diff options
Diffstat (limited to 'llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp')
| -rw-r--r-- | llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp | 4277 | 
1 files changed, 4277 insertions, 0 deletions
diff --git a/llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp b/llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp new file mode 100644 index 000000000000..21512e543878 --- /dev/null +++ b/llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp @@ -0,0 +1,4277 @@ +//===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +/// \file This file implements the LegalizerHelper class to legalize +/// individual instructions and the LegalizeMachineIR wrapper pass for the +/// primary legalization. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" +#include "llvm/CodeGen/GlobalISel/CallLowering.h" +#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" +#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/TargetFrameLowering.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" + +#define DEBUG_TYPE "legalizer" + +using namespace llvm; +using namespace LegalizeActions; + +/// Try to break down \p OrigTy into \p NarrowTy sized pieces. +/// +/// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, +/// with any leftover piece as type \p LeftoverTy +/// +/// Returns -1 in the first element of the pair if the breakdown is not +/// satisfiable. +static std::pair<int, int> +getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { +  assert(!LeftoverTy.isValid() && "this is an out argument"); + +  unsigned Size = OrigTy.getSizeInBits(); +  unsigned NarrowSize = NarrowTy.getSizeInBits(); +  unsigned NumParts = Size / NarrowSize; +  unsigned LeftoverSize = Size - NumParts * NarrowSize; +  assert(Size > NarrowSize); + +  if (LeftoverSize == 0) +    return {NumParts, 0}; + +  if (NarrowTy.isVector()) { +    unsigned EltSize = OrigTy.getScalarSizeInBits(); +    if (LeftoverSize % EltSize != 0) +      return {-1, -1}; +    LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); +  } else { +    LeftoverTy = LLT::scalar(LeftoverSize); +  } + +  int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); +  return std::make_pair(NumParts, NumLeftover); +} + +LegalizerHelper::LegalizerHelper(MachineFunction &MF, +                                 GISelChangeObserver &Observer, +                                 MachineIRBuilder &Builder) +    : MIRBuilder(Builder), MRI(MF.getRegInfo()), +      LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { +  MIRBuilder.setMF(MF); +  MIRBuilder.setChangeObserver(Observer); +} + +LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, +                                 GISelChangeObserver &Observer, +                                 MachineIRBuilder &B) +    : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { +  MIRBuilder.setMF(MF); +  MIRBuilder.setChangeObserver(Observer); +} +LegalizerHelper::LegalizeResult +LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { +  LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); + +  if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || +      MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) +    return LI.legalizeIntrinsic(MI, MRI, MIRBuilder) ? Legalized +                                                     : UnableToLegalize; +  auto Step = LI.getAction(MI, MRI); +  switch (Step.Action) { +  case Legal: +    LLVM_DEBUG(dbgs() << ".. Already legal\n"); +    return AlreadyLegal; +  case Libcall: +    LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); +    return libcall(MI); +  case NarrowScalar: +    LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); +    return narrowScalar(MI, Step.TypeIdx, Step.NewType); +  case WidenScalar: +    LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); +    return widenScalar(MI, Step.TypeIdx, Step.NewType); +  case Lower: +    LLVM_DEBUG(dbgs() << ".. Lower\n"); +    return lower(MI, Step.TypeIdx, Step.NewType); +  case FewerElements: +    LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); +    return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); +  case MoreElements: +    LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); +    return moreElementsVector(MI, Step.TypeIdx, Step.NewType); +  case Custom: +    LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); +    return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized +                                                            : UnableToLegalize; +  default: +    LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); +    return UnableToLegalize; +  } +} + +void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, +                                   SmallVectorImpl<Register> &VRegs) { +  for (int i = 0; i < NumParts; ++i) +    VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); +  MIRBuilder.buildUnmerge(VRegs, Reg); +} + +bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, +                                   LLT MainTy, LLT &LeftoverTy, +                                   SmallVectorImpl<Register> &VRegs, +                                   SmallVectorImpl<Register> &LeftoverRegs) { +  assert(!LeftoverTy.isValid() && "this is an out argument"); + +  unsigned RegSize = RegTy.getSizeInBits(); +  unsigned MainSize = MainTy.getSizeInBits(); +  unsigned NumParts = RegSize / MainSize; +  unsigned LeftoverSize = RegSize - NumParts * MainSize; + +  // Use an unmerge when possible. +  if (LeftoverSize == 0) { +    for (unsigned I = 0; I < NumParts; ++I) +      VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); +    MIRBuilder.buildUnmerge(VRegs, Reg); +    return true; +  } + +  if (MainTy.isVector()) { +    unsigned EltSize = MainTy.getScalarSizeInBits(); +    if (LeftoverSize % EltSize != 0) +      return false; +    LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); +  } else { +    LeftoverTy = LLT::scalar(LeftoverSize); +  } + +  // For irregular sizes, extract the individual parts. +  for (unsigned I = 0; I != NumParts; ++I) { +    Register NewReg = MRI.createGenericVirtualRegister(MainTy); +    VRegs.push_back(NewReg); +    MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); +  } + +  for (unsigned Offset = MainSize * NumParts; Offset < RegSize; +       Offset += LeftoverSize) { +    Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); +    LeftoverRegs.push_back(NewReg); +    MIRBuilder.buildExtract(NewReg, Reg, Offset); +  } + +  return true; +} + +static LLT getGCDType(LLT OrigTy, LLT TargetTy) { +  if (OrigTy.isVector() && TargetTy.isVector()) { +    assert(OrigTy.getElementType() == TargetTy.getElementType()); +    int GCD = greatestCommonDivisor(OrigTy.getNumElements(), +                                    TargetTy.getNumElements()); +    return LLT::scalarOrVector(GCD, OrigTy.getElementType()); +  } + +  if (OrigTy.isVector() && !TargetTy.isVector()) { +    assert(OrigTy.getElementType() == TargetTy); +    return TargetTy; +  } + +  assert(!OrigTy.isVector() && !TargetTy.isVector()); + +  int GCD = greatestCommonDivisor(OrigTy.getSizeInBits(), +                                  TargetTy.getSizeInBits()); +  return LLT::scalar(GCD); +} + +void LegalizerHelper::insertParts(Register DstReg, +                                  LLT ResultTy, LLT PartTy, +                                  ArrayRef<Register> PartRegs, +                                  LLT LeftoverTy, +                                  ArrayRef<Register> LeftoverRegs) { +  if (!LeftoverTy.isValid()) { +    assert(LeftoverRegs.empty()); + +    if (!ResultTy.isVector()) { +      MIRBuilder.buildMerge(DstReg, PartRegs); +      return; +    } + +    if (PartTy.isVector()) +      MIRBuilder.buildConcatVectors(DstReg, PartRegs); +    else +      MIRBuilder.buildBuildVector(DstReg, PartRegs); +    return; +  } + +  unsigned PartSize = PartTy.getSizeInBits(); +  unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); + +  Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); +  MIRBuilder.buildUndef(CurResultReg); + +  unsigned Offset = 0; +  for (Register PartReg : PartRegs) { +    Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); +    MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); +    CurResultReg = NewResultReg; +    Offset += PartSize; +  } + +  for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { +    // Use the original output register for the final insert to avoid a copy. +    Register NewResultReg = (I + 1 == E) ? +      DstReg : MRI.createGenericVirtualRegister(ResultTy); + +    MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); +    CurResultReg = NewResultReg; +    Offset += LeftoverPartSize; +  } +} + +static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { +  switch (Opcode) { +  case TargetOpcode::G_SDIV: +    assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); +    switch (Size) { +    case 32: +      return RTLIB::SDIV_I32; +    case 64: +      return RTLIB::SDIV_I64; +    case 128: +      return RTLIB::SDIV_I128; +    default: +      llvm_unreachable("unexpected size"); +    } +  case TargetOpcode::G_UDIV: +    assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); +    switch (Size) { +    case 32: +      return RTLIB::UDIV_I32; +    case 64: +      return RTLIB::UDIV_I64; +    case 128: +      return RTLIB::UDIV_I128; +    default: +      llvm_unreachable("unexpected size"); +    } +  case TargetOpcode::G_SREM: +    assert((Size == 32 || Size == 64) && "Unsupported size"); +    return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; +  case TargetOpcode::G_UREM: +    assert((Size == 32 || Size == 64) && "Unsupported size"); +    return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; +  case TargetOpcode::G_CTLZ_ZERO_UNDEF: +    assert(Size == 32 && "Unsupported size"); +    return RTLIB::CTLZ_I32; +  case TargetOpcode::G_FADD: +    assert((Size == 32 || Size == 64) && "Unsupported size"); +    return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; +  case TargetOpcode::G_FSUB: +    assert((Size == 32 || Size == 64) && "Unsupported size"); +    return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; +  case TargetOpcode::G_FMUL: +    assert((Size == 32 || Size == 64) && "Unsupported size"); +    return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; +  case TargetOpcode::G_FDIV: +    assert((Size == 32 || Size == 64) && "Unsupported size"); +    return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; +  case TargetOpcode::G_FEXP: +    assert((Size == 32 || Size == 64) && "Unsupported size"); +    return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32; +  case TargetOpcode::G_FEXP2: +    assert((Size == 32 || Size == 64) && "Unsupported size"); +    return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32; +  case TargetOpcode::G_FREM: +    return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; +  case TargetOpcode::G_FPOW: +    return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; +  case TargetOpcode::G_FMA: +    assert((Size == 32 || Size == 64) && "Unsupported size"); +    return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; +  case TargetOpcode::G_FSIN: +    assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); +    return Size == 128 ? RTLIB::SIN_F128 +                       : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32; +  case TargetOpcode::G_FCOS: +    assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); +    return Size == 128 ? RTLIB::COS_F128 +                       : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32; +  case TargetOpcode::G_FLOG10: +    assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); +    return Size == 128 ? RTLIB::LOG10_F128 +                       : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32; +  case TargetOpcode::G_FLOG: +    assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); +    return Size == 128 ? RTLIB::LOG_F128 +                       : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32; +  case TargetOpcode::G_FLOG2: +    assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); +    return Size == 128 ? RTLIB::LOG2_F128 +                       : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32; +  case TargetOpcode::G_FCEIL: +    assert((Size == 32 || Size == 64) && "Unsupported size"); +    return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32; +  case TargetOpcode::G_FFLOOR: +    assert((Size == 32 || Size == 64) && "Unsupported size"); +    return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32; +  } +  llvm_unreachable("Unknown libcall function"); +} + +/// True if an instruction is in tail position in its caller. Intended for +/// legalizing libcalls as tail calls when possible. +static bool isLibCallInTailPosition(MachineInstr &MI) { +  const Function &F = MI.getParent()->getParent()->getFunction(); + +  // Conservatively require the attributes of the call to match those of +  // the return. Ignore NoAlias and NonNull because they don't affect the +  // call sequence. +  AttributeList CallerAttrs = F.getAttributes(); +  if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) +          .removeAttribute(Attribute::NoAlias) +          .removeAttribute(Attribute::NonNull) +          .hasAttributes()) +    return false; + +  // It's not safe to eliminate the sign / zero extension of the return value. +  if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || +      CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) +    return false; + +  // Only tail call if the following instruction is a standard return. +  auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); +  MachineInstr *Next = MI.getNextNode(); +  if (!Next || TII.isTailCall(*Next) || !Next->isReturn()) +    return false; + +  return true; +} + +LegalizerHelper::LegalizeResult +llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, +                    const CallLowering::ArgInfo &Result, +                    ArrayRef<CallLowering::ArgInfo> Args) { +  auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); +  auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); +  const char *Name = TLI.getLibcallName(Libcall); + +  CallLowering::CallLoweringInfo Info; +  Info.CallConv = TLI.getLibcallCallingConv(Libcall); +  Info.Callee = MachineOperand::CreateES(Name); +  Info.OrigRet = Result; +  std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); +  if (!CLI.lowerCall(MIRBuilder, Info)) +    return LegalizerHelper::UnableToLegalize; + +  return LegalizerHelper::Legalized; +} + +// Useful for libcalls where all operands have the same type. +static LegalizerHelper::LegalizeResult +simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, +              Type *OpType) { +  auto Libcall = getRTLibDesc(MI.getOpcode(), Size); + +  SmallVector<CallLowering::ArgInfo, 3> Args; +  for (unsigned i = 1; i < MI.getNumOperands(); i++) +    Args.push_back({MI.getOperand(i).getReg(), OpType}); +  return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, +                       Args); +} + +LegalizerHelper::LegalizeResult +llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, +                       MachineInstr &MI) { +  assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); +  auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); + +  SmallVector<CallLowering::ArgInfo, 3> Args; +  // Add all the args, except for the last which is an imm denoting 'tail'. +  for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { +    Register Reg = MI.getOperand(i).getReg(); + +    // Need derive an IR type for call lowering. +    LLT OpLLT = MRI.getType(Reg); +    Type *OpTy = nullptr; +    if (OpLLT.isPointer()) +      OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); +    else +      OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); +    Args.push_back({Reg, OpTy}); +  } + +  auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); +  auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); +  Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); +  RTLIB::Libcall RTLibcall; +  switch (ID) { +  case Intrinsic::memcpy: +    RTLibcall = RTLIB::MEMCPY; +    break; +  case Intrinsic::memset: +    RTLibcall = RTLIB::MEMSET; +    break; +  case Intrinsic::memmove: +    RTLibcall = RTLIB::MEMMOVE; +    break; +  default: +    return LegalizerHelper::UnableToLegalize; +  } +  const char *Name = TLI.getLibcallName(RTLibcall); + +  MIRBuilder.setInstr(MI); + +  CallLowering::CallLoweringInfo Info; +  Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); +  Info.Callee = MachineOperand::CreateES(Name); +  Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); +  Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && +                    isLibCallInTailPosition(MI); + +  std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); +  if (!CLI.lowerCall(MIRBuilder, Info)) +    return LegalizerHelper::UnableToLegalize; + +  if (Info.LoweredTailCall) { +    assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); +    // We must have a return following the call to get past +    // isLibCallInTailPosition. +    assert(MI.getNextNode() && MI.getNextNode()->isReturn() && +           "Expected instr following MI to be a return?"); + +    // We lowered a tail call, so the call is now the return from the block. +    // Delete the old return. +    MI.getNextNode()->eraseFromParent(); +  } + +  return LegalizerHelper::Legalized; +} + +static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, +                                       Type *FromType) { +  auto ToMVT = MVT::getVT(ToType); +  auto FromMVT = MVT::getVT(FromType); + +  switch (Opcode) { +  case TargetOpcode::G_FPEXT: +    return RTLIB::getFPEXT(FromMVT, ToMVT); +  case TargetOpcode::G_FPTRUNC: +    return RTLIB::getFPROUND(FromMVT, ToMVT); +  case TargetOpcode::G_FPTOSI: +    return RTLIB::getFPTOSINT(FromMVT, ToMVT); +  case TargetOpcode::G_FPTOUI: +    return RTLIB::getFPTOUINT(FromMVT, ToMVT); +  case TargetOpcode::G_SITOFP: +    return RTLIB::getSINTTOFP(FromMVT, ToMVT); +  case TargetOpcode::G_UITOFP: +    return RTLIB::getUINTTOFP(FromMVT, ToMVT); +  } +  llvm_unreachable("Unsupported libcall function"); +} + +static LegalizerHelper::LegalizeResult +conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, +                  Type *FromType) { +  RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); +  return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, +                       {{MI.getOperand(1).getReg(), FromType}}); +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::libcall(MachineInstr &MI) { +  LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); +  unsigned Size = LLTy.getSizeInBits(); +  auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); + +  MIRBuilder.setInstr(MI); + +  switch (MI.getOpcode()) { +  default: +    return