsigned)'C', 8); +  Stream.Emit(0x0, 4); +  Stream.Emit(0xC, 4); +  Stream.Emit(0xE, 4); +  Stream.Emit(0xD, 4); +} + +BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) +    : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { +  writeBitcodeHeader(*Stream); +} + +BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } + +void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { +  Stream->EnterSubblock(Block, 3); + +  auto Abbv = std::make_shared<BitCodeAbbrev>(); +  Abbv->Add(BitCodeAbbrevOp(Record)); +  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); +  auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); + +  Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); + +  Stream->ExitBlock(); +} + +void BitcodeWriter::writeSymtab() { +  assert(!WroteStrtab && !WroteSymtab); + +  // If any module has module-level inline asm, we will require a registered asm +  // parser for the target so that we can create an accurate symbol table for +  // the module. +  for (Module *M : Mods) { +    if (M->getModuleInlineAsm().empty()) +      continue; + +    std::string Err; +    const Triple TT(M->getTargetTriple()); +    const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); +    if (!T || !T->hasMCAsmParser()) +      return; +  } + +  WroteSymtab = true; +  SmallVector<char, 0> Symtab; +  // The irsymtab::build function may be unable to create a symbol table if the +  // module is malformed (e.g. it contains an invalid alias). Writing a symbol +  // table is not required for correctness, but we still want to be able to +  // write malformed modules to bitcode files, so swallow the error. +  if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { +    consumeError(std::move(E)); +    return; +  } + +  writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, +            {Symtab.data(), Symtab.size()}); +} + +void BitcodeWriter::writeStrtab() { +  assert(!WroteStrtab); + +  std::vector<char> Strtab; +  StrtabBuilder.finalizeInOrder(); +  Strtab.resize(StrtabBuilder.getSize()); +  StrtabBuilder.write((uint8_t *)Strtab.data()); + +  writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, +            {Strtab.data(), Strtab.size()}); + +  WroteStrtab = true; +} + +void BitcodeWriter::copyStrtab(StringRef Strtab) { +  writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); +  WroteStrtab = true; +} + +void BitcodeWriter::writeModule(const Module &M, +                                bool ShouldPreserveUseListOrder, +                                const ModuleSummaryIndex *Index, +                                bool GenerateHash, ModuleHash *ModHash) { +  assert(!WroteStrtab); + +  // The Mods vector is used by irsymtab::build, which requires non-const +  // Modules in case it needs to materialize metadata. But the bitcode writer +  // requires that the module is materialized, so we can cast to non-const here, +  // after checking that it is in fact materialized. +  assert(M.isMaterialized()); +  Mods.push_back(const_cast<Module *>(&M)); + +  ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, +                                   ShouldPreserveUseListOrder, Index, +                                   GenerateHash, ModHash); +  ModuleWriter.write(); +} + +void BitcodeWriter::writeIndex( +    const ModuleSummaryIndex *Index, +    const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { +  IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, +                                 ModuleToSummariesForIndex); +  IndexWriter.write(); +} + +/// Write the specified module to the specified output stream. +void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, +                              bool ShouldPreserveUseListOrder, +                              const ModuleSummaryIndex *Index, +                              bool GenerateHash, ModuleHash *ModHash) { +  SmallVector<char, 0> Buffer; +  Buffer.reserve(256*1024); + +  // If this is darwin or another generic macho target, reserve space for the +  // header. +  Triple TT(M.getTargetTriple()); +  if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) +    Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); + +  BitcodeWriter Writer(Buffer); +  Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, +                     ModHash); +  Writer.writeSymtab(); +  Writer.writeStrtab(); + +  if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) +    emitDarwinBCHeaderAndTrailer(Buffer, TT); + +  // Write the generated bitstream to "Out". +  Out.write((char*)&Buffer.front(), Buffer.size()); +} + +void IndexBitcodeWriter::write() { +  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); + +  writeModuleVersion(); + +  // Write the module paths in the combined index. +  writeModStrings(); + +  // Write the summary combined index records. +  writeCombinedGlobalValueSummary(); + +  Stream.ExitBlock(); +} + +// Write the specified module summary index to the given raw output stream, +// where it will be written in a new bitcode block. This is used when +// writing the combined index file for ThinLTO. When writing a subset of the +// index for a distributed backend, provide a \p ModuleToSummariesForIndex map. +void llvm::WriteIndexToFile( +    const ModuleSummaryIndex &Index, raw_ostream &Out, +    const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { +  SmallVector<char, 0> Buffer; +  Buffer.reserve(256 * 1024); + +  BitcodeWriter Writer(Buffer); +  Writer.writeIndex(&Index, ModuleToSummariesForIndex); +  Writer.writeStrtab(); + +  Out.write((char *)&Buffer.front(), Buffer.size()); +} + +namespace { + +/// Class to manage the bitcode writing for a thin link bitcode file. +class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { +  /// ModHash is for use in ThinLTO incremental build, generated while writing +  /// the module bitcode file. +  const ModuleHash *ModHash; + +public: +  ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, +                        BitstreamWriter &Stream, +                        const ModuleSummaryIndex &Index, +                        const ModuleHash &ModHash) +      : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, +                                /*ShouldPreserveUseListOrder=*/false, &Index), +        ModHash(&ModHash) {} + +  void write(); + +private: +  void writeSimplifiedModuleInfo(); +}; + +} // end anonymous namespace + +// This function writes a simpilified module info for thin link bitcode file. +// It only contains the source file name along with the name(the offset and +// size in strtab) and linkage for global values. For the global value info +// entry, in order to keep linkage at offset 5, there are three zeros used +// as padding. +void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { +  SmallVector<unsigned, 64> Vals; +  // Emit the module's source file name. +  { +    StringEncoding Bits = getStringEncoding(M.getSourceFileName()); +    BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); +    if (Bits == SE_Char6) +      AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); +    else if (Bits == SE_Fixed7) +      AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); + +    // MODULE_CODE_SOURCE_FILENAME: [namechar x N] +    auto Abbv = std::make_shared<BitCodeAbbrev>(); +    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); +    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); +    Abbv->Add(AbbrevOpToUse); +    unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + +    for (const auto P : M.getSourceFileName()) +      Vals.push_back((unsigned char)P); + +    Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); +    Vals.clear(); +  } + +  // Emit the global variable information. +  for (const GlobalVariable &GV : M.globals()) { +    // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] +    Vals.push_back(StrtabBuilder.add(GV.getName())); +    Vals.push_back(GV.getName().size()); +    Vals.push_back(0); +    Vals.push_back(0); +    Vals.push_back(0); +    Vals.push_back(getEncodedLinkage(GV)); + +    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); +    Vals.clear(); +  } + +  // Emit the function proto information. +  for (const Function &F : M) { +    // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage] +    Vals.push_back(StrtabBuilder.add(F.getName())); +    Vals.push_back(F.getName().size()); +    Vals.push_back(0); +    Vals.push_back(0); +    Vals.push_back(0); +    Vals.push_back(getEncodedLinkage(F)); + +    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); +    Vals.clear(); +  } + +  // Emit the alias information. +  for (const GlobalAlias &A : M.aliases()) { +    // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] +    Vals.push_back(StrtabBuilder.add(A.getName())); +    Vals.push_back(A.getName().size()); +    Vals.push_back(0); +    Vals.push_back(0); +    Vals.push_back(0); +    Vals.push_back(getEncodedLinkage(A)); + +    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); +    Vals.clear(); +  } + +  // Emit the ifunc information. +  for (const GlobalIFunc &I : M.ifuncs()) { +    // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] +    Vals.push_back(StrtabBuilder.add(I.getName())); +    Vals.push_back(I.getName().size()); +    Vals.push_back(0); +    Vals.push_back(0); +    Vals.push_back(0); +    Vals.push_back(getEncodedLinkage(I)); + +    Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); +    Vals.clear(); +  } +} + +void ThinLinkBitcodeWriter::write() { +  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); + +  writeModuleVersion(); + +  writeSimplifiedModuleInfo(); + +  writePerModuleGlobalValueSummary(); + +  // Write module hash. +  Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); + +  Stream.ExitBlock(); +} + +void BitcodeWriter::writeThinLinkBitcode(const Module &M, +                                         const ModuleSummaryIndex &Index, +                                         const ModuleHash &ModHash) { +  assert(!WroteStrtab); + +  // The Mods vector is used by irsymtab::build, which requires non-const +  // Modules in case it needs to materialize metadata. But the bitcode writer +  // requires that the module is materialized, so we can cast to non-const here, +  // after checking that it is in fact materialized. +  assert(M.isMaterialized()); +  Mods.push_back(const_cast<Module *>(&M)); + +  ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, +                                       ModHash); +  ThinLinkWriter.write(); +} + +// Write the specified thin link bitcode file to the given raw output stream, +// where it will be written in a new bitcode block. This is used when +// writing the per-module index file for ThinLTO. +void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, +                                      const ModuleSummaryIndex &Index, +                                      const ModuleHash &ModHash) { +  SmallVector<char, 0> Buffer; +  Buffer.reserve(256 * 1024); + +  BitcodeWriter Writer(Buffer); +  Writer.writeThinLinkBitcode(M, Index, ModHash); +  Writer.writeSymtab(); +  Writer.writeStrtab(); + +  Out.write((char *)&Buffer.front(), Buffer.size()); +} diff --git a/llvm/lib/Bitcode/Writer/BitcodeWriterPass.cpp b/llvm/lib/Bitcode/Writer/BitcodeWriterPass.cpp new file mode 100644 index 000000000000..6796cf8cee54 --- /dev/null +++ b/llvm/lib/Bitcode/Writer/BitcodeWriterPass.cpp @@ -0,0 +1,85 @@ +//===- BitcodeWriterPass.cpp - Bitcode writing pass -----------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// BitcodeWriterPass implementation. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Bitcode/BitcodeWriterPass.h" +#include "llvm/Analysis/ModuleSummaryAnalysis.h" +#include "llvm/Bitcode/BitcodeWriter.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PassManager.h" +#include "llvm/Pass.h" +using namespace llvm; + +PreservedAnalyses BitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) { +  const ModuleSummaryIndex *Index = +      EmitSummaryIndex ? &(AM.getResult<ModuleSummaryIndexAnalysis>(M)) +                       : nullptr; +  WriteBitcodeToFile(M, OS, ShouldPreserveUseListOrder, Index, EmitModuleHash); +  return PreservedAnalyses::all(); +} + +namespace { +  class WriteBitcodePass : public ModulePass { +    raw_ostream &OS; // raw_ostream to print on +    bool ShouldPreserveUseListOrder; +    bool EmitSummaryIndex; +    bool EmitModuleHash; + +  public: +    static char ID; // Pass identification, replacement for typeid +    WriteBitcodePass() : ModulePass(ID), OS(dbgs()) { +      initializeWriteBitcodePassPass(*PassRegistry::getPassRegistry()); +    } + +    explicit WriteBitcodePass(raw_ostream &o, bool ShouldPreserveUseListOrder, +                              bool EmitSummaryIndex, bool EmitModuleHash) +        : ModulePass(ID), OS(o), +          ShouldPreserveUseListOrder(ShouldPreserveUseListOrder), +          EmitSummaryIndex(EmitSummaryIndex), EmitModuleHash(EmitModuleHash) { +      initializeWriteBitcodePassPass(*PassRegistry::getPassRegistry()); +    } + +    StringRef getPassName() const override { return "Bitcode Writer"; } + +    bool runOnModule(Module &M) override { +      const ModuleSummaryIndex *Index = +          EmitSummaryIndex +              ? &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex()) +              : nullptr; +      WriteBitcodeToFile(M, OS, ShouldPreserveUseListOrder, Index, +                         EmitModuleHash); +      return false; +    } +    void getAnalysisUsage(AnalysisUsage &AU) const override { +      AU.setPreservesAll(); +      if (EmitSummaryIndex) +        AU.addRequired<ModuleSummaryIndexWrapperPass>(); +    } +  }; +} + +char WriteBitcodePass::ID = 0; +INITIALIZE_PASS_BEGIN(WriteBitcodePass, "write-bitcode", "Write Bitcode", false, +                      true) +INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass) +INITIALIZE_PASS_END(WriteBitcodePass, "write-bitcode", "Write Bitcode", false, +                    true) + +ModulePass *llvm::createBitcodeWriterPass(raw_ostream &Str, +                                          bool ShouldPreserveUseListOrder, +                                          bool EmitSummaryIndex, bool EmitModuleHash) { +  return new WriteBitcodePass(Str, ShouldPreserveUseListOrder, +                              EmitSummaryIndex, EmitModuleHash); +} + +bool llvm::isBitcodeWriterPass(Pass *P) { +  return P->getPassID() == (llvm::AnalysisID)&WriteBitcodePass::ID; +} diff --git a/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp b/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp new file mode 100644 index 000000000000..f59c906c7b75 --- /dev/null +++ b/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp @@ -0,0 +1,1041 @@ +//===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the ValueEnumerator class. +// +//===----------------------------------------------------------------------===// + +#include "ValueEnumerator.