diff options
Diffstat (limited to 'llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp')
| -rw-r--r-- | llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp | 2400 | 
1 files changed, 2400 insertions, 0 deletions
| diff --git a/llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp b/llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp new file mode 100644 index 000000000000..45cef4aca888 --- /dev/null +++ b/llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp @@ -0,0 +1,2400 @@ +//===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +/// \file +/// This file implements the IRTranslator class. +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/GlobalISel/IRTranslator.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/ScopeExit.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Analysis/BranchProbabilityInfo.h" +#include "llvm/Analysis/OptimizationRemarkEmitter.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/CodeGen/Analysis.h" +#include "llvm/CodeGen/FunctionLoweringInfo.h" +#include "llvm/CodeGen/GlobalISel/CallLowering.h" +#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" +#include "llvm/CodeGen/LowLevelType.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/StackProtector.h" +#include "llvm/CodeGen/TargetFrameLowering.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetPassConfig.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfo.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/MC/MCContext.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CodeGen.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/LowLevelTypeImpl.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetIntrinsicInfo.h" +#include "llvm/Target/TargetMachine.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <iterator> +#include <string> +#include <utility> +#include <vector> + +#define DEBUG_TYPE "irtranslator" + +using namespace llvm; + +static cl::opt<bool> +    EnableCSEInIRTranslator("enable-cse-in-irtranslator", +                            cl::desc("Should enable CSE in irtranslator"), +                            cl::Optional, cl::init(false)); +char IRTranslator::ID = 0; + +INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", +                false, false) +INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) +INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) +INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", +                false, false) + +static void reportTranslationError(MachineFunction &MF, +                                   const TargetPassConfig &TPC, +                                   OptimizationRemarkEmitter &ORE, +                                   OptimizationRemarkMissed &R) { +  MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); + +  // Print the function name explicitly if we don't have a debug location (which +  // makes the diagnostic less useful) or if we're going to emit a raw error. +  if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) +    R << (" (in function: " + MF.getName() + ")").str(); + +  if (TPC.isGlobalISelAbortEnabled()) +    report_fatal_error(R.getMsg()); +  else +    ORE.emit(R); +} + +IRTranslator::IRTranslator() : MachineFunctionPass(ID) { } + +#ifndef NDEBUG +namespace { +/// Verify that every instruction created has the same DILocation as the +/// instruction being translated. +class DILocationVerifier : public GISelChangeObserver { +  const Instruction *CurrInst = nullptr; + +public: +  DILocationVerifier() = default; +  ~DILocationVerifier() = default; + +  const Instruction *getCurrentInst() const { return CurrInst; } +  void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } + +  void erasingInstr(MachineInstr &MI) override {} +  void changingInstr(MachineInstr &MI) override {} +  void changedInstr(MachineInstr &MI) override {} + +  void createdInstr(MachineInstr &MI) override { +    assert(getCurrentInst() && "Inserted instruction without a current MI"); + +    // Only print the check message if we're actually checking it. +#ifndef NDEBUG +    LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst +                      << " was copied to " << MI); +#endif +    // We allow insts in the entry block to have a debug loc line of 0 because +    // they could have originated from constants, and we don't want a jumpy +    // debug experience. +    assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || +            MI.getDebugLoc().getLine() == 0) && +           "Line info was not transferred to all instructions"); +  } +}; +} // namespace +#endif // ifndef NDEBUG + + +void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { +  AU.addRequired<StackProtector>(); +  AU.addRequired<TargetPassConfig>(); +  AU.addRequired<GISelCSEAnalysisWrapperPass>(); +  getSelectionDAGFallbackAnalysisUsage(AU); +  MachineFunctionPass::getAnalysisUsage(AU); +} + +IRTranslator::ValueToVRegInfo::VRegListT & +IRTranslator::allocateVRegs(const Value &Val) { +  assert(!VMap.contains(Val) && "Value already allocated in VMap"); +  auto *Regs = VMap.getVRegs(Val); +  auto *Offsets = VMap.getOffsets(Val); +  SmallVector<LLT, 4> SplitTys; +  computeValueLLTs(*DL, *Val.getType(), SplitTys, +                   Offsets->empty() ? Offsets : nullptr); +  for (unsigned i = 0; i < SplitTys.size(); ++i) +    Regs->push_back(0); +  return *Regs; +} + +ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { +  auto VRegsIt = VMap.findVRegs(Val); +  if (VRegsIt != VMap.vregs_end()) +    return *VRegsIt->second; + +  if (Val.getType()->isVoidTy()) +    return *VMap.getVRegs(Val); + +  // Create entry for this type. +  auto *VRegs = VMap.getVRegs(Val); +  auto *Offsets = VMap.getOffsets(Val); + +  assert(Val.getType()->isSized() && +         "Don't know how to create an empty vreg"); + +  SmallVector<LLT, 4> SplitTys; +  computeValueLLTs(*DL, *Val.getType(), SplitTys, +                   Offsets->empty() ? Offsets : nullptr); + +  if (!isa<Constant>(Val)) { +    for (auto Ty : SplitTys) +      VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); +    return *VRegs; +  } + +  if (Val.getType()->isAggregateType()) { +    // UndefValue, ConstantAggregateZero +    auto &C = cast<Constant>(Val); +    unsigned Idx = 0; +    while (auto Elt = C.getAggregateElement(Idx++)) { +      auto EltRegs = getOrCreateVRegs(*Elt); +      llvm::copy(EltRegs, std::back_inserter(*VRegs)); +    } +  } else { +    assert(SplitTys.size() == 1 && "unexpectedly split LLT"); +    VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); +    bool Success = translate(cast<Constant>(Val), VRegs->front()); +    if (!Success) { +      OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", +                                 MF->getFunction().getSubprogram(), +                                 &MF->getFunction().getEntryBlock()); +      R << "unable to translate constant: " << ore::NV("Type", Val.getType()); +      reportTranslationError(*MF, *TPC, *ORE, R); +      return *VRegs; +    } +  } + +  return *VRegs; +} + +int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { +  if (FrameIndices.find(&AI) != FrameIndices.end()) +    return FrameIndices[&AI]; + +  unsigned ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); +  unsigned Size = +      ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); + +  // Always allocate at least one byte. +  Size = std::max(Size, 1u); + +  unsigned Alignment = AI.getAlignment(); +  if (!Alignment) +    Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); + +  int &FI = FrameIndices[&AI]; +  FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); +  return FI; +} + +unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { +  unsigned Alignment = 0; +  Type *ValTy = nullptr; +  if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { +    Alignment = SI->getAlignment(); +    ValTy = SI->getValueOperand()->getType(); +  } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { +    Alignment = LI->getAlignment(); +    ValTy = LI->getType(); +  } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { +    // TODO(PR27168): This instruction has no alignment attribute, but unlike +    // the default alignment for load/store, the default here is to assume +    // it has NATURAL alignment, not DataLayout-specified alignment. +    const DataLayout &DL = AI->getModule()->getDataLayout(); +    Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); +    ValTy = AI->getCompareOperand()->getType(); +  } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { +    // TODO(PR27168): This instruction has no alignment attribute, but unlike +    // the default alignment for load/store, the default here is to assume +    // it has NATURAL alignment, not DataLayout-specified alignment. +    const DataLayout &DL = AI->getModule()->getDataLayout(); +    Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType()); +    ValTy = AI->getType(); +  } else { +    OptimizationRemarkMissed R("gisel-irtranslator", "", &I); +    R << "unable to translate memop: " << ore::NV("Opcode", &I); +    reportTranslationError(*MF, *TPC, *ORE, R); +    return 1; +  } + +  return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); +} + +MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { +  MachineBasicBlock *&MBB = BBToMBB[&BB]; +  assert(MBB && "BasicBlock was not encountered before"); +  return *MBB; +} + +void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { +  assert(NewPred && "new predecessor must be a real MachineBasicBlock"); +  MachinePreds[Edge].push_back(NewPred); +} + +bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, +                                     MachineIRBuilder &MIRBuilder) { +  // Get or create a virtual register for each value. +  // Unless the value is a Constant => loadimm cst? +  // or inline constant each time? +  // Creation of a virtual register needs to have a size. +  Register Op0 = getOrCreateVReg(*U.getOperand(0)); +  Register Op1 = getOrCreateVReg(*U.getOperand(1)); +  Register Res = getOrCreateVReg(U); +  uint16_t Flags = 0; +  if (isa<Instruction>(U)) { +    const Instruction &I = cast<Instruction>(U); +    Flags = MachineInstr::copyFlagsFromInstruction(I); +  } + +  MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); +  return true; +} + +bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { +  // -0.0 - X --> G_FNEG +  if (isa<Constant>(U.getOperand(0)) && +      U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { +    Register Op1 = getOrCreateVReg(*U.getOperand(1)); +    Register Res = getOrCreateVReg(U); +    uint16_t Flags = 0; +    if (isa<Instruction>(U)) { +      const Instruction &I = cast<Instruction>(U); +      Flags = MachineInstr::copyFlagsFromInstruction(I); +    } +    // Negate the last operand of the FSUB +    MIRBuilder.buildInstr(TargetOpcode::G_FNEG, {Res}, {Op1}, Flags); +    return true; +  } +  return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); +} + +bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { +  Register Op0 = getOrCreateVReg(*U.getOperand(0)); +  