UnableToLegalize; +  case TargetOpcode::G_SDIV: +  case TargetOpcode::G_UDIV: +  case TargetOpcode::G_SREM: +  case TargetOpcode::G_UREM: +  case TargetOpcode::G_CTLZ_ZERO_UNDEF: { +    Type *HLTy = IntegerType::get(Ctx, Size); +    auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); +    if (Status != Legalized) +      return Status; +    break; +  } +  case TargetOpcode::G_FADD: +  case TargetOpcode::G_FSUB: +  case TargetOpcode::G_FMUL: +  case TargetOpcode::G_FDIV: +  case TargetOpcode::G_FMA: +  case TargetOpcode::G_FPOW: +  case TargetOpcode::G_FREM: +  case TargetOpcode::G_FCOS: +  case TargetOpcode::G_FSIN: +  case TargetOpcode::G_FLOG10: +  case TargetOpcode::G_FLOG: +  case TargetOpcode::G_FLOG2: +  case TargetOpcode::G_FEXP: +  case TargetOpcode::G_FEXP2: +  case TargetOpcode::G_FCEIL: +  case TargetOpcode::G_FFLOOR: { +    if (Size > 64) { +      LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n"); +      return UnableToLegalize; +    } +    Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx); +    auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); +    if (Status != Legalized) +      return Status; +    break; +  } +  case TargetOpcode::G_FPEXT: { +    // FIXME: Support other floating point types (half, fp128 etc) +    unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); +    unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); +    if (ToSize != 64 || FromSize != 32) +      return UnableToLegalize; +    LegalizeResult Status = conversionLibcall( +        MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx)); +    if (Status != Legalized) +      return Status; +    break; +  } +  case TargetOpcode::G_FPTRUNC: { +    // FIXME: Support other floating point types (half, fp128 etc) +    unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); +    unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); +    if (ToSize != 32 || FromSize != 64) +      return UnableToLegalize; +    LegalizeResult Status = conversionLibcall( +        MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx)); +    if (Status != Legalized) +      return Status; +    break; +  } +  case TargetOpcode::G_FPTOSI: +  case TargetOpcode::G_FPTOUI: { +    // FIXME: Support other types +    unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); +    unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); +    if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) +      return UnableToLegalize; +    LegalizeResult Status = conversionLibcall( +        MI, MIRBuilder, +        ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), +        FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); +    if (Status != Legalized) +      return Status; +    break; +  } +  case TargetOpcode::G_SITOFP: +  case TargetOpcode::G_UITOFP: { +    // FIXME: Support other types +    unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); +    unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); +    if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) +      return UnableToLegalize; +    LegalizeResult Status = conversionLibcall( +        MI, MIRBuilder, +        ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), +        FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); +    if (Status != Legalized) +      return Status; +    break; +  } +  } + +  MI.eraseFromParent(); +  return Legalized; +} + +LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, +                                                              unsigned TypeIdx, +                                                              LLT NarrowTy) { +  MIRBuilder.setInstr(MI); + +  uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); +  uint64_t NarrowSize = NarrowTy.getSizeInBits(); + +  switch (MI.getOpcode()) { +  default: +    return UnableToLegalize; +  case TargetOpcode::G_IMPLICIT_DEF: { +    // FIXME: add support for when SizeOp0 isn't an exact multiple of +    // NarrowSize. +    if (SizeOp0 % NarrowSize != 0) +      return UnableToLegalize; +    int NumParts = SizeOp0 / NarrowSize; + +    SmallVector<Register, 2> DstRegs; +    for (int i = 0; i < NumParts; ++i) +      DstRegs.push_back( +          MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg()); + +    Register DstReg = MI.getOperand(0).getReg(); +    if(MRI.getType(DstReg).isVector()) +      MIRBuilder.buildBuildVector(DstReg, DstRegs); +    else +      MIRBuilder.buildMerge(DstReg, DstRegs); +    MI.eraseFromParent(); +    return Legalized; +  } +  case TargetOpcode::G_CONSTANT: { +    LLT Ty = MRI.getType(MI.getOperand(0).getReg()); +    const APInt &Val = MI.getOperand(1).getCImm()->getValue(); +    unsigned TotalSize = Ty.getSizeInBits(); +    unsigned NarrowSize = NarrowTy.getSizeInBits(); +    int NumParts = TotalSize / NarrowSize; + +    SmallVector<Register, 4> PartRegs; +    for (int I = 0; I != NumParts; ++I) { +      unsigned Offset = I * NarrowSize; +      auto K = MIRBuilder.buildConstant(NarrowTy, +                                        Val.lshr(Offset).trunc(NarrowSize)); +      PartRegs.push_back(K.getReg(0)); +    } + +    LLT LeftoverTy; +    unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; +    SmallVector<Register, 1> LeftoverRegs; +    if (LeftoverBits != 0) { +      LeftoverTy = LLT::scalar(LeftoverBits); +      auto K = MIRBuilder.buildConstant( +        LeftoverTy, +        Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); +      LeftoverRegs.push_back(K.getReg(0)); +    } + +    insertParts(MI.getOperand(0).getReg(), +                Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); + +    MI.eraseFromParent(); +    return Legalized; +  } +  case TargetOpcode::G_SEXT: { +    if (TypeIdx != 0) +      return UnableToLegalize; + +    Register SrcReg = MI.getOperand(1).getReg(); +    LLT SrcTy = MRI.getType(SrcReg); + +    // FIXME: support the general case where the requested NarrowTy may not be +    // the same as the source type. E.g. s128 = sext(s32) +    if ((SrcTy.getSizeInBits() != SizeOp0 / 2) || +        SrcTy.getSizeInBits() != NarrowTy.getSizeInBits()) { +      LLVM_DEBUG(dbgs() << "Can't narrow sext to type " << NarrowTy << "\n"); +      return UnableToLegalize; +    } + +    // Shift the sign bit of the low register through the high register. +    auto ShiftAmt = +        MIRBuilder.buildConstant(LLT::scalar(64), NarrowTy.getSizeInBits() - 1); +    auto Shift = MIRBuilder.buildAShr(NarrowTy, SrcReg, ShiftAmt); +    MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {SrcReg, Shift.getReg(0)}); +    MI.eraseFromParent(); +    return Legalized; +  } +  case TargetOpcode::G_ZEXT: { +    if (TypeIdx != 0) +      return UnableToLegalize; + +    LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); +    uint64_t SizeOp1 = SrcTy.getSizeInBits(); +    if (SizeOp0 % SizeOp1 != 0) +      return UnableToLegalize; + +    // Generate a merge where the bottom bits are taken from the source, and +    // zero everything else. +    Register ZeroReg = MIRBuilder.buildConstant(SrcTy, 0).getReg(0); +    unsigned NumParts = SizeOp0 / SizeOp1; +    SmallVector<Register, 4> Srcs = {MI.getOperand(1).getReg()}; +    for (unsigned Part = 1; Part < NumParts; ++Part) +      Srcs.push_back(ZeroReg); +    MIRBuilder.buildMerge(MI.getOperand(0).getReg(), Srcs); +    MI.eraseFromParent(); +    return Legalized; +  } +  case TargetOpcode::G_TRUNC: { +    if (TypeIdx != 1) +      return UnableToLegalize; + +    uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); +    if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { +      LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); +      return UnableToLegalize; +    } + +    auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg()); +    MIRBuilder.buildCopy(MI.getOperand(0).getReg(), Unmerge.getReg(0)); +    MI.eraseFromParent(); +    return Legalized; +  } + +  case TargetOpcode::G_ADD: { +    // FIXME: add support for when SizeOp0 isn't an exact multiple of +    // NarrowSize. +    if (SizeOp0 % NarrowSize != 0) +      return UnableToLegalize; +    // Expand in terms of carry-setting/consuming G_ADDE instructions. +    int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); + +    SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; +    extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); +    extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); + +    Register CarryIn; +    for (int i = 0; i < NumParts; ++i) { +      Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); +      Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); + +      if (i == 0) +        MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); +      else { +        MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], +                              Src2Regs[i], CarryIn); +      } + +      DstRegs.push_back(DstReg); +      CarryIn = CarryOut; +    } +    Register DstReg = MI.getOperand(0).getReg(); +    if(MRI.getType(DstReg).isVector()) +      MIRBuilder.buildBuildVector(DstReg, DstRegs); +    else +      MIRBuilder.buildMerge(DstReg, DstRegs); +    MI.eraseFromParent(); +    return Legalized; +  } +  case TargetOpcode::G_SUB: { +    // FIXME: add support for when SizeOp0 isn't an exact multiple of +    // NarrowSize. +    if (SizeOp0 % NarrowSize != 0) +      return UnableToLegalize; + +    int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); + +    SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; +    extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); +    extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); + +    Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); +    Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); +    MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, +                          {Src1Regs[0], Src2Regs[0]}); +    DstRegs.push_back(DstReg); +    Register BorrowIn = BorrowOut; +    for (int i = 1; i < NumParts; ++i) { +      DstReg = MRI.createGenericVirtualRegister(NarrowTy); +      BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); + +      MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, +                            {Src1Regs[i], Src2Regs[i], BorrowIn}); + +      DstRegs.push_back(DstReg); +      BorrowIn = BorrowOut; +    } +    MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); +    MI.eraseFromParent(); +    return Legalized; +  } +  case TargetOpcode::G_MUL: +  case TargetOpcode::G_UMULH: +    return narrowScalarMul(MI, NarrowTy); +  case TargetOpcode::G_EXTRACT: +    return narrowScalarExtract(MI, TypeIdx, NarrowTy); +  case TargetOpcode::G_INSERT: +    return narrowScalarInsert(MI, TypeIdx, NarrowTy); +  case TargetOpcode::G_LOAD: { +    const auto &MMO = **MI.memoperands_begin(); +    Register DstReg = MI.getOperand(0).getReg(); +    LLT DstTy = MRI.getType(DstReg); +    if (DstTy.isVector()) +      return UnableToLegalize; + +    if (8 * MMO.getSize() != DstTy.getSizeInBits()) { +      Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); +      auto &MMO = **MI.memoperands_begin(); +      MIRBuilder.buildLoad(TmpReg, MI.getOperand(1).getReg(), MMO); +      MIRBuilder.buildAnyExt(DstReg, TmpReg); +      MI.eraseFromParent(); +      return Legalized; +    } + +    return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); +  } +  case TargetOpcode::G_ZEXTLOAD: +  case TargetOpcode::G_SEXTLOAD: { +    bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; +    Register DstReg = MI.getOperand(0).getReg(); +    Register PtrReg = MI.getOperand(1).getReg(); + +    Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); +    auto &MMO = **MI.memoperands_begin(); +    if (MMO.getSizeInBits() == NarrowSize) { +      MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); +    } else { +      unsigned ExtLoad = ZExt ? TargetOpcode::G_ZEXTLOAD +        : TargetOpcode::G_SEXTLOAD; +      MIRBuilder.buildInstr(ExtLoad) +        .addDef(TmpReg) +        .addUse(PtrReg) +        .addMemOperand(&MMO); +    } + +    if (ZExt) +      MIRBuilder.buildZExt(DstReg, TmpReg); +    else +      MIRBuilder.buildSExt(DstReg, TmpReg); + +    MI.eraseFromParent(); +    return Legalized; +  } +  case TargetOpcode::G_STORE: { +    const auto &MMO = **MI.memoperands_begin(); + +    Register SrcReg = MI.getOperand(0).getReg(); +    LLT SrcTy = MRI.getType(SrcReg); +    if (SrcTy.isVector()) +      return UnableToLegalize; + +    int NumParts = SizeOp0 / NarrowSize; +    unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); +    unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; +    if (SrcTy.isVector() && LeftoverBits != 0) +      return UnableToLegalize; + +    if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { +      Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); +      auto &MMO = **MI.memoperands_begin(); +      MIRBuilder.buildTrunc(TmpReg, SrcReg); +      MIRBuilder.buildStore(TmpReg, MI.getOperand(1).getReg(), MMO); +      MI.eraseFromParent(); +      return Legalized; +    } + +    return reduceLoadStoreWidth(MI, 0, NarrowTy); +  } +  case TargetOpcode::G_SELECT: +    return narrowScalarSelect(MI, TypeIdx, NarrowTy); +  case TargetOpcode::G_AND: +  case TargetOpcode::G_OR: +  case TargetOpcode::G_XOR: { +    // Legalize bitwise operation: +    // A = BinOp<Ty> B, C +    // into: +    // B1, ..., BN = G_UNMERGE_VALUES B +    // C1, ..., CN = G_UNMERGE_VALUES C +    // A1 = BinOp<Ty/N> B1, C2 +    // ... +    // AN = BinOp<Ty/N> BN, CN +    // A = G_MERGE_VALUES A1, ..., AN +    return narrowScalarBasic(MI, TypeIdx, NarrowTy); +  } +  case TargetOpcode::G_SHL: +  case TargetOpcode::G_LSHR: +  case TargetOpcode::G_ASHR: +    return narrowScalarShift(MI, TypeIdx, NarrowTy); +  case TargetOpcode::G_CTLZ: +  case TargetOpcode::G_CTLZ_ZERO_UNDEF: +  case TargetOpcode::G_CTTZ: +  case TargetOpcode::G_CTTZ_ZERO_UNDEF: +  case TargetOpcode::G_CTPOP: +    if (TypeIdx != 0) +      return UnableToLegalize; // TODO + +    Observer.changingInstr(MI); +    narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); +    Observer.changedInstr(MI); +    return Legalized; +  case TargetOpcode::G_INTTOPTR: +    if (TypeIdx != 1) +      return UnableToLegalize; + +    Observer.changingInstr(MI); +    narrowScalarSrc(MI, NarrowTy, 1); +    Observer.changedInstr(MI); +    return Legalized; +  case TargetOpcode::G_PTRTOINT: +    if (TypeIdx != 0) +      return UnableToLegalize; + +    Observer.changingInstr(MI); +    narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); +    Observer.changedInstr(MI); +    return Legalized; +  case TargetOpcode::G_PHI: { +    unsigned NumParts = SizeOp0 / NarrowSize; +    SmallVector<Register, 2> DstRegs; +    SmallVector<SmallVector<Register, 2>, 2> SrcRegs; +    DstRegs.resize(NumParts); +    SrcRegs.resize(MI.getNumOperands() / 2); +    Observer.changingInstr(MI); +    for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { +      MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); +      MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); +      extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, +                   SrcRegs[i / 2]); +    } +    MachineBasicBlock &MBB = *MI.getParent(); +    MIRBuilder.setInsertPt(MBB, MI); +    for (unsigned i = 0; i < NumParts; ++i) { +      DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); +      MachineInstrBuilder MIB = +          MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); +      for (unsigned j = 1; j < MI.getNumOperands(); j += 2) +        MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); +    } +    MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); +    MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); +    Observer.changedInstr(MI); +    MI.eraseFromParent(); +    return Legalized; +  } +  case TargetOpcode::G_EXTRACT_VECTOR_ELT: +  case TargetOpcode::G_INSERT_VECTOR_ELT: { +    if (TypeIdx != 2) +      return UnableToLegalize; + +    int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; +    Observer.changingInstr(MI); +    narrowScalarSrc(MI, NarrowTy, OpIdx); +    Observer.changedInstr(MI); +    return Legalized; +  } +  case TargetOpcode::G_ICMP: { +    uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); +    if (NarrowSize * 2 != SrcSize) +      return UnableToLegalize; + +    Observer.changingInstr(MI); +    Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); +    Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); +    MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2).getReg()); + +    Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); +    Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); +    MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3).getReg()); + +    CmpInst::Predicate Pred = +        static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); +    LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); + +    if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { +      MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); +      MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); +      MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); +      MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); +      MIRBuilder.buildICmp(Pred, MI.getOperand(0).getReg(), Or, Zero); +    } else { +      MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); +      MachineInstrBuilder CmpHEQ = +          MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); +      MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( +          ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); +      MIRBuilder.buildSelect(MI.getOperand(0).getReg(), CmpHEQ, CmpLU, CmpH); +    } +    Observer.changedInstr(MI); +    MI.eraseFromParent(); +    return Legalized; +  } +  case TargetOpcode::G_SEXT_INREG: { +    if (TypeIdx != 0) +      return UnableToLegalize; + +    if (!MI.getOperand(2).isImm()) +      return UnableToLegalize; +    int64_t SizeInBits = MI.getOperand(2).getImm(); + +    // So long as the new type has more bits than the bits we're extending we +    // don't need to break it apart. +    if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { +      Observer.changingInstr(MI); +      // We don't lose any non-extension bits by truncating the src and +      // sign-extending the dst. +      MachineOperand &MO1 = MI.getOperand(1); +      auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1.getReg()); +      MO1.setReg(TruncMIB->getOperand(0).getReg()); + +      MachineOperand &MO2 = MI.getOperand(0); +      Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); +      MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); +      MIRBuilder.buildInstr(TargetOpcode::G_SEXT, {MO2.getReg()}, {DstExt}); +      MO2.setReg(DstExt); +      Observer.changedInstr(MI); +      return Legalized; +    } + +    // Break it apart. Components