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalIFunc.h" +#include "llvm/IR/GlobalObject.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/UseListOrder.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueSymbolTable.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <iterator> +#include <tuple> +#include <utility> +#include <vector> + +using namespace llvm; + +namespace { + +struct OrderMap { +  DenseMap<const Value *, std::pair<unsigned, bool>> IDs; +  unsigned LastGlobalConstantID = 0; +  unsigned LastGlobalValueID = 0; + +  OrderMap() = default; + +  bool isGlobalConstant(unsigned ID) const { +    return ID <= LastGlobalConstantID; +  } + +  bool isGlobalValue(unsigned ID) const { +    return ID <= LastGlobalValueID && !isGlobalConstant(ID); +  } + +  unsigned size() const { return IDs.size(); } +  std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } + +  std::pair<unsigned, bool> lookup(const Value *V) const { +    return IDs.lookup(V); +  } + +  void index(const Value *V) { +    // Explicitly sequence get-size and insert-value operations to avoid UB. +    unsigned ID = IDs.size() + 1; +    IDs[V].first = ID; +  } +}; + +} // end anonymous namespace + +static void orderValue(const Value *V, OrderMap &OM) { +  if (OM.lookup(V).first) +    return; + +  if (const Constant *C = dyn_cast<Constant>(V)) +    if (C->getNumOperands() && !isa<GlobalValue>(C)) +      for (const Value *Op : C->operands()) +        if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) +          orderValue(Op, OM); + +  // Note: we cannot cache this lookup above, since inserting into the map +  // changes the map's size, and thus affects the other IDs. +  OM.index(V); +} + +static OrderMap orderModule(const Module &M) { +  // This needs to match the order used by ValueEnumerator::ValueEnumerator() +  // and ValueEnumerator::incorporateFunction(). +  OrderMap OM; + +  // In the reader, initializers of GlobalValues are set *after* all the +  // globals have been read.  Rather than awkwardly modeling this behaviour +  // directly in predictValueUseListOrderImpl(), just assign IDs to +  // initializers of GlobalValues before GlobalValues themselves to model this +  // implicitly. +  for (const GlobalVariable &G : M.globals()) +    if (G.hasInitializer()) +      if (!isa<GlobalValue>(G.getInitializer())) +        orderValue(G.getInitializer(), OM); +  for (const GlobalAlias &A : M.aliases()) +    if (!isa<GlobalValue>(A.getAliasee())) +      orderValue(A.getAliasee(), OM); +  for (const GlobalIFunc &I : M.ifuncs()) +    if (!isa<GlobalValue>(I.getResolver())) +      orderValue(I.getResolver(), OM); +  for (const Function &F : M) { +    for (const Use &U : F.operands()) +      if (!isa<GlobalValue>(U.get())) +        orderValue(U.get(), OM); +  } +  OM.LastGlobalConstantID = OM.size(); + +  // Initializers of GlobalValues are processed in +  // BitcodeReader::ResolveGlobalAndAliasInits().  Match the order there rather +  // than ValueEnumerator, and match the code in predictValueUseListOrderImpl() +  // by giving IDs in reverse order. +  // +  // Since GlobalValues never reference each other directly (just through +  // initializers), their relative IDs only matter for determining order of +  // uses in their initializers. +  for (const Function &F : M) +    orderValue(&F, OM); +  for (const GlobalAlias &A : M.aliases()) +    orderValue(&A, OM); +  for (const GlobalIFunc &I : M.ifuncs()) +    orderValue(&I, OM); +  for (const GlobalVariable &G : M.globals()) +    orderValue(&G, OM); +  OM.LastGlobalValueID = OM.size(); + +  for (const Function &F : M) { +    if (F.isDeclaration()) +      continue; +    // Here we need to match the union of ValueEnumerator::incorporateFunction() +    // and WriteFunction().  Basic blocks are implicitly declared before +    // anything else (by declaring their size). +    for (const BasicBlock &BB : F) +      orderValue(&BB, OM); +    for (const Argument &A : F.args()) +      orderValue(&A, OM); +    for (const BasicBlock &BB : F) +      for (const Instruction &I : BB) +        for (const Value *Op : I.operands()) +          if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || +              isa<InlineAsm>(*Op)) +            orderValue(Op, OM); +    for (const BasicBlock &BB : F) +      for (const Instruction &I : BB) +        orderValue(&I, OM); +  } +  return OM; +} + +static void predictValueUseListOrderImpl(const Value *V, const Function *F, +                                         unsigned ID, const OrderMap &OM, +                                         UseListOrderStack &Stack) { +  // Predict use-list order for this one. +  using Entry = std::pair<const Use *, unsigned>; +  SmallVector<Entry, 64> List; +  for (const Use &U : V->uses()) +    // Check if this user will be serialized. +    if (OM.lookup(U.getUser()).first) +      List.push_back(std::make_pair(&U, List.size())); + +  if (List.size() < 2) +    // We may have lost some users. +    return; + +  bool IsGlobalValue = OM.isGlobalValue(ID); +  llvm::sort(List, [&](const Entry &L, const Entry &R) { +    const Use *LU = L.first; +    const Use *RU = R.first; +    if (LU == RU) +      return false; + +    auto LID = OM.lookup(LU->getUser()).first; +    auto RID = OM.lookup(RU->getUser()).first; + +    // Global values are processed in reverse order. +    // +    // Moreover, initializers of GlobalValues are set *after* all the globals +    // have been read (despite having earlier IDs).  Rather than awkwardly +    // modeling this behaviour here, orderModule() has assigned IDs to +    // initializers of GlobalValues before GlobalValues themselves. +    if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID)) +      return LID < RID; + +    // If ID is 4, then expect: 7 6 5 1 2 3. +    if (LID < RID) { +      if (RID <= ID) +        if (!IsGlobalValue) // GlobalValue uses don't get reversed. +          return true; +      return false; +    } +    if (RID < LID) { +      if (LID <= ID) +        if (!IsGlobalValue) // GlobalValue uses don't get reversed. +          return false; +      return true; +    } + +    // LID and RID are equal, so we have different operands of the same user. +    // Assume operands are added in order for all instructions. +    if (LID <= ID) +      if (!IsGlobalValue) // GlobalValue uses don't get reversed. +        return LU->getOperandNo() < RU->getOperandNo(); +    return LU->getOperandNo() > RU->getOperandNo(); +  }); + +  if (std::is_sorted( +          List.begin(), List.end(), +          [](const Entry &L, const Entry &R) { return L.second < R.second; })) +    // Order is already correct. +    return; + +  // Store the shuffle. +  Stack.emplace_back(V, F, List.size()); +  assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); +  for (size_t I = 0, E = List.size(); I != E; ++I) +    Stack.back().Shuffle[I] = List[I].second; +} + +static void predictValueUseListOrder(const Value *V, const Function *F, +                                     OrderMap &OM, UseListOrderStack &Stack) { +  auto &IDPair = OM[V]; +  assert(IDPair.first && "Unmapped value"); +  if (IDPair.second) +    // Already predicted. +    return; + +  // Do the actual prediction. +  IDPair.second = true; +  if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) +    predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); + +  // Recursive descent into constants. +  if (const Constant *C = dyn_cast<Constant>(V)) +    if (C->getNumOperands()) // Visit GlobalValues. +      for (const Value *Op : C->operands()) +        if (isa<Constant>(Op)) // Visit GlobalValues. +          predictValueUseListOrder(Op, F, OM, Stack); +} + +static UseListOrderStack predictUseListOrder(const Module &M) { +  OrderMap OM = orderModule(M); + +  // Use-list orders need to be serialized after all the users have been added +  // to a value, or else the shuffles will be incomplete.  