diff options
Diffstat (limited to 'llvm/lib/CodeGen/CriticalAntiDepBreaker.cpp')
| -rw-r--r-- | llvm/lib/CodeGen/CriticalAntiDepBreaker.cpp | 693 | 
1 files changed, 693 insertions, 0 deletions
| diff --git a/llvm/lib/CodeGen/CriticalAntiDepBreaker.cpp b/llvm/lib/CodeGen/CriticalAntiDepBreaker.cpp new file mode 100644 index 000000000000..4144c243a341 --- /dev/null +++ b/llvm/lib/CodeGen/CriticalAntiDepBreaker.cpp @@ -0,0 +1,693 @@ +//===- CriticalAntiDepBreaker.cpp - Anti-dep breaker ----------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the CriticalAntiDepBreaker class, which +// implements register anti-dependence breaking along a blocks +// critical path during post-RA scheduler. +// +//===----------------------------------------------------------------------===// + +#include "CriticalAntiDepBreaker.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/RegisterClassInfo.h" +#include "llvm/CodeGen/ScheduleDAG.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include <cassert> +#include <map> +#include <utility> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "post-RA-sched" + +CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi, +                                               const RegisterClassInfo &RCI) +    : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()), +      TII(MF.getSubtarget().getInstrInfo()), +      TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI), +      Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0), +      DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {} + +CriticalAntiDepBreaker::~CriticalAntiDepBreaker() = default; + +void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { +  const unsigned BBSize = BB->size(); +  for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) { +    // Clear out the register class data. +    Classes[i] = nullptr; + +    // Initialize the indices to indicate that no registers are live. +    KillIndices[i] = ~0u; +    DefIndices[i] = BBSize; +  } + +  // Clear "do not change" set. +  KeepRegs.reset(); + +  bool IsReturnBlock = BB->isReturnBlock(); + +  // Examine the live-in regs of all successors. +  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), +         SE = BB->succ_end(); SI != SE; ++SI) +    for (const auto &LI : (*SI)->liveins()) { +      for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) { +        unsigned Reg = *AI; +        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); +        KillIndices[Reg] = BBSize; +        DefIndices[Reg] = ~0u; +      } +    } + +  // Mark live-out callee-saved registers. In a return block this is +  // all callee-saved registers. In non-return this is any +  // callee-saved register that is not saved in the prolog. +  const MachineFrameInfo &MFI = MF.getFrameInfo(); +  BitVector Pristine = MFI.getPristineRegs(MF); +  for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I; +       ++I) { +    unsigned Reg = *I; +    if (!IsReturnBlock && !Pristine.test(Reg)) +      continue; +    for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) { +      unsigned Reg = *AI; +      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); +      KillIndices[Reg] = BBSize; +      DefIndices[Reg] = ~0u; +    } +  } +} + +void CriticalAntiDepBreaker::FinishBlock() { +  RegRefs.clear(); +  KeepRegs.reset(); +} + +void CriticalAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count, +                                     unsigned InsertPosIndex) { +  // Kill instructions can define registers but are really nops, and there might +  // be a real definition earlier that needs to be paired with uses dominated by +  // this kill. + +  // FIXME: It may be possible to remove the isKill() restriction once PR18663 +  // has been properly fixed. There can be value in processing kills as seen in +  // the AggressiveAntiDepBreaker class. +  if (MI.isDebugInstr() || MI.isKill()) +    return; +  assert(Count < InsertPosIndex && "Instruction index out of expected range!"); + +  for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) { +    if (KillIndices[Reg] != ~0u) { +      // If Reg is currently live, then mark that it can't be renamed as +      // we don't know the extent of its live-range anymore (now that it +      // has been scheduled). +      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); +      KillIndices[Reg] = Count; +    } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) { +      // Any register which was defined within the previous scheduling region +      // may have been rescheduled and its lifetime may overlap with registers +      // in ways not reflected in our current liveness state. For each such +      // register, adjust the liveness state to be conservatively correct. +      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); + +      // Move the def index to the end of the previous region, to reflect +      // that the def could theoretically have been scheduled at the end. +      DefIndices[Reg] = InsertPosIndex; +    } +  } + +  PrescanInstruction(MI); +  ScanInstruction(MI, Count); +} + +/// CriticalPathStep - Return the next SUnit after SU on the bottom-up +/// critical path. +static const SDep *CriticalPathStep(const SUnit *SU) { +  const SDep *Next = nullptr; +  unsigned NextDepth = 0; +  // Find the predecessor edge with the greatest depth. +  for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); +       P != PE; ++P) { +    const SUnit *PredSU = P->getSUnit(); +    unsigned PredLatency = P->getLatency(); +    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; +    // In the case of a latency tie, prefer an anti-dependency edge over +    // other types of edges. +    if (NextDepth < PredTotalLatency || +        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) { +      NextDepth = PredTotalLatency; +      Next = &*P; +    } +  } +  return Next; +} + +void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr &MI) { +  // It's not safe to change register allocation for source operands of +  // instructions that have special allocation requirements. Also assume all +  // registers used in a call must not be changed (ABI). +  // FIXME: The issue with predicated instruction is more complex. We are being +  // conservative here because the kill markers cannot be trusted after +  // if-conversion: +  // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14] +  // ... +  // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395] +  // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12] +  // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8) +  // +  // The first R6 kill is not really a kill since it's killed by a predicated +  // instruction which may not be executed. The second R6 def may or may not +  // re-define R6 so it's not safe to change it since the last R6 use cannot be +  // changed. +  bool Special = +      MI.isCall() || MI.hasExtraSrcRegAllocReq() || TII->isPredicated(MI); + +  // Scan the register operands for this instruction and update +  // Classes and RegRefs. +  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { +    MachineOperand &MO = MI.getOperand(i); +    if (!MO.isReg()) continue; +    unsigned Reg = MO.getReg(); +    if (Reg == 0) continue; +    const TargetRegisterClass *NewRC = nullptr; + +    if (i < MI.getDesc().getNumOperands()) +      NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF); + +    // For now, only allow the register to be changed if its register +    // class is consistent across all uses. +    if (!Classes[Reg] && NewRC) +      Classes[Reg] = NewRC; +    else if (!NewRC || Classes[Reg] != NewRC) +      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); + +    // Now check for aliases. +    for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) { +      // If an alias of the reg is used during the live range, give up. +      // Note that this allows us to skip checking if AntiDepReg +      // overlaps with any of the aliases, among other things. +      unsigned AliasReg = *AI; +      if (Classes[AliasReg]) { +        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); +        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); +      } +    } + +    // If we're still willing to consider this register, note the reference. +    if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1)) +      RegRefs.insert(std::make_pair(Reg, &MO)); + +    // If this reg is tied and live (Classes[Reg] is set to -1), we can't change +    // it or any of its sub or super regs. We need to use KeepRegs to mark the +    // reg because not all uses of the same reg within an instruction are +    // necessarily tagged as tied. +    // Example: an x86 "xor %eax, %eax" will have one source operand tied to the +    // def register but not the second (see PR20020 for details). +    // FIXME: can this check be relaxed to account for undef uses +    // of a register? In the above 'xor' example, the uses of %eax are undef, so +    // earlier instructions could still replace %eax even though the 'xor' +    // itself can't be changed. +    if (MI.isRegTiedToUseOperand(i) && +        Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) { +      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); +           SubRegs.isValid(); ++SubRegs) { +        KeepRegs.set(*SubRegs); +      } +      