diff options
Diffstat (limited to 'llvm/lib/CodeGen/GlobalISel/LegalizerInfo.cpp')
| -rw-r--r-- | llvm/lib/CodeGen/GlobalISel/LegalizerInfo.cpp | 748 | 
1 files changed, 748 insertions, 0 deletions
diff --git a/llvm/lib/CodeGen/GlobalISel/LegalizerInfo.cpp b/llvm/lib/CodeGen/GlobalISel/LegalizerInfo.cpp new file mode 100644 index 000000000000..70045512fae5 --- /dev/null +++ b/llvm/lib/CodeGen/GlobalISel/LegalizerInfo.cpp @@ -0,0 +1,748 @@ +//===- lib/CodeGen/GlobalISel/LegalizerInfo.cpp - Legalizer ---------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Implement an interface to specify and query how an illegal operation on a +// given type should be expanded. +// +// Issues to be resolved: +//   + Make it fast. +//   + Support weird types like i3, <7 x i3>, ... +//   + Operations with more than one type (ICMP, CMPXCHG, intrinsics, ...) +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" +#include "llvm/ADT/SmallBitVector.h" +#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/TargetOpcodes.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/MC/MCInstrInfo.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/LowLevelTypeImpl.h" +#include "llvm/Support/MathExtras.h" +#include <algorithm> +#include <map> + +using namespace llvm; +using namespace LegalizeActions; + +#define DEBUG_TYPE "legalizer-info" + +cl::opt<bool> llvm::DisableGISelLegalityCheck( +    "disable-gisel-legality-check", +    cl::desc("Don't verify that MIR is fully legal between GlobalISel passes"), +    cl::Hidden); + +raw_ostream &llvm::operator<<(raw_ostream &OS, LegalizeAction Action) { +  switch (Action) { +  case Legal: +    OS << "Legal"; +    break; +  case NarrowScalar: +    OS << "NarrowScalar"; +    break; +  case WidenScalar: +    OS << "WidenScalar"; +    break; +  case FewerElements: +    OS << "FewerElements"; +    break; +  case MoreElements: +    OS << "MoreElements"; +    break; +  case Lower: +    OS << "Lower"; +    break; +  case Libcall: +    OS << "Libcall"; +    break; +  case Custom: +    OS << "Custom"; +    break; +  case Unsupported: +    OS << "Unsupported"; +    break; +  case NotFound: +    OS << "NotFound"; +    break; +  case UseLegacyRules: +    OS << "UseLegacyRules"; +    break; +  } +  return OS; +} + +raw_ostream &LegalityQuery::print(raw_ostream &OS) const { +  OS << Opcode << ", Tys={"; +  for (const auto &Type : Types) { +    OS << Type << ", "; +  } +  OS << "}, Opcode="; + +  OS << Opcode << ", MMOs={"; +  for (const auto &MMODescr : MMODescrs) { +    OS << MMODescr.SizeInBits << ", "; +  } +  OS << "}"; + +  return OS; +} + +#ifndef NDEBUG +// Make sure the rule won't (trivially) loop forever. +static bool hasNoSimpleLoops(const LegalizeRule &Rule, const LegalityQuery &Q, +                             const std::pair<unsigned, LLT> &Mutation) { +  switch (Rule.getAction()) { +  case Custom: +  case Lower: +  case MoreElements: +  case FewerElements: +    break; +  default: +    return Q.Types[Mutation.first] != Mutation.second; +  } +  return true; +} + +// Make sure the returned mutation makes sense for the match type. +static bool mutationIsSane(const LegalizeRule &Rule, +                           const LegalityQuery &Q, +                           std::pair<unsigned, LLT> Mutation) { +  // If the user wants a custom mutation, then we can't really say much about +  // it. Return true, and trust that they're doing the right thing. +  if (Rule.getAction() == Custom) +    return true; + +  const unsigned TypeIdx = Mutation.first; +  const LLT OldTy = Q.Types[TypeIdx]; +  const LLT NewTy = Mutation.second; + +  switch (Rule.getAction()) { +  case FewerElements: +  case MoreElements: { +    if (!OldTy.isVector()) +      return false; + +    if (NewTy.isVector()) { +      if (Rule.getAction() == FewerElements) { +        // Make sure the element count really decreased. +        if (NewTy.getNumElements() >= OldTy.getNumElements()) +          return false; +      } else { +        // Make sure the element count