Store them per +  // function in a stack. +  // +  // Aside from function order, the order of values doesn't matter much here. +  UseListOrderStack Stack; + +  // We want to visit the functions backward now so we can list function-local +  // constants in the last Function they're used in.  Module-level constants +  // have already been visited above. +  for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) { +    const Function &F = *I; +    if (F.isDeclaration()) +      continue; +    for (const BasicBlock &BB : F) +      predictValueUseListOrder(&BB, &F, OM, Stack); +    for (const Argument &A : F.args()) +      predictValueUseListOrder(&A, &F, OM, Stack); +    for (const BasicBlock &BB : F) +      for (const Instruction &I : BB) +        for (const Value *Op : I.operands()) +          if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. +            predictValueUseListOrder(Op, &F, OM, Stack); +    for (const BasicBlock &BB : F) +      for (const Instruction &I : BB) +        predictValueUseListOrder(&I, &F, OM, Stack); +  } + +  // Visit globals last, since the module-level use-list block will be seen +  // before the function bodies are processed. +  for (const GlobalVariable &G : M.globals()) +    predictValueUseListOrder(&G, nullptr, OM, Stack); +  for (const Function &F : M) +    predictValueUseListOrder(&F, nullptr, OM, Stack); +  for (const GlobalAlias &A : M.aliases()) +    predictValueUseListOrder(&A, nullptr, OM, Stack); +  for (const GlobalIFunc &I : M.ifuncs()) +    predictValueUseListOrder(&I, nullptr, OM, Stack); +  for (const GlobalVariable &G : M.globals()) +    if (G.hasInitializer()) +      predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); +  for (const GlobalAlias &A : M.aliases()) +    predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); +  for (const GlobalIFunc &I : M.ifuncs()) +    predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack); +  for (const Function &F : M) { +    for (const Use &U : F.operands()) +      predictValueUseListOrder(U.get(), nullptr, OM, Stack); +  } + +  return Stack; +} + +static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) { +  return V.first->getType()->isIntOrIntVectorTy(); +} + +ValueEnumerator::ValueEnumerator(const Module &M, +                                 bool ShouldPreserveUseListOrder) +    : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { +  if (ShouldPreserveUseListOrder) +    UseListOrders = predictUseListOrder(M); + +  // Enumerate the global variables. +  for (const GlobalVariable &GV : M.globals()) +    EnumerateValue(&GV); + +  // Enumerate the functions. +  for (const Function & F : M) { +    EnumerateValue(&F); +    EnumerateAttributes(F.getAttributes()); +  } + +  // Enumerate the aliases. +  for (const GlobalAlias &GA : M.aliases()) +    EnumerateValue(&GA); + +  // Enumerate the ifuncs. +  for (const GlobalIFunc &GIF : M.ifuncs()) +    EnumerateValue(&GIF); + +  // Remember what is the cutoff between globalvalue's and other constants. +  unsigned FirstConstant = Values.size(); + +  // Enumerate the global variable initializers and attributes. +  for (const GlobalVariable &GV : M.globals()) { +    if (GV.hasInitializer()) +      EnumerateValue(GV.getInitializer()); +    if (GV.hasAttributes()) +      EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex)); +  } + +  // Enumerate the aliasees. +  for (const GlobalAlias &GA : M.aliases()) +    EnumerateValue(GA.getAliasee()); + +  // Enumerate the ifunc resolvers. +  for (const GlobalIFunc &GIF : M.ifuncs()) +    EnumerateValue(GIF.getResolver()); + +  // Enumerate any optional Function data. +  for (const Function &F : M) +    for (const Use &U : F.operands()) +      EnumerateValue(U.get()); + +  // Enumerate the metadata type. +  // +  // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode +  // only encodes the metadata type when it's used as a value. +  EnumerateType(Type::getMetadataTy(M.getContext())); + +  // Insert constants and metadata that are named at module level into the slot +  // pool so that the module symbol table can refer to them... +  EnumerateValueSymbolTable(M.getValueSymbolTable()); +  EnumerateNamedMetadata(M); + +  SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; +  for (const GlobalVariable &GV : M.globals()) { +    MDs.clear(); +    GV.getAllMetadata(MDs); +    for (const auto &I : MDs) +      // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer +      // to write metadata to the global variable's own metadata block +      // (PR28134). +      EnumerateMetadata(nullptr, I.second); +  } + +  // Enumerate types used by function bodies and argument lists. +  for (const Function &F : M) { +    for (const Argument &A : F.args()) +      EnumerateType(A.getType()); + +    // Enumerate metadata attached to this function. +    MDs.clear(); +    F.getAllMetadata(MDs); +    for (const auto &I : MDs) +      EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second); + +    for (const BasicBlock &BB : F) +      for (const Instruction &I : BB) { +        for (const Use &Op : I.operands()) { +          auto *MD = dyn_cast<MetadataAsValue>(&Op); +          if (!MD) { +            EnumerateOperandType(Op); +            continue; +          } + +          // Local metadata is enumerated during function-incorporation. +          if (isa<LocalAsMetadata>(MD->getMetadata())) +            continue; + +          EnumerateMetadata(&F, MD->getMetadata()); +        } +        EnumerateType(I.getType()); +        if (const auto *Call = dyn_cast<CallBase>(&I)) +          EnumerateAttributes(Call->getAttributes()); + +        // Enumerate metadata attached with this instruction. +        MDs.clear(); +        I.getAllMetadataOtherThanDebugLoc(MDs); +        for (unsigned i = 0, e = MDs.size(); i != e; ++i) +          EnumerateMetadata(&F, MDs[i].second); + +        // Don't enumerate the location directly -- it has a special record +        // type -- but enumerate its operands. +        if (DILocation *L = I.getDebugLoc()) +          for (const Metadata *Op : L->operands()) +            EnumerateMetadata(&F, Op); +      } +  } + +  // Optimize constant ordering. +  OptimizeConstants(FirstConstant, Values.size()); + +  // Organize metadata ordering. +  organizeMetadata(); +} + +unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { +  InstructionMapType::const_iterator I = InstructionMap.find(Inst); +  assert(I != InstructionMap.end() && "Instruction is not mapped!"); +  return I->second; +} + +unsigned ValueEnumerator::getComdatID(const Comdat *C) const { +  unsigned ComdatID = Comdats.idFor(C); +  assert(ComdatID && "Comdat not found!"); +  return ComdatID; +} + +void ValueEnumerator::setInstructionID(const Instruction *I) { +  InstructionMap[I] = InstructionCount++; +} + +unsigned ValueEnumerator::getValueID(const Value *V) const { +  if (auto *MD = dyn_cast<MetadataAsValue>(V)) +    return getMetadataID(MD->getMetadata()); + +  