below the extension point are unmodified. The +    // component containing the extension point becomes a narrower SEXT_INREG. +    // Components above it are ashr'd from the component containing the +    // extension point. +    if (SizeOp0 % NarrowSize != 0) +      return UnableToLegalize; +    int NumParts = SizeOp0 / NarrowSize; + +    // List the registers where the destination will be scattered. +    SmallVector<Register, 2> DstRegs; +    // List the registers where the source will be split. +    SmallVector<Register, 2> SrcRegs; + +    // Create all the temporary registers. +    for (int i = 0; i < NumParts; ++i) { +      Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); + +      SrcRegs.push_back(SrcReg); +    } + +    // Explode the big arguments into smaller chunks. +    MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1).getReg()); + +    Register AshrCstReg = +        MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) +            ->getOperand(0) +            .getReg(); +    Register FullExtensionReg = 0; +    Register PartialExtensionReg = 0; + +    // Do the operation on each small part. +    for (int i = 0; i < NumParts; ++i) { +      if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) +        DstRegs.push_back(SrcRegs[i]); +      else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { +        assert(PartialExtensionReg && +               "Expected to visit partial extension before full"); +        if (FullExtensionReg) { +          DstRegs.push_back(FullExtensionReg); +          continue; +        } +        DstRegs.push_back(MIRBuilder +                              .buildInstr(TargetOpcode::G_ASHR, {NarrowTy}, +                                          {PartialExtensionReg, AshrCstReg}) +                              ->getOperand(0) +                              .getReg()); +        FullExtensionReg = DstRegs.back(); +      } else { +        DstRegs.push_back( +            MIRBuilder +                .buildInstr( +                    TargetOpcode::G_SEXT_INREG, {NarrowTy}, +                    {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) +                ->getOperand(0) +                .getReg()); +        PartialExtensionReg = DstRegs.back(); +      } +    } + +    // Gather the destination registers into the final destination. +    Register DstReg = MI.getOperand(0).getReg(); +    MIRBuilder.buildMerge(DstReg, DstRegs); +    MI.eraseFromParent(); +    return Legalized; +  } +  } +} + +void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, +                                     unsigned OpIdx, unsigned ExtOpcode) { +  MachineOperand &MO = MI.getOperand(OpIdx); +  auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()}); +  MO.setReg(ExtB->getOperand(0).getReg()); +} + +void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, +                                      unsigned OpIdx) { +  MachineOperand &MO = MI.getOperand(OpIdx); +  auto ExtB = MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {NarrowTy}, +                                    {MO.getReg()}); +  MO.setReg(ExtB->getOperand(0).getReg()); +} + +void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, +                                     unsigned OpIdx, unsigned TruncOpcode) { +  MachineOperand &MO = MI.getOperand(OpIdx); +  Register DstExt = MRI.createGenericVirtualRegister(WideTy); +  MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); +  MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt}); +  MO.setReg(DstExt); +} + +void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, +                                      unsigned OpIdx, unsigned ExtOpcode) { +  MachineOperand &MO = MI.getOperand(OpIdx); +  Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); +  MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); +  MIRBuilder.buildInstr(ExtOpcode, {MO.getReg()}, {DstTrunc}); +  MO.setReg(DstTrunc); +} + +void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, +                                            unsigned OpIdx) { +  MachineOperand &MO = MI.getOperand(OpIdx); +  Register DstExt = MRI.createGenericVirtualRegister(WideTy); +  MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); +  MIRBuilder.buildExtract(MO.getReg(), DstExt, 0); +  MO.setReg(DstExt); +} + +void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, +                                            unsigned OpIdx) { +  MachineOperand &MO = MI.getOperand(OpIdx); + +  LLT OldTy = MRI.getType(MO.getReg()); +  unsigned OldElts = OldTy.getNumElements(); +  unsigned NewElts = MoreTy.getNumElements(); + +  unsigned NumParts = NewElts / OldElts; + +  // Use concat_vectors if the result is a multiple of the number of elements. +  if (NumParts * OldElts == NewElts) { +    SmallVector<Register, 8> Parts; +    Parts.push_back(MO.getReg()); + +    Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); +    for (unsigned I = 1; I != NumParts; ++I) +      Parts.push_back(ImpDef); + +    auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); +    MO.setReg(Concat.getReg(0)); +    return; +  } + +  Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); +  Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); +  MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); +  MO.setReg(MoreReg); +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, +                                        LLT WideTy) { +  if (TypeIdx != 1) +    return UnableToLegalize; + +  Register DstReg = MI.getOperand(0).getReg(); +  LLT DstTy = MRI.getType(DstReg); +  if (DstTy.isVector()) +    return UnableToLegalize; + +  Register Src1 = MI.getOperand(1).getReg(); +  LLT SrcTy = MRI.getType(Src1); +  const int DstSize = DstTy.getSizeInBits(); +  const int SrcSize = SrcTy.getSizeInBits(); +  const int WideSize = WideTy.getSizeInBits(); +  const int NumMerge = (DstSize + WideSize - 1) / WideSize; + +  unsigned NumOps = MI.getNumOperands(); +  unsigned NumSrc = MI.getNumOperands() - 1; +  unsigned PartSize = DstTy.getSizeInBits() / NumSrc; + +  if (WideSize >= DstSize) { +    // Directly pack the bits in the target type. +    Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); + +    for (unsigned I = 2; I != NumOps; ++I) { +      const unsigned Offset = (I - 1) * PartSize; + +      Register SrcReg = MI.getOperand(I).getReg(); +      assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); + +      auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); + +      Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : +        MRI.createGenericVirtualRegister(WideTy); + +      auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); +      auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); +      MIRBuilder.buildOr(NextResult, ResultReg, Shl); +      ResultReg = NextResult; +    } + +    if (WideSize > DstSize) +      MIRBuilder.buildTrunc(DstReg, ResultReg); +    else if (DstTy.isPointer()) +      MIRBuilder.buildIntToPtr(DstReg, ResultReg); + +    MI.eraseFromParent(); +    return Legalized; +  } + +  // Unmerge the original values to the GCD type, and recombine to the next +  // multiple greater than the original type. +  // +  // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 +  // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 +  // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 +  // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 +  // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 +  // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 +  // %12:_(s12) = G_MERGE_VALUES %10, %11 +  // +  // Padding with undef if necessary: +  // +  // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 +  // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 +  // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 +  // %7:_(s2) = G_IMPLICIT_DEF +  // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 +  // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 +  // %10:_(s12) = G_MERGE_VALUES %8, %9 + +  const int GCD = greatestCommonDivisor(SrcSize, WideSize); +  LLT GCDTy = LLT::scalar(GCD); + +  SmallVector<Register, 8> Parts; +  SmallVector<Register, 8> NewMergeRegs; +  SmallVector<Register, 8> Unmerges; +  LLT WideDstTy = LLT::scalar(NumMerge * WideSize); + +  // Decompose the original operands if they don't evenly divide. +  for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { +    Register SrcReg = MI.getOperand(I).getReg(); +    if (GCD == SrcSize) { +      Unmerges.push_back(SrcReg); +    } else { +      auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); +      for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) +        Unmerges.push_back(Unmerge.getReg(J)); +    } +  } + +  // Pad with undef to the next size that is a multiple of the requested size. +  if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { +    Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); +    for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) +      Unmerges.push_back(UndefReg); +  } + +  const int PartsPerGCD = WideSize / GCD; + +  // Build merges of each piece. +  ArrayRef<Register> Slicer(Unmerges); +  for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { +    auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); +    NewMergeRegs.push_back(Merge.getReg(0)); +  } + +  // A truncate may be necessary if the requested type doesn't evenly divide the +  // original result type. +  if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { +    MIRBuilder.buildMerge(DstReg, NewMergeRegs); +  } else { +    auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); +    MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); +  } + +  MI.eraseFromParent(); +  return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, +                                          LLT WideTy) { +  if (TypeIdx != 0) +    return UnableToLegalize; + +  unsigned NumDst = MI.getNumOperands() - 1; +  Register SrcReg = MI.getOperand(NumDst).getReg(); +  LLT SrcTy = MRI.getType(SrcReg); +  if (!SrcTy.isScalar()) +    return UnableToLegalize; + +  Register Dst0Reg = MI.getOperand(0).getReg(); +  LLT DstTy = MRI.getType(Dst0Reg); +  if (!DstTy.isScalar()) +    return UnableToLegalize; + +  unsigned NewSrcSize = NumDst * WideTy.getSizeInBits(); +  LLT NewSrcTy = LLT::scalar(NewSrcSize); +  unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits(); + +  auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg); + +  for (unsigned I = 1; I != NumDst; ++I) { +    auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I); +    auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt); +    WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl); +  } + +  Observer.changingInstr(MI); + +  MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg()); +  for (unsigned I = 0; I != NumDst; ++I) +    widenScalarDst(MI, WideTy, I); + +  Observer.changedInstr(MI); + +  return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, +                                    LLT WideTy) { +  Register DstReg = MI.getOperand(0).getReg(); +  Register SrcReg = MI.getOperand(1).getReg(); +  LLT SrcTy = MRI.getType(SrcReg); + +  LLT DstTy = MRI.getType(DstReg); +  unsigned Offset = MI.getOperand(2).getImm(); + +  if (TypeIdx == 0) { +    if (SrcTy.isVector() || DstTy.isVector()) +      return UnableToLegalize; + +    SrcOp Src(SrcReg); +    if (SrcTy.isPointer()) { +      // Extracts from pointers can be handled only if they are really just +      // simple integers. +      const DataLayout &DL = MIRBuilder.getDataLayout(); +      if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) +        return UnableToLegalize; + +      LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); +      Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); +      SrcTy = SrcAsIntTy; +    } + +    if (DstTy.isPointer()) +      return UnableToLegalize; + +    if (Offset == 0) { +      // Avoid a shift in the degenerate case. +      MIRBuilder.buildTrunc(DstReg, +                            MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); +      MI.eraseFromParent(); +      return Legalized; +    } + +    // Do a shift in the source type. +    LLT ShiftTy = SrcTy; +    if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { +      Src = MIRBuilder.buildAnyExt(WideTy, Src); +      ShiftTy = WideTy; +    } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) +      return UnableToLegalize; + +    auto LShr = MIRBuilder.buildLShr( +      ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); +    MIRBuilder.buildTrunc(DstReg, LShr); +    MI.eraseFromParent(); +    return Legalized; +  } + +  if (SrcTy.isScalar()) { +    Observer.changingInstr(MI); +    widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); +    Observer.changedInstr(MI); +    return Legalized; +  } + +  if (!SrcTy.isVector()) +    return UnableToLegalize; + +  if (DstTy != SrcTy.getElementType()) +    return UnableToLegalize; + +  if (Offset % SrcTy.getScalarSizeInBits() != 0) +    return UnableToLegalize; + +  Observer.changingInstr(MI); +  widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); + +  MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * +                          Offset); +  widenScalarDst(MI, WideTy.getScalarType(), 0); +  Observer.changedInstr(MI); +  return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, +                                   LLT WideTy) { +  if (TypeIdx != 0) +    return UnableToLegalize; +  Observer.changingInstr(MI); +  widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); +  widenScalarDst(MI, WideTy); +  Observer.changedInstr(MI); +  return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { +  MIRBuilder.setInstr(MI); + +  switch (MI.getOpcode()) { +  default: +    return UnableToLegalize; +  case TargetOpcode::G_EXTRACT: +    return widenScalarExtract(MI, TypeIdx, WideTy); +  case TargetOpcode::G_INSERT: +    return widenScalarInsert(MI, TypeIdx, WideTy); +  case TargetOpcode::G_MERGE_VALUES: +    return widenScalarMergeValues(MI, TypeIdx, WideTy); +  case TargetOpcode::G_UNMERGE_VALUES: +    return widenScalarUnmergeValues(MI, TypeIdx, WideTy); +  case TargetOpcode::G_UADDO: +  case TargetOpcode::G_USUBO: { +    if (TypeIdx == 1) +      return UnableToLegalize; // TODO +    auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, +                                         {MI.getOperand(2).getReg()}); +    auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, +                                         {MI.getOperand(3).getReg()}); +    unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO +                          ? TargetOpcode::G_ADD +                          : TargetOpcode::G_SUB; +    // Do the arithmetic in the larger type. +    auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); +    LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); +    APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits()); +    auto AndOp = MIRBuilder.buildInstr( +        TargetOpcode::G_AND, {WideTy}, +        {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())}); +    // There is no overflow if the AndOp is the same as NewOp. +    MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp, +                         AndOp); +    // Now trunc the NewOp to the original result. +    MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp); +    MI.eraseFromParent(); +    return Legalized; +  } +  case TargetOpcode::G_CTTZ: +  case TargetOpcode::G_CTTZ_ZERO_UNDEF: +  case TargetOpcode::G_CTLZ: +  case TargetOpcode::G_CTLZ_ZERO_UNDEF: +  case TargetOpcode::G_CTPOP: { +    if (TypeIdx == 0) { +      Observer.changingInstr(MI); +      widenScalarDst(MI, WideTy, 0); +      Observer.changedInstr(MI); +      return Legalized; +    } + +    Register SrcReg = MI.getOperand(1).getReg(); + +    // First ZEXT the input. +    auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); +    LLT CurTy = MRI.getType(SrcReg); +    if (MI.getOpcode() == TargetOpcode::G_CTTZ) { +      // The count is the same in the larger type except if the original +      // value was zero.  