really increased. +        if (NewTy.getNumElements() <= OldTy.getNumElements()) +          return false; +      } +    } + +    // Make sure the element type didn't change. +    return NewTy.getScalarType() == OldTy.getElementType(); +  } +  case NarrowScalar: +  case WidenScalar: { +    if (OldTy.isVector()) { +      // Number of elements should not change. +      if (!NewTy.isVector() || OldTy.getNumElements() != NewTy.getNumElements()) +        return false; +    } else { +      // Both types must be vectors +      if (NewTy.isVector()) +        return false; +    } + +    if (Rule.getAction() == NarrowScalar)  { +      // Make sure the size really decreased. +      if (NewTy.getScalarSizeInBits() >= OldTy.getScalarSizeInBits()) +        return false; +    } else { +      // Make sure the size really increased. +      if (NewTy.getScalarSizeInBits() <= OldTy.getScalarSizeInBits()) +        return false; +    } + +    return true; +  } +  default: +    return true; +  } +} +#endif + +LegalizeActionStep LegalizeRuleSet::apply(const LegalityQuery &Query) const { +  LLVM_DEBUG(dbgs() << "Applying legalizer ruleset to: "; Query.print(dbgs()); +             dbgs() << "\n"); +  if (Rules.empty()) { +    LLVM_DEBUG(dbgs() << ".. fallback to legacy rules (no rules defined)\n"); +    return {LegalizeAction::UseLegacyRules, 0, LLT{}}; +  } +  for (const LegalizeRule &Rule : Rules) { +    if (Rule.match(Query)) { +      LLVM_DEBUG(dbgs() << ".. match\n"); +      std::pair<unsigned, LLT> Mutation = Rule.determineMutation(Query); +      LLVM_DEBUG(dbgs() << ".. .. " << Rule.getAction() << ", " +                        << Mutation.first << ", " << Mutation.second << "\n"); +      assert(mutationIsSane(Rule, Query, Mutation) && +             "legality mutation invalid for match"); +      assert(hasNoSimpleLoops(Rule, Query, Mutation) && "Simple loop detected"); +      return {Rule.getAction(), Mutation.first, Mutation.second}; +    } else +      LLVM_DEBUG(dbgs() << ".. no match\n"); +  } +  LLVM_DEBUG(dbgs() << ".. unsupported\n"); +  return {LegalizeAction::Unsupported, 0, LLT{}}; +} + +bool LegalizeRuleSet::verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const { +#ifndef NDEBUG +  if (Rules.empty()) { +    LLVM_DEBUG( +        dbgs() << ".. type index coverage check SKIPPED: no rules defined\n"); +    return true; +  } +  const int64_t FirstUncovered = TypeIdxsCovered.find_first_unset(); +  if (FirstUncovered < 0) { +    LLVM_DEBUG(dbgs() << ".. type index coverage check SKIPPED:" +                         " user-defined predicate detected\n"); +    return true; +  } +  const bool AllCovered = (FirstUncovered >= NumTypeIdxs); +  if (NumTypeIdxs > 0) +    LLVM_DEBUG(dbgs() << ".. the first uncovered type index: " << FirstUncovered +                      << ", " << (AllCovered ? "OK" : "FAIL") << "\n"); +  return AllCovered; +#else +  return true; +#endif +} + +bool LegalizeRuleSet::verifyImmIdxsCoverage(unsigned NumImmIdxs) const { +#ifndef NDEBUG +  if (Rules.empty()) { +    LLVM_DEBUG( +        dbgs() << ".. imm index coverage check SKIPPED: no rules defined\n"); +    return true; +  } +  const int64_t FirstUncovered = ImmIdxsCovered.find_first_unset(); +  if (FirstUncovered < 0) { +    LLVM_DEBUG(dbgs() << ".. imm index coverage check SKIPPED:" +                         " user-defined predicate detected\n"); +    return true; +  } +  const bool AllCovered = (FirstUncovered >= NumImmIdxs); +  LLVM_DEBUG(dbgs() << ".. the first uncovered imm index: " << FirstUncovered +                    << ", " << (AllCovered ? "OK" : "FAIL") << "\n"); +  return AllCovered; +#else +  return true; +#endif +} + +LegalizerInfo::LegalizerInfo() : TablesInitialized(false) { +  // Set defaults. +  // FIXME: these two (G_ANYEXT and G_TRUNC?) can be legalized to the +  // fundamental load/store Jakob proposed. Once loads & stores are supported. +  setScalarAction(TargetOpcode::G_ANYEXT, 1, {{1, Legal}}); +  setScalarAction(TargetOpcode::G_ZEXT, 