ValueMapType::const_iterator I = ValueMap.find(V); +  assert(I != ValueMap.end() && "Value not in slotcalculator!"); +  return I->second-1; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void ValueEnumerator::dump() const { +  print(dbgs(), ValueMap, "Default"); +  dbgs() << '\n'; +  print(dbgs(), MetadataMap, "MetaData"); +  dbgs() << '\n'; +} +#endif + +void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map, +                            const char *Name) const { +  OS << "Map Name: " << Name << "\n"; +  OS << "Size: " << Map.size() << "\n"; +  for (ValueMapType::const_iterator I = Map.begin(), +         E = Map.end(); I != E; ++I) { +    const Value *V = I->first; +    if (V->hasName()) +      OS << "Value: " << V->getName(); +    else +      OS << "Value: [null]\n"; +    V->print(errs()); +    errs() << '\n'; + +    OS << " Uses(" << V->getNumUses() << "):"; +    for (const Use &U : V->uses()) { +      if (&U != &*V->use_begin()) +        OS << ","; +      if(U->hasName()) +        OS << " " << U->getName(); +      else +        OS << " [null]"; + +    } +    OS <<  "\n\n"; +  } +} + +void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map, +                            const char *Name) const { +  OS << "Map Name: " << Name << "\n"; +  OS << "Size: " << Map.size() << "\n"; +  for (auto I = Map.begin(), E = Map.end(); I != E; ++I) { +    const Metadata *MD = I->first; +    OS << "Metadata: slot = " << I->second.ID << "\n"; +    OS << "Metadata: function = " << I->second.F << "\n"; +    MD->print(OS); +    OS << "\n"; +  } +} + +/// OptimizeConstants - Reorder constant pool for denser encoding. +void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { +  if (CstStart == CstEnd || CstStart+1 == CstEnd) return; + +  if (ShouldPreserveUseListOrder) +    // Optimizing constants makes the use-list order difficult to predict. +    // Disable it for now when trying to preserve the order. +    return; + +  std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd, +                   [this](const std::pair<const Value *, unsigned> &LHS, +                          const std::pair<const Value *, unsigned> &RHS) { +    // Sort by plane. +    if (LHS.first->getType() != RHS.first->getType()) +      return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType()); +    // Then by frequency. +    return LHS.second > RHS.second; +  }); + +  // Ensure that integer and vector of integer constants are at the start of the +  // constant pool.  This is important so that GEP structure indices come before +  // gep constant exprs. +  std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd, +                        isIntOrIntVectorValue); + +  // Rebuild the modified portion of ValueMap. +  for (; CstStart != CstEnd; ++CstStart) +    ValueMap[Values[CstStart].first] = CstStart+1; +} + +/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol +/// table into the values table. +void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { +  for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); +       VI != VE; ++VI) +    EnumerateValue(VI->getValue()); +} + +/// Insert all of the values referenced by named metadata in the specified +/// module. +void ValueEnumerator::EnumerateNamedMetadata(const Module &M) { +  for (const auto &I : M.named_metadata()) +    EnumerateNamedMDNode(&I); +} + +void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { +  for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) +    EnumerateMetadata(nullptr, MD->getOperand(i)); +} + +unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const { +  return F ? getValueID(F) + 1 : 0; +} + +void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) { +  EnumerateMetadata(getMetadataFunctionID(F), MD); +} + +void ValueEnumerator::EnumerateFunctionLocalMetadata( +    const Function &F, const LocalAsMetadata *Local) { +  EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local); +} + +void ValueEnumerator::dropFunctionFromMetadata( +    MetadataMapType::value_type &FirstMD) { +  SmallVector<const MDNode *, 64> Worklist; +  auto push = [&Worklist](MetadataMapType::value_type &MD) { +    auto &Entry = MD.second; + +    // Nothing to do if this metadata isn't tagged. +    if (!Entry.F) +      return; + +    // Drop the function tag. +    Entry.F = 0; + +    // If this is has an ID and is an MDNode, then its operands have entries as +    // well.  We need to drop the function from them too. +    if (Entry.ID) +      if (auto *N = dyn_cast<MDNode>(MD.first)) +        Worklist.push_back(N); +  }; +  push(FirstMD); +  while (!Worklist.empty()) +    for (const Metadata *Op : Worklist.pop_back_val()->operands()) { +      if (!Op) +        continue; +      auto MD = MetadataMap.find(Op); +      if (MD != MetadataMap.end()) +        push(*MD); +    } +} + +void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) { +  // It's vital for reader efficiency that uniqued subgraphs are done in +  // post-order; it's expensive when their operands have forward references. +  // If a distinct node is referenced from a uniqued node, it'll be delayed +  // until the uniqued subgraph has been completely traversed. +  SmallVector<const MDNode *, 32> DelayedDistinctNodes; + +  // Start by enumerating MD, and then work through its transitive operands in +  // post-order.  This requires a depth-first search. +  SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist; +  if (const MDNode *N = enumerateMetadataImpl(F, MD)) +    Worklist.push_back(std::make_pair(N, N->op_begin())); + +  while (!Worklist.empty()) { +    const MDNode *N = Worklist.back().first; + +    // Enumerate operands until we hit a new node.  We need to traverse these +    // nodes' operands before visiting the rest of N's operands. +    MDNode::op_iterator I = std::find_if( +        Worklist.back().second, N->op_end(), +        [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); }); +    if (I != N->op_end()) { +      auto *Op = cast<MDNode>(*I); +      Worklist.back().second = ++I; + +      // Delay traversing Op if it's a distinct node and N is uniqued. +      if (Op->isDistinct() && !N->isDistinct()) +        DelayedDistinctNodes.push_back(Op); +      else +        Worklist.push_back(std::make_pair(Op, Op->op_begin())); +      continue; +    } + +    // All the operands have been visited.  Now assign an ID. +    Worklist.pop_back(); +    MDs.push_back(N); +    MetadataMap[N].ID = MDs.size(); + +    // Flush out any delayed distinct nodes; these are all the distinct nodes +    // that are leaves in last uniqued subgraph. +    if (Worklist.empty() || Worklist.back().first->isDistinct()) { +      for (const MDNode *N : DelayedDistinctNodes) +        Worklist.push_back(std::make_pair(N, N->op_begin())); +      DelayedDistinctNodes.clear(); +    } +  } +} + +const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) { +  if (!MD) +    return nullptr; + +  assert( +      (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) && +      "Invalid metadata kind"); + +  auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F))); +  MDIndex &Entry = Insertion.first->second; +  if (!Insertion.second) { +    // Already mapped.  