for (MCSuperRegIterator SuperRegs(Reg, TRI); +           SuperRegs.isValid(); ++SuperRegs) { +        KeepRegs.set(*SuperRegs); +      } +    } + +    if (MO.isUse() && Special) { +      if (!KeepRegs.test(Reg)) { +        for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); +             SubRegs.isValid(); ++SubRegs) +          KeepRegs.set(*SubRegs); +      } +    } +  } +} + +void CriticalAntiDepBreaker::ScanInstruction(MachineInstr &MI, unsigned Count) { +  // Update liveness. +  // Proceeding upwards, registers that are defed but not used in this +  // instruction are now dead. +  assert(!MI.isKill() && "Attempting to scan a kill instruction"); + +  if (!TII->isPredicated(MI)) { +    // Predicated defs are modeled as read + write, i.e. similar to two +    // address updates. +    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { +      MachineOperand &MO = MI.getOperand(i); + +      if (MO.isRegMask()) +        for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) +          if (MO.clobbersPhysReg(i)) { +            DefIndices[i] = Count; +            KillIndices[i] = ~0u; +            KeepRegs.reset(i); +            Classes[i] = nullptr; +            RegRefs.erase(i); +          } + +      if (!MO.isReg()) continue; +      unsigned Reg = MO.getReg(); +      if (Reg == 0) continue; +      if (!MO.isDef()) continue; + +      // Ignore two-addr defs. +      if (MI.isRegTiedToUseOperand(i)) +        continue; + +      // If we've already marked this reg as unchangeable, don't remove +      // it or any of its subregs from KeepRegs. +      bool Keep = KeepRegs.test(Reg); + +      // For the reg itself and all subregs: update the def to current; +      // reset the kill state, any restrictions, and references. +      for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) { +        unsigned SubregReg = *SRI; +        DefIndices[SubregReg] = Count; +        KillIndices[SubregReg] = ~0u; +        Classes[SubregReg] = nullptr; +        RegRefs.erase(SubregReg); +        if (!Keep) +          KeepRegs.reset(SubregReg); +      } +      // Conservatively mark super-registers as unusable. +      for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) +        Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1); +    } +  } +  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { +    MachineOperand &MO = MI.getOperand(i); +    if (!MO.isReg()) continue; +    unsigned Reg = MO.getReg(); +    if (Reg == 0) continue; +    if (!MO.isUse()) continue; + +    const TargetRegisterClass *NewRC = nullptr; +    if (i < MI.getDesc().getNumOperands()) +      NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF); + +    // For now, only allow the register to be changed if its register +    // class is consistent across all uses. +    if (!Classes[Reg] && NewRC) +      Classes[Reg] = NewRC; +    else if (!NewRC || Classes[Reg] != NewRC) +      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); + +    RegRefs.insert(std::make_pair(Reg, &MO)); + +    // It wasn't previously live but now it is, this is a kill. +    // Repeat for all aliases. +    for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { +      unsigned AliasReg = *AI; +      if (KillIndices[AliasReg] == ~0u) { +        KillIndices[AliasReg] = Count; +        DefIndices[AliasReg] = ~0u; +      } +    } +  } +} + +// Check all machine operands that reference the antidependent register and must +// be replaced by NewReg. Return true if any of their parent instructions may +// clobber the new register. +// +// Note: AntiDepReg may be referenced by a two-address instruction such that +// it's use operand is tied to a def operand. We guard against the case in which +// the two-address instruction also defines NewReg, as may happen with +// pre/postincrement loads. In this case, both the use and def operands are in +// RegRefs because the def is inserted by PrescanInstruction and not erased +// during ScanInstruction. So checking for an instruction with definitions of +// both NewReg and AntiDepReg covers it. +bool +CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin, +                                                RegRefIter RegRefEnd, +                                                unsigned NewReg) { +  for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) { +    MachineOperand *RefOper = I->second; + +    // Don't allow the instruction defining AntiDepReg to earlyclobber its +    // operands, in case they may be assigned to NewReg. In this case antidep +    // breaking must fail, but it's too rare to bother optimizing. +    if (RefOper->isDef() && RefOper->isEarlyClobber()) +      return