1, {{1, Legal}}); +  setScalarAction(TargetOpcode::G_SEXT, 1, {{1, Legal}}); +  setScalarAction(TargetOpcode::G_TRUNC, 0, {{1, Legal}}); +  setScalarAction(TargetOpcode::G_TRUNC, 1, {{1, Legal}}); + +  setScalarAction(TargetOpcode::G_INTRINSIC, 0, {{1, Legal}}); +  setScalarAction(TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS, 0, {{1, Legal}}); + +  setLegalizeScalarToDifferentSizeStrategy( +      TargetOpcode::G_IMPLICIT_DEF, 0, narrowToSmallerAndUnsupportedIfTooSmall); +  setLegalizeScalarToDifferentSizeStrategy( +      TargetOpcode::G_ADD, 0, widenToLargerTypesAndNarrowToLargest); +  setLegalizeScalarToDifferentSizeStrategy( +      TargetOpcode::G_OR, 0, widenToLargerTypesAndNarrowToLargest); +  setLegalizeScalarToDifferentSizeStrategy( +      TargetOpcode::G_LOAD, 0, narrowToSmallerAndUnsupportedIfTooSmall); +  setLegalizeScalarToDifferentSizeStrategy( +      TargetOpcode::G_STORE, 0, narrowToSmallerAndUnsupportedIfTooSmall); + +  setLegalizeScalarToDifferentSizeStrategy( +      TargetOpcode::G_BRCOND, 0, widenToLargerTypesUnsupportedOtherwise); +  setLegalizeScalarToDifferentSizeStrategy( +      TargetOpcode::G_INSERT, 0, narrowToSmallerAndUnsupportedIfTooSmall); +  setLegalizeScalarToDifferentSizeStrategy( +      TargetOpcode::G_EXTRACT, 0, narrowToSmallerAndUnsupportedIfTooSmall); +  setLegalizeScalarToDifferentSizeStrategy( +      TargetOpcode::G_EXTRACT, 1, narrowToSmallerAndUnsupportedIfTooSmall); +  setScalarAction(TargetOpcode::G_FNEG, 0, {{1, Lower}}); +} + +void LegalizerInfo::computeTables() { +  assert(TablesInitialized == false); + +  for (unsigned OpcodeIdx = 0; OpcodeIdx <= LastOp - FirstOp; ++OpcodeIdx) { +    const unsigned Opcode = FirstOp + OpcodeIdx; +    for (unsigned TypeIdx = 0; TypeIdx != SpecifiedActions[OpcodeIdx].size(); +         ++TypeIdx) { +      // 0. Collect information specified through the setAction API, i.e. +      // for specific bit sizes. +      // For scalar types: +      SizeAndActionsVec ScalarSpecifiedActions; +      // For pointer types: +      std::map<uint16_t, SizeAndActionsVec> AddressSpace2SpecifiedActions; +      // For vector types: +      std::map<uint16_t, SizeAndActionsVec> ElemSize2SpecifiedActions; +      for (auto LLT2Action : SpecifiedActions[OpcodeIdx][TypeIdx]) { +        const LLT Type = LLT2Action.first; +        const LegalizeAction Action = LLT2Action.second; + +        auto SizeAction = std::make_pair(Type.getSizeInBits(), Action); +        if (Type.isPointer()) +          AddressSpace2SpecifiedActions[Type.getAddressSpace()].push_back( +              SizeAction); +        else if (Type.isVector()) +          ElemSize2SpecifiedActions[Type.getElementType().getSizeInBits()] +              .push_back(SizeAction); +        else +          ScalarSpecifiedActions.push_back(SizeAction); +      } + +      // 1. Handle scalar types +      { +        // Decide how to handle bit sizes for which no explicit specification +        // was given. +        SizeChangeStrategy S = &unsupportedForDifferentSizes; +        if (TypeIdx < ScalarSizeChangeStrategies[OpcodeIdx].size() && +            ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr) +          S = ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx]; +        llvm::sort(ScalarSpecifiedActions); +        checkPartialSizeAndActionsVector(ScalarSpecifiedActions); +        setScalarAction(Opcode, TypeIdx, S(ScalarSpecifiedActions)); +      } + +      // 2. Handle pointer types +      for (auto PointerSpecifiedActions : AddressSpace2SpecifiedActions) { +        llvm::sort(PointerSpecifiedActions.second); +        checkPartialSizeAndActionsVector(PointerSpecifiedActions.second); +        // For pointer types, we assume that there isn't a meaningfull way +        // to change the number of bits used in the pointer. +        setPointerAction( +            Opcode, TypeIdx, PointerSpecifiedActions.first, +            unsupportedForDifferentSizes(PointerSpecifiedActions.second)); +      } + +      // 3. Handle