If F doesn't match the function tag, drop it. +    if (Entry.hasDifferentFunction(F)) +      dropFunctionFromMetadata(*Insertion.first); +    return nullptr; +  } + +  // Don't assign IDs to metadata nodes. +  if (auto *N = dyn_cast<MDNode>(MD)) +    return N; + +  // Save the metadata. +  MDs.push_back(MD); +  Entry.ID = MDs.size(); + +  // Enumerate the constant, if any. +  if (auto *C = dyn_cast<ConstantAsMetadata>(MD)) +    EnumerateValue(C->getValue()); + +  return nullptr; +} + +/// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata +/// information reachable from the metadata. +void ValueEnumerator::EnumerateFunctionLocalMetadata( +    unsigned F, const LocalAsMetadata *Local) { +  assert(F && "Expected a function"); + +  // Check to see if it's already in! +  MDIndex &Index = MetadataMap[Local]; +  if (Index.ID) { +    assert(Index.F == F && "Expected the same function"); +    return; +  } + +  MDs.push_back(Local); +  Index.F = F; +  Index.ID = MDs.size(); + +  EnumerateValue(Local->getValue()); +} + +static unsigned getMetadataTypeOrder(const Metadata *MD) { +  // Strings are emitted in bulk and must come first. +  if (isa<MDString>(MD)) +    return 0; + +  // ConstantAsMetadata doesn't reference anything.  We may as well shuffle it +  // to the front since we can detect it. +  auto *N = dyn_cast<MDNode>(MD); +  if (!N) +    return 1; + +  // The reader is fast forward references for distinct node operands, but slow +  // when uniqued operands are unresolved. +  return N->isDistinct() ? 2 : 3; +} + +void ValueEnumerator::organizeMetadata() { +  assert(MetadataMap.size() == MDs.size() && +         "Metadata map and vector out of sync"); + +  if (MDs.empty()) +    return; + +  // Copy out the index information from MetadataMap in order to choose a new +  // order. +  SmallVector<MDIndex, 64> Order; +  Order.reserve(MetadataMap.size()); +  for (const Metadata *MD : MDs) +    Order.push_back(MetadataMap.lookup(MD)); + +  // Partition: +  //   - by function, then +  //   - by isa<MDString> +  // and then sort by the original/current ID.  Since the IDs are guaranteed to +  // be unique, the result of std::sort will be deterministic.  There's no need +  // for std::stable_sort. +  llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) { +    return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) < +           std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID); +  }); + +  // Rebuild MDs, index the metadata ranges for each function in FunctionMDs, +  // and fix up MetadataMap. +  std::vector<const Metadata *> OldMDs; +  MDs.swap(OldMDs); +  MDs.reserve(OldMDs.size()); +  for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) { +    auto *MD = Order[I].get(OldMDs); +    MDs.push_back(MD); +    MetadataMap[MD].ID = I + 1; +    if (isa<MDString>(MD)) +      ++NumMDStrings; +  } + +  // Return early if there's nothing for the functions. +  if (MDs.size() == Order.size()) +    return; + +  // Build the function metadata ranges. +  MDRange R; +  FunctionMDs.reserve(OldMDs.size()); +  unsigned PrevF = 0; +  for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E; +       ++I) { +    unsigned F = Order[I].F; +    if (!PrevF) { +      PrevF = F; +    } else if (PrevF != F) { +      R.Last = FunctionMDs.size(); +      std::swap(R, FunctionMDInfo[PrevF]); +      R.First = FunctionMDs.size(); + +      ID = MDs.size(); +      PrevF = F; +    } + +    auto *MD = Order[I].get(OldMDs); +    FunctionMDs.push_back(MD); +    MetadataMap[MD].ID = ++ID; +    if (isa<MDString>(MD)) +      ++R.NumStrings; +  } +  R.Last = FunctionMDs.size(); +  FunctionMDInfo[PrevF] = R; +} + +void ValueEnumerator::incorporateFunctionMetadata(const Function &F) { +  NumModuleMDs = MDs.size(); + +  auto R = FunctionMDInfo.lookup(getValueID(&F) + 1); +  NumMDStrings = R.NumStrings; +  MDs.insert(MDs.end(), FunctionMDs.begin() + R.First, +             FunctionMDs.begin() + R.Last); +} + +void ValueEnumerator::EnumerateValue(const Value *V) { +  assert(!V->getType()->isVoidTy() && "Can't insert void values!"); +  assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!"); + +  // Check to see if it's already in! +  unsigned &ValueID = ValueMap[V]; +  if (ValueID) { +    // Increment use count. +    Values[ValueID-1].second++; +    return; +  } + +  if (auto *GO = dyn_cast<GlobalObject>(V)) +    if (const Comdat *C = GO->getComdat()) +      Comdats.insert(C); + +  // Enumerate the type of this value. +  EnumerateType(V->getType()); + +  if (const Constant *C = dyn_cast<Constant>(V)) { +    if (isa<GlobalValue>(C)) { +      // Initializers for globals are handled explicitly elsewhere. +    } else if (C->getNumOperands()) { +      // If a constant has operands, enumerate them.  This makes sure that if a +      // constant has uses (for example an array of const ints), that they are +      // inserted also. + +      // We prefer to enumerate them with values before we enumerate the user +      // itself.  This makes it more likely that we can avoid forward references +      // in the reader.  We know that there can be no cycles in the constants +      // graph that don't go through a global variable. +      for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); +           I != E; ++I) +        if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress. +          EnumerateValue(*I); + +      // Finally, add the value.  Doing this could make the ValueID reference be +      // dangling, don't reuse it. +      Values.push_back(std::make_pair(V, 1U)); +      ValueMap[V] = Values.size(); +      return; +    } +  } + +  // Add the value. +  Values.push_back(std::make_pair(V, 1U)); +  ValueID = Values.size(); +} + + +void ValueEnumerator::EnumerateType(Type *Ty) { +  unsigned *TypeID = &TypeMap[Ty]; + +  // We've already seen this type. +  if (*TypeID) +    return; + +  // If it is a non-anonymous struct, mark the type as being visited so that we +  // don't recursively visit it.  This is safe because we allow forward +  // references of these in the bitcode reader. +  if (StructType *STy = dyn_cast<StructType>(Ty)) +    if (!STy->isLiteral()) +      *TypeID = ~0U; + +  // Enumerate all of the subtypes before we enumerate this type.  This ensures +  // that the type will be enumerated in an order that can be directly built. +  for (Type *SubTy : Ty->subtypes()) +    EnumerateType(SubTy); + +  // Refresh the TypeID pointer in case the table rehashed. +  TypeID = &TypeMap[Ty]; + +  // Check to see if we got the pointer another way.  This can happen when +  // enumerating recursive types that hit the base case deeper than they start. +  // +  // If this is actually a struct that we are treating as forward ref'able, +  // then emit the definition now that all of its contents are available. +  if (*TypeID && *TypeID != ~0U) +    return; + +  // Add this type now that its contents are all happily enumerated. +  Types.push_back(Ty); + +  *TypeID = Types.size(); +} + +// Enumerate the types for the specified value.  