diff options
Diffstat (limited to 'llvm/lib/CodeGen/CallingConvLower.cpp')
| -rw-r--r-- | llvm/lib/CodeGen/CallingConvLower.cpp | 293 | 
1 files changed, 293 insertions, 0 deletions
| diff --git a/llvm/lib/CodeGen/CallingConvLower.cpp b/llvm/lib/CodeGen/CallingConvLower.cpp new file mode 100644 index 000000000000..a397039180a4 --- /dev/null +++ b/llvm/lib/CodeGen/CallingConvLower.cpp @@ -0,0 +1,293 @@ +//===-- CallingConvLower.cpp - Calling Conventions ------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the CCState class, used for lowering and implementing +// calling conventions. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/CallingConvLower.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/SaveAndRestore.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> + +using namespace llvm; + +CCState::CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &mf, +                 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C) +    : CallingConv(CC), IsVarArg(isVarArg), MF(mf), +      TRI(*MF.getSubtarget().getRegisterInfo()), Locs(locs), Context(C) { +  // No stack is used. +  StackOffset = 0; + +  clearByValRegsInfo(); +  UsedRegs.resize((TRI.getNumRegs()+31)/32); +} + +/// Allocate space on the stack large enough to pass an argument by value. +/// The size and alignment information of the argument is encoded in +/// its parameter attribute. +void CCState::HandleByVal(unsigned ValNo, MVT ValVT, MVT LocVT, +                          CCValAssign::LocInfo LocInfo, int MinSize, +                          int MinAlignment, ISD::ArgFlagsTy ArgFlags) { +  Align MinAlign(MinAlignment); +  Align Alignment(ArgFlags.getByValAlign()); +  unsigned Size  = ArgFlags.getByValSize(); +  if (MinSize > (int)Size) +    Size = MinSize; +  if (MinAlign > Alignment) +    Alignment = MinAlign; +  ensureMaxAlignment(Alignment); +  MF.getSubtarget().getTargetLowering()->HandleByVal(this, Size, +                                                     Alignment.value()); +  Size = unsigned(alignTo(Size, MinAlign)); +  unsigned Offset = AllocateStack(Size, Alignment.value()); +  addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); +} + +/// Mark a register and all of its aliases as allocated. +void CCState::MarkAllocated(unsigned Reg) { +  for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI) +    UsedRegs[*AI/32] |= 1 << (*AI&31); +} + +bool CCState::IsShadowAllocatedReg(unsigned Reg) const { +  if (!isAllocated(Reg)) +    return false; + +  for (auto const &ValAssign : Locs) { +    if (ValAssign.isRegLoc()) { +      for (MCRegAliasIterator AI(ValAssign.getLocReg(), &TRI, true); +           AI.isValid(); ++AI) { +        if (*AI == Reg) +          return false; +      } +    } +  } +  return true; +} + +/// Analyze an array of argument values, +/// incorporating info about the formals into this state. +void +CCState::AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins, +                                CCAssignFn Fn) { +  unsigned NumArgs = Ins.size(); + +  for (unsigned i = 0; i != NumArgs; ++i) { +    MVT ArgVT = Ins[i].VT; +    ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; +    if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) +      report_fatal_error("unable to allocate function argument #" + Twine(i)); +  } +} + +/// Analyze the return values of a function, returning true if the return can +/// be performed without sret-demotion and false otherwise. +bool CCState::CheckReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, +                          CCAssignFn Fn) { +  // Determine which register each value should be copied into. +  for (unsigned i = 0, e = Outs.size(); i != e; ++i) { +    MVT VT = Outs[i].VT; +    ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; +    if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this)) +      return false; +  } +  return true; +} + +/// Analyze the returned values of a return, +/// incorporating info about the result values into this state. +void CCState::AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, +                            CCAssignFn Fn) { +  // Determine which register each value should be copied into. +  for (unsigned i = 0, e = Outs.size(); i != e; ++i) { +    MVT VT = Outs[i].VT; +    ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; +    if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this)) +      report_fatal_error("unable to allocate function return #" + Twine(i)); +  } +} + +/// Analyze the outgoing arguments to a call, +/// incorporating info about the passed values into this state. +void CCState::AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs, +                                  CCAssignFn Fn) { +  unsigned NumOps = Outs.size(); +  for (unsigned i = 0; i != NumOps; ++i) { +    MVT ArgVT = Outs[i].VT; +    ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; +    if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) { +#ifndef NDEBUG +      dbgs() << "Call operand #" << i << " has unhandled type " +             << EVT(ArgVT).getEVTString() << '\n'; +#endif +      llvm_unreachable(nullptr); +    } +  } +} + +/// Same as above except it takes vectors of types and argument flags. +void CCState::AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs, +                                  SmallVectorImpl<ISD::ArgFlagsTy> &Flags, +                                  CCAssignFn