This can be handled by setting the bit just off +      // the top of the original type. +      auto TopBit = +          APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); +      MIBSrc = MIRBuilder.buildOr( +        WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); +    } + +    // Perform the operation at the larger size. +    auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); +    // This is already the correct result for CTPOP and CTTZs +    if (MI.getOpcode() == TargetOpcode::G_CTLZ || +        MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { +      // The correct result is NewOp - (Difference in widety and current ty). +      unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); +      MIBNewOp = MIRBuilder.buildInstr( +          TargetOpcode::G_SUB, {WideTy}, +          {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)}); +    } + +    MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); +    MI.eraseFromParent(); +    return Legalized; +  } +  case TargetOpcode::G_BSWAP: { +    Observer.changingInstr(MI); +    Register DstReg = MI.getOperand(0).getReg(); + +    Register ShrReg = MRI.createGenericVirtualRegister(WideTy); +    Register DstExt = MRI.createGenericVirtualRegister(WideTy); +    Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); +    widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); + +    MI.getOperand(0).setReg(DstExt); + +    MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); + +    LLT Ty = MRI.getType(DstReg); +    unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); +    MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); +    MIRBuilder.buildInstr(TargetOpcode::G_LSHR) +      .addDef(ShrReg) +      .addUse(DstExt) +      .addUse(ShiftAmtReg); + +    MIRBuilder.buildTrunc(DstReg, ShrReg); +    Observer.changedInstr(MI); +    return Legalized; +  } +  case TargetOpcode::G_BITREVERSE: { +    Observer.changingInstr(MI); + +    Register DstReg = MI.getOperand(0).getReg(); +    LLT Ty = MRI.getType(DstReg); +    unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); + +    Register DstExt = MRI.createGenericVirtualRegister(WideTy); +    widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); +    MI.getOperand(0).setReg(DstExt); +    MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); + +    auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); +    auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); +    MIRBuilder.buildTrunc(DstReg, Shift); +    Observer.changedInstr(MI); +    return Legalized; +  } +  case TargetOpcode::G_ADD: +  case TargetOpcode::G_AND: +  case TargetOpcode::G_MUL: +  case TargetOpcode::G_OR: +  case TargetOpcode::G_XOR: +  case TargetOpcode::G_SUB: +    // Perform operation at larger width (any extension is fines here, high bits +    // don't affect the result) and then truncate the result back to the +    // original type. +    Observer.changingInstr(MI); +    widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); +    widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); +    widenScalarDst(MI, WideTy); +    Observer.changedInstr(MI); +    return Legalized; + +  case TargetOpcode::G_SHL: +    Observer.changingInstr(MI); + +    if (TypeIdx == 0) { +      widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); +      widenScalarDst(MI, WideTy); +    } else { +      assert(TypeIdx == 1); +      // The "number of bits to shift" operand must preserve its value as an +      // unsigned integer: +      widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); +    } + +    Observer.changedInstr(MI); +    return Legalized; + +  case TargetOpcode::G_SDIV: +  case TargetOpcode::G_SREM: +  case TargetOpcode::G_SMIN: +  case TargetOpcode::G_SMAX: +    Observer.changingInstr(MI); +    widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); +    widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); +    widenScalarDst(MI, WideTy); +    Observer.changedInstr(MI); +    return Legalized; + +  case TargetOpcode::G_ASHR: +  case TargetOpcode::G_LSHR: +    Observer.changingInstr(MI); + +    if (TypeIdx == 0) { +      unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? +        TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; + +      widenScalarSrc(MI, WideTy, 1, CvtOp); +      widenScalarDst(MI, WideTy); +    } else { +      assert(TypeIdx == 1); +      // The "number of bits to shift" operand must preserve its value as an +      // unsigned integer: +      widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); +    } + +    Observer.changedInstr(MI); +    return Legalized; +  case TargetOpcode::G_UDIV: +  case TargetOpcode::G_UREM: +  case TargetOpcode::G_UMIN: +  case TargetOpcode::G_UMAX: +    Observer.changingInstr(MI); +    widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); +    widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); +    widenScalarDst(MI, WideTy); +    Observer.changedInstr(MI); +    return Legalized; + +  case TargetOpcode::G_SELECT: +    Observer.changingInstr(MI); +    if (TypeIdx == 0) { +      // Perform operation at larger width (any extension is fine here, high +      // bits don't affect the result) and then truncate the result back to the +      // original type. +      widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); +      widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); +      widenScalarDst(MI, WideTy); +    } else { +      bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); +      // Explicit extension is required here since high bits affect the result. +      widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); +    } +    Observer.changedInstr(MI); +    return Legalized; + +  case TargetOpcode::G_FPTOSI: +  case TargetOpcode::G_FPTOUI: +    Observer.changingInstr(MI); + +    if (TypeIdx == 0) +      widenScalarDst(MI, WideTy); +    else +      widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); + +    Observer.changedInstr(MI); +    return Legalized; +  case TargetOpcode::G_SITOFP: +    if (TypeIdx != 1) +      return UnableToLegalize; +    Observer.changingInstr(MI); +    widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); +    Observer.changedInstr(MI); +    return Legalized; + +  case TargetOpcode::G_UITOFP: +    if (TypeIdx != 1) +      return UnableToLegalize; +    Observer.changingInstr(MI); +    widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); +    Observer.changedInstr(MI); +    return Legalized; + +  case TargetOpcode::G_LOAD: +  case TargetOpcode::G_SEXTLOAD: +  case TargetOpcode::G_ZEXTLOAD: +    Observer.changingInstr(MI); +    widenScalarDst(MI, WideTy); +    Observer.changedInstr(MI); +    return Legalized; + +  case TargetOpcode::G_STORE: { +    if (TypeIdx != 0) +      return UnableToLegalize; + +    LLT Ty = MRI.getType(MI.getOperand(0).getReg()); +    if (!isPowerOf2_32(Ty.getSizeInBits())) +      return UnableToLegalize; + +    Observer.changingInstr(MI); + +    unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? +      TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; +    widenScalarSrc(MI, WideTy, 0, ExtType); + +    Observer.changedInstr(MI); +    return Legalized; +  } +  case TargetOpcode::G_CONSTANT: { +    MachineOperand &SrcMO = MI.getOperand(1); +    LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); +    const APInt &Val = SrcMO.getCImm()->getValue().sext(WideTy.getSizeInBits()); +    Observer.changingInstr(MI); +    SrcMO.setCImm(ConstantInt::get(Ctx, Val)); + +    widenScalarDst(MI, WideTy); +    Observer.changedInstr(MI); +    return Legalized; +  } +  case TargetOpcode::G_FCONSTANT: { +    MachineOperand &SrcMO = MI.getOperand(1); +    LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); +    APFloat Val = SrcMO.getFPImm()->getValueAPF(); +    bool LosesInfo; +    switch (WideTy.getSizeInBits()) { +    case 32: +      Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, +                  &LosesInfo); +      break; +    case 64: +      Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, +                  &LosesInfo); +      break; +    default: +      return UnableToLegalize; +    } + +    assert(!LosesInfo && "extend should always be lossless"); + +    Observer.changingInstr(MI); +    SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); + +    widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); +    Observer.changedInstr(MI); +    return Legalized; +  } +  case TargetOpcode::G_IMPLICIT_DEF: { +    Observer.changingInstr(MI); +    widenScalarDst(MI, WideTy); +    Observer.changedInstr(MI); +    return Legalized; +  } +  case TargetOpcode::G_BRCOND: +    Observer.changingInstr(MI); +    widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); +    Observer.changedInstr(MI); +    return Legalized; + +  case TargetOpcode::G_FCMP: +    Observer.changingInstr(MI); +    if (TypeIdx == 0) +      widenScalarDst(MI, WideTy); +    else { +      widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); +      widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); +    } +    Observer.changedInstr(MI); +    return Legalized; + +  case TargetOpcode::G_ICMP: +    Observer.changingInstr(MI); +    if (TypeIdx == 0) +      widenScalarDst(MI, WideTy); +    else { +      unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( +                               MI.getOperand(1).getPredicate())) +                               ? TargetOpcode::G_SEXT +                               : TargetOpcode::G_ZEXT; +      widenScalarSrc(MI, WideTy, 2, ExtOpcode); +      widenScalarSrc(MI, WideTy, 3, ExtOpcode); +    } +    Observer.changedInstr(MI); +    return Legalized; + +  case TargetOpcode::G_GEP: +    assert(TypeIdx == 1 && "unable to legalize pointer of GEP"); +    Observer.changingInstr(MI); +    widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); +    Observer.changedInstr(MI); +    return Legalized; + +  case TargetOpcode::G_PHI: { +    assert(TypeIdx == 0 && "Expecting only Idx 0"); + +    Observer.changingInstr(MI); +    for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { +      MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); +      MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); +      widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); +    } + +    MachineBasicBlock &MBB = *MI.getParent(); +    MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); +    widenScalarDst(MI, WideTy); +    Observer.changedInstr(MI); +    return Legalized; +  } +  case TargetOpcode::G_EXTRACT_VECTOR_ELT: { +    if (TypeIdx == 0) { +      Register VecReg = MI.getOperand(1).getReg(); +      LLT VecTy = MRI.getType(VecReg); +      Observer.changingInstr(MI); + +      widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), +                                     WideTy.getSizeInBits()), +                     1, TargetOpcode::G_SEXT); + +      widenScalarDst(MI, WideTy, 0); +      Observer.changedInstr(MI); +      return Legalized; +    } + +    if (TypeIdx != 2) +      return UnableToLegalize; +    Observer.changingInstr(MI); +    widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); +    Observer.changedInstr(MI); +    return Legalized; +  } +  case TargetOpcode::G_FADD: +  case TargetOpcode::G_FMUL: +  case TargetOpcode::G_FSUB: +  case TargetOpcode::G_FMA: +  case TargetOpcode::G_FMAD: +  case TargetOpcode::G_FNEG: +  case TargetOpcode::G_FABS: +  case TargetOpcode::G_FCANONICALIZE: +  case TargetOpcode::G_FMINNUM: +  case TargetOpcode::G_FMAXNUM: +  case TargetOpcode::G_FMINNUM_IEEE: +  case TargetOpcode::G_FMAXNUM_IEEE: +  case TargetOpcode::G_FMINIMUM: +  case TargetOpcode::G_FMAXIMUM: +  case TargetOpcode::G_FDIV: +  case TargetOpcode::G_FREM: +  case TargetOpcode::G_FCEIL: +  case TargetOpcode::G_FFLOOR: +  case TargetOpcode::G_FCOS: +  case TargetOpcode::G_FSIN: +  case TargetOpcode::G_FLOG10: +  case TargetOpcode::G_FLOG: +  case TargetOpcode::G_FLOG2: +  case TargetOpcode::G_FRINT: +  case TargetOpcode::G_FNEARBYINT: +  case TargetOpcode::G_FSQRT: +  case TargetOpcode::G_FEXP: +  case TargetOpcode::G_FEXP2: +  case TargetOpcode::G_FPOW: +  case TargetOpcode::G_INTRINSIC_TRUNC: +  case TargetOpcode::G_INTRINSIC_ROUND: +    assert(TypeIdx == 0); +    Observer.changingInstr(MI); + +    for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) +      widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); + +    widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); +    Observer.changedInstr(MI); +    return Legalized; +  case TargetOpcode::G_INTTOPTR: +    if (TypeIdx != 1) +      return UnableToLegalize; + +    Observer.changingInstr(MI); +    widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); +    Observer.changedInstr(MI); +    return Legalized; +  case TargetOpcode::G_PTRTOINT: +    if (TypeIdx != 0) +      return UnableToLegalize; + +    Observer.changingInstr(MI); +    widenScalarDst(MI, WideTy, 0); +    Observer.changedInstr(MI); +    return Legalized; +  case TargetOpcode::G_BUILD_VECTOR: { +    Observer.changingInstr(MI); + +    const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); +    for (int I = 1, E = MI.getNumOperands(); I != E; ++I) +      widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); + +    // Avoid changing the result vector type if the source element type was +    // requested. +    if (TypeIdx == 1) { +      auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); +      MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); +    } else { +      widenScalarDst(MI, WideTy, 0); +    } + +    Observer.changedInstr(MI); +    return Legalized; +  } +  case TargetOpcode::G_SEXT_INREG: +    if (TypeIdx != 0) +      return UnableToLegalize; + +    Observer.changingInstr(MI); +    widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); +    widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); +    Observer.changedInstr(MI); +    return Legalized; +  } +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { +  using namespace TargetOpcode; +  MIRBuilder.setInstr(MI); + +  switch(MI.getOpcode()) { +  default: +    return UnableToLegalize; +  case TargetOpcode::G_SREM: +  case TargetOpcode::G_UREM: { +    Register QuotReg = MRI.createGenericVirtualRegister(Ty); +    MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV) +        .addDef(QuotReg) +        .addUse(MI.getOperand(1).getReg()) +        .addUse(MI.getOperand(2).getReg()); + +    Register ProdReg = MRI.createGenericVirtualRegister(Ty); +    MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg()); +    MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), +                        ProdReg); +    MI.eraseFromParent(); +    return Legalized; +  } +  case TargetOpcode::G_SADDO: +  case TargetOpcode::G_SSUBO: +    return lowerSADDO_SSUBO(MI); +  case TargetOpcode::G_SMULO: +  case TargetOpcode::G_UMULO: { +    // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the +    // result. +    Register Res = MI.getOperand(0).getReg(); +    Register Overflow = MI.getOperand(1).getReg(); +    Register LHS = MI.getOperand(2).getReg(); +    Register RHS = MI.getOperand(3).getReg(); + +    MIRBuilder.buildMul(Res, LHS, RHS); + +    unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO +                          ? TargetOpcode::G_SMULH +                          : TargetOpcode::G_UMULH; + +    Register HiPart = MRI.createGenericVirtualRegister(Ty); +    MIRBuilder.buildInstr(Opcode) +      .addDef(HiPart) +      .addUse(LHS) +      .addUse(RHS); + +    Register Zero = MRI.createGenericVirtualRegister(Ty); +    MIRBuilder.buildConstant(Zero, 0); + +    // For *signed* multiply, overflow is detected by checking: +    // (hi != (lo >> bitwidth-1)) +    if (Opcode == TargetOpcode::G_SMULH) { +      Register Shifted = MRI.createGenericVirtualRegister(Ty); +      Register ShiftAmt = MRI.createGenericVirtualRegister(Ty); +      MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1); +      MIRBuilder.buildInstr(TargetOpcode::G_ASHR) +        .addDef(Shifted) +        .addUse(Res) +        .addUse(ShiftAmt); +      MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); +    } else { +      MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); +    } +    MI.eraseFromParent(); +    return Legalized; +  } +  case TargetOpcode::G_FNEG: { +    // TODO: Handle vector types once we are able to +    // represent them. +    if (Ty.isVector()) +      return UnableToLegalize; +    Register Res = MI.getOperand(0).getReg(); +    Type *ZeroTy; +    LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); +    switch (Ty.getSizeInBits()) { +    case 16: +      ZeroTy = Type::getHalfTy(Ctx); +      break; +    case 32: +      ZeroTy = Type::getFloatTy(Ctx); +      break; +    case 64: +      ZeroTy = Type::getDoubleTy(Ctx); +      break; +    case 128: +      ZeroTy = Type::getFP128Ty(Ctx); +      break; +    default: +      llvm_unreachable("unexpected floating-point type"); +    } +    ConstantFP &ZeroForNegation = +        *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); +    auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); +    Register SubByReg = MI.getOperand(1).getReg(); +    Register ZeroReg = Zero->getOperand(0).getReg(); +    MIRBuilder.buildInstr(TargetOpcode::G_FSUB, {Res}, {ZeroReg, SubByReg}, +                          MI.getFlags()); +    MI.eraseFromParent(); +    return Legalized; +  } +  case TargetOpcode::G_FSUB: { +    // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). +    // First, check if G_FNEG is marked as Lower. If so, we may +    // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. +    if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) +      return UnableToLegalize; +    Register Res = MI.getOperand(0).getReg(); +    Register LHS = MI.getOperand(1).getReg(); +    Register RHS = MI.getOperand(2).getReg(); +    Register Neg = MRI.createGenericVirtualRegister(Ty); +    MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS); +    MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Res}, {LHS, Neg}, MI.getFlags()); +    MI.eraseFromParent(); +    return Legalized; +  } +  case TargetOpcode::G_FMAD: +    return lowerFMad(MI); +  case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { +    Register OldValRes = MI.getOperand(0).getReg(); +    Register SuccessRes = MI.getOperand(1).getReg(); +    Register Addr = MI.getOperand(2).getReg(); +    Register CmpVal = MI.getOperand(3).getReg(); +    Register NewVal = MI.getOperand(4).getReg(); +    MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, +                                  **MI.memoperands_begin()); +    MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); +    MI.eraseFromParent(); +    return Legalized; +  } +  case TargetOpcode::G_LOAD: +  case TargetOpcode::G_SEXTLOAD: +  case TargetOpcode::G_ZEXTLOAD: { +    // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT +    Register DstReg = MI.getOperand(0).getReg(); +    Register PtrReg = MI.getOperand(1).getReg(); +    LLT DstTy = MRI.getType(DstReg); +    auto &MMO = **MI.memoperands_begin(); + +    if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { +      if (MI.getOpcode() == TargetOpcode::G_LOAD) { +        // This load needs splitting into power of 2 sized loads. +        if (DstTy.isVector()) +          return UnableToLegalize; +        if (isPowerOf2_32(DstTy.getSizeInBits())) +          return UnableToLegalize; // Don't know what we're being asked to do. + +        // Our strategy here is to generate anyextending loads for the smaller +        // types up to next power-2 result type, and then combine the two larger +        // result values together, before truncating back down to the non-pow-2 +        // type. +        // E.g. v1 = i24 load => +        // v2 = i32 load (2 byte) +        // v3 = i32 load (1 byte) +        // v4 = i32 shl v3, 16 +        // v5 = i32 or v4, v2 +        // v1 = i24 trunc v5 +        // By doing this we generate the correct truncate which should get +        // combined away as an artifact with a matching extend. +        uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); +        uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; + +        MachineFunction &MF = MIRBuilder.getMF(); +        MachineMemOperand *LargeMMO = +            MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); +        MachineMemOperand *SmallMMO = MF.getMachineMemOperand( +            &MMO, LargeSplitSize / 8, SmallSplitSize / 8); + +        LLT PtrTy = MRI.getType(PtrReg); +        unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); +        LLT AnyExtTy = LLT::scalar(AnyExtSize); +        Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); +        Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); +        auto LargeLoad = +            MIRBuilder.buildLoad(LargeLdReg, PtrReg, *LargeMMO); + +        auto OffsetCst = +            MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8); +        Register GEPReg = MRI.createGenericVirtualRegister(PtrTy); +        auto SmallPtr = MIRBuilder.buildGEP(GEPReg, PtrReg, OffsetCst.getReg(0)); +        auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), +                                              *SmallMMO); + +        auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); +        auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); +        auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); +        MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); +        MI.eraseFromParent(); +        return Legalized; +      } +      MIRBuilder.buildLoad(DstReg, PtrReg, MMO); +      