If the value is a constant, +// walk through it, enumerating the types of the constant. +void ValueEnumerator::EnumerateOperandType(const Value *V) { +  EnumerateType(V->getType()); + +  assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand"); + +  const Constant *C = dyn_cast<Constant>(V); +  if (!C) +    return; + +  // If this constant is already enumerated, ignore it, we know its type must +  // be enumerated. +  if (ValueMap.count(C)) +    return; + +  // This constant may have operands, make sure to enumerate the types in +  // them. +  for (const Value *Op : C->operands()) { +    // Don't enumerate basic blocks here, this happens as operands to +    // blockaddress. +    if (isa<BasicBlock>(Op)) +      continue; + +    EnumerateOperandType(Op); +  } +} + +void ValueEnumerator::EnumerateAttributes(AttributeList PAL) { +  if (PAL.isEmpty()) return;  // null is always 0. + +  // Do a lookup. +  unsigned &Entry = AttributeListMap[PAL]; +  if (Entry == 0) { +    // Never saw this before, add it. +    AttributeLists.push_back(PAL); +    Entry = AttributeLists.size(); +  } + +  // Do lookups for all attribute groups. +  for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) { +    AttributeSet AS = PAL.getAttributes(i); +    if (!AS.hasAttributes()) +      continue; +    IndexAndAttrSet Pair = {i, AS}; +    unsigned &Entry = AttributeGroupMap[Pair]; +    if (Entry == 0) { +      AttributeGroups.push_back(Pair); +      Entry = AttributeGroups.size(); +    } +  } +} + +void ValueEnumerator::incorporateFunction(const Function &F) { +  InstructionCount = 0; +  NumModuleValues = Values.size(); + +  // Add global metadata to the function block.  This doesn't include +  // LocalAsMetadata. +  incorporateFunctionMetadata(F); + +  // Adding function arguments to the value table. +  for (const auto &I : F.args()) { +    EnumerateValue(&I); +    if (I.hasAttribute(Attribute::ByVal)) +      EnumerateType(I.getParamByValType()); +  } +  FirstFuncConstantID = Values.size(); + +  // Add all function-level constants to the value table. +  for (const BasicBlock &BB : F) { +    for (const Instruction &I : BB) +      for (const Use &OI : I.operands()) { +        if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI)) +          EnumerateValue(OI); +      } +    BasicBlocks.push_back(&BB); +    ValueMap[&BB] = BasicBlocks.size(); +  } + +  // Optimize the constant layout. +  OptimizeConstants(FirstFuncConstantID, Values.size()); + +  // Add the function's parameter attributes so they are available for use in +  // the function's instruction. +  EnumerateAttributes(F.getAttributes()); + +  FirstInstID = Values.size(); + +  SmallVector<LocalAsMetadata *, 8> FnLocalMDVector; +  // Add all of the instructions. +  for (const BasicBlock &BB : F) { +    for (const Instruction &I : BB) { +      for (const Use &OI : I.operands()) { +        if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) +          if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) +            // Enumerate metadata after the instructions they might refer to. +            FnLocalMDVector.push_back(Local); +      } + +      if (!I.getType()->isVoidTy()) +        EnumerateValue(&I); +    } +  } + +  // Add all of the function-local metadata. +  for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) { +    // At this point, every local values have been incorporated, we shouldn't +    // have a metadata operand that references a value that hasn't been seen. +    assert(ValueMap.count(FnLocalMDVector[i]->getValue()) && +           "Missing value for metadata operand"); +    EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]); +  } +} + +void ValueEnumerator::purgeFunction() { +  /// Remove purged values from the ValueMap. +  for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) +    ValueMap.erase(Values[i].first); +  for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i) +    MetadataMap.erase(MDs[i]); +  for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i) +    ValueMap.erase(BasicBlocks[i]); + +  Values.resize(NumModuleValues); +  MDs.resize(NumModuleMDs); +  BasicBlocks.clear(); +  NumMDStrings = 0; +} + +static void IncorporateFunctionInfoGlobalBBIDs(const Function *F, +                                 DenseMap<const BasicBlock*, unsigned> &IDMap) { +  unsigned Counter = 0; +  for (const BasicBlock &BB : *F) +    IDMap[&BB] = ++Counter; +} + +/// getGlobalBasicBlockID - This returns the function-specific ID for the +/// specified basic block.  This is relatively expensive information, so it +/// should only be used by rare constructs such as address-of-label. +unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { +  unsigned &Idx = GlobalBasicBlockIDs[BB]; +  if (Idx != 0) +    return Idx-1; + +  IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); +  return getGlobalBasicBlockID(BB); +} + +uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const { +  return Log2_32_Ceil(getTypes().size() + 1); +} diff --git a/llvm/lib/Bitcode/Writer/ValueEnumerator.h b/llvm/lib/Bitcode/Writer/ValueEnumerator.h new file mode 100644 index 000000000000..112f0b4a1dc4 --- /dev/null +++ b/llvm/lib/Bitcode/Writer/ValueEnumerator.h @@ -0,0 +1,303 @@ +//===- Bitcode/Writer/ValueEnumerator.h - Number values ---------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This class gives values and types Unique ID's. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_LIB_BITCODE_WRITER_VALUEENUMERATOR_H +#define LLVM_LIB_BITCODE_WRITER_VALUEENUMERATOR_H + +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/UniqueVector.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/UseListOrder.h" +#include <cassert> +#include <cstdint> +#include <utility> +#include <vector> + +namespace llvm { + +class BasicBlock; +class Comdat; +class Function; +class Instruction; +class LocalAsMetadata; +class MDNode; +class Metadata; +class Module; +class NamedMDNode; +class raw_ostream; +class Type; +class Value; +class ValueSymbolTable; + +class ValueEnumerator { +public: +  using TypeList = std::vector<Type *>; + +  // For each value, we remember its Value* and occurrence frequency. +  using ValueList = std::vector<std::pair<const Value *, unsigned>>; + +  /// Attribute groups as encoded in bitcode are almost AttributeSets, but they +  /// include the AttributeList index, so we have to track that in our map. +  using IndexAndAttrSet = std::pair<unsigned, AttributeSet>; + +  UseListOrderStack UseListOrders; + +private: +  using TypeMapType = DenseMap<Type *, unsigned>; +  TypeMapType TypeMap; +  TypeList Types; + +  using ValueMapType = DenseMap<const Value *, unsigned>; +  ValueMapType ValueMap; +  ValueList Values; + +  using ComdatSetType = UniqueVector<const Comdat *>; +  ComdatSetType Comdats; + +  std::vector<const Metadata *> MDs; +  std::vector<const Metadata *> FunctionMDs; + +  /// Index of information about a piece of metadata. +  struct MDIndex { +    unsigned F = 0;  ///< The ID of the function for this metadata, if any. +    unsigned ID = 0; ///< The implicit ID of this metadata in bitcode. + +    MDIndex() = default; +    explicit MDIndex(unsigned F) : F(F) {} + +    /// Check if this has a function tag, and it's different from NewF. +    bool hasDifferentFunction(unsigned NewF) const { return F && F != NewF; } + +    /// Fetch the MD this references out of the given metadata array. +    const Metadata *get(ArrayRef<const Metadata *> MDs) const { +      assert(ID && "Expected non-zero ID"); +      assert(ID <= MDs.size() && "Expected valid ID"); +      return MDs[ID - 1]; +    } +  }; + +  using MetadataMapType = DenseMap<const Metadata *, MDIndex>; +  MetadataMapType MetadataMap; + +  /// Range of metadata IDs, as a half-open range. +  struct MDRange { +    unsigned First = 0; +    unsigned Last = 0; + +    /// Number of strings in the prefix of the metadata range. +    unsigned NumStrings = 0; + +    MDRange() = default; +    explicit MDRange(unsigned First) : First(First) {} +  }; +  SmallDenseMap<unsigned, MDRange, 1> FunctionMDInfo; + +  bool ShouldPreserveUseListOrder; + +  using AttributeGroupMapType = DenseMap<IndexAndAttrSet, unsigned>; +  AttributeGroupMapType AttributeGroupMap; +  std::vector<IndexAndAttrSet> AttributeGroups; + +  using AttributeListMapType = DenseMap<AttributeList, unsigned>; +  AttributeListMapType AttributeListMap; +  std::vector<AttributeList> AttributeLists; + +  /// GlobalBasicBlockIDs - This map memoizes the basic block ID's referenced by +  /// the "getGlobalBasicBlockID" method. +  mutable DenseMap<const BasicBlock*, unsigned> GlobalBasicBlockIDs; + +  using InstructionMapType = DenseMap<const Instruction *, unsigned>; +  InstructionMapType InstructionMap; +  unsigned InstructionCount; + +  /// BasicBlocks - This contains all the basic blocks for the currently +  /// incorporated function.  