true; + +    // Handle cases in which this instruction defines NewReg. +    MachineInstr *MI = RefOper->getParent(); +    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { +      const MachineOperand &CheckOper = MI->getOperand(i); + +      if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg)) +        return true; + +      if (!CheckOper.isReg() || !CheckOper.isDef() || +          CheckOper.getReg() != NewReg) +        continue; + +      // Don't allow the instruction to define NewReg and AntiDepReg. +      // When AntiDepReg is renamed it will be an illegal op. +      if (RefOper->isDef()) +        return true; + +      // Don't allow an instruction using AntiDepReg to be earlyclobbered by +      // NewReg. +      if (CheckOper.isEarlyClobber()) +        return true; + +      // Don't allow inline asm to define NewReg at all. Who knows what it's +      // doing with it. +      if (MI->isInlineAsm()) +        return true; +    } +  } +  return false; +} + +unsigned CriticalAntiDepBreaker:: +findSuitableFreeRegister(RegRefIter RegRefBegin, +                         RegRefIter RegRefEnd, +                         unsigned AntiDepReg, +                         unsigned LastNewReg, +                         const TargetRegisterClass *RC, +                         SmallVectorImpl<unsigned> &Forbid) { +  ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC); +  for (unsigned i = 0; i != Order.size(); ++i) { +    unsigned NewReg = Order[i]; +    // Don't replace a register with itself. +    if (NewReg == AntiDepReg) continue; +    // Don't replace a register with one that was recently used to repair +    // an anti-dependence with this AntiDepReg, because that would +    // re-introduce that anti-dependence. +    if (NewReg == LastNewReg) continue; +    // If any instructions that define AntiDepReg also define the NewReg, it's +    // not suitable.  For example, Instruction with multiple definitions can +    // result in this condition. +    if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue; +    // If NewReg is dead and NewReg's most recent def is not before +    // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg. +    assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) +           && "Kill and Def maps aren't consistent for AntiDepReg!"); +    assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) +           && "Kill and Def maps aren't consistent for NewReg!"); +    if (KillIndices[NewReg] != ~0u || +        Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) || +        KillIndices[AntiDepReg] > DefIndices[NewReg]) +      continue; +    // If NewReg overlaps any of the forbidden registers, we can't use it. +    bool Forbidden = false; +    for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(), +           ite = Forbid.end(); it != ite; ++it) +      if (TRI->regsOverlap(NewReg, *it)) { +        Forbidden = true; +        break; +      } +    if (Forbidden) continue; +    return NewReg; +  } + +  // No registers are free and available! +  return 0; +} + +unsigned CriticalAntiDepBreaker:: +BreakAntiDependencies(const std::vector<SUnit> &SUnits, +                      MachineBasicBlock::iterator Begin, +                      MachineBasicBlock::iterator End, +                      unsigned InsertPosIndex, +                      DbgValueVector &DbgValues) { +  // The code below assumes that there is at least one instruction, +  // so just duck out immediately if the block is empty. +  if (SUnits.empty()) return 0; + +  // Keep a map of the MachineInstr*'s back to the SUnit representing them. +  // This is used for updating debug information. +  // +  // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap +  DenseMap<MachineInstr *, const SUnit *> MISUnitMap; + +  // Find the node at the bottom of the critical path. +  const SUnit *Max = nullptr; +  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { +    const SUnit *SU = &SUnits[i]; +    MISUnitMap[SU->getInstr()] = SU; +    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency) +      Max = SU; +  } + +#ifndef NDEBUG +  { +    LLVM_DEBUG(dbgs() << "Critical path has total latency " +                      << (Max->getDepth() + Max->Latency) << "\n"); +    LLVM_DEBUG(dbgs() << "Available regs:"); +    for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) { +      if (KillIndices[Reg] == ~0u) +        LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI)); +    } +    LLVM_DEBUG(dbgs() << '\n'); +  } +#endif + +  // Track progress along the critical path through the SUnit graph as we walk +  // the instructions. +  const SUnit *CriticalPathSU = Max; +  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr(); + +  // Consider this pattern: +  //   A = ... +  //   ... = A +  //   A = ... +  //   ... = A +  //   A = ... +  //   ... = A +  //   A = ... +  //   ... = A +  // There are three anti-dependencies here, and without special care, +  // we'd break all of them using the same register: +  //   A = ... +  //   ... = A +  //   B = ... +  //   ... = B +  //   B = ... +  //   ... = B +  //   B = ... +  //   ... = B +  // because at each anti-dependence, B is the first register that +  // isn't A which is free.  