Fn) { +  unsigned NumOps = ArgVTs.size(); +  for (unsigned i = 0; i != NumOps; ++i) { +    MVT ArgVT = ArgVTs[i]; +    ISD::ArgFlagsTy ArgFlags = Flags[i]; +    if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) { +#ifndef NDEBUG +      dbgs() << "Call operand #" << i << " has unhandled type " +             << EVT(ArgVT).getEVTString() << '\n'; +#endif +      llvm_unreachable(nullptr); +    } +  } +} + +/// Analyze the return values of a call, incorporating info about the passed +/// values into this state. +void CCState::AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, +                                CCAssignFn Fn) { +  for (unsigned i = 0, e = Ins.size(); i != e; ++i) { +    MVT VT = Ins[i].VT; +    ISD::ArgFlagsTy Flags = Ins[i].Flags; +    if (Fn(i, VT, VT, CCValAssign::Full, Flags, *this)) { +#ifndef NDEBUG +      dbgs() << "Call result #" << i << " has unhandled type " +             << EVT(VT).getEVTString() << '\n'; +#endif +      llvm_unreachable(nullptr); +    } +  } +} + +/// Same as above except it's specialized for calls that produce a single value. +void CCState::AnalyzeCallResult(MVT VT, CCAssignFn Fn) { +  if (Fn(0, VT, VT, CCValAssign::Full, ISD::ArgFlagsTy(), *this)) { +#ifndef NDEBUG +    dbgs() << "Call result has unhandled type " +           << EVT(VT).getEVTString() << '\n'; +#endif +    llvm_unreachable(nullptr); +  } +} + +static bool isValueTypeInRegForCC(CallingConv::ID CC, MVT VT) { +  if (VT.isVector()) +    return true; // Assume -msse-regparm might be in effect. +  if (!VT.isInteger()) +    return false; +  if (CC == CallingConv::X86_VectorCall || CC == CallingConv::X86_FastCall) +    return true; +  return false; +} + +void CCState::getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs, +                                          MVT VT, CCAssignFn Fn) { +  unsigned SavedStackOffset = StackOffset; +  Align SavedMaxStackArgAlign = MaxStackArgAlign; +  unsigned NumLocs = Locs.size(); + +  // Set the 'inreg' flag if it is used for this calling convention. +  ISD::ArgFlagsTy Flags; +  if (isValueTypeInRegForCC(CallingConv, VT)) +    Flags.setInReg(); + +  // Allocate something of this value type repeatedly until we get assigned a +  // location in memory. +  bool HaveRegParm = true; +  while (HaveRegParm) { +    if (Fn(0, VT, VT, CCValAssign::Full, Flags, *this)) { +#ifndef NDEBUG +      dbgs() << "Call has unhandled type " << EVT(VT).getEVTString() +             << " while computing remaining regparms\n"; +#endif +      llvm_unreachable(nullptr); +    } +    HaveRegParm = Locs.back().isRegLoc(); +  } + +  // Copy all the registers from the value locations we added. +  assert(NumLocs < Locs.size() && "CC assignment failed to add location"); +  for (unsigned I = NumLocs, E = Locs.size(); I != E; ++I) +    if (Locs[I].isRegLoc()) +      Regs.push_back(MCPhysReg(Locs[I].getLocReg())); + +  // Clear the assigned values and stack memory. We leave the registers marked +  // as allocated so that future queries don't return the same registers, i.e. +  // when i64 and f64 are both passed in GPRs. +  StackOffset = SavedStackOffset; +  MaxStackArgAlign = SavedMaxStackArgAlign; +  Locs.resize(NumLocs); +} + +void CCState::analyzeMustTailForwardedRegisters( +    SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes, +    CCAssignFn Fn) { +  // Oftentimes calling conventions will not user register parameters for +  // variadic functions, so we need to assume we're not variadic so that we get +  // all the registers that might be used in a non-variadic call. +  SaveAndRestore<bool> SavedVarArg(IsVarArg, false); +  SaveAndRestore<bool> SavedMustTail(AnalyzingMustTailForwardedRegs, true); + +  for (MVT RegVT : RegParmTypes) { +    SmallVector<MCPhysReg, 8> RemainingRegs; +    getRemainingRegParmsForType(RemainingRegs, RegVT, Fn); +    const TargetLowering *TL = MF.getSubtarget().getTargetLowering(); +    const TargetRegisterClass *RC = TL->getRegClassFor(RegVT); +    for (MCPhysReg PReg : RemainingRegs) { +      unsigned VReg = MF.addLiveIn(PReg, RC); +      Forwards.push_back(ForwardedRegister(VReg, PReg, RegVT)); +    } +  } +} + +bool CCState::resultsCompatible(CallingConv::ID CalleeCC, +                                CallingConv::ID CallerCC, MachineFunction &MF, +                                LLVMContext &C, +                                const SmallVectorImpl<ISD::InputArg> &Ins, +                                CCAssignFn CalleeFn, CCAssignFn CallerFn) { +  if (CalleeCC == CallerCC) +    return true; +  SmallVector<CCValAssign, 4> RVLocs1; +  CCState CCInfo1(CalleeCC, false, MF, RVLocs1, C); +  CCInfo1.AnalyzeCallResult(Ins, CalleeFn); + +  SmallVector<CCValAssign, 4> RVLocs2; +  CCState CCInfo2(CallerCC, false, MF, RVLocs2, C); +  CCInfo2.AnalyzeCallResult(Ins, CallerFn); + +  if (RVLocs1.size() != RVLocs2.size()) +    return false; +  for (unsigned I = 0, E = RVLocs1.size(); I != E; ++I) { +    const CCValAssign &Loc1 = RVLocs1[I]; +    const CCValAssign &Loc2 = RVLocs2[I]; +    if (Loc1.getLocInfo() != Loc2.getLocInfo()) +      return false; +    bool RegLoc1 = Loc1.isRegLoc(); +    if (RegLoc1 != Loc2.isRegLoc()) +      return false; +    if (RegLoc1) { +      if (Loc1.getLocReg() != Loc2.getLocReg()) +        return false; +    } else { +      if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) +        return false; +    } +  } +  return true; +} | 