Register Res = getOrCreateVReg(U); +  uint16_t Flags = 0; +  if (isa<Instruction>(U)) { +    const Instruction &I = cast<Instruction>(U); +    Flags = MachineInstr::copyFlagsFromInstruction(I); +  } +  MIRBuilder.buildInstr(TargetOpcode::G_FNEG, {Res}, {Op0}, Flags); +  return true; +} + +bool IRTranslator::translateCompare(const User &U, +                                    MachineIRBuilder &MIRBuilder) { +  auto *CI = dyn_cast<CmpInst>(&U); +  Register Op0 = getOrCreateVReg(*U.getOperand(0)); +  Register Op1 = getOrCreateVReg(*U.getOperand(1)); +  Register Res = getOrCreateVReg(U); +  CmpInst::Predicate Pred = +      CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( +                                    cast<ConstantExpr>(U).getPredicate()); +  if (CmpInst::isIntPredicate(Pred)) +    MIRBuilder.buildICmp(Pred, Res, Op0, Op1); +  else if (Pred == CmpInst::FCMP_FALSE) +    MIRBuilder.buildCopy( +        Res, getOrCreateVReg(*Constant::getNullValue(U.getType()))); +  else if (Pred == CmpInst::FCMP_TRUE) +    MIRBuilder.buildCopy( +        Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType()))); +  else { +    assert(CI && "Instruction should be CmpInst"); +    MIRBuilder.buildInstr(TargetOpcode::G_FCMP, {Res}, {Pred, Op0, Op1}, +                          MachineInstr::copyFlagsFromInstruction(*CI)); +  } + +  return true; +} + +bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { +  const ReturnInst &RI = cast<ReturnInst>(U); +  const Value *Ret = RI.getReturnValue(); +  if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) +    Ret = nullptr; + +  ArrayRef<Register> VRegs; +  if (Ret) +    VRegs = getOrCreateVRegs(*Ret); + +  Register SwiftErrorVReg = 0; +  if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { +    SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( +        &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); +  } + +  // The target may mess up with the insertion point, but +  // this is not important as a return is the last instruction +  // of the block anyway. +  return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg); +} + +bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { +  const BranchInst &BrInst = cast<BranchInst>(U); +  unsigned Succ = 0; +  if (!BrInst.isUnconditional()) { +    // We want a G_BRCOND to the true BB followed by an unconditional branch. +    Register Tst = getOrCreateVReg(*BrInst.getCondition()); +    const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); +    MachineBasicBlock &TrueBB = getMBB(TrueTgt); +    MIRBuilder.buildBrCond(Tst, TrueBB); +  } + +  const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); +  MachineBasicBlock &TgtBB = getMBB(BrTgt); +  MachineBasicBlock &CurBB = MIRBuilder.getMBB(); + +  // If the unconditional target is the layout successor, fallthrough. +  if (!CurBB.isLayoutSuccessor(&TgtBB)) +    MIRBuilder.buildBr(TgtBB); + +  // Link successors. +  for (const BasicBlock *Succ : successors(&BrInst)) +    CurBB.addSuccessor(&getMBB(*Succ)); +  return true; +} + +void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, +                                        MachineBasicBlock *Dst, +                                        BranchProbability Prob) { +  if (!FuncInfo.BPI) { +    Src->addSuccessorWithoutProb(Dst); +    return; +  } +  if (Prob.isUnknown()) +    Prob = getEdgeProbability(Src, Dst); +  Src->addSuccessor(Dst, Prob); +} + +BranchProbability +IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, +                                 const MachineBasicBlock *Dst) const { +  const BasicBlock *SrcBB = Src->getBasicBlock(); +  const BasicBlock *DstBB = Dst->getBasicBlock(); +  if (!FuncInfo.BPI) { +    // If BPI is not available, set the default probability as 1 / N, where N is +    // the number of successors. +    auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); +    return BranchProbability(1, SuccSize); +  } +  return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); +} + +bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { +  using namespace SwitchCG; +  // Extract cases from the switch. +  const SwitchInst &SI = cast<SwitchInst>(U); +  BranchProbabilityInfo *BPI = FuncInfo.BPI; +  CaseClusterVector Clusters; +  Clusters.reserve(SI.getNumCases()); +  for (auto &I : SI.cases()) { +    MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); +    assert(Succ && "Could not find successor mbb in mapping"); +    const ConstantInt *CaseVal = I.getCaseValue(); +    BranchProbability Prob = +        BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) +            : BranchProbability(1, SI.getNumCases() + 1); +    Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); +  } + +  MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); + +  // Cluster adjacent cases with the same destination. We do this at all +  // optimization levels because it's cheap to do and will make codegen faster +  // if there are many clusters. +  sortAndRangeify(Clusters); + +  MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); + +  // If there is only the default destination, jump there directly. +  if (Clusters.empty()) { +    SwitchMBB->addSuccessor(DefaultMBB); +    if (DefaultMBB != SwitchMBB->getNextNode()) +      MIB.buildBr(*DefaultMBB); +    return true; +  } + +  SL->findJumpTables(Clusters, &SI, DefaultMBB); + +  LLVM_DEBUG({ +    dbgs() << "Case clusters: "; +    for (const CaseCluster &C : Clusters) { +      if (C.Kind == CC_JumpTable) +        dbgs() << "JT:"; +      if (C.Kind == CC_BitTests) +        dbgs() << "BT:"; + +      C.Low->getValue().print(dbgs(), true); +      if (C.Low != C.High) { +        dbgs() << '-'; +        C.High->getValue().print(dbgs(), true); +      } +      dbgs() << ' '; +    } +    dbgs() << '\n'; +  }); + +  assert(!Clusters.empty()); +  SwitchWorkList WorkList; +  CaseClusterIt First = Clusters.begin(); +  CaseClusterIt Last = Clusters.end() - 1; +  auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); +  WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); + +  // FIXME: At the moment we don't do any splitting optimizations here like +  // SelectionDAG does, so this worklist only has one entry. +  while (!WorkList.empty()) { +    SwitchWorkListItem W = WorkList.back(); +    WorkList.pop_back(); +    if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) +      return false; +  } +  return true; +} + +void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, +                                 MachineBasicBlock *MBB) { +  // Emit the code for the jump table +  assert(JT.Reg != -1U && "Should lower JT Header first!"); +  MachineIRBuilder MIB(*MBB->getParent()); +  MIB.setMBB(*MBB); +  MIB.setDebugLoc(CurBuilder->getDebugLoc()); + +  Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); +  const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); + +  auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); +  MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); +} + +bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, +                                       SwitchCG::JumpTableHeader &JTH, +                                       MachineBasicBlock *HeaderBB) { +  MachineIRBuilder MIB(*HeaderBB->getParent()); +  MIB.setMBB(*HeaderBB); +  MIB.setDebugLoc(CurBuilder->getDebugLoc()); + +  const Value &SValue = *JTH.SValue; +  // Subtract the lowest switch case value from the value being switched on. +  const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); +  Register SwitchOpReg = getOrCreateVReg(SValue); +  auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); +  auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); + +  // This value may be smaller or larger than the target's pointer type, and +  // therefore require extension or truncating. +  Type *PtrIRTy = SValue.getType()->getPointerTo(); +  const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); +  Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); + +  JT.Reg = Sub.getReg(0); + +  if (JTH.OmitRangeCheck) { +    if (JT.MBB != HeaderBB->getNextNode()) +      MIB.buildBr(*JT.MBB); +    return true; +  } + +  // Emit the range check for the jump table, and branch to the default block +  // for the switch statement if the value being switched on exceeds the +  // largest case in the switch. +  auto Cst = getOrCreateVReg( +      *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); +  Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); +  auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); + +  auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); + +  // Avoid emitting unnecessary branches to the next block. +  if (JT.MBB != HeaderBB->getNextNode()) +    BrCond = MIB.buildBr(*JT.MBB); +  return true; +} + +void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, +                                  MachineBasicBlock *SwitchBB, +                                  MachineIRBuilder &MIB) { +  Register CondLHS = getOrCreateVReg(*CB.CmpLHS); +  Register Cond; +  DebugLoc OldDbgLoc = MIB.getDebugLoc(); +  MIB.setDebugLoc(CB.DbgLoc); +  MIB.setMBB(*CB.ThisBB); + +  if (CB.PredInfo.NoCmp) { +    // Branch or fall through to TrueBB. +    addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); +    addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, +                      CB.ThisBB); +    CB.ThisBB->normalizeSuccProbs(); +    if (CB.TrueBB != CB.ThisBB->getNextNode()) +      MIB.buildBr(*CB.TrueBB); +    MIB.setDebugLoc(OldDbgLoc); +    return; +  } + +  const LLT i1Ty = LLT::scalar(1); +  // Build the compare. +  if (!CB.CmpMHS) { +    Register CondRHS = getOrCreateVReg(*CB.CmpRHS); +    Cond = MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); +  } else { +    assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE && +           "Can only handle SLE ranges"); + +    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); +    const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); + +    Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); +    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { +      Register CondRHS = getOrCreateVReg(*CB.CmpRHS); +      Cond = +          MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0); +    } else { +      const LLT &CmpTy = MRI->getType(CmpOpReg); +      auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); +      auto Diff = MIB.buildConstant(CmpTy, High - Low); +      Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); +    } +  } + +  // Update successor info +  addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); + +  addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, +                    CB.ThisBB); + +  // TrueBB and FalseBB are always different unless the incoming IR is +  // degenerate. This only happens when running llc on weird IR. +  if (CB.TrueBB != CB.FalseBB) +    addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); +  CB.ThisBB->normalizeSuccProbs(); + +  //  if (SwitchBB->getBasicBlock() != CB.FalseBB->getBasicBlock()) +    addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, +                      CB.ThisBB); + +  // If the lhs block is the next block, invert the condition so that we can +  // fall through to the lhs instead of the rhs block. +  if (CB.TrueBB == CB.ThisBB->getNextNode()) { +    std::swap(CB.TrueBB, CB.FalseBB); +    auto True = MIB.buildConstant(i1Ty, 1); +    Cond = MIB.buildInstr(TargetOpcode::G_XOR, {i1Ty}, {Cond, True}, None) +               .getReg(0); +  } + +  MIB.buildBrCond(Cond, *CB.TrueBB); +  MIB.buildBr(*CB.FalseBB); +  MIB.setDebugLoc(OldDbgLoc); +} + +bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, +                                          MachineBasicBlock *SwitchMBB, +                                          MachineBasicBlock *CurMBB, +                                          MachineBasicBlock *DefaultMBB, +                                          MachineIRBuilder &MIB, +                                          MachineFunction::iterator BBI, +                                          BranchProbability UnhandledProbs, +                                          SwitchCG::CaseClusterIt I, +                                          MachineBasicBlock *Fallthrough, +                                          bool FallthroughUnreachable) { +  using namespace SwitchCG; +  MachineFunction *CurMF = SwitchMBB->getParent(); +  // FIXME: Optimize away range check based on pivot comparisons. +  JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; +  SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; +  BranchProbability DefaultProb = W.DefaultProb; + +  // The jump block hasn't been inserted yet; insert it here. +  MachineBasicBlock *JumpMBB = JT->MBB; +  CurMF->insert(BBI, JumpMBB); + +  // Since the jump table block is separate from the switch block, we need +  // to keep track of it as a machine predecessor to the default block, +  // otherwise we lose the phi edges. +  addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, +                    CurMBB); +  addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, +                    JumpMBB); + +  auto JumpProb = I->Prob; +  auto FallthroughProb = UnhandledProbs; + +  // If the default statement is a target of the jump table, we evenly +  // distribute the default probability to successors of CurMBB. Also +  // update the probability on the edge from JumpMBB to Fallthrough. +  for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), +                                        SE = JumpMBB->succ_end(); +       SI != SE; ++SI) { +    if (*SI == DefaultMBB) { +      JumpProb += DefaultProb / 2; +      FallthroughProb -= DefaultProb / 2; +      JumpMBB->setSuccProbability(SI, DefaultProb / 2); +      JumpMBB->normalizeSuccProbs(); +    } else { +      // Also record edges from the jump table block to it's successors. +      addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, +                        JumpMBB); +    } +  } + +  // Skip the range check if the fallthrough block is unreachable. +  if (FallthroughUnreachable) +    JTH->OmitRangeCheck = true; + +  if (!JTH->OmitRangeCheck) +    addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); +  addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); +  CurMBB->normalizeSuccProbs(); + +  // The jump table header will be inserted in our current block, do the +  // range check, and fall through to our fallthrough block. +  JTH->HeaderBB = CurMBB; +  JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. + +  // If we're in the right place, emit the jump table header right now. +  if (CurMBB == SwitchMBB) { +    if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) +      return false; +    JTH->Emitted = true; +  } +  return true; +} +bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, +                                            Value *Cond, +                                            MachineBasicBlock *Fallthrough, +                                            bool FallthroughUnreachable, +                                            BranchProbability UnhandledProbs, +                                            MachineBasicBlock *CurMBB, +                                            MachineIRBuilder &MIB, +                                            MachineBasicBlock *SwitchMBB) { +  using namespace SwitchCG; +  const Value *RHS, *LHS, *MHS; +  CmpInst::Predicate Pred; +  if (I->Low == I->High) { +    // Check Cond == I->Low. +    Pred = CmpInst::ICMP_EQ; +    LHS = Cond; +    RHS = I->Low; +    MHS = nullptr; +  } else { +    // Check I->Low <= Cond <= I->High. +    Pred = CmpInst::ICMP_SLE; +    LHS = I->Low; +    MHS = Cond; +    RHS = I->High; +  } + +  // If Fallthrough is unreachable, fold away the comparison. +  // The false probability is the sum of all unhandled cases. +  CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, +               CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); + +  emitSwitchCase(CB, SwitchMBB, MIB); +  return true; +} + +bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, +                                       Value *Cond, +                                       MachineBasicBlock *SwitchMBB, +                                       MachineBasicBlock *DefaultMBB, +                                       MachineIRBuilder &MIB) { +  using namespace SwitchCG; +  MachineFunction *CurMF = FuncInfo.MF; +  MachineBasicBlock *NextMBB = nullptr; +  MachineFunction::iterator BBI(W.MBB); +  if (++BBI != FuncInfo.MF->end()) +    NextMBB = &*BBI; + +  if (EnableOpts) { +    // Here, we order cases by probability so the most likely case will be +    // checked first. However, two clusters can have the same probability in +    // which case their relative ordering is non-deterministic. So we use Low +    // as a tie-breaker as clusters are guaranteed to never overlap. +    llvm::sort(W.FirstCluster, W.LastCluster + 1, +               [](const CaseCluster &a, const CaseCluster &b) { +                 return a.Prob != b.Prob +                            ? a.Prob > b.Prob +                            : a.Low->getValue().slt(b.Low->getValue()); +               }); + +    // Rearrange the case blocks so that the last one falls through if possible +    // without changing the order of probabilities. +    for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { +      --I; +      if (I->Prob > W.LastCluster->Prob) +        break; +      if (I->Kind == CC_Range && I->MBB == NextMBB) { +        std::swap(*I, *W.LastCluster); +        break; +      } +    } +  } + +  // Compute total probability. +  BranchProbability DefaultProb = W.DefaultProb; +  BranchProbability UnhandledProbs = DefaultProb; +  for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) +    UnhandledProbs += I->Prob; + +  MachineBasicBlock *CurMBB = W.MBB; +  for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { +    bool FallthroughUnreachable = false; +    MachineBasicBlock *Fallthrough; +    if (I == W.LastCluster) { +      // For the last cluster, fall through to the default destination. +      Fallthrough = DefaultMBB; +      FallthroughUnreachable = isa<UnreachableInst>( +          DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); +    } else { +      Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); +      CurMF->insert(BBI, Fallthrough); +    } +    UnhandledProbs -= I->Prob; + +    switch (I->Kind) { +    case CC_BitTests: { +      LLVM_DEBUG(dbgs() << "Switch to bit test optimization unimplemented"); +      return false; // Bit tests currently unimplemented. +    } +    case CC_JumpTable: { +      if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, +                                  UnhandledProbs, I, Fallthrough, +                                  FallthroughUnreachable)) { +        LLVM_DEBUG(dbgs() << "Failed to lower jump table"); +        return false; +      } +      break; +    } +    case CC_Range: { +      if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, +                                    FallthroughUnreachable, UnhandledProbs, +                                    CurMBB, MIB, SwitchMBB)) { +        LLVM_DEBUG(dbgs() << "Failed to lower switch range"); +        return false; +      } +      break; +    } +    } +    CurMBB = Fallthrough; +  } + +  return true; +} + +bool IRTranslator::translateIndirectBr(const User &U, +                                       MachineIRBuilder &MIRBuilder) { +  const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); + +  const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); +  MIRBuilder.buildBrIndirect(Tgt); + +  // Link successors. +  MachineBasicBlock &CurBB = MIRBuilder.getMBB(); +  for (const BasicBlock *Succ : successors(&BrInst)) +    CurBB.addSuccessor(&getMBB(*Succ)); + +  return true; +} + +static bool isSwiftError(const Value *V) { +  if (auto Arg = dyn_cast<Argument>(V)) +    return Arg->hasSwiftErrorAttr(); +  if (auto AI = dyn_cast<AllocaInst>(V)) +    return AI->isSwiftError(); +  return false; +} + +bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { +  const LoadInst &LI = cast<LoadInst>(U); + +  auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile +                               : MachineMemOperand::MONone; +  Flags |= MachineMemOperand::MOLoad; + +  if (DL->getTypeStoreSize(LI.getType()) == 0) +    return true; + +  ArrayRef<Register> Regs = getOrCreateVRegs(LI); +  ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); +  Register Base = getOrCreateVReg(*LI.getPointerOperand()); + +  Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType()); +  LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); + +  if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) { +    assert(Regs.size() == 1 && "swifterror should be single pointer"); +    Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), +                                                    LI.getPointerOperand()); +    MIRBuilder.buildCopy(Regs[0], VReg); +    return true; +  } + +  const MDNode *Ranges = +      Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; +  for (unsigned i = 0; i < Regs.size(); ++i) { +    Register Addr; +    MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8); + +    MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); +    unsigned BaseAlign = getMemOpAlignment(LI); +    auto MMO = MF->getMachineMemOperand( +        Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8, +        MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), Ranges, +        LI.getSyncScopeID(), LI.getOrdering()); +    MIRBuilder.buildLoad(Regs[i], Addr, *MMO); +  } + +  return true; +} + +bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { +  const StoreInst &SI = cast<StoreInst>(U); +  auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile +                               : MachineMemOperand::MONone; +  Flags |= MachineMemOperand::MOStore; + +  if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) +    return true; + +  ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); +  ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); +  Register Base = getOrCreateVReg(*SI.getPointerOperand()); + +  Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); +  LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); + +  if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { +    assert(Vals.size() == 1 && "swifterror should be single pointer"); + +    Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), +                                                    SI.getPointerOperand()); +    MIRBuilder.buildCopy(VReg, Vals[0]); +    return true; +  } + +  for (unsigned i = 0; i < Vals.size(); ++i) { +    Register Addr; +    MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8); + +    MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); +    unsigned BaseAlign = getMemOpAlignment(SI); +    auto MMO = MF->getMachineMemOperand( +        Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8, +        MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, +        SI.getSyncScopeID(), SI.getOrdering()); +    MIRBuilder.buildStore(Vals[i], Addr, *MMO); +  } +  return true; +} + +static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { +  const Value *Src = U.getOperand(0); +  Type *Int32Ty = Type::getInt32Ty(U.getContext()); + +  // getIndexedOffsetInType is designed for GEPs, so the first index is the +  // usual array element rather than looking into the actual aggregate. +  SmallVector<Value *, 1> Indices; +  Indices.push_back(ConstantInt::get(Int32Ty, 0)); + +  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { +    for (auto Idx : EVI->indices()) +      Indices.push_back(ConstantInt::get(Int32Ty, Idx)); +  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { +    for (auto Idx : IVI->indices()) +      Indices.push_back(ConstantInt::get(Int32Ty, Idx)); +  } else { +    for (unsigned i = 1; i < U.getNumOperands(); ++i) +      Indices.push_back(U.getOperand(i)); +  } + +  return 8 * static_cast<uint64_t>( +                 DL.getIndexedOffsetInType(Src->getType(), Indices)); +} + +bool IRTranslator::translateExtractValue(const User &U, +                                         MachineIRBuilder &MIRBuilder) { +  const Value *Src = U.getOperand(0); +  uint64_t Offset = getOffsetFromIndices(U, *DL); +  ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); +  ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); +  unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); +  auto &DstRegs = allocateVRegs(U); + +  for (unsigned i = 0; i < DstRegs.size(); ++i) +    DstRegs[i] = SrcRegs[Idx++]; + +  return true; +} + +bool IRTranslator::translateInsertValue(const User &U, +                                        MachineIRBuilder &MIRBuilder) { +  const Value *Src = U.getOperand(0); +  uint64_t Offset = getOffsetFromIndices(U, *DL); +  auto &DstRegs = allocateVRegs(U); +  ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); +  ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); +  ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); +  auto InsertedIt = InsertedRegs.begin(); + +  for (unsigned i = 0; i < DstRegs.size(); ++i) { +    if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) +      DstRegs[i] = *InsertedIt++; +    else +      DstRegs[i] = SrcRegs[i]; +  } + +  return true; +} + +bool IRTranslator::translateSelect(const User &U, +                                   MachineIRBuilder &MIRBuilder) { +  Register Tst = getOrCreateVReg(*U.getOperand(0)); +  ArrayRef<Register> ResRegs = getOrCreateVRegs(U); +  ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); +  ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); + +  const SelectInst &SI = cast<SelectInst>(U); +  uint16_t Flags = 0; +  if (const CmpInst *Cmp = dyn_cast<CmpInst>(SI.getCondition())) +    Flags = MachineInstr::copyFlagsFromInstruction(*Cmp); + +  for (unsigned i = 0; i < ResRegs.size(); ++i) { +    MIRBuilder.buildInstr(TargetOpcode::G_SELECT, {ResRegs[i]}, +                          {Tst, Op0Regs[i], Op1Regs[i]}, Flags); +  } + +  return true; +} + +bool IRTranslator::translateBitCast(const User &U, +                                    MachineIRBuilder &MIRBuilder) { +  // If we're bitcasting to the source type, we can reuse the source vreg. +  if (getLLTForType(*U.getOperand(0)->getType(), *DL) == +      getLLTForType(*U.getType(), *DL)) { +    Register SrcReg = getOrCreateVReg(*U.getOperand(0)); +    auto &Regs = *VMap.getVRegs(U); +    // If we already assigned a vreg for this bitcast, we can't change that. +    // Emit a copy to satisfy the users we already emitted. +    if (!Regs.empty()) +      MIRBuilder.buildCopy(Regs[0], SrcReg); +    else { +      Regs.push_back(SrcReg); +      VMap.getOffsets(U)->push_back(0); +    } +    return true; +  } +  return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); +} + +bool IRTranslator::translateCast(unsigned Opcode, const User &U, +                                 MachineIRBuilder &MIRBuilder) { +  Register Op = getOrCreateVReg(*U.getOperand(0)); +  Register Res = getOrCreateVReg(U); +  MIRBuilder.buildInstr(Opcode, {Res}, {Op}); +  return true; +} + +bool IRTranslator::translateGetElementPtr(const User &U, +                                          MachineIRBuilder &MIRBuilder) { +  // FIXME: support vector GEPs. +  if (U.getType()->isVectorTy()) +    return false; + +  Value &Op0 = *U.getOperand(0); +  Register BaseReg = getOrCreateVReg(Op0); +  Type *PtrIRTy = Op0.getType(); +  LLT PtrTy = getLLTForType(*PtrIRTy, *DL); +  Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); +  LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); + +  int64_t Offset = 0; +  for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); +       GTI != E; ++GTI) { +    const Value *Idx = GTI.getOperand(); +    if (StructType *StTy = GTI.getStructTypeOrNull()) { +      unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); +      Offset += DL->getStructLayout(StTy)->getElementOffset(Field); +      continue; +    } else { +      uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); + +      // If this is a scalar constant or a splat vector of constants, +      // handle it quickly. +      if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { +        Offset += ElementSize * CI->getSExtValue(); +        continue; +      } + +      if (Offset != 0) { +        LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); +        auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); +        BaseReg = +            MIRBuilder.buildGEP(PtrTy, BaseReg, OffsetMIB.getReg(0)).getReg(0); +        Offset = 0; +      } + +      Register IdxReg = getOrCreateVReg(*Idx); +      if (MRI->getType(IdxReg) != OffsetTy) +        IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0); + +      // N = N + Idx * ElementSize; +      // Avoid doing it for ElementSize of 1. +      Register GepOffsetReg; +      if (ElementSize != 1) { +        auto ElementSizeMIB = MIRBuilder.buildConstant( +            getLLTForType(*OffsetIRTy, *DL), ElementSize); +        GepOffsetReg = +            MIRBuilder.buildMul(OffsetTy, ElementSizeMIB, IdxReg).getReg(0); +      } else +        GepOffsetReg = IdxReg; + +      BaseReg = MIRBuilder.buildGEP(PtrTy, BaseReg, GepOffsetReg).getReg(0); +    } +  } + +  if (Offset != 0) { +    auto OffsetMIB = +        MIRBuilder.buildConstant(getLLTForType(*OffsetIRTy, *DL), Offset); +    MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); +    return true; +  } + +  MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); +  return true; +} + +bool IRTranslator::translateMemFunc(const CallInst &CI, +                                    MachineIRBuilder &MIRBuilder, +                                    Intrinsic::ID ID) { + +  // If the source is undef, then just emit a nop. +  if (isa<UndefValue>(CI.getArgOperand(1))) +    return true; + +  ArrayRef<Register> Res; +  auto ICall = MIRBuilder.buildIntrinsic(ID, Res, true); +  for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) +    ICall.addUse(getOrCreateVReg(**AI)); + +  unsigned DstAlign = 0, SrcAlign = 0; +  unsigned IsVol = +      cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1)) +          ->getZExtValue(); + +  if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { +    DstAlign = std::max<unsigned>(MCI->getDestAlignment(), 1); +    SrcAlign = std::max<unsigned>(MCI->getSourceAlignment(), 1); +  } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { +    DstAlign = std::max<unsigned>(MMI->getDestAlignment(), 1); +    SrcAlign = std::max<unsigned>(MMI->getSourceAlignment(), 1); +  } else { +    auto *MSI = cast<MemSetInst>(&CI); +    DstAlign = std::max<unsigned>(MSI->getDestAlignment(), 1); +  } + +  // We need to propagate the tail call flag from the IR inst as an argument. +  // Otherwise, we have to pessimize and assume later that we cannot tail call +  // any memory intrinsics. +  ICall.addImm(CI.isTailCall() ? 1 : 0); + +  // Create mem operands to store the alignment and volatile info. +  auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; +  ICall.addMemOperand(MF->getMachineMemOperand( +      MachinePointerInfo(CI.getArgOperand(0)), +      MachineMemOperand::MOStore | VolFlag, 1, DstAlign)); +  if (ID != Intrinsic::memset) +    ICall.addMemOperand(MF->getMachineMemOperand( +        MachinePointerInfo(CI.getArgOperand(1)), +        MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign)); + +  return true; +} + +void IRTranslator::getStackGuard(Register DstReg, +                                 MachineIRBuilder &MIRBuilder) { +  const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); +  MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); +  auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); +  MIB.addDef(DstReg); + +  auto &TLI = *MF->getSubtarget().getTargetLowering(); +  Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); +  if (!Global) +    return; + +  MachinePointerInfo MPInfo(Global); +  auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | +               MachineMemOperand::MODereferenceable; +  MachineMemOperand *MemRef = +      MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, +                               DL->getPointerABIAlignment(0).value()); +  MIB.setMemRefs({MemRef}); +} + +bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, +                                              MachineIRBuilder &MIRBuilder) { +  ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); +  MIRBuilder.buildInstr(Op) +      .addDef(ResRegs[0]) +      .addDef(ResRegs[1]) +      .addUse(getOrCreateVReg(*CI.getOperand(0))) +      .addUse(getOrCreateVReg(*CI.getOperand(1))); + +  return true; +} + +unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { +  switch (ID) { +    default: +      break; +    case Intrinsic::bswap: +      return TargetOpcode::G_BSWAP; +  case Intrinsic::bitreverse: +      return TargetOpcode::G_BITREVERSE; +    case Intrinsic::ceil: +      return TargetOpcode::G_FCEIL; +    case