Their reverse mapping is stored in ValueMap. +  std::vector<const BasicBlock*> BasicBlocks; + +  /// When a function is incorporated, this is the size of the Values list +  /// before incorporation. +  unsigned NumModuleValues; + +  /// When a function is incorporated, this is the size of the Metadatas list +  /// before incorporation. +  unsigned NumModuleMDs = 0; +  unsigned NumMDStrings = 0; + +  unsigned FirstFuncConstantID; +  unsigned FirstInstID; + +public: +  ValueEnumerator(const Module &M, bool ShouldPreserveUseListOrder); +  ValueEnumerator(const ValueEnumerator &) = delete; +  ValueEnumerator &operator=(const ValueEnumerator &) = delete; + +  void dump() const; +  void print(raw_ostream &OS, const ValueMapType &Map, const char *Name) const; +  void print(raw_ostream &OS, const MetadataMapType &Map, +             const char *Name) const; + +  unsigned getValueID(const Value *V) const; + +  unsigned getMetadataID(const Metadata *MD) const { +    auto ID = getMetadataOrNullID(MD); +    assert(ID != 0 && "Metadata not in slotcalculator!"); +    return ID - 1; +  } + +  unsigned getMetadataOrNullID(const Metadata *MD) const { +    return MetadataMap.lookup(MD).ID; +  } + +  unsigned numMDs() const { return MDs.size(); } + +  bool shouldPreserveUseListOrder() const { return ShouldPreserveUseListOrder; } + +  unsigned getTypeID(Type *T) const { +    TypeMapType::const_iterator I = TypeMap.find(T); +    assert(I != TypeMap.end() && "Type not in ValueEnumerator!"); +    return I->second-1; +  } + +  unsigned getInstructionID(const Instruction *I) const; +  void setInstructionID(const Instruction *I); + +  unsigned getAttributeListID(AttributeList PAL) const { +    if (PAL.isEmpty()) return 0;  // Null maps to zero. +    AttributeListMapType::const_iterator I = AttributeListMap.find(PAL); +    assert(I != AttributeListMap.end() && "Attribute not in ValueEnumerator!"); +    return I->second; +  } + +  unsigned getAttributeGroupID(IndexAndAttrSet Group) const { +    if (!Group.second.hasAttributes()) +      return 0; // Null maps to zero. +    AttributeGroupMapType::const_iterator I = AttributeGroupMap.find(Group); +    assert(I != AttributeGroupMap.end() && "Attribute not in ValueEnumerator!"); +    return I->second; +  } + +  /// getFunctionConstantRange - Return the range of values that corresponds to +  /// function-local constants. +  void getFunctionConstantRange(unsigned &Start, unsigned &End) const { +    Start = FirstFuncConstantID; +    End = FirstInstID; +  } + +  const ValueList &getValues() const { return Values; } + +  /// Check whether the current block has any metadata to emit. +  bool hasMDs() const { return NumModuleMDs < MDs.size(); } + +  /// Get the MDString metadata for this block. +  ArrayRef<const Metadata *> getMDStrings() const { +    return makeArrayRef(MDs).slice(NumModuleMDs, NumMDStrings); +  } + +  /// Get the non-MDString metadata for this block. +  ArrayRef<const Metadata *> getNonMDStrings() const { +    return makeArrayRef(MDs).slice(NumModuleMDs).slice(NumMDStrings); +  } + +  const TypeList &getTypes() const { return Types; } + +  const std::vector<const BasicBlock*> &getBasicBlocks() const { +    return BasicBlocks; +  } + +  const std::vector<AttributeList> &getAttributeLists() const { return AttributeLists; } + +  const std::vector<IndexAndAttrSet> &getAttributeGroups() const { +    return AttributeGroups; +  } + +  const ComdatSetType &getComdats() const { return Comdats; } +  unsigned getComdatID(const Comdat *C) const; + +  /// getGlobalBasicBlockID - This returns the function-specific ID for the +  /// specified basic block.  This is relatively expensive information, so it +  /// should only be used by rare constructs such as address-of-label. +  unsigned getGlobalBasicBlockID(const BasicBlock *BB) const; + +  /// incorporateFunction/purgeFunction - If you'd like to deal with a function, +  /// use these two methods to get its data into the ValueEnumerator! +  void incorporateFunction(const Function &F); + +  void purgeFunction(); +  uint64_t computeBitsRequiredForTypeIndicies() const; + +private: +  void OptimizeConstants(unsigned CstStart, unsigned CstEnd); + +  /// Reorder the reachable metadata. +  /// +  /// This is not just an optimization, but is mandatory for emitting MDString +  /// correctly. +  void organizeMetadata(); + +  /// Drop the function tag from the transitive operands of the given node. +  void dropFunctionFromMetadata(MetadataMapType::value_type &FirstMD); + +  /// Incorporate the function metadata. +  /// +  /// This should be called before enumerating LocalAsMetadata for the +  /// function. +  void incorporateFunctionMetadata(const Function &F); + +  /// Enumerate a single instance of metadata with the given function tag. +  /// +  /// If \c MD has already been enumerated, check that \c F matches its +  /// function tag.  If not, call \a dropFunctionFromMetadata(). +  /// +  /// Otherwise, mark \c MD as visited.  Assign it an ID, or just return it if +  /// it's an \a MDNode. +  const MDNode *enumerateMetadataImpl(unsigned F, const Metadata *MD); + +  unsigned getMetadataFunctionID(const Function *F) const; + +  /// Enumerate reachable metadata in (almost) post-order. +  /// +  /// Enumerate all the metadata reachable from MD.  We want to minimize the +  /// cost of reading bitcode records, and so the primary consideration is that +  /// operands of uniqued nodes are resolved before the nodes are read.  This +  /// avoids re-uniquing them on the context and factors away RAUW support. +  /// +  /// This algorithm guarantees that subgraphs of uniqued nodes are in +  /// post-order.  Distinct subgraphs reachable only from a single uniqued node +  /// will be in post-order. +  /// +  /// \note The relative order of a distinct and uniqued node is irrelevant. +  /// \a organizeMetadata() will later partition distinct nodes ahead of +  /// uniqued ones. +  ///{ +  void EnumerateMetadata(const Function *F, const Metadata *MD); +  void EnumerateMetadata(unsigned F, const Metadata *MD); +  ///} + +  void EnumerateFunctionLocalMetadata(const Function &F, +                                      const LocalAsMetadata *Local); +  void EnumerateFunctionLocalMetadata(unsigned F, const LocalAsMetadata *Local); +  void EnumerateNamedMDNode(const NamedMDNode *NMD); +  void EnumerateValue(const Value *V); +  void EnumerateType(Type *T); +  void EnumerateOperandType(const Value *V); +  void EnumerateAttributes(AttributeList PAL); + +  void EnumerateValueSymbolTable(const ValueSymbolTable &ST); +  void EnumerateNamedMetadata(const Module &M); +}; + +} // end namespace llvm + +#endif // LLVM_LIB_BITCODE_WRITER_VALUEENUMERATOR_H | 