MI.eraseFromParent(); +      return Legalized; +    } + +    if (DstTy.isScalar()) { +      Register TmpReg = +          MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); +      MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); +      switch (MI.getOpcode()) { +      default: +        llvm_unreachable("Unexpected opcode"); +      case TargetOpcode::G_LOAD: +        MIRBuilder.buildAnyExt(DstReg, TmpReg); +        break; +      case TargetOpcode::G_SEXTLOAD: +        MIRBuilder.buildSExt(DstReg, TmpReg); +        break; +      case TargetOpcode::G_ZEXTLOAD: +        MIRBuilder.buildZExt(DstReg, TmpReg); +        break; +      } +      MI.eraseFromParent(); +      return Legalized; +    } + +    return UnableToLegalize; +  } +  case TargetOpcode::G_STORE: { +    // Lower a non-power of 2 store into multiple pow-2 stores. +    // E.g. split an i24 store into an i16 store + i8 store. +    // We do this by first extending the stored value to the next largest power +    // of 2 type, and then using truncating stores to store the components. +    // By doing this, likewise with G_LOAD, generate an extend that can be +    // artifact-combined away instead of leaving behind extracts. +    Register SrcReg = MI.getOperand(0).getReg(); +    Register PtrReg = MI.getOperand(1).getReg(); +    LLT SrcTy = MRI.getType(SrcReg); +    MachineMemOperand &MMO = **MI.memoperands_begin(); +    if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) +      return UnableToLegalize; +    if (SrcTy.isVector()) +      return UnableToLegalize; +    if (isPowerOf2_32(SrcTy.getSizeInBits())) +      return UnableToLegalize; // Don't know what we're being asked to do. + +    // Extend to the next pow-2. +    const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); +    auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); + +    // Obtain the smaller value by shifting away the larger value. +    uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); +    uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; +    auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); +    auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); + +    // Generate the GEP and truncating stores. +    LLT PtrTy = MRI.getType(PtrReg); +    auto OffsetCst = +        MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8); +    Register GEPReg = MRI.createGenericVirtualRegister(PtrTy); +    auto SmallPtr = MIRBuilder.buildGEP(GEPReg, PtrReg, OffsetCst.getReg(0)); + +    MachineFunction &MF = MIRBuilder.getMF(); +    MachineMemOperand *LargeMMO = +        MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); +    MachineMemOperand *SmallMMO = +        MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); +    MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); +    MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); +    MI.eraseFromParent(); +    return Legalized; +  } +  case TargetOpcode::G_CTLZ_ZERO_UNDEF: +  case TargetOpcode::G_CTTZ_ZERO_UNDEF: +  case TargetOpcode::G_CTLZ: +  case TargetOpcode::G_CTTZ: +  case TargetOpcode::G_CTPOP: +    return lowerBitCount(MI, TypeIdx, Ty); +  case G_UADDO: { +    Register Res = MI.getOperand(0).getReg(); +    Register CarryOut = MI.getOperand(1).getReg(); +    Register LHS = MI.getOperand(2).getReg(); +    Register RHS = MI.getOperand(3).getReg(); + +    MIRBuilder.buildAdd(Res, LHS, RHS); +    MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); + +    MI.eraseFromParent(); +    return Legalized; +  } +  case G_UADDE: { +    Register Res = MI.getOperand(0).getReg(); +    Register CarryOut = MI.getOperand(1).getReg(); +    Register LHS = MI.getOperand(2).getReg(); +    Register RHS = MI.getOperand(3).getReg(); +    Register CarryIn = MI.getOperand(4).getReg(); + +    Register TmpRes = MRI.createGenericVirtualRegister(Ty); +    Register ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); + +    MIRBuilder.buildAdd(TmpRes, LHS, RHS); +    MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); +    MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); +    MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); + +    MI.eraseFromParent(); +    return Legalized; +  } +  case G_USUBO: { +    Register Res = MI.getOperand(0).getReg(); +    Register BorrowOut = MI.getOperand(1).getReg(); +    Register LHS = MI.getOperand(2).getReg(); +    Register RHS = MI.getOperand(3).getReg(); + +    MIRBuilder.buildSub(Res, LHS, RHS); +    MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); + +    MI.eraseFromParent(); +    return Legalized; +  } +  case G_USUBE: { +    Register Res = MI.getOperand(0).getReg(); +    Register BorrowOut = MI.getOperand(1).getReg(); +    Register LHS = MI.getOperand(2).getReg(); +    Register RHS = MI.getOperand(3).getReg(); +    Register BorrowIn = MI.getOperand(4).getReg(); + +    Register TmpRes = MRI.createGenericVirtualRegister(Ty); +    Register ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty); +    Register LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); +    Register LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); + +    MIRBuilder.buildSub(TmpRes, LHS, RHS); +    MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn); +    MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); +    MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS); +    MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS); +    MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); + +    MI.eraseFromParent(); +    return Legalized; +  } +  case G_UITOFP: +    return lowerUITOFP(MI, TypeIdx, Ty); +  case G_SITOFP: +    return lowerSITOFP(MI, TypeIdx, Ty); +  case G_FPTOUI: +    return lowerFPTOUI(MI, TypeIdx, Ty); +  case G_SMIN: +  case G_SMAX: +  case G_UMIN: +  case G_UMAX: +    return lowerMinMax(MI, TypeIdx, Ty); +  case G_FCOPYSIGN: +    return lowerFCopySign(MI, TypeIdx, Ty); +  case G_FMINNUM: +  case G_FMAXNUM: +    return lowerFMinNumMaxNum(MI); +  case G_UNMERGE_VALUES: +    return lowerUnmergeValues(MI); +  case TargetOpcode::G_SEXT_INREG: { +    assert(MI.getOperand(2).isImm() && "Expected immediate"); +    int64_t SizeInBits = MI.getOperand(2).getImm(); + +    Register DstReg = MI.getOperand(0).getReg(); +    Register SrcReg = MI.getOperand(1).getReg(); +    LLT DstTy = MRI.getType(DstReg); +    Register TmpRes = MRI.createGenericVirtualRegister(DstTy); + +    auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); +    MIRBuilder.buildInstr(TargetOpcode::G_SHL, {TmpRes}, {SrcReg, MIBSz->getOperand(0).getReg()}); +    MIRBuilder.buildInstr(TargetOpcode::G_ASHR, {DstReg}, {TmpRes, MIBSz->getOperand(0).getReg()}); +    MI.eraseFromParent(); +    return Legalized; +  } +  case G_SHUFFLE_VECTOR: +    return lowerShuffleVector(MI); +  case G_DYN_STACKALLOC: +    return lowerDynStackAlloc(MI); +  case G_EXTRACT: +    return lowerExtract(MI); +  case G_INSERT: +    return lowerInsert(MI); +  } +} + +LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( +    MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { +  SmallVector<Register, 2> DstRegs; + +  unsigned NarrowSize = NarrowTy.getSizeInBits(); +  Register DstReg = MI.getOperand(0).getReg(); +  unsigned Size = MRI.getType(DstReg).getSizeInBits(); +  int NumParts = Size / NarrowSize; +  // FIXME: Don't know how to handle the situation where the small vectors +  // aren't all the same size yet. +  if (Size % NarrowSize != 0) +    return UnableToLegalize; + +  for (int i = 0; i < NumParts; ++i) { +    Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); +    MIRBuilder.buildUndef(TmpReg); +    DstRegs.push_back(TmpReg); +  } + +  if (NarrowTy.isVector()) +    MIRBuilder.buildConcatVectors(DstReg, DstRegs); +  else +    MIRBuilder.buildBuildVector(DstReg, DstRegs); + +  MI.eraseFromParent(); +  return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, +                                          LLT NarrowTy) { +  const unsigned Opc = MI.getOpcode(); +  const unsigned NumOps = MI.getNumOperands() - 1; +  const unsigned NarrowSize = NarrowTy.getSizeInBits(); +  const Register DstReg = MI.getOperand(0).getReg(); +  const unsigned Flags = MI.getFlags(); +  const LLT DstTy = MRI.getType(DstReg); +  const unsigned Size = DstTy.getSizeInBits(); +  const int NumParts = Size / NarrowSize; +  const LLT EltTy = DstTy.getElementType(); +  const unsigned EltSize = EltTy.getSizeInBits(); +  const unsigned BitsForNumParts = NarrowSize * NumParts; + +  // Check if we have any leftovers. If we do, then only handle the case where +  // the leftover is one element. +  if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size) +    return UnableToLegalize; + +  if (BitsForNumParts != Size) { +    Register AccumDstReg = MRI.createGenericVirtualRegister(DstTy); +    MIRBuilder.buildUndef(AccumDstReg); + +    // Handle the pieces which evenly divide into the requested type with +    // extract/op/insert sequence. +    for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) { +      SmallVector<SrcOp, 4> SrcOps; +      for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { +        Register PartOpReg = MRI.createGenericVirtualRegister(NarrowTy); +        MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), Offset); +        SrcOps.push_back(PartOpReg); +      } + +      Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy); +      MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); + +      Register PartInsertReg = MRI.createGenericVirtualRegister(DstTy); +      MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset); +      AccumDstReg = PartInsertReg; +    } + +    // Handle the remaining element sized leftover piece. +    SmallVector<SrcOp, 4> SrcOps; +    for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { +      Register PartOpReg = MRI.createGenericVirtualRegister(EltTy); +      MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), +                              BitsForNumParts); +      SrcOps.push_back(PartOpReg); +    } + +    Register PartDstReg = MRI.createGenericVirtualRegister(EltTy); +    MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); +    MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts); +    MI.eraseFromParent(); + +    return Legalized; +  } + +  SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; + +  extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs); + +  if (NumOps >= 2) +    extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs); + +  if (NumOps >= 3) +    extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs); + +  for (int i = 0; i < NumParts; ++i) { +    Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); + +    if (NumOps == 1) +      MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags); +    else if (NumOps == 2) { +      MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags); +    } else if (NumOps == 3) { +      MIRBuilder.buildInstr(Opc, {DstReg}, +                            {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags); +    } + +    DstRegs.push_back(DstReg); +  } + +  if (NarrowTy.isVector()) +    MIRBuilder.buildConcatVectors(DstReg, DstRegs); +  else +    MIRBuilder.buildBuildVector(DstReg, DstRegs); + +  MI.eraseFromParent(); +  return Legalized; +} + +// Handle splitting vector operations which need to have the same number of +// elements in each type index, but each type index may have a different element +// type. +// +// e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> +//       <2 x s64> = G_SHL <2 x s64>, <2 x s32> +//       <2 x s64> = G_SHL <2 x s64>, <2 x s32> +// +// Also handles some irregular breakdown cases, e.g. +// e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> +//       <2 x s64> = G_SHL <2 x s64>, <2 x s32> +//             s64 = G_SHL s64, s32 +LegalizerHelper::LegalizeResult +LegalizerHelper::fewerElementsVectorMultiEltType( +  MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { +  if (TypeIdx != 0) +    return UnableToLegalize; + +  const LLT NarrowTy0 = NarrowTyArg; +  const unsigned NewNumElts = +      NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; + +  const Register DstReg = MI.getOperand(0).getReg(); +  LLT DstTy = MRI.getType(DstReg); +  LLT LeftoverTy0; + +  // All of the operands need to have the same number of elements, so if we can +  // determine a type breakdown for the result type, we can for all of the +  // source types. +  int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; +  if (NumParts < 0) +    return UnableToLegalize; + +  SmallVector<MachineInstrBuilder, 4> NewInsts; + +  SmallVector<Register, 4> DstRegs, LeftoverDstRegs; +  SmallVector<Register, 4> PartRegs, LeftoverRegs; + +  for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { +    LLT LeftoverTy; +    Register SrcReg = MI.getOperand(I).getReg(); +    LLT SrcTyI = MRI.getType(SrcReg); +    LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); +    LLT LeftoverTyI; + +    // Split this operand into the requested typed registers, and any leftover +    // required to reproduce the original type. +    if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, +                      LeftoverRegs)) +      return UnableToLegalize; + +    if (I == 1) { +      // For the first operand, create an instruction for each part and setup +      // the result. +      for (Register PartReg : PartRegs) { +        Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); +        NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) +                               .addDef(PartDstReg) +                               .addUse(PartReg)); +        DstRegs.push_back(PartDstReg); +      } + +      for (Register LeftoverReg : LeftoverRegs) { +        Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); +        NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) +                               .addDef(PartDstReg) +                               .addUse(LeftoverReg)); +        LeftoverDstRegs.push_back(PartDstReg); +      } +    } else { +      assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); + +      // Add the newly created operand splits to the existing instructions. The +      // odd-sized pieces are ordered after the requested NarrowTyArg sized +      // pieces. +      unsigned InstCount = 0; +      for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) +        NewInsts[InstCount++].addUse(PartRegs[J]); +      for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) +        NewInsts[InstCount++].addUse(LeftoverRegs[J]); +    } + +    PartRegs.clear(); +    LeftoverRegs.clear(); +  } + +  // Insert the newly built operations and rebuild the result register. +  for (auto &MIB : NewInsts) +    MIRBuilder.insertInstr(MIB); + +  insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); + +  MI.eraseFromParent(); +  return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, +                                          LLT NarrowTy) { +  if (TypeIdx != 0) +    return UnableToLegalize; + +  Register DstReg = MI.getOperand(0).getReg(); +  Register SrcReg = MI.getOperand(1).getReg(); +  LLT DstTy = MRI.getType(DstReg); +  LLT SrcTy = MRI.getType(SrcReg); + +  LLT NarrowTy0 = NarrowTy; +  LLT NarrowTy1; +  unsigned NumParts; + +  if (NarrowTy.isVector()) { +    // Uneven breakdown not handled. +    NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); +    if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) +      return UnableToLegalize; + +    NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); +  } else { +    NumParts = DstTy.getNumElements(); +    NarrowTy1 = SrcTy.getElementType(); +  } + +  SmallVector<Register, 4> SrcRegs, DstRegs; +  extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); + +  for (unsigned I = 0; I < NumParts; ++I) { +    Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); +    MachineInstr *NewInst = MIRBuilder.buildInstr(MI.getOpcode()) +      .addDef(DstReg) +      .addUse(SrcRegs[I]); + +    NewInst->setFlags(MI.getFlags()); +    DstRegs.push_back(DstReg); +  } + +  if (NarrowTy.isVector()) +    MIRBuilder.buildConcatVectors(DstReg, DstRegs); +  else +    MIRBuilder.buildBuildVector(DstReg, DstRegs); + +  MI.eraseFromParent(); +  return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, +                                        LLT NarrowTy) { +  Register DstReg = MI.getOperand(0).getReg(); +  Register Src0Reg = MI.getOperand(2).getReg(); +  LLT DstTy = MRI.getType(DstReg); +  LLT SrcTy = MRI.getType(Src0Reg); + +  unsigned NumParts; +  LLT NarrowTy0, NarrowTy1; + +  if (TypeIdx == 0) { +    unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; +    unsigned OldElts = DstTy.getNumElements(); + +    NarrowTy0 = NarrowTy; +    NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); +    NarrowTy1 = NarrowTy.isVector() ? +      LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : +      SrcTy.getElementType(); + +  } else { +    unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; +    unsigned OldElts = SrcTy.getNumElements(); + +    NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : +      NarrowTy.getNumElements(); +    NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), +                            DstTy.getScalarSizeInBits()); +    NarrowTy1 = NarrowTy; +  } + +  // FIXME: Don't know how to handle the situation where the small vectors +  // aren't all the same size yet. +  if (NarrowTy1.isVector() && +      NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) +    return UnableToLegalize; + +  CmpInst::Predicate Pred +    = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); + +  SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; +  extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); +  extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); + +  for (unsigned I = 0; I < NumParts; ++I) { +    Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); +    DstRegs.push_back(DstReg); + +    if (MI.getOpcode() == TargetOpcode::G_ICMP) +      MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); +    else { +      MachineInstr *NewCmp +        = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); +      NewCmp->setFlags(MI.getFlags()); +    } +  } + +  if (NarrowTy1.isVector()) +    MIRBuilder.buildConcatVectors(DstReg, DstRegs); +  else +    MIRBuilder.buildBuildVector(DstReg, DstRegs); + +  MI.eraseFromParent(); +  return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, +                                           LLT NarrowTy) { +  Register DstReg = MI.getOperand(0).getReg(); +  Register CondReg = MI.getOperand(1).getReg(); + +  unsigned NumParts = 0; +  LLT NarrowTy0, NarrowTy1; + +  LLT DstTy = MRI.getType(DstReg); +  LLT CondTy = MRI.getType(CondReg); +  unsigned Size = DstTy.getSizeInBits(); + +  assert(TypeIdx == 0 || CondTy.isVector()); + +  if (TypeIdx == 0) { +    NarrowTy0 = NarrowTy; +    NarrowTy1 = CondTy; + +    unsigned NarrowSize = NarrowTy0.getSizeInBits(); +    // FIXME: Don't know how to handle the situation where the small vectors +    // aren't all the same size yet. +    if (Size % NarrowSize != 0) +      return UnableToLegalize; + +    NumParts = Size / NarrowSize; + +    // Need to break down the condition type +    if (CondTy.isVector()) { +      if (CondTy.getNumElements() == NumParts) +        NarrowTy1 = CondTy.getElementType(); +      else +        NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, +                                CondTy.getScalarSizeInBits()); +    } +  } else { +    NumParts = CondTy.getNumElements(); +    if (NarrowTy.isVector()) { +      // TODO: Handle uneven breakdown. +      if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) +        return UnableToLegalize; + +      return UnableToLegalize; +    } else { +      NarrowTy0 = DstTy.getElementType(); +      NarrowTy1 = NarrowTy; +    } +  } + +  SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; +  if (CondTy.isVector()) +    extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); + +  extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); +  extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); + +  for (unsigned i = 0; i < NumParts; ++i) { +    Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); +    MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, +                           Src1Regs[i], Src2Regs[i]); +    DstRegs.push_back(DstReg); +  } + +  if (NarrowTy0.isVector()) +    MIRBuilder.buildConcatVectors(DstReg, DstRegs); +  else +    MIRBuilder.buildBuildVector(DstReg, DstRegs); + +  MI.eraseFromParent(); +  return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, +                                        LLT NarrowTy) { +  const Register DstReg = MI.getOperand(0).getReg(); +  LLT PhiTy = MRI.getType(DstReg); +  LLT LeftoverTy; + +  // All of the operands need to have the same number of elements, so if we can +  // determine a type breakdown for the result type, we can for all of the +  // source types. +  int NumParts, NumLeftover; +  std::tie(NumParts, NumLeftover) +    = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); +  if (NumParts < 0) +    return UnableToLegalize; + +  SmallVector<Register, 4> DstRegs, LeftoverDstRegs; +  SmallVector<MachineInstrBuilder, 4> NewInsts; + +  const int TotalNumParts = NumParts + NumLeftover; + +  // Insert the new phis in the result block first. +  for (int I = 0; I != TotalNumParts; ++I) { +    LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; +    Register PartDstReg = MRI.createGenericVirtualRegister(Ty); +    NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) +                       .addDef(PartDstReg)); +    if (I < NumParts) +      DstRegs.push_back(PartDstReg); +    else +      LeftoverDstRegs.push_back(PartDstReg); +  } + +  MachineBasicBlock *MBB = MI.getParent(); +  MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); +  insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); + +  SmallVector<Register, 4> PartRegs, LeftoverRegs; + +  // Insert code to extract the incoming values in each predecessor block. +  for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { +    PartRegs.clear(); +    LeftoverRegs.clear(); + +    Register SrcReg = MI.getOperand(I).getReg(); +    MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); +    MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); + +    LLT Unused; +    if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, +                      LeftoverRegs)) +      return UnableToLegalize; + +    // Add the newly created operand splits to the existing instructions. The +    // odd-sized pieces are ordered after the requested NarrowTyArg sized +    // pieces. +    for (int J = 0; J != TotalNumParts; ++J) { +      MachineInstrBuilder MIB = NewInsts[J]; +      MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); +      MIB.addMBB(&OpMBB); +    } +  } + +  MI.eraseFromParent(); +  return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, +                                                  unsigned TypeIdx, +                                                  LLT NarrowTy) { +  if (TypeIdx != 1) +    return UnableToLegalize; + +  const int NumDst = MI.getNumOperands() - 1; +  const Register SrcReg = MI.getOperand(NumDst).getReg(); +  LLT SrcTy = MRI.getType(SrcReg); + +  LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); + +  // TODO: Create sequence of extracts. +  if (DstTy == NarrowTy) +    return UnableToLegalize; + +  LLT GCDTy = getGCDType(SrcTy, NarrowTy); +  if (DstTy == GCDTy) { +    // This would just be a copy of the same unmerge. +    // TODO: Create extracts, pad with undef and create intermediate merges. +    return UnableToLegalize; +  } + +  auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); +  const int NumUnmerge = Unmerge->getNumOperands() - 1; +  const int PartsPerUnmerge = NumDst / NumUnmerge; + +  for (int I = 0; I != NumUnmerge; ++I) { +    auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); + +    for (int J = 0; J != PartsPerUnmerge; ++J) +      MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); +    MIB.addUse(Unmerge.getReg(I)); +  } + +  MI.eraseFromParent(); +  return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, +                                                unsigned TypeIdx, +                                                LLT NarrowTy) { +  assert(TypeIdx == 0 && "not a vector type index"); +  Register DstReg = MI.getOperand(0).getReg(); +  LLT DstTy = MRI.getType(DstReg); +  LLT SrcTy = DstTy.getElementType(); + +  int DstNumElts = DstTy.getNumElements(); +  int NarrowNumElts = NarrowTy.getNumElements(); +  int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; +  LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); + +  SmallVector<Register, 8> ConcatOps; +  SmallVector<Register, 8> SubBuildVector; + +  Register UndefReg; +  if (WidenedDstTy != DstTy) +    UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); + +  // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as +  // necessary. +  // +  // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 +  //   -> <2 x s16> +  // +  // %4:_(s16) = G_IMPLICIT_DEF +  // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 +  // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 +  // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 +  // %3:_(<3 x s16>) = G_EXTRACT %7, 0 +  for (int I = 0; I != NumConcat; ++I) { +    for (int J = 0; J != NarrowNumElts; ++J) { +      int SrcIdx = NarrowNumElts * I + J; + +      if (SrcIdx < DstNumElts) { +        Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); +        SubBuildVector.push_back(SrcReg); +      } else +        SubBuildVector.push_back(UndefReg); +    } + +    auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); +    ConcatOps.push_back(BuildVec.getReg(0)); +    SubBuildVector.clear(); +  } + +  if (DstTy == WidenedDstTy) +    MIRBuilder.buildConcatVectors(DstReg, ConcatOps); +  else { +    auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); +    MIRBuilder.buildExtract(DstReg, Concat, 0); +  } + +  MI.eraseFromParent(); +  return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, +                                      LLT NarrowTy) { +  // FIXME: Don't know how to handle secondary types yet. +  if (TypeIdx != 0) +    return UnableToLegalize; + +  MachineMemOperand *MMO = *MI.memoperands_begin(); + +  // This implementation doesn't work for atomics. Give up instead of doing +  // something invalid. +  if (MMO->getOrdering() != AtomicOrdering::NotAtomic || +      MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) +    return UnableToLegalize; + +  bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; +  Register ValReg = MI.getOperand(0).getReg(); +  Register AddrReg = MI.getOperand(1).getReg(); +  LLT ValTy = MRI.getType(ValReg); + +  int NumParts = -1; +  int NumLeftover = -1; +  LLT LeftoverTy; +  SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; +  if (IsLoad) { +    std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); +  } else { +    if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, +                     NarrowLeftoverRegs)) { +      NumParts = NarrowRegs.size(); +      NumLeftover = NarrowLeftoverRegs.size(); +    } +  } + +  if (NumParts == -1) +    return UnableToLegalize; + +  const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); + +  unsigned TotalSize = ValTy.getSizeInBits(); + +  // Split the load/store into PartTy sized pieces starting at Offset. If this +  // is a load, return the new registers in ValRegs. For a store, each elements +  // of ValRegs should be PartTy. Returns the next offset that needs to be +  // handled. +  auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, +                             unsigned Offset) -> unsigned { +    MachineFunction &MF = MIRBuilder.getMF(); +    unsigned PartSize = PartTy.getSizeInBits(); +    for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; +         Offset += PartSize, ++Idx) { +      unsigned ByteSize = PartSize / 8; +      unsigned ByteOffset = Offset / 8; +      Register NewAddrReg; + +      MIRBuilder.materializeGEP(NewAddrReg, AddrReg, OffsetTy, ByteOffset); + +      MachineMemOperand *NewMMO = +        MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); + +      if (IsLoad) { +        Register Dst = MRI.createGenericVirtualRegister(PartTy); +        ValRegs.push_back(Dst); +        MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); +      } else { +        MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); +      } +    } + +    return Offset; +  }; + +  unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); + +  // Handle the rest of the register if this isn't an even type breakdown. +  if (LeftoverTy.isValid()) +    splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); + +  if (IsLoad) { +    insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, +                LeftoverTy, NarrowLeftoverRegs); +  } + +  MI.eraseFromParent(); +  return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, +                                     LLT NarrowTy) { +  using namespace TargetOpcode; + +  MIRBuilder.setInstr(MI); +  switch (MI.getOpcode()) { +  case G_IMPLICIT_DEF: +    return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); +  case G_AND: +  case G_OR: +  case G_XOR: +  case G_ADD: +  case G_SUB: +  case G_MUL: +  case G_SMULH: +  case G_UMULH: +  case G_FADD: +  case G_FMUL: +  case G_FSUB: +  case G_FNEG: +  case G_FABS: +  case G_FCANONICALIZE: +  case G_FDIV: +  case G_FREM: +  case G_FMA: +  case G_FMAD: +  case G_FPOW: +  case G_FEXP: +  case G_FEXP2: +  case G_FLOG: +  case G_FLOG2: +  case G_FLOG10: +  case G_FNEARBYINT: +  case G_FCEIL: +  case G_FFLOOR: +  case G_FRINT: +  case G_INTRINSIC_ROUND: +  case G_INTRINSIC_TRUNC: +  case G_FCOS: +  case G_FSIN: +  case G_FSQRT: +  case G_BSWAP: +  case G_BITREVERSE: +  case G_SDIV: +  case G_SMIN: +  case G_SMAX: +  case G_UMIN: +  case G_UMAX: +  case G_FMINNUM: +  case G_FMAXNUM: +  case G_FMINNUM_IEEE: +  case G_FMAXNUM_IEEE: +  case G_FMINIMUM: +  case G_FMAXIMUM: +    return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); +  case G_SHL: +  case G_LSHR: +  case G_ASHR: +  case G_CTLZ: +  case G_CTLZ_ZERO_UNDEF: +  case G_CTTZ: +  case G_CTTZ_ZERO_UNDEF: +  case G_CTPOP: +  case G_FCOPYSIGN: +    return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); +  case G_ZEXT: +  case G_SEXT: +  case G_ANYEXT: +  case G_FPEXT: +  case G_FPTRUNC: +  case G_SITOFP: +  case G_UITOFP: +  case G_FPTOSI: +  case G_FPTOUI: +  case G_INTTOPTR: +  case G_PTRTOINT: +  case G_ADDRSPACE_CAST: +    return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); +  case G_ICMP: +  case G_FCMP: +    return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); +  case G_SELECT: +    return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); +  case G_PHI: +    return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); +  case G_UNMERGE_VALUES: +    return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); +  case G_BUILD_VECTOR: +    return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); +  case G_LOAD: +  case G_STORE: +    return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); +  default: +    return UnableToLegalize; +  } +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, +                                             const LLT HalfTy, const LLT AmtTy) { + +  Register InL = MRI.createGenericVirtualRegister(HalfTy); +  Register InH = MRI.createGenericVirtualRegister(HalfTy); +  MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); + +  if (Amt.isNullValue()) { +    MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {InL, InH}); +    MI.eraseFromParent(); +    return Legalized; +  } + +  LLT NVT = HalfTy; +  unsigned NVTBits = HalfTy.getSizeInBits(); +  unsigned VTBits = 2 * NVTBits; + +  SrcOp Lo(Register(0)), Hi(Register(0)); +  if (MI.getOpcode() == TargetOpcode::G_SHL) { +    if (Amt.ugt(VTBits)) { +      Lo = Hi = MIRBuilder.buildConstant(NVT, 0); +    } else if (Amt.ugt(NVTBits)) { +      Lo = MIRBuilder.buildConstant(NVT, 0); +      Hi = MIRBuilder.buildShl(NVT, InL, +                               MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); +    } else if (Amt == NVTBits) { +      Lo = MIRBuilder.buildConstant(NVT, 0); +      Hi = InL; +    } else { +      Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); +      auto OrLHS = +          MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); +      auto OrRHS = MIRBuilder.buildLShr( +          NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); +      Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); +    } +  } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { +    if (Amt.ugt(VTBits)) { +      Lo = Hi = MIRBuilder.buildConstant(NVT, 0); +    } else if (Amt.ugt(NVTBits)) { +      Lo = MIRBuilder.buildLShr(NVT, InH, +                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); +      Hi = MIRBuilder.buildConstant(NVT, 0); +    } else if (Amt == NVTBits) { +      Lo = InH; +      Hi = MIRBuilder.buildConstant(NVT, 0); +    } else { +      auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); + +      auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); +      auto OrRHS = MIRBuilder.buildShl( +          NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); + +      Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); +      Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); +    } +  } else { +    if (Amt.ugt(VTBits)) { +      Hi = Lo = MIRBuilder.buildAShr( +          NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); +    } else if (Amt.ugt(NVTBits)) { +      Lo = MIRBuilder.buildAShr(NVT, InH, +                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); +      Hi = MIRBuilder.buildAShr(NVT, InH, +                                MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); +    } else if (Amt == NVTBits) { +      Lo = InH; +      Hi = MIRBuilder.buildAShr(NVT, InH, +                                MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); +    } else { +      auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); + +      auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); +      auto OrRHS = MIRBuilder.buildShl( +          NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); + +      Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); +      Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); +    } +  } + +  MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {Lo.getReg(), Hi.getReg()}); +  MI.eraseFromParent(); + +  return Legalized; +} + +// TODO: Optimize if constant shift amount. +LegalizerHelper::LegalizeResult +LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, +                                   LLT RequestedTy) { +  if (TypeIdx == 1) { +    Observer.changingInstr(MI); +    narrowScalarSrc(MI, RequestedTy, 2); +    Observer.changedInstr(MI); +    return Legalized; +  } + +  Register DstReg = MI.getOperand(0).getReg(); +  LLT DstTy = MRI.getType(DstReg); +  if (DstTy.isVector()) +    return UnableToLegalize; + +  Register Amt = MI.getOperand(2).getReg(); +  LLT ShiftAmtTy = MRI.getType(Amt); +  const unsigned DstEltSize = DstTy.getScalarSizeInBits(); +  if (DstEltSize % 2 != 0) +    return UnableToLegalize; + +  // Ignore the input type. We can only go to exactly half the size of the +  // input. If that isn't small enough, the resulting pieces will be further +  // legalized. +  const unsigned NewBitSize = DstEltSize / 2; +  const LLT HalfTy = LLT::scalar(NewBitSize); +  const LLT CondTy = LLT::scalar(1); + +  if (const MachineInstr *KShiftAmt = +          getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { +    return narrowScalarShiftByConstant( +        MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); +  } + +  // TODO: Expand with known bits. + +  // Handle the fully general expansion by an unknown amount. +  auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); + +  Register InL = MRI.createGenericVirtualRegister(HalfTy); +  Register InH = MRI.createGenericVirtualRegister(HalfTy); +  MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); + +  auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); +  auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); + +  auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); +  auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); +  auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); + +  Register ResultRegs[2]; +  switch (MI.getOpcode()) { +  case TargetOpcode::G_SHL: { +    // Short: ShAmt < NewBitSize +    auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); + +    auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); +    auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); +    auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); + +    // Long: ShAmt >= NewBitSize +    auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero. +    auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. + +    auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); +    auto Hi = MIRBuilder.buildSelect( +        HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); + +    ResultRegs[0] = Lo.getReg(0); +    ResultRegs[1] = Hi.getReg(0); +    break; +  } +  case TargetOpcode::G_LSHR: +  case TargetOpcode::G_ASHR: { +    // Short: ShAmt < NewBitSize +    auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); + +    auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); +    auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); +    auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); + +    // Long: ShAmt >= NewBitSize +    MachineInstrBuilder HiL; +    if (MI.getOpcode() == TargetOpcode::G_LSHR) { +      HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero. +    } else { +      auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); +      HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part. +    } +    auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, +                                     {InH, AmtExcess});     // Lo from Hi part. + +    auto Lo = MIRBuilder.buildSelect( +        HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); + +    auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); + +    ResultRegs[0] = Lo.getReg(0); +    ResultRegs[1] = Hi.getReg(0); +    break; +  } +  default: +    llvm_unreachable("not a shift"); +  } + +  MIRBuilder.buildMerge(DstReg, ResultRegs); +  MI.eraseFromParent(); +  return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, +                                       LLT MoreTy) { +  assert(TypeIdx == 0 && "Expecting only Idx 0"); + +  Observer.changingInstr(MI); +  for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { +    MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); +    MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); +    moreElementsVectorSrc(MI, MoreTy, I); +  } + +  MachineBasicBlock &MBB = *MI.getParent(); +  MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); +  moreElementsVectorDst(MI, MoreTy, 0); +  Observer.changedInstr(MI); +  return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, +                                    LLT MoreTy) { +  MIRBuilder.setInstr(MI); +  unsigned Opc = MI.getOpcode(); +  switch (Opc) { +  case TargetOpcode::G_IMPLICIT_DEF: +  case TargetOpcode::G_LOAD: { +    if (TypeIdx != 0) +      return UnableToLegalize; +    Observer.changingInstr(MI); +    moreElementsVectorDst(MI, MoreTy, 0); +    Observer.changedInstr(MI); +    return Legalized; +  } +  case TargetOpcode::G_STORE: +    if (TypeIdx != 0) +      return UnableToLegalize; +    Observer.changingInstr(MI); +    moreElementsVectorSrc(MI, MoreTy, 0); +    Observer.changedInstr(MI); +    return Legalized; +  case TargetOpcode::G_AND: +  case TargetOpcode::G_OR: +  case TargetOpcode::G_XOR: +  case TargetOpcode::G_SMIN: +  case TargetOpcode::G_SMAX: +  case TargetOpcode::G_UMIN: +  case TargetOpcode::G_UMAX: { +    Observer.changingInstr(MI); +    moreElementsVectorSrc(MI, MoreTy, 1); +    moreElementsVectorSrc(MI, MoreTy, 2); +    moreElementsVectorDst(MI, MoreTy, 0); +    Observer.changedInstr(MI); +    return Legalized; +  } +  case TargetOpcode::G_EXTRACT: +    if (TypeIdx != 1) +      return UnableToLegalize; +    Observer.changingInstr(MI); +    moreElementsVectorSrc(MI, MoreTy, 1); +    Observer.changedInstr(MI); +    return Legalized; +  case TargetOpcode::G_INSERT: +    if (TypeIdx != 0) +      return UnableToLegalize; +    Observer.changingInstr(MI); +    moreElementsVectorSrc(MI, MoreTy, 1); +    moreElementsVectorDst(MI, MoreTy, 0); +    Observer.changedInstr(MI); +    return Legalized; +  case TargetOpcode::G_SELECT: +    if (TypeIdx != 0) +      return UnableToLegalize; +    if (MRI.getType(MI.getOperand(1).getReg()).isVector()) +      return UnableToLegalize; + +    Observer.changingInstr(MI); +    moreElementsVectorSrc(MI, MoreTy, 2); +    moreElementsVectorSrc(MI, MoreTy, 3); +    moreElementsVectorDst(MI, MoreTy, 0); +    Observer.changedInstr(MI); +    return Legalized; +  case TargetOpcode::G_UNMERGE_VALUES: { +    if (TypeIdx != 1) +      return UnableToLegalize; + +    LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); +    int NumDst = MI.getNumOperands() - 1; +    moreElementsVectorSrc(MI, MoreTy, NumDst); + +    auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); +    for (int I = 0; I != NumDst; ++I) +      MIB.addDef(MI.getOperand(I).getReg()); + +    int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); +    for (int I = NumDst; I != NewNumDst; ++I) +      MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); + +    MIB.addUse(MI.getOperand(NumDst).getReg()); +    MI.eraseFromParent(); +    return Legalized; +  } +  case TargetOpcode::G_PHI: +    return moreElementsVectorPhi(MI, TypeIdx, MoreTy); +  default: +    return UnableToLegalize; +  } +} + +void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, +                                        ArrayRef<Register> Src1Regs, +                                        ArrayRef<Register> Src2Regs, +                                        LLT NarrowTy) { +  MachineIRBuilder &B = MIRBuilder; +  unsigned SrcParts = Src1Regs.size(); +  unsigned DstParts = DstRegs.size(); + +  unsigned DstIdx = 0; // Low bits of the result. +  Register FactorSum = +      B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); +  DstRegs[DstIdx] = FactorSum; + +  unsigned CarrySumPrevDstIdx; +  SmallVector<Register, 4> Factors; + +  for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { +    // Collect low parts of muls for DstIdx. +    for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; +         i <= std::min(DstIdx, SrcParts - 1); ++i) { +      MachineInstrBuilder Mul = +          B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); +      Factors.push_back(Mul.getReg(0)); +    } +    // Collect high parts of muls from previous DstIdx. +    for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; +         i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { +      MachineInstrBuilder Umulh = +          B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); +      Factors.push_back(Umulh.getReg(0)); +    } +    // Add CarrySum from additons calculated for previous DstIdx. +    if (DstIdx != 1) { +      Factors.push_back(CarrySumPrevDstIdx); +    } + +    Register CarrySum; +    // Add all factors and accumulate all carries into CarrySum. +    if (DstIdx != DstParts - 1) { +      MachineInstrBuilder Uaddo = +          B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); +      FactorSum = Uaddo.getReg(0); +      CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); +      for (unsigned i = 2; i < Factors.size(); ++i) { +        MachineInstrBuilder Uaddo = +            B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); +        FactorSum = Uaddo.getReg(0); +        MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); +        CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); +      } +    } else { +      // Since value for the next index is not calculated, neither is CarrySum. +      FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); +      for (unsigned i = 2; i < Factors.size(); ++i) +        FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); +    } + +    CarrySumPrevDstIdx = CarrySum; +    DstRegs[DstIdx] = FactorSum; +    Factors.clear(); +  } +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { +  Register DstReg = MI.getOperand(0).getReg(); +  Register Src1 = MI.getOperand(1).getReg(); +  Register Src2 = MI.getOperand(2).getReg(); + +  LLT Ty = MRI.getType(DstReg); +  if (Ty.isVector()) +    return UnableToLegalize; + +  unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); +  unsigned DstSize = Ty.getSizeInBits(); +  unsigned NarrowSize = NarrowTy.getSizeInBits(); +  if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) +    return UnableToLegalize; + +  unsigned NumDstParts = DstSize / NarrowSize; +  unsigned NumSrcParts = SrcSize / NarrowSize; +  bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; +  unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); + +  SmallVector<Register, 2> Src1Parts, Src2Parts, DstTmpRegs; +  extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); +  extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); +  DstTmpRegs.resize(DstTmpParts); +  multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); + +  // Take only high half of registers if this is high mul. +  ArrayRef<Register> DstRegs( +      IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); +  MIRBuilder.buildMerge(DstReg, DstRegs); +  MI.eraseFromParent(); +  return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, +                                     LLT NarrowTy) { +  if (TypeIdx != 1) +    return UnableToLegalize; + +  uint64_t NarrowSize = NarrowTy.getSizeInBits(); + +  int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); +  // FIXME: add support for when SizeOp1 isn't an exact multiple of +  // NarrowSize. +  if (SizeOp1 % NarrowSize != 0) +    return UnableToLegalize; +  int NumParts = SizeOp1 / NarrowSize; + +  SmallVector<Register, 2> SrcRegs, DstRegs; +  SmallVector<uint64_t, 2> Indexes; +  extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); + +  Register OpReg = MI.getOperand(0).getReg(); +  uint64_t OpStart = MI.getOperand(2).getImm(); +  uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); +  for (int i = 0; i < NumParts; ++i) { +    unsigned SrcStart = i * NarrowSize; + +    if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { +      // No part of the extract uses this subregister, ignore it. +      continue; +    } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { +      // The entire subregister is extracted, forward the value. +      DstRegs.push_back(SrcRegs[i]); +      continue; +    } + +    // OpSegStart is where this destination segment would start in OpReg if it +    // extended infinitely in both directions. +    int64_t ExtractOffset; +    uint64_t SegSize; +    if (OpStart < SrcStart) { +      ExtractOffset = 0; +      SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); +    } else { +      ExtractOffset = OpStart - SrcStart; +      SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); +    } + +    Register SegReg = SrcRegs[i]; +    if (ExtractOffset != 0 || SegSize != NarrowSize) { +      // A genuine extract is needed. +      SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); +      MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); +    } + +    DstRegs.push_back(SegReg); +  } + +  Register DstReg = MI.getOperand(0).getReg(); +  if(MRI.getType(DstReg).isVector()) +    MIRBuilder.buildBuildVector(DstReg, DstRegs); +  else +    MIRBuilder.buildMerge(DstReg, DstRegs); +  MI.eraseFromParent(); +  return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, +                                    LLT NarrowTy) { +  // FIXME: Don't know how to handle secondary types yet. +  if (TypeIdx != 0) +    return UnableToLegalize; + +  uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); +  uint64_t NarrowSize = NarrowTy.getSizeInBits(); + +  // FIXME: add support for when SizeOp0 isn't an exact multiple of +  // NarrowSize. +  if (SizeOp0 % NarrowSize != 0) +    return UnableToLegalize; + +  int NumParts = SizeOp0 / NarrowSize; + +  SmallVector<Register, 2> SrcRegs, DstRegs; +  SmallVector<uint64_t, 2> Indexes; +  extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); + +  Register OpReg = MI.getOperand(2).getReg(); +  uint64_t OpStart = MI.getOperand(3).getImm(); +  uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); +  for (int i = 0; i < NumParts; ++i) { +    unsigned DstStart = i * NarrowSize; + +    if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { +      // No part of the insert affects this subregister, forward the original. +      DstRegs.push_back(SrcRegs[i]); +      continue; +    } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { +      // The entire subregister is defined by this insert, forward the new +      // value. +      DstRegs.push_back(OpReg); +      continue; +    } + +    // OpSegStart is where this destination segment would start in OpReg if it +    // extended infinitely in both directions. +    int64_t ExtractOffset, InsertOffset; +    uint64_t SegSize; +    if (OpStart < DstStart) { +      InsertOffset = 0; +      ExtractOffset = DstStart - OpStart; +      SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); +    } else { +      InsertOffset = OpStart - DstStart; +      ExtractOffset = 0; +      SegSize = +        std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); +    } + +    Register SegReg = OpReg; +    if (ExtractOffset != 0 || SegSize != OpSize) { +      // A genuine extract is needed. +      SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); +      MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); +    } + +    Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); +    MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); +    DstRegs.push_back(DstReg); +  } + +  assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); +  Register DstReg = MI.getOperand(0).getReg(); +  if(MRI.getType(DstReg).isVector()) +    MIRBuilder.buildBuildVector(DstReg, DstRegs); +  else +    MIRBuilder.buildMerge(DstReg, DstRegs); +  MI.eraseFromParent(); +  return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, +                                   LLT NarrowTy) { +  Register DstReg = MI.getOperand(0).getReg(); +  LLT DstTy = MRI.getType(DstReg); + +  assert(MI.getNumOperands() == 3 && TypeIdx == 0); + +  SmallVector<Register, 4> DstRegs, DstLeftoverRegs; +  SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; +  SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; +  LLT LeftoverTy; +  if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, +                    Src0Regs, Src0LeftoverRegs)) +    return UnableToLegalize; + +  LLT Unused; +  if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, +                    Src1Regs, Src1LeftoverRegs)) +    llvm_unreachable("inconsistent extractParts result"); + +  for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { +    auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, +                                        {Src0Regs[I], Src1Regs[I]}); +    DstRegs.push_back(Inst->getOperand(0).getReg()); +  } + +  for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { +    auto Inst = MIRBuilder.buildInstr( +      MI.getOpcode(), +      {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); +    DstLeftoverRegs.push_back(Inst->getOperand(0).getReg()); +  } + +  insertParts(DstReg, DstTy, NarrowTy, DstRegs, +              LeftoverTy, DstLeftoverRegs); + +  MI.eraseFromParent(); +  return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, +                                    LLT NarrowTy) { +  if (TypeIdx != 0) +    return UnableToLegalize; + +  Register CondReg = MI.getOperand(1).getReg(); +  LLT CondTy = MRI.getType(CondReg); +  if (CondTy.isVector()) // TODO: Handle vselect +    return UnableToLegalize; + +  Register DstReg = MI.getOperand(0).getReg(); +  LLT DstTy = MRI.getType(DstReg); + +  SmallVector<Register, 4> DstRegs, DstLeftoverRegs; +  SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; +  SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; +  LLT LeftoverTy; +  if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, +                    Src1Regs, Src1LeftoverRegs)) +    return UnableToLegalize; + +  LLT Unused; +  if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, +                    Src2Regs, Src2LeftoverRegs)) +    llvm_unreachable("inconsistent extractParts result"); + +  for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { +    auto Select = MIRBuilder.buildSelect(NarrowTy, +                                         CondReg, Src1Regs[I], Src2Regs[I]); +    DstRegs.push_back(Select->getOperand(0).getReg()); +  } + +  for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { +    auto Select = MIRBuilder.buildSelect( +      LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); +    DstLeftoverRegs.push_back(Select->getOperand(0).getReg()); +  } + +  insertParts(DstReg, DstTy, NarrowTy, DstRegs, +              LeftoverTy, DstLeftoverRegs); + +  MI.eraseFromParent(); +  return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { +  unsigned Opc = MI.getOpcode(); +  auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); +  auto isSupported = [this](const LegalityQuery &Q) { +    auto QAction = LI.getAction(Q).Action; +    return QAction == Legal || QAction == Libcall || QAction == Custom; +  }; +  switch (Opc) { +  default: +    return UnableToLegalize; +  case TargetOpcode::G_CTLZ_ZERO_UNDEF: { +    // This trivially expands to CTLZ. +    Observer.changingInstr(MI); +    MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); +    Observer.changedInstr(MI); +    return Legalized; +  } +  case TargetOpcode::G_CTLZ: { +    Register SrcReg = MI.getOperand(1).getReg(); +    unsigned Len = Ty.getSizeInBits(); +    if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) { +      // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. +      auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, +                                             {Ty}, {SrcReg}); +      auto MIBZero = MIRBuilder.buildConstant(Ty, 0); +      auto MIBLen = MIRBuilder.buildConstant(Ty, Len); +      auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), +                                          SrcReg, MIBZero); +      MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, +                             MIBCtlzZU); +      MI.eraseFromParent(); +      return Legalized; +    } +    // for now, we do this: +    // NewLen = NextPowerOf2(Len); +    // x = x | (x >> 1); +    // x = x | (x >> 2); +    // ... +    // x = x | (x >>16); +    // x = x | (x >>32); // for 64-bit input +    // Upto NewLen/2 +    // return Len - popcount(x); +    // +    // Ref: "Hacker's Delight" by Henry Warren +    Register Op = SrcReg; +    unsigned NewLen = PowerOf2Ceil(Len); +    for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { +      auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i); +      auto MIBOp = MIRBuilder.buildInstr( +          TargetOpcode::G_OR, {Ty}, +          {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty}, +                                     {Op, MIBShiftAmt})}); +      Op = MIBOp->getOperand(0).getReg(); +    } +    auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op}); +    MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, +                          {MIRBuilder.buildConstant(Ty, Len), MIBPop}); +    MI.eraseFromParent(); +    return Legalized; +  } +  case TargetOpcode::G_CTTZ_ZERO_UNDEF: { +    // This trivially expands to CTTZ. +    Observer.changingInstr(MI); +    MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); +    Observer.changedInstr(MI); +    return Legalized; +  } +  case TargetOpcode::G_CTTZ: { +    Register SrcReg = MI.getOperand(1).getReg(); +    unsigned Len = Ty.getSizeInBits(); +    if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) { +      // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with +      // zero. +      auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, +                                             {Ty}, {SrcReg}); +      auto MIBZero = MIRBuilder.buildConstant(Ty, 0); +      auto MIBLen = MIRBuilder.buildConstant(Ty, Len); +      auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), +                                          SrcReg, MIBZero); +      MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, +                             MIBCttzZU); +      MI.eraseFromParent(); +      return Legalized; +    } +    // for now, we use: { return popcount(~x & (x - 1)); } +    // unless the target has ctlz but not ctpop, in which case we use: +    // { return 32 - nlz(~x & (x-1)); } +    // Ref: "Hacker's Delight" by Henry Warren +    auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); +    auto MIBNot = +        MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1}); +    auto MIBTmp = MIRBuilder.buildInstr( +        TargetOpcode::G_AND, {Ty}, +        {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty}, +                                       {SrcReg, MIBCstNeg1})}); +    if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && +        isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { +      auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); +      MIRBuilder.buildInstr( +          TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, +          {MIBCstLen, +           MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})}); +      MI.eraseFromParent(); +      return Legalized; +    } +    MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); +    MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg()); +    return Legalized; +  } +  } +} + +// Expand s32 = G_UITOFP s64 using bit operations to an IEEE float +// representation. +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { +  Register Dst = MI.getOperand(0).getReg(); +  Register Src = MI.getOperand(1).getReg(); +  const LLT S64 = LLT::scalar(64); +  const LLT S32 = LLT::scalar(32); +  const LLT S1 = LLT::scalar(1); + +  assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); + +  // unsigned cul2f(ulong u) { +  //   uint lz = clz(u); +  //   uint e = (u != 0) ? 