Intrinsic::cos: +      return TargetOpcode::G_FCOS; +    case Intrinsic::ctpop: +      return TargetOpcode::G_CTPOP; +    case Intrinsic::exp: +      return TargetOpcode::G_FEXP; +    case Intrinsic::exp2: +      return TargetOpcode::G_FEXP2; +    case Intrinsic::fabs: +      return TargetOpcode::G_FABS; +    case Intrinsic::copysign: +      return TargetOpcode::G_FCOPYSIGN; +    case Intrinsic::minnum: +      return TargetOpcode::G_FMINNUM; +    case Intrinsic::maxnum: +      return TargetOpcode::G_FMAXNUM; +    case Intrinsic::minimum: +      return TargetOpcode::G_FMINIMUM; +    case Intrinsic::maximum: +      return TargetOpcode::G_FMAXIMUM; +    case Intrinsic::canonicalize: +      return TargetOpcode::G_FCANONICALIZE; +    case Intrinsic::floor: +      return TargetOpcode::G_FFLOOR; +    case Intrinsic::fma: +      return TargetOpcode::G_FMA; +    case Intrinsic::log: +      return TargetOpcode::G_FLOG; +    case Intrinsic::log2: +      return TargetOpcode::G_FLOG2; +    case Intrinsic::log10: +      return TargetOpcode::G_FLOG10; +    case Intrinsic::nearbyint: +      return TargetOpcode::G_FNEARBYINT; +    case Intrinsic::pow: +      return TargetOpcode::G_FPOW; +    case Intrinsic::rint: +      return TargetOpcode::G_FRINT; +    case Intrinsic::round: +      return TargetOpcode::G_INTRINSIC_ROUND; +    case Intrinsic::sin: +      return TargetOpcode::G_FSIN; +    case Intrinsic::sqrt: +      return TargetOpcode::G_FSQRT; +    case Intrinsic::trunc: +      return TargetOpcode::G_INTRINSIC_TRUNC; +  } +  return Intrinsic::not_intrinsic; +} + +bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, +                                            Intrinsic::ID ID, +                                            MachineIRBuilder &MIRBuilder) { + +  unsigned Op = getSimpleIntrinsicOpcode(ID); + +  // Is this a simple intrinsic? +  if (Op == Intrinsic::not_intrinsic) +    return false; + +  // Yes. Let's translate it. +  SmallVector<llvm::SrcOp, 4> VRegs; +  for (auto &Arg : CI.arg_operands()) +    VRegs.push_back(getOrCreateVReg(*Arg)); + +  MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, +                        MachineInstr::copyFlagsFromInstruction(CI)); +  return true; +} + +bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, +                                           MachineIRBuilder &MIRBuilder) { + +  // If this is a simple intrinsic (that is, we just need to add a def of +  // a vreg, and uses for each arg operand, then translate it. +  if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) +    return true; + +  switch (ID) { +  default: +    break; +  case Intrinsic::lifetime_start: +  case Intrinsic::lifetime_end: { +    // No stack colouring in O0, discard region information. +    if (MF->getTarget().getOptLevel() == CodeGenOpt::None) +      return true; + +    unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START +                                                  : TargetOpcode::LIFETIME_END; + +    // Get the underlying objects for the location passed on the lifetime +    // marker. +    SmallVector<const Value *, 4> Allocas; +    GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL); + +    // Iterate over each underlying object, creating lifetime markers for each +    // static alloca. Quit if we find a non-static alloca. +    for (const Value *V : Allocas) { +      const AllocaInst *AI = dyn_cast<AllocaInst>(V); +      if (!AI) +        continue; + +      if (!AI->isStaticAlloca()) +        return true; + +      MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); +    } +    return true; +  } +  case Intrinsic::dbg_declare: { +    const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); +    assert(DI.getVariable() && "Missing variable"); + +    const Value *Address = DI.getAddress(); +    if (!Address || isa<UndefValue>(Address)) { +      LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); +      return true; +    } + +    assert(DI.getVariable()->isValidLocationForIntrinsic( +               MIRBuilder.getDebugLoc()) && +           "Expected inlined-at fields to agree"); +    auto AI = dyn_cast<AllocaInst>(Address); +    if (AI && AI->isStaticAlloca()) { +      // Static allocas are tracked at the MF level, no need for DBG_VALUE +      // instructions (in fact, they get ignored if they *do* exist). +      MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), +                             getOrCreateFrameIndex(*AI), DI.getDebugLoc()); +    } else { +      // A dbg.declare describes the address of a source variable, so lower it +      // into an indirect DBG_VALUE. +      MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), +                                       DI.getVariable(), DI.getExpression()); +    } +    return true; +  } +  case Intrinsic::dbg_label: { +    const DbgLabelInst &DI = cast<DbgLabelInst>(CI); +    assert(DI.getLabel() && "Missing label"); + +    assert(DI.getLabel()->isValidLocationForIntrinsic( +               MIRBuilder.getDebugLoc()) && +           "Expected inlined-at fields to agree"); + +    MIRBuilder.buildDbgLabel(DI.getLabel()); +    return true; +  } +  case Intrinsic::vaend: +    // No target I know of cares about va_end. Certainly no in-tree target +    // does. Simplest intrinsic ever! +    return true; +  case Intrinsic::vastart: { +    auto &TLI = *MF->getSubtarget().getTargetLowering(); +    Value *Ptr = CI.getArgOperand(0); +    unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; + +    // FIXME: Get alignment +    MIRBuilder.buildInstr(TargetOpcode::G_VASTART) +        .addUse(getOrCreateVReg(*Ptr)) +        .addMemOperand(MF->getMachineMemOperand( +            MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 1)); +    return true; +  } +  case Intrinsic::dbg_value: { +    // This form of DBG_VALUE is target-independent. +    const DbgValueInst &DI = cast<DbgValueInst>(CI); +    const Value *V = DI.getValue(); +    assert(DI.getVariable()->isValidLocationForIntrinsic( +               MIRBuilder.getDebugLoc()) && +           "Expected inlined-at fields to agree"); +    if (!V) { +      // Currently the optimizer can produce this; insert an undef to +      // help debugging.  Probably the optimizer should not do this. +      MIRBuilder.buildDirectDbgValue(0, DI.getVariable(), DI.getExpression()); +    } else if (const auto *CI = dyn_cast<Constant>(V)) { +      MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); +    } else { +      for (Register Reg : getOrCreateVRegs(*V)) { +        // FIXME: This does not handle register-indirect values at offset 0. The +        // direct/indirect thing shouldn't really be handled by something as +        // implicit as reg+noreg vs reg+imm in the first place, but it seems +        // pretty baked in right now. +        MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); +      } +    } +    return true; +  } +  case Intrinsic::uadd_with_overflow: +    return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); +  case Intrinsic::sadd_with_overflow: +    return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); +  case Intrinsic::usub_with_overflow: +    return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); +  case Intrinsic::ssub_with_overflow: +    return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); +  case Intrinsic::umul_with_overflow: +    return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); +  case Intrinsic::smul_with_overflow: +    return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); +  case Intrinsic::fmuladd: { +    const TargetMachine &TM = MF->getTarget(); +    const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); +    Register Dst = getOrCreateVReg(CI); +    Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); +    Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); +    Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); +    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && +        TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) { +      // TODO: Revisit this to see if we should move this part of the +      // lowering to the combiner. +      MIRBuilder.buildInstr(TargetOpcode::G_FMA, {Dst}, {Op0, Op1, Op2}, +                            MachineInstr::copyFlagsFromInstruction(CI)); +    } else { +      LLT Ty = getLLTForType(*CI.getType(), *DL); +      auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, {Ty}, {Op0, Op1}, +                                        MachineInstr::copyFlagsFromInstruction(CI)); +      MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Dst}, {FMul, Op2}, +                            MachineInstr::copyFlagsFromInstruction(CI)); +    } +    return true; +  } +  case Intrinsic::memcpy: +  case Intrinsic::memmove: +  case Intrinsic::memset: +    return translateMemFunc(CI, MIRBuilder, ID); +  case Intrinsic::eh_typeid_for: { +    GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); +    Register Reg = getOrCreateVReg(CI); +    unsigned TypeID = MF->getTypeIDFor(GV); +    MIRBuilder.buildConstant(Reg, TypeID); +    return true; +  } +  case Intrinsic::objectsize: +    llvm_unreachable("llvm.objectsize.* should have been lowered already"); + +  case Intrinsic::is_constant: +    llvm_unreachable("llvm.is.constant.* should have been lowered already"); + +  case Intrinsic::stackguard: +    getStackGuard(getOrCreateVReg(CI), MIRBuilder); +    return true; +  case Intrinsic::stackprotector: { +    LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); +    Register GuardVal = MRI->createGenericVirtualRegister(PtrTy); +    getStackGuard(GuardVal, MIRBuilder); + +    AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); +    int FI = getOrCreateFrameIndex(*Slot); +    MF->getFrameInfo().setStackProtectorIndex(FI); + +    MIRBuilder.buildStore( +        GuardVal, getOrCreateVReg(*Slot), +        *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), +                                  MachineMemOperand::MOStore | +                                      MachineMemOperand::MOVolatile, +                                  PtrTy.getSizeInBits() / 8, 8)); +    return true; +  } +  case Intrinsic::stacksave: { +    // Save the stack pointer to the location provided by the intrinsic. +    Register Reg = getOrCreateVReg(CI); +    Register StackPtr = MF->getSubtarget() +                            .getTargetLowering() +                            ->getStackPointerRegisterToSaveRestore(); + +    // If the target doesn't specify a stack pointer, then fall back. +    if (!StackPtr) +      return false; + +    MIRBuilder.buildCopy(Reg, StackPtr); +    return true; +  } +  case Intrinsic::stackrestore: { +    // Restore the stack pointer from the location provided by the intrinsic. +    Register Reg = getOrCreateVReg(*CI.getArgOperand(0)); +    Register StackPtr = MF->getSubtarget() +                            .getTargetLowering() +                            ->getStackPointerRegisterToSaveRestore(); + +    // If the target doesn't specify a stack