This re-introduces anti-dependencies +  // at all but one of the original anti-dependencies that we were +  // trying to break.  To avoid this, keep track of the most recent +  // register that each register was replaced with, avoid +  // using it to repair an anti-dependence on the same register. +  // This lets us produce this: +  //   A = ... +  //   ... = A +  //   B = ... +  //   ... = B +  //   C = ... +  //   ... = C +  //   B = ... +  //   ... = B +  // This still has an anti-dependence on B, but at least it isn't on the +  // original critical path. +  // +  // TODO: If we tracked more than one register here, we could potentially +  // fix that remaining critical edge too. This is a little more involved, +  // because unlike the most recent register, less recent registers should +  // still be considered, though only if no other registers are available. +  std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0); + +  // Attempt to break anti-dependence edges on the critical path. Walk the +  // instructions from the bottom up, tracking information about liveness +  // as we go to help determine which registers are available. +  unsigned Broken = 0; +  unsigned Count = InsertPosIndex - 1; +  for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) { +    MachineInstr &MI = *--I; +    // Kill instructions can define registers but are really nops, and there +    // might be a real definition earlier that needs to be paired with uses +    // dominated by this kill. + +    // FIXME: It may be possible to remove the isKill() restriction once PR18663 +    // has been properly fixed. There can be value in processing kills as seen +    // in the AggressiveAntiDepBreaker class. +    if (MI.isDebugInstr() || MI.isKill()) +      continue; + +    // Check if this instruction has a dependence on the critical path that +    // is an anti-dependence that we may be able to break. If it is, set +    // AntiDepReg to the non-zero register associated with the anti-dependence. +    // +    // We limit our attention to the critical path as a heuristic to avoid +    // breaking anti-dependence edges that aren't going to significantly +    // impact the overall schedule. There are a limited number of registers +    // and we want to save them for the important edges. +    // +    // TODO: Instructions with multiple defs could have multiple +    // anti-dependencies. The current code here only knows how to break one +    // edge per instruction. Note that we'd have to be able to break all of +    // the anti-dependencies in an instruction in order to be effective. +    unsigned AntiDepReg = 0; +    if (&MI == CriticalPathMI) { +      if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) { +        const SUnit *NextSU = Edge->getSUnit(); + +        // Only consider anti-dependence edges. +        if (Edge->getKind() == SDep::Anti) { +          AntiDepReg = Edge->getReg(); +          assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); +          if (!MRI.isAllocatable(AntiDepReg)) +            // Don't break anti-dependencies on non-allocatable registers. +            AntiDepReg = 0; +          else if (KeepRegs.test(AntiDepReg)) +            // Don't break anti-dependencies if a use down below requires +            // this exact register. +            AntiDepReg = 0; +          else { +            // If the SUnit has other dependencies on the SUnit that it +            // anti-depends on, don't bother breaking the anti-dependency +            // since those edges would prevent such units from being +            // scheduled past each other regardless. +            // +            // Also, if there are dependencies on other SUnits with the +            // same register as the anti-dependency, don't attempt to +            // break it. +            for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(), +                 PE = CriticalPathSU->Preds.end(); P != PE; ++P) +              if (P->getSUnit() == NextSU ? +                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) : +                