127U + 63U - lz : 0; +  //   u = (u << lz) & 0x7fffffffffffffffUL; +  //   ulong t = u & 0xffffffffffUL; +  //   uint v = (e << 23) | (uint)(u >> 40); +  //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); +  //   return as_float(v + r); +  // } + +  auto Zero32 = MIRBuilder.buildConstant(S32, 0); +  auto Zero64 = MIRBuilder.buildConstant(S64, 0); + +  auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); + +  auto K = MIRBuilder.buildConstant(S32, 127U + 63U); +  auto Sub = MIRBuilder.buildSub(S32, K, LZ); + +  auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); +  auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); + +  auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); +  auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); + +  auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); + +  auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); +  auto T = MIRBuilder.buildAnd(S64, U, Mask1); + +  auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); +  auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); +  auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); + +  auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); +  auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); +  auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); +  auto One = MIRBuilder.buildConstant(S32, 1); + +  auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); +  auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); +  auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); +  MIRBuilder.buildAdd(Dst, V, R); + +  return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { +  Register Dst = MI.getOperand(0).getReg(); +  Register Src = MI.getOperand(1).getReg(); +  LLT DstTy = MRI.getType(Dst); +  LLT SrcTy = MRI.getType(Src); + +  if (SrcTy != LLT::scalar(64)) +    return UnableToLegalize; + +  if (DstTy == LLT::scalar(32)) { +    // TODO: SelectionDAG has several alternative expansions to port which may +    // be more reasonble depending on the available instructions. If a target +    // has sitofp, does not have CTLZ, or can efficiently use f64 as an +    // intermediate type, this is probably worse. +    return lowerU64ToF32BitOps(MI); +  } + +  return UnableToLegalize; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { +  Register Dst = MI.getOperand(0).getReg(); +  Register Src = MI.getOperand(1).getReg(); +  LLT DstTy = MRI.getType(Dst); +  LLT SrcTy = MRI.getType(Src); + +  const LLT S64 = LLT::scalar(64); +  const LLT S32 = LLT::scalar(32); +  const LLT S1 = LLT::scalar(1); + +  if (SrcTy != S64) +    return UnableToLegalize; + +  if (DstTy == S32) { +    // signed cl2f(long l) { +    //   long s = l >> 63; +    //   float r = cul2f((l + s) ^ s); +    //   return s ? -r : r; +    // } +    Register L = Src; +    auto SignBit = MIRBuilder.buildConstant(S64, 63); +    auto S = MIRBuilder.buildAShr(S64, L, SignBit); + +    auto LPlusS = MIRBuilder.buildAdd(S64, L, S); +    auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); +    auto R = MIRBuilder.buildUITOFP(S32, Xor); + +    auto RNeg = MIRBuilder.buildFNeg(S32, R); +    auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, +                                            MIRBuilder.buildConstant(S64, 0)); +    MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); +    return Legalized; +  } + +  return UnableToLegalize; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { +  Register Dst = MI.getOperand(0).getReg(); +  Register Src = MI.getOperand(1).getReg(); +  LLT DstTy = MRI.getType(Dst); +  LLT SrcTy = MRI.getType(Src); +  const LLT S64 = LLT::scalar(64); +  const LLT S32 = LLT::scalar(32); + +  if (SrcTy != S64 && SrcTy != S32) +    return UnableToLegalize; +  if (DstTy != S32 && DstTy != S64) +    return UnableToLegalize; + +  // FPTOSI gives same result as FPTOUI for positive signed integers. +  // FPTOUI needs to deal with fp values that convert to unsigned integers +  // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. + +  APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); +  APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() +                                                : APFloat::IEEEdouble(), +                    APInt::getNullValue(SrcTy.getSizeInBits())); +  TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); + +  MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); + +  MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); +  // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on +  // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. +  MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); +  MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); +  MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); +  MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); + +  MachineInstrBuilder FCMP = +      MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, DstTy, Src, Threshold); +  MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); + +  MI.eraseFromParent(); +  return Legalized; +} + +static CmpInst::Predicate minMaxToCompare(unsigned Opc) { +  switch (Opc) { +  case TargetOpcode::G_SMIN: +    return CmpInst::ICMP_SLT; +  case TargetOpcode::G_SMAX: +    return CmpInst::ICMP_SGT; +  case TargetOpcode::G_UMIN: +    return CmpInst::ICMP_ULT; +  case TargetOpcode::G_UMAX: +    return CmpInst::ICMP_UGT; +  default: +    llvm_unreachable("not in integer min/max"); +  } +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { +  Register Dst = MI.getOperand(0).getReg(); +  Register Src0 = MI.getOperand(1).getReg(); +  Register Src1 = MI.getOperand(2).getReg(); + +  const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); +  LLT CmpType = MRI.getType(Dst).changeElementSize(1); + +  auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); +  MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); + +  MI.eraseFromParent(); +  return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { +  Register Dst = MI.getOperand(0).getReg(); +  Register Src0 = MI.getOperand(1).getReg(); +  Register Src1 = MI.getOperand(2).getReg(); + +  const LLT Src0Ty = MRI.getType(Src0); +  const LLT Src1Ty = MRI.getType(Src1); + +  const int Src0Size = Src0Ty.getScalarSizeInBits(); +  const int Src1Size = Src1Ty.getScalarSizeInBits(); + +  auto SignBitMask = MIRBuilder.buildConstant( +    Src0Ty, APInt::getSignMask(Src0Size)); + +  auto NotSignBitMask = MIRBuilder.buildConstant( +    Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); + +  auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); +  MachineInstr *Or; + +  if (Src0Ty == Src1Ty) { +    auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask); +    Or = MIRBuilder.buildOr(Dst, And0, And1); +  } else if (Src0Size > Src1Size) { +    auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); +    auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); +    auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); +    auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); +    Or = MIRBuilder.buildOr(Dst, And0, And1); +  } else { +    auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); +    auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); +    auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); +    auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); +    Or = MIRBuilder.buildOr(Dst, And0, And1); +  } + +  // Be careful about setting nsz/nnan/ninf on every instruction, since the +  // constants are a nan and -0.0, but the final result should preserve +  // everything. +  if (unsigned Flags = MI.getFlags()) +    Or->setFlags(Flags); + +  MI.eraseFromParent(); +  return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { +  unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? +    TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; + +  Register Dst = MI.getOperand(0).getReg(); +  Register Src0 = MI.getOperand(1).getReg(); +  Register Src1 = MI.getOperand(2).getReg(); +  LLT Ty = MRI.getType(Dst); + +  if (!MI.getFlag(MachineInstr::FmNoNans)) { +    // Insert canonicalizes if it's possible we need to quiet to get correct +    // sNaN behavior. + +    // Note this must be done here, and not as an optimization combine in the +    // absence of a dedicate quiet-snan instruction as we're using an +    // omni-purpose G_FCANONICALIZE. +    if (!isKnownNeverSNaN(Src0, MRI)) +      Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); + +    if (!isKnownNeverSNaN(Src1, MRI)) +      Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); +  } + +  // If there are no nans, it's safe to simply replace this with the non-IEEE +  // version. +  MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); +  MI.eraseFromParent(); +  return Legalized; +} + +LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { +  // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c +  Register DstReg = MI.getOperand(0).getReg(); +  LLT Ty = MRI.getType(DstReg); +  unsigned Flags = MI.getFlags(); + +  auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), +                                  Flags); +  MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); +  MI.eraseFromParent(); +  return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { +  const unsigned NumDst = MI.getNumOperands() - 1; +  const Register SrcReg = MI.getOperand(NumDst).getReg(); +  LLT SrcTy = MRI.getType(SrcReg); + +  Register Dst0Reg = MI.getOperand(0).getReg(); +  LLT DstTy = MRI.getType(Dst0Reg); + + +  // Expand scalarizing unmerge as bitcast to integer and shift. +  if (!DstTy.isVector() && SrcTy.isVector() && +      SrcTy.getElementType() == DstTy) { +    LLT IntTy = LLT::scalar(SrcTy.getSizeInBits()); +    Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0); + +    MIRBuilder.buildTrunc(Dst0Reg, Cast); + +    const unsigned DstSize = DstTy.getSizeInBits(); +    unsigned Offset = DstSize; +    for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { +      auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); +      auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt); +      MIRBuilder.buildTrunc(MI.getOperand(I), Shift); +    } + +    MI.eraseFromParent(); +    return Legalized; +  } + +  return UnableToLegalize; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { +  Register DstReg = MI.getOperand(0).getReg(); +  Register Src0Reg = MI.getOperand(1).getReg(); +  Register Src1Reg = MI.getOperand(2).getReg(); +  LLT Src0Ty = MRI.getType(Src0Reg); +  LLT DstTy = MRI.getType(DstReg); +  LLT IdxTy = LLT::scalar(32); + +  const Constant *ShufMask = MI.getOperand(3).getShuffleMask(); + +  SmallVector<int, 32> Mask; +  ShuffleVectorInst::getShuffleMask(ShufMask, Mask); + +  if (DstTy.isScalar()) { +    if (Src0Ty.isVector()) +      return UnableToLegalize; + +    // This is just a SELECT. +    assert(Mask.size() == 1 && "Expected a single mask element"); +    Register Val; +    if (Mask[0] < 0 || Mask[0] > 1) +      Val = MIRBuilder.buildUndef(DstTy).getReg(0); +    else +      Val = Mask[0] == 0 ? Src0Reg : Src1Reg; +    MIRBuilder.buildCopy(DstReg, Val); +    MI.eraseFromParent(); +    return Legalized; +  } + +  Register Undef; +  SmallVector<Register, 32> BuildVec; +  LLT EltTy = DstTy.getElementType(); + +  for (int Idx : Mask) { +    if (Idx < 0) { +      if (!Undef.isValid()) +        Undef = MIRBuilder.buildUndef(EltTy).getReg(0); +      BuildVec.push_back(Undef); +      continue; +    } + +    if (Src0Ty.isScalar()) { +      BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); +    } else { +      int NumElts = Src0Ty.getNumElements(); +      Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; +      int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; +      auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); +      auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); +      BuildVec.push_back(Extract.getReg(0)); +    } +  } + +  MIRBuilder.buildBuildVector(DstReg, BuildVec); +  MI.eraseFromParent(); +  return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { +  Register Dst = MI.getOperand(0).getReg(); +  Register AllocSize = MI.getOperand(1).getReg(); +  unsigned Align = MI.getOperand(2).getImm(); + +  const auto &MF = *MI.getMF(); +  const auto &TLI = *MF.getSubtarget().getTargetLowering(); + +  LLT PtrTy = MRI.getType(Dst); +  LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); + +  Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); +  auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); +  SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); + +  // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't +  // have to generate an extra instruction to negate the alloc and then use +  // G_GEP to add the negative offset. +  auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); +  if (Align) { +    APInt AlignMask(IntPtrTy.getSizeInBits(), Align, true); +    AlignMask.negate(); +    auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); +    Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); +  } + +  SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); +  MIRBuilder.buildCopy(SPReg, SPTmp); +  MIRBuilder.buildCopy(Dst, SPTmp); + +  MI.eraseFromParent(); +  return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerExtract(MachineInstr &MI) { +  Register Dst = MI.getOperand(0).getReg(); +  Register Src = MI.getOperand(1).getReg(); +  unsigned Offset = MI.getOperand(2).getImm(); + +  LLT DstTy = MRI.getType(Dst); +  LLT SrcTy = MRI.getType(Src); + +  if (DstTy.isScalar() && +      (SrcTy.isScalar() || +       (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { +    LLT SrcIntTy = SrcTy; +    if (!SrcTy.isScalar()) { +      SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); +      Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); +    } + +    if (Offset == 0) +      MIRBuilder.buildTrunc(Dst, Src); +    else { +      auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); +      auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); +      MIRBuilder.buildTrunc(Dst, Shr); +    } + +    MI.eraseFromParent(); +    return Legalized; +  } + +  return UnableToLegalize; +} + +LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { +  Register Dst = MI.getOperand(0).getReg(); +  Register Src = MI.getOperand(1).getReg(); +  Register InsertSrc = MI.getOperand(2).getReg(); +  uint64_t Offset = MI.getOperand(3).getImm(); + +  LLT DstTy = MRI.getType(Src); +  LLT InsertTy = MRI.getType(InsertSrc); + +  if (InsertTy.isScalar() && +      (DstTy.isScalar() || +       (DstTy.isVector() && DstTy.getElementType() == InsertTy))) { +    LLT IntDstTy = DstTy; +    if (!DstTy.isScalar()) { +      IntDstTy = LLT::scalar(DstTy.getSizeInBits()); +      Src = MIRBuilder.buildBitcast(IntDstTy, Src).getReg(0); +    } + +    Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); +    if (Offset != 0) { +      auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); +      ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); +    } + +    APInt MaskVal = ~APInt::getBitsSet(DstTy.getSizeInBits(), Offset, +                                       InsertTy.getSizeInBits()); + +    auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); +    auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); +    auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); + +    MIRBuilder.buildBitcast(Dst, Or); +    MI.eraseFromParent(); +    return Legalized; +  } + +  return UnableToLegalize; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { +  Register Dst0 = MI.getOperand(0).getReg(); +  Register Dst1 = MI.getOperand(1).getReg(); +  Register LHS = MI.getOperand(2).getReg(); +  Register RHS = MI.getOperand(3).getReg(); +  const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; + +  LLT Ty = MRI.getType(Dst0); +  LLT BoolTy = MRI.getType(Dst1); + +  if (IsAdd) +    MIRBuilder.buildAdd(Dst0, LHS, RHS); +  else +    MIRBuilder.buildSub(Dst0, LHS, RHS); + +  // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. + +  auto Zero = MIRBuilder.buildConstant(Ty, 0); + +  // For an addition, the result should be less than one of the operands (LHS) +  // if and only if the other operand (RHS) is negative, otherwise there will +  // be overflow. +  // For a subtraction, the result should be less than one of the operands +  // (LHS) if and only if the other operand (RHS) is (non-zero) positive, +  // otherwise there will be overflow. +  auto ResultLowerThanLHS = +      MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); +  auto ConditionRHS = MIRBuilder.buildICmp( +      IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); + +  MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); +  MI.eraseFromParent(); +  return Legalized; +}  | 