pointer, then fall back. +    if (!StackPtr) +      return false; + +    MIRBuilder.buildCopy(StackPtr, Reg); +    return true; +  } +  case Intrinsic::cttz: +  case Intrinsic::ctlz: { +    ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); +    bool isTrailing = ID == Intrinsic::cttz; +    unsigned Opcode = isTrailing +                          ? Cst->isZero() ? TargetOpcode::G_CTTZ +                                          : TargetOpcode::G_CTTZ_ZERO_UNDEF +                          : Cst->isZero() ? TargetOpcode::G_CTLZ +                                          : TargetOpcode::G_CTLZ_ZERO_UNDEF; +    MIRBuilder.buildInstr(Opcode) +        .addDef(getOrCreateVReg(CI)) +        .addUse(getOrCreateVReg(*CI.getArgOperand(0))); +    return true; +  } +  case Intrinsic::invariant_start: { +    LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); +    Register Undef = MRI->createGenericVirtualRegister(PtrTy); +    MIRBuilder.buildUndef(Undef); +    return true; +  } +  case Intrinsic::invariant_end: +    return true; +  case Intrinsic::assume: +  case Intrinsic::var_annotation: +  case Intrinsic::sideeffect: +    // Discard annotate attributes, assumptions, and artificial side-effects. +    return true; +  } +  return false; +} + +bool IRTranslator::translateInlineAsm(const CallInst &CI, +                                      MachineIRBuilder &MIRBuilder) { +  const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue()); +  if (!IA.getConstraintString().empty()) +    return false; + +  unsigned ExtraInfo = 0; +  if (IA.hasSideEffects()) +    ExtraInfo |= InlineAsm::Extra_HasSideEffects; +  if (IA.getDialect() == InlineAsm::AD_Intel) +    ExtraInfo |= InlineAsm::Extra_AsmDialect; + +  MIRBuilder.buildInstr(TargetOpcode::INLINEASM) +    .addExternalSymbol(IA.getAsmString().c_str()) +    .addImm(ExtraInfo); + +  return true; +} + +bool IRTranslator::translateCallSite(const ImmutableCallSite &CS, +                                     MachineIRBuilder &MIRBuilder) { +  const Instruction &I = *CS.getInstruction(); +  ArrayRef<Register> Res = getOrCreateVRegs(I); + +  SmallVector<ArrayRef<Register>, 8> Args; +  Register SwiftInVReg = 0; +  Register SwiftErrorVReg = 0; +  for (auto &Arg : CS.args()) { +    if (CLI->supportSwiftError() && isSwiftError(Arg)) { +      assert(SwiftInVReg == 0 && "Expected only one swift error argument"); +      LLT Ty = getLLTForType(*Arg->getType(), *DL); +      SwiftInVReg = MRI->createGenericVirtualRegister(Ty); +      MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( +                                            &I, &MIRBuilder.getMBB(), Arg)); +      Args.emplace_back(makeArrayRef(SwiftInVReg)); +      SwiftErrorVReg = +          SwiftError.getOrCreateVRegDefAt(&I, &MIRBuilder.getMBB(), Arg); +      continue; +    } +    Args.push_back(getOrCreateVRegs(*Arg)); +  } + +  // We don't set HasCalls on MFI here yet because call lowering may decide to +  // optimize into tail calls. Instead, we defer that to selection where a final +  // scan is done to check if any instructions are calls. +  bool Success = +      CLI->lowerCall(MIRBuilder, CS, Res, Args, SwiftErrorVReg, +                     [&]() { return getOrCreateVReg(*CS.getCalledValue()); }); + +  // Check if we just inserted a tail call. +  if (Success) { +    assert(!HasTailCall && "Can't tail call return twice from block?"); +    const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); +    HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt())); +  } + +  return Success; +} + +bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { +  const CallInst &CI = cast<CallInst>(U); +  auto TII = MF->getTarget().getIntrinsicInfo(); +  const Function *F = CI.getCalledFunction(); + +  // FIXME: support Windows dllimport function calls. +  if (F && F->hasDLLImportStorageClass()) +    return false; + +  if (CI.isInlineAsm()) +    return translateInlineAsm(CI, MIRBuilder); + +  Intrinsic::ID ID = Intrinsic::not_intrinsic; +  if (F && F->isIntrinsic()) { +    ID = F->getIntrinsicID(); +    if (TII && ID == Intrinsic::not_intrinsic) +      ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); +  } + +  if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) +    return translateCallSite(&CI, MIRBuilder); + +  assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); + +  if (translateKnownIntrinsic(CI, ID, MIRBuilder)) +    return true; + +  ArrayRef<Register> ResultRegs; +  if (!CI.getType()->isVoidTy()) +    ResultRegs = getOrCreateVRegs(CI); + +  // Ignore the callsite attributes. Backend code is most likely not expecting +  // an intrinsic to sometimes have side effects and sometimes not. +  MachineInstrBuilder MIB = +      MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory()); +  if (isa<FPMathOperator>(CI)) +    MIB->copyIRFlags(CI); + +  for (auto &Arg : enumerate(CI.arg_operands())) { +    // Some intrinsics take metadata parameters. Reject them. +    if (isa<MetadataAsValue>(Arg.value())) +      return false; + +    // If this is required to be an immediate, don't materialize it in a +    // register. +    if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) { +      if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) { +        // imm arguments are more convenient than cimm (and realistically +        // probably sufficient), so use them. +        assert(CI->getBitWidth() <= 64 && +               "large intrinsic immediates not handled"); +        MIB.addImm(CI->getSExtValue()); +      } else { +        MIB.addFPImm(cast<ConstantFP>(Arg.value())); +      } +    } else { +      ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value()); +      if (VRegs.size() > 1) +        return false; +      MIB.addUse(VRegs[0]); +    } +  } + +  // Add a MachineMemOperand if it is a target mem intrinsic. +  const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); +  TargetLowering::IntrinsicInfo Info; +  // TODO: Add a GlobalISel version of getTgtMemIntrinsic. +  if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { +    MaybeAlign Align = Info.align; +    if (!Align) +      Align = MaybeAlign( +          DL->getABITypeAlignment(Info.memVT.getTypeForEVT(F->getContext()))); + +    uint64_t Size = Info.memVT.getStoreSize(); +    MIB.addMemOperand(MF->getMachineMemOperand( +        MachinePointerInfo(Info.ptrVal), Info.flags, Size, Align->value())); +  } + +  return true; +} + +bool IRTranslator::translateInvoke(const User &U, +                                   MachineIRBuilder &MIRBuilder) { +  const InvokeInst &I = cast<InvokeInst>(U); +  MCContext &Context = MF->getContext(); + +  const BasicBlock *ReturnBB = I.getSuccessor(0); +  const BasicBlock *EHPadBB = I.getSuccessor(1); + +  const Value *Callee = I.getCalledValue(); +  const Function *Fn = dyn_cast<Function>(Callee); +  if (isa<InlineAsm>(Callee)) +    return false; + +  // FIXME: support invoking patchpoint and statepoint intrinsics. +  if (Fn && Fn->isIntrinsic()) +    return false; + +  // FIXME: support whatever these are. +  if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) +    return false; + +  // FIXME: support Windows exception handling. +  if (!isa<LandingPadInst>(EHPadBB->front())) +    return false; + +  // Emit the actual call, bracketed by EH_LABELs so that the MF knows about +  // the region covered by the try. +  MCSymbol *BeginSymbol = Context.createTempSymbol(); +  MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); + +  if (!translateCallSite(&I, MIRBuilder)) +    return false; + +  MCSymbol *EndSymbol = Context.createTempSymbol(); +  MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); + +  // FIXME: track probabilities. +  MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), +                    &ReturnMBB = getMBB(*ReturnBB); +  MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); +  MIRBuilder.getMBB().addSuccessor(&ReturnMBB); +  MIRBuilder.getMBB().addSuccessor(&EHPadMBB); +  MIRBuilder.buildBr(ReturnMBB); + +  return true; +} + +bool IRTranslator::translateCallBr(const User &U, +                                   MachineIRBuilder &MIRBuilder) { +  // FIXME: Implement this. +  return false; +} + +bool IRTranslator::translateLandingPad(const User &U, +                                       MachineIRBuilder &MIRBuilder) { +  const LandingPadInst &LP = cast<LandingPadInst>(U); + +  MachineBasicBlock &MBB = MIRBuilder.getMBB(); + +  MBB.setIsEHPad(); + +  // If there aren't registers to copy the values into (e.g., during SjLj +  // exceptions), then don't bother. +  auto &TLI = *MF->getSubtarget().getTargetLowering(); +  const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); +  if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && +      TLI.getExceptionSelectorRegister(PersonalityFn) == 0) +    return true; + +  // If landingpad's return type is token type, we don't create DAG nodes +  // for its exception pointer and selector value. The extraction of exception +  // pointer or selector value from token type landingpads is not currently +  // supported. +  if (LP.getType()->isTokenTy()) +    return true; + +  // Add a label to mark the beginning of the landing pad.  Deletion of the +  // landing pad can thus be detected via the MachineModuleInfo. +  MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) +    .addSym(MF->addLandingPad(&MBB)); + +  LLT Ty = getLLTForType(*LP.getType(), *DL); +  Register Undef = MRI->createGenericVirtualRegister(Ty); +  MIRBuilder.buildUndef(Undef); + +  SmallVector<LLT, 2> Tys; +  for (Type *Ty : cast<StructType>(LP.getType())->elements()) +    Tys.push_back(getLLTForType(*Ty, *DL)); +  assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); + +  // Mark exception register as live in. +  Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); +  if (!ExceptionReg) +    return false; + +  MBB.addLiveIn(ExceptionReg); +  ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); +  MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); + +  Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); +  if (!SelectorReg) +    return false; + +  MBB.addLiveIn(SelectorReg); +  Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); +  MIRBuilder.buildCopy(PtrVReg, SelectorReg); +  MIRBuilder.buildCast(ResRegs[1], PtrVReg); + +  return true; +} + +bool IRTranslator::translateAlloca(const User &U, +                                   MachineIRBuilder &MIRBuilder) { +  auto &AI = cast<AllocaInst>(U); + +  if (AI.isSwiftError()) +    return true; + +  if (AI.isStaticAlloca()) { +    Register Res = getOrCreateVReg(AI); +    int FI = getOrCreateFrameIndex(AI); +    MIRBuilder.buildFrameIndex(Res, FI); +    return true; +  } + +  // FIXME: support stack probing for Windows. +  if (MF->getTarget().getTargetTriple().isOSWindows()) +    return false; + +  // Now we're in the harder dynamic case. +  Type *Ty = AI.getAllocatedType(); +  unsigned Align = +      std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment()); + +  Register NumElts = getOrCreateVReg(*AI.getArraySize()); + +  Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); +  LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); +  if (MRI->getType(NumElts) != IntPtrTy) { +    Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); +    MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); +    NumElts = ExtElts; +  } + +  Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); +  Register TySize = +      getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty))); +  MIRBuilder.buildMul(AllocSize, NumElts, TySize); + +  unsigned StackAlign = +      MF->getSubtarget().getFrameLowering()->getStackAlignment(); +  if (Align <= StackAlign) +    Align = 0; + +  // Round the size of the allocation up to the stack alignment size +  // by add SA-1 to the size. This doesn't overflow because we're computing +  // an address inside an alloca. +  auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign - 1); +  auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne, +                                      MachineInstr::NoUWrap); +  auto AlignCst = +      MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign - 1)); +  auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst); + +  MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Align); + +  MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI); +  assert(MF->getFrameInfo().hasVarSizedObjects()); +  return true; +} + +bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { +  // FIXME: We may need more info about the type. Because of how LLT works, +  // we're completely discarding the i64/double distinction here (amongst +  // others). Fortunately the ABIs I know of where that matters don't use va_arg +  // anyway but that's not guaranteed. +  MIRBuilder.buildInstr(TargetOpcode::G_VAARG) +    .addDef(getOrCreateVReg(U)) +    .addUse(getOrCreateVReg(*U.getOperand(0))) +    .addImm(DL->getABITypeAlignment(U.getType())); +  return true; +} + +bool IRTranslator::translateInsertElement(const User &U, +                                          MachineIRBuilder &MIRBuilder) { +  // If it is a <1 x Ty> vector, use the scalar as it is +  // not a legal vector type in LLT. +  if (U.getType()->getVectorNumElements() == 1) { +    Register Elt = getOrCreateVReg(*U.getOperand(1)); +    auto &Regs = *VMap.getVRegs(U); +    if (Regs.empty()) { +      Regs.push_back(Elt); +      VMap.getOffsets(U)->push_back(0); +    } else { +      MIRBuilder.buildCopy(Regs[0], Elt); +    } +    return true; +  } + +  Register Res = getOrCreateVReg(U); +  Register Val = getOrCreateVReg(*U.getOperand(0)); +  Register Elt = getOrCreateVReg(*U.getOperand(1)); +  Register Idx = getOrCreateVReg(*U.getOperand(2)); +  MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); +  return true; +} + +bool IRTranslator::translateExtractElement(const User &U, +                                           MachineIRBuilder &MIRBuilder) { +  // If it is a <1 x Ty> vector, use the scalar as it is +  // not a legal vector type in LLT. +  if (U.getOperand(0)->getType()->getVectorNumElements() == 1) { +    Register Elt = getOrCreateVReg(*U.getOperand(0)); +    auto &Regs = *VMap.getVRegs(U); +    if (Regs.empty()) { +      Regs.push_back(Elt); +      VMap.getOffsets(U)->push_back(0); +    } else { +      MIRBuilder.buildCopy(Regs[0], Elt); +    } +    return true; +  } +  Register Res = getOrCreateVReg(U); +  Register Val = getOrCreateVReg(*U.getOperand(0)); +  const auto &TLI = *MF->getSubtarget().getTargetLowering(); +  unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); +  Register Idx; +  if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { +    if (CI->getBitWidth() != PreferredVecIdxWidth) { +      APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); +      auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); +      Idx = getOrCreateVReg(*NewIdxCI); +    } +  } +  if (!Idx) +    Idx = getOrCreateVReg(*U.getOperand(1)); +  if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { +    const LLT &VecIdxTy = LLT::scalar(PreferredVecIdxWidth); +    Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx)->getOperand(0).getReg(); +  } +  MIRBuilder.buildExtractVectorElement(Res, Val, Idx); +  return true; +} + +bool IRTranslator::translateShuffleVector(const User &U, +                                          MachineIRBuilder &MIRBuilder) { +  MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR) +      .addDef(getOrCreateVReg(U)) +      .addUse(getOrCreateVReg(*U.getOperand(0))) +      .addUse(getOrCreateVReg(*U.getOperand(1))) +      .addShuffleMask(cast<Constant>(U.getOperand(2))); +  return true; +} + +bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { +  const PHINode &PI = cast<PHINode>(U); + +  SmallVector<MachineInstr *, 4> Insts; +  for (auto Reg : getOrCreateVRegs(PI)) { +    auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); +    Insts.push_back(MIB.getInstr()); +  } + +  PendingPHIs.emplace_back(&PI, std::move(Insts)); +  return true; +} + +bool IRTranslator::translateAtomicCmpXchg(const User &U, +                                          MachineIRBuilder &MIRBuilder) { +  const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); + +  if (I.isWeak()) +    return false; + +  auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile +                              : MachineMemOperand::MONone; +  Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; + +  Type *ResType = I.getType(); +  Type *ValType = ResType->Type::getStructElementType(0); + +  auto Res = getOrCreateVRegs(I); +  Register OldValRes = Res[0]; +  Register SuccessRes = Res[1]; +  Register Addr = getOrCreateVReg(*I.getPointerOperand()); +  Register Cmp = getOrCreateVReg(*I.getCompareOperand()); +  Register NewVal = getOrCreateVReg(*I.getNewValOperand()); + +  MIRBuilder.buildAtomicCmpXchgWithSuccess( +      OldValRes, SuccessRes, Addr, Cmp, NewVal, +      *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), +                                Flags, DL->getTypeStoreSize(ValType), +                                getMemOpAlignment(I), AAMDNodes(), nullptr, +                                I.getSyncScopeID(), I.getSuccessOrdering(), +                                I.getFailureOrdering())); +  return true; +} + +bool IRTranslator::translateAtomicRMW(const User &U, +                                      MachineIRBuilder &MIRBuilder) { +  const AtomicRMWInst &I = cast<AtomicRMWInst>(U); + +  auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile +                              : MachineMemOperand::MONone; +  Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; + +  Type *ResType = I.getType(); + +  Register Res = getOrCreateVReg(I); +  Register Addr = getOrCreateVReg(*I.getPointerOperand()); +  Register Val = getOrCreateVReg(*I.getValOperand()); + +  unsigned Opcode = 0; +  switch (I.getOperation()) { +  default: +    return false; +  case AtomicRMWInst::Xchg: +    Opcode = TargetOpcode::G_ATOMICRMW_XCHG; +    break; +  case AtomicRMWInst::Add: +    Opcode = TargetOpcode::G_ATOMICRMW_ADD; +    break; +  case AtomicRMWInst::Sub: +    Opcode = TargetOpcode::G_ATOMICRMW_SUB; +    break; +  case AtomicRMWInst::And: +    Opcode = TargetOpcode::G_ATOMICRMW_AND; +    break; +  case AtomicRMWInst::Nand: +    Opcode = TargetOpcode::G_ATOMICRMW_NAND; +    break; +  case AtomicRMWInst::Or: +    Opcode = TargetOpcode::G_ATOMICRMW_OR; +    break; +  case AtomicRMWInst::Xor: +    Opcode = TargetOpcode::G_ATOMICRMW_XOR; +    break; +  case AtomicRMWInst::Max: +    Opcode = TargetOpcode::G_ATOMICRMW_MAX; +    break; +  case AtomicRMWInst::Min: +    Opcode = TargetOpcode::G_ATOMICRMW_MIN; +    break; +  case AtomicRMWInst::UMax: +    Opcode = TargetOpcode::G_ATOMICRMW_UMAX; +    break; +  case AtomicRMWInst::UMin: +    Opcode = TargetOpcode::G_ATOMICRMW_UMIN; +    break; +  case AtomicRMWInst::FAdd: +    Opcode = TargetOpcode::G_ATOMICRMW_FADD; +    break; +  case AtomicRMWInst::FSub: +    Opcode = TargetOpcode::G_ATOMICRMW_FSUB; +    break; +  } + +  MIRBuilder.buildAtomicRMW( +      Opcode, Res, Addr, Val, +      *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), +                                Flags, DL->getTypeStoreSize(ResType), +                                getMemOpAlignment(I), AAMDNodes(), nullptr, +                                I.getSyncScopeID(), I.getOrdering())); +  return true; +} + +bool IRTranslator::translateFence(const User &U, +                                  MachineIRBuilder &MIRBuilder) { +  const FenceInst &Fence = cast<FenceInst>(U); +  MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), +                        Fence.getSyncScopeID()); +  return true; +} + +void IRTranslator::finishPendingPhis() { +#ifndef NDEBUG +  DILocationVerifier Verifier; +  GISelObserverWrapper WrapperObserver(&Verifier); +  RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); +#endif // ifndef NDEBUG +  for (auto &Phi : PendingPHIs) { +    const PHINode *PI = Phi.first; +    ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; +    MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); +    EntryBuilder->setDebugLoc(PI->getDebugLoc()); +#ifndef NDEBUG +    Verifier.setCurrentInst(PI); +#endif // ifndef NDEBUG + +    SmallSet<const MachineBasicBlock *, 16> SeenPreds; +    for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { +      auto IRPred = PI->getIncomingBlock(i); +      ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); +      for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { +        if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) +          continue; +        SeenPreds.insert(Pred); +        for (unsigned j = 0; j < ValRegs.size(); ++j) { +          MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); +          MIB.addUse(ValRegs[j]); +          MIB.addMBB(Pred); +        } +      } +    } +  } +} + +bool IRTranslator::valueIsSplit(const Value &V, +                                SmallVectorImpl<uint64_t> *Offsets) { +  SmallVector<LLT, 4> SplitTys; +  if (Offsets && !Offsets->empty()) +    Offsets->clear(); +  computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); +  return SplitTys.size() > 1; +} + +bool IRTranslator::translate(const Instruction &Inst) { +  CurBuilder->setDebugLoc(Inst.getDebugLoc()); +  // We only emit constants into the entry block from here. To prevent jumpy +  // debug behaviour set the line to 0. +  if (const DebugLoc &DL = Inst.getDebugLoc()) +    EntryBuilder->setDebugLoc( +        DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt())); +  else +    EntryBuilder->setDebugLoc(DebugLoc()); + +  switch (Inst.getOpcode()) { +#define HANDLE_INST(NUM, OPCODE, CLASS)                                        \ +  case Instruction::OPCODE:                                                    \ +    return translate##OPCODE(Inst, *CurBuilder.get()); +#include "llvm/IR/Instruction.def" +  default: +    return false; +  } +} + +bool IRTranslator::translate(const Constant &C, Register Reg) { +  if (auto CI = dyn_cast<ConstantInt>(&C)) +    EntryBuilder->buildConstant(Reg, *CI); +  else if (auto CF = dyn_cast<ConstantFP>(&C)) +    EntryBuilder->buildFConstant(Reg, *CF); +  else if (isa<UndefValue>(C)) +    EntryBuilder->buildUndef(Reg); +  else if (isa<ConstantPointerNull>(C)) { +    // As we are trying to build a constant val of 0 into a pointer, +    // insert a cast to make them correct with respect to types. +    unsigned NullSize = DL->getTypeSizeInBits(C.getType()); +    auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize); +    auto *ZeroVal = ConstantInt::get(ZeroTy, 0); +    Register ZeroReg = getOrCreateVReg(*ZeroVal); +    EntryBuilder->buildCast(Reg, ZeroReg); +  } else if (auto GV = dyn_cast<GlobalValue>(&C)) +    EntryBuilder->buildGlobalValue(Reg, GV); +  else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { +    if (!CAZ->getType()->isVectorTy()) +      return false; +    // Return the scalar if it is a <1 x Ty> vector. +    if (CAZ->getNumElements() == 1) +      return translate(*CAZ->getElementValue(0u), Reg); +    SmallVector<Register, 4> Ops; +    for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { +      Constant &Elt = *CAZ->getElementValue(i); +      Ops.push_back(getOrCreateVReg(Elt)); +    } +    EntryBuilder->buildBuildVector(Reg, Ops); +  } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { +    // Return the scalar if it is a <1 x Ty> vector. +    if (CV->getNumElements() == 1) +      return translate(*CV->getElementAsConstant(0), Reg); +    SmallVector<Register, 4> Ops; +    for (unsigned i = 0; i < CV->getNumElements(); ++i) { +      Constant &Elt = *CV->getElementAsConstant(i); +      Ops.push_back(getOrCreateVReg(Elt)); +    } +    EntryBuilder->buildBuildVector(Reg, Ops); +  } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { +    switch(CE->getOpcode()) { +#define HANDLE_INST(NUM, OPCODE, CLASS)                                        \ +  case Instruction::OPCODE:                                                    \ +    return translate##OPCODE(*CE, *EntryBuilder.get()); +#include "llvm/IR/Instruction.def" +    default: +      return false; +    } +  } else if (auto CV = dyn_cast<ConstantVector>(&C)) { +    if (CV->getNumOperands() == 1) +      return translate(*CV->getOperand(0), Reg); +    SmallVector<Register, 4> Ops; +    for (unsigned i = 0; i < CV->getNumOperands(); ++i) { +      Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); +    } +    EntryBuilder->buildBuildVector(Reg, Ops); +  } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { +    EntryBuilder->buildBlockAddress(Reg, BA); +  } else +    return false; + +  return true; +} + +void IRTranslator::finalizeBasicBlock() { +  for (auto &JTCase : SL->JTCases) { +    // Emit header first, if it wasn't already emitted. +    if (!JTCase.first.Emitted) +      emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); + +    emitJumpTable(JTCase.second, JTCase.second.MBB); +  } +  SL->JTCases.clear(); +} + +void IRTranslator::finalizeFunction() { +  // Release the memory used by the different maps we +  // needed during the translation. +  PendingPHIs.clear(); +  VMap.reset(); +  FrameIndices.clear(); +  MachinePreds.clear(); +  // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it +  // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid +  // destroying it twice (in ~IRTranslator() and ~LLVMContext()) +  EntryBuilder.reset(); +  CurBuilder.reset(); +  FuncInfo.clear(); +} + +/// Returns true if a BasicBlock \p BB within a variadic function contains a +/// variadic musttail call. +static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) { +  if (!IsVarArg) +    return false; + +  // Walk the block backwards, because tail calls usually only appear at the end +  // of a block. +  return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) { +    const auto *CI = dyn_cast<CallInst>(&I); +    return CI && CI->isMustTailCall(); +  }); +} + +bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { +  MF = &CurMF; +  const Function &F = MF->getFunction(); +  if (F.empty()) +    return false; +  GISelCSEAnalysisWrapper &Wrapper = +      getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); +  // Set the CSEConfig and run the analysis. +  GISelCSEInfo *CSEInfo = nullptr; +  TPC = &getAnalysis<TargetPassConfig>(); +  bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() +                       ? EnableCSEInIRTranslator +                       : TPC->isGISelCSEEnabled(); + +  if (EnableCSE) { +    EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF); +    CSEInfo = &Wrapper.get(TPC->getCSEConfig()); +    EntryBuilder->setCSEInfo(CSEInfo); +    CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF); +    CurBuilder->setCSEInfo(CSEInfo); +  } else { +    EntryBuilder = std::make_unique<MachineIRBuilder>(); +    CurBuilder = std::make_unique<MachineIRBuilder>(); +  } +  CLI = MF->getSubtarget().getCallLowering(); +  CurBuilder->setMF(*MF); +  EntryBuilder->setMF(*MF); +  MRI = &MF->getRegInfo(); +  DL = &F.getParent()->getDataLayout(); +  ORE = std::make_unique<OptimizationRemarkEmitter>(&F); +  FuncInfo.MF = MF; +  FuncInfo.BPI = nullptr; +  const auto &TLI = *MF->getSubtarget().getTargetLowering(); +  const TargetMachine &TM = MF->getTarget(); +  SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo); +  SL->init(TLI, TM, *DL); + +  EnableOpts = TM.getOptLevel() != CodeGenOpt::None && !skipFunction(F); + +  assert(PendingPHIs.empty() && "stale PHIs"); + +  if (!DL->isLittleEndian()) { +    // Currently we don't properly handle big endian code. +    OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", +                               F.getSubprogram(), &F.getEntryBlock()); +    R << "unable to translate in big endian mode"; +    reportTranslationError(*MF, *TPC, *ORE, R); +  } + +  // Release the per-function state when we return, whether we succeeded or not. +  auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); + +  // Setup a separate basic-block for the arguments and constants +  MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); +  MF->push_back(EntryBB); +  EntryBuilder->setMBB(*EntryBB); + +  DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); +  SwiftError.setFunction(CurMF); +  SwiftError.createEntriesInEntryBlock(DbgLoc); + +  bool IsVarArg = F.isVarArg(); +  bool HasMustTailInVarArgFn = false; + +  // Create all blocks, in IR order, to preserve the layout. +  for (const BasicBlock &BB: F) { +    auto *&MBB = BBToMBB[&BB]; + +    MBB = MF->CreateMachineBasicBlock(&BB); +    MF->push_back(MBB); + +    if (BB.hasAddressTaken()) +      MBB->setHasAddressTaken(); + +    if (!HasMustTailInVarArgFn) +      HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB); +  } + +  MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn); + +  // Make our arguments/constants entry block fallthrough to the IR entry block. +  EntryBB->addSuccessor(&getMBB(F.front())); + +  // Lower the actual args into this basic block. +  SmallVector<ArrayRef<Register>, 8> VRegArgs; +  for (const Argument &Arg: F.args()) { +    if (DL->getTypeStoreSize(Arg.getType()) == 0) +      continue; // Don't handle zero sized types. +    ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); +    VRegArgs.push_back(VRegs); + +    if (Arg.hasSwiftErrorAttr()) { +      assert(VRegs.size() == 1 && "Too many vregs for Swift error"); +      SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); +    } +  } + +  if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) { +    OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", +                               F.getSubprogram(), &F.getEntryBlock()); +    R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); +    reportTranslationError(*MF, *TPC, *ORE, R); +    return false; +  } + +  // Need to visit defs before uses when translating instructions. +  GISelObserverWrapper WrapperObserver; +  if (EnableCSE && CSEInfo) +    WrapperObserver.addObserver(CSEInfo); +  { +    ReversePostOrderTraversal<const Function *> RPOT(&F); +#ifndef NDEBUG +    DILocationVerifier Verifier; +    WrapperObserver.addObserver(&Verifier); +#endif // ifndef NDEBUG +    RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); +    for (const BasicBlock *BB : RPOT) { +      MachineBasicBlock &MBB = getMBB(*BB); +      // Set the insertion point of all the following translations to +      // the end of this basic block. +      CurBuilder->setMBB(MBB); +      HasTailCall = false; +      for (const Instruction &Inst : *BB) { +        // If we translated a tail call in the last step, then we know +        // everything after the call is either a return, or something that is +        // handled by the call itself. (E.g. a lifetime marker or assume +        // intrinsic.) In this case, we should stop translating the block and +        // move on. +        if (HasTailCall) +          break; +#ifndef NDEBUG +        Verifier.setCurrentInst(&Inst); +#endif // ifndef NDEBUG +        if (translate(Inst)) +          continue; + +        OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", +                                   Inst.getDebugLoc(), BB); +        R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); + +        if (ORE->allowExtraAnalysis("gisel-irtranslator")) { +          std::string InstStrStorage; +          raw_string_ostream InstStr(InstStrStorage); +          InstStr << Inst; + +          R << ": '" << InstStr.str() << "'"; +        } + +        reportTranslationError(*MF, *TPC, *ORE, R); +        return false; +      } + +      finalizeBasicBlock(); +    } +#ifndef NDEBUG +    WrapperObserver.removeObserver(&Verifier); +#endif +  } + +  finishPendingPhis(); + +  SwiftError.propagateVRegs(); + +  // Merge the argument lowering and constants block with its single +  // successor, the LLVM-IR entry block.  We want the basic block to +  // be maximal. +  assert(EntryBB->succ_size() == 1 && +         "Custom BB used for lowering should have only one successor"); +  // Get the successor of the current entry block. +  MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); +  assert(NewEntryBB.pred_size() == 1 && +         "LLVM-IR entry block has a predecessor!?"); +  // Move all the instruction from the current entry block to the +  // new entry block. +  NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), +                    EntryBB->end()); + +  // Update the live-in information for the new entry block. +  for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) +    NewEntryBB.addLiveIn(LiveIn); +  NewEntryBB.sortUniqueLiveIns(); + +  // Get rid of the now empty basic block. +  EntryBB->removeSuccessor(&NewEntryBB); +  MF->remove(EntryBB); +  MF->DeleteMachineBasicBlock(EntryBB); + +  assert(&MF->front() == &NewEntryBB && +         "New entry wasn't next in the list of basic block!"); + +  // Initialize stack protector information. +  StackProtector &SP = getAnalysis<StackProtector>(); +  SP.copyToMachineFrameInfo(MF->getFrameInfo()); + +  return false; +} | 