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) { +                AntiDepReg = 0; +                break; +              } +          } +        } +        CriticalPathSU = NextSU; +        CriticalPathMI = CriticalPathSU->getInstr(); +      } else { +        // We've reached the end of the critical path. +        CriticalPathSU = nullptr; +        CriticalPathMI = nullptr; +      } +    } + +    PrescanInstruction(MI); + +    SmallVector<unsigned, 2> ForbidRegs; + +    // If MI's defs have a special allocation requirement, don't allow +    // any def registers to be changed. Also assume all registers +    // defined in a call must not be changed (ABI). +    if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI)) +      // If this instruction's defs have special allocation requirement, don't +      // break this anti-dependency. +      AntiDepReg = 0; +    else if (AntiDepReg) { +      // If this instruction has a use of AntiDepReg, breaking it +      // is invalid.  If the instruction defines other registers, +      // save a list of them so that we don't pick a new register +      // that overlaps any of them. +      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { +        MachineOperand &MO = MI.getOperand(i); +        if (!MO.isReg()) continue; +        unsigned Reg = MO.getReg(); +        if (Reg == 0) continue; +        if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) { +          AntiDepReg = 0; +          break; +        } +        if (MO.isDef() && Reg != AntiDepReg) +          ForbidRegs.push_back(Reg); +      } +    } + +    // Determine AntiDepReg's register class, if it is live and is +    // consistently used within a single class. +    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] +                                                    : nullptr; +    assert((AntiDepReg == 0 || RC != nullptr) && +           "Register should be live if it's causing an anti-dependence!"); +    if (RC == reinterpret_cast<TargetRegisterClass *>(-1)) +      AntiDepReg = 0; + +    // Look for a suitable register to use to break the anti-dependence. +    // +    // TODO: Instead of picking the first free register, consider which might +    // be the best. +    if (AntiDepReg != 0) { +      std::pair<std::multimap<unsigned, MachineOperand *>::iterator, +                std::multimap<unsigned, MachineOperand *>::iterator> +        Range = RegRefs.equal_range(AntiDepReg); +      if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second, +                                                     AntiDepReg, +                                                     LastNewReg[AntiDepReg], +                                                     RC, ForbidRegs)) { +        LLVM_DEBUG(dbgs() << "Breaking anti-dependence edge on " +                          << printReg(AntiDepReg, TRI) << " with " +                          << RegRefs.count(AntiDepReg) << " references" +                          << " using " << printReg(NewReg, TRI) << "!\n"); + +        // Update the references to the old register to refer to the new +        // register. +        for (std::multimap<unsigned, MachineOperand *>::iterator +             Q = Range.first, QE = Range.second; Q != QE; ++Q) { +          Q->second->setReg(NewReg); +          // If the SU for the instruction being updated has debug information +          // related to the anti-dependency register, make sure to update that +          // as well. +          const SUnit *SU = MISUnitMap[Q->second->getParent()]; +          if (!SU) continue; +          UpdateDbgValues(DbgValues, Q->second->getParent(), +                          AntiDepReg, NewReg); +        } + +        // We just went back in time and modified history; the +        // liveness information for the anti-dependence reg is now +        // inconsistent. Set the state as if it were dead. +        Classes[NewReg] = Classes[AntiDepReg]; +        DefIndices[NewReg] = DefIndices[AntiDepReg]; +        KillIndices[NewReg] = KillIndices[AntiDepReg]; +        assert(((KillIndices[NewReg] == ~0u) != +                (DefIndices[NewReg] == ~0u)) && +             "Kill and Def maps aren't consistent for NewReg!"); + +        Classes[AntiDepReg] = nullptr; +        DefIndices[AntiDepReg] = KillIndices[AntiDepReg]; +        KillIndices[AntiDepReg] = ~0u; +        assert(((KillIndices[AntiDepReg] == ~0u) != +                (DefIndices[AntiDepReg] == ~0u)) && +             "Kill and Def maps aren't consistent for AntiDepReg!"); + +        RegRefs.erase(AntiDepReg); +        LastNewReg[AntiDepReg] = NewReg; +        ++Broken; +      } +    } + +    ScanInstruction(MI, Count); +  } + +  return Broken; +} | 