vector types +      SizeAndActionsVec ElementSizesSeen; +      for (auto VectorSpecifiedActions : ElemSize2SpecifiedActions) { +        llvm::sort(VectorSpecifiedActions.second); +        const uint16_t ElementSize = VectorSpecifiedActions.first; +        ElementSizesSeen.push_back({ElementSize, Legal}); +        checkPartialSizeAndActionsVector(VectorSpecifiedActions.second); +        // For vector types, we assume that the best way to adapt the number +        // of elements is to the next larger number of elements type for which +        // the vector type is legal, unless there is no such type. In that case, +        // legalize towards a vector type with a smaller number of elements. +        SizeAndActionsVec NumElementsActions; +        for (SizeAndAction BitsizeAndAction : VectorSpecifiedActions.second) { +          assert(BitsizeAndAction.first % ElementSize == 0); +          const uint16_t NumElements = BitsizeAndAction.first / ElementSize; +          NumElementsActions.push_back({NumElements, BitsizeAndAction.second}); +        } +        setVectorNumElementAction( +            Opcode, TypeIdx, ElementSize, +            moreToWiderTypesAndLessToWidest(NumElementsActions)); +      } +      llvm::sort(ElementSizesSeen); +      SizeChangeStrategy VectorElementSizeChangeStrategy = +          &unsupportedForDifferentSizes; +      if (TypeIdx < VectorElementSizeChangeStrategies[OpcodeIdx].size() && +          VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr) +        VectorElementSizeChangeStrategy = +            VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx]; +      setScalarInVectorAction( +          Opcode, TypeIdx, VectorElementSizeChangeStrategy(ElementSizesSeen)); +    } +  } + +  TablesInitialized = true; +} + +// FIXME: inefficient implementation for now. Without ComputeValueVTs we're +// probably going to need specialized lookup structures for various types before +// we have any hope of doing well with something like <13 x i3>. Even the common +// cases should do better than what we have now. +std::pair<LegalizeAction, LLT> +LegalizerInfo::getAspectAction(const InstrAspect &Aspect) const { +  assert(TablesInitialized && "backend forgot to call computeTables"); +  // These *have* to be implemented for now, they're the fundamental basis of +  // how everything else is transformed. +  if (Aspect.Type.isScalar() || Aspect.Type.isPointer()) +    return findScalarLegalAction(Aspect); +  assert(Aspect.Type.isVector()); +  return findVectorLegalAction(Aspect); +} + +/// Helper function to get LLT for the given type index. +static LLT getTypeFromTypeIdx(const MachineInstr &MI, +                              const MachineRegisterInfo &MRI, unsigned OpIdx, +                              unsigned TypeIdx) { +  assert(TypeIdx < MI.getNumOperands() && "Unexpected TypeIdx"); +  // G_UNMERGE_VALUES has variable number of operands, but there is only +  // one source type and one destination type as all destinations must be the +  // same type. So, get the last operand if TypeIdx == 1. +  if (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && TypeIdx == 1) +    return MRI.getType(MI.getOperand(MI.getNumOperands() - 1).getReg()); +  return MRI.getType(MI.getOperand(OpIdx).getReg()); +} + +unsigned LegalizerInfo::getOpcodeIdxForOpcode(unsigned Opcode) const { +  assert(Opcode >= FirstOp && Opcode <= LastOp && "Unsupported opcode"); +  return Opcode - FirstOp; +} + +unsigned LegalizerInfo::getActionDefinitionsIdx(unsigned Opcode) const { +  unsigned OpcodeIdx = getOpcodeIdxForOpcode(Opcode); +  if (unsigned Alias = RulesForOpcode[OpcodeIdx].getAlias()) { +    LLVM_DEBUG(dbgs() << ".. opcode " << Opcode << " is aliased to " << Alias +                      << "\n"); +    OpcodeIdx = getOpcodeIdxForOpcode(Alias); +    assert(RulesForOpcode[OpcodeIdx].getAlias() == 0 && "Cannot chain aliases"); +  } + +  return OpcodeIdx; +} + +const LegalizeRuleSet & +LegalizerInfo::getActionDefinitions(unsigned Opcode) const { +  unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode); +  return RulesForOpcode[OpcodeIdx]; +} + +LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(unsigned Opcode) { +  unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode); +  auto &Result = RulesForOpcode[OpcodeIdx]; +  assert(!Result.isAliasedByAnother() && "Modifying this opcode will modify aliases"); +  return Result; +} + +LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder( +    std::initializer_list<unsigned> Opcodes) { +  unsigned Representative = *Opcodes.begin(); + +  assert(!llvm::empty(Opcodes) && Opcodes.begin() + 1 != Opcodes.end() && +         "Initializer list must have at least two opcodes"); + +  for (auto I = Opcodes.begin() + 1, E = Opcodes.end(); I != E; ++I) +    aliasActionDefinitions(Representative, *I); + +  auto &Return = getActionDefinitionsBuilder(Representative); +  Return.setIsAliasedByAnother(); +  return Return; +} + +void LegalizerInfo::aliasActionDefinitions(unsigned OpcodeTo, +                                           unsigned OpcodeFrom) { +  assert(OpcodeTo != OpcodeFrom && "Cannot alias to self"); +  assert(OpcodeTo >= FirstOp && OpcodeTo <= LastOp && "Unsupported opcode"); +  const unsigned OpcodeFromIdx = getOpcodeIdxForOpcode(OpcodeFrom); +  RulesForOpcode[OpcodeFromIdx].aliasTo(OpcodeTo); +} + +LegalizeActionStep +LegalizerInfo::getAction(const LegalityQuery &Query) const { +  LegalizeActionStep Step = getActionDefinitions(Query.Opcode).apply(Query); +  if (Step.Action != LegalizeAction::UseLegacyRules) { +    return Step; +  } + +  for (unsigned i = 0; i < Query.Types.size(); ++i) { +    auto Action = getAspectAction({Query.Opcode, i, Query.Types[i]}); +    if (Action.first != Legal) { +      LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Action=" +                        << Action.first << ", " << Action.second << "\n"); +      return {Action.first, i, Action.second}; +    } else +      LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Legal\n"); +  } +  LLVM_DEBUG(dbgs() << ".. (legacy) Legal\n"); +  return {Legal, 0, LLT{}}; +} + +LegalizeActionStep +LegalizerInfo::getAction(const MachineInstr &MI, +                         const MachineRegisterInfo &MRI) const { +  SmallVector<LLT, 2> Types; +  SmallBitVector SeenTypes(8); +  const MCOperandInfo *OpInfo = MI.getDesc().OpInfo; +  // FIXME: probably we'll need to cache the results here somehow? +  for (unsigned i = 0; i < MI.getDesc().getNumOperands(); ++i) { +    if (!OpInfo[i].isGenericType()) +      continue; + +    // We must only record actions once for each TypeIdx; otherwise we'd +    // try to legalize operands multiple times down the line. +    unsigned TypeIdx = OpInfo[i].getGenericTypeIndex(); +    if (SeenTypes[TypeIdx]) +      continue; + +    SeenTypes.set(TypeIdx); + +    LLT Ty = getTypeFromTypeIdx(MI, MRI, i, TypeIdx); +    Types.push_back(Ty); +  } + +  SmallVector<LegalityQuery::MemDesc, 2> MemDescrs; +  for (const auto &MMO : MI.memoperands()) +    MemDescrs.push_back({8 * MMO->getSize() /* in bits */, +                         8 * MMO->getAlignment(), +                         MMO->getOrdering()}); + +  return getAction({MI.getOpcode(), Types, MemDescrs}); +} + +bool LegalizerInfo::isLegal(const MachineInstr &MI, +                            const MachineRegisterInfo &MRI) const { +  return getAction(MI, MRI).Action == Legal; +} + +bool LegalizerInfo::isLegalOrCustom(const MachineInstr &MI, +                                    const MachineRegisterInfo &MRI) const { +  auto Action = getAction(MI, MRI).Action; +  // If the action is custom, it may not necessarily modify the instruction, +  // so we have to assume it's legal. +  return Action == Legal || Action == Custom; +} + +bool LegalizerInfo::legalizeCustom(MachineInstr &MI, MachineRegisterInfo &MRI, +                                   MachineIRBuilder &MIRBuilder, +                                   GISelChangeObserver &Observer) const { +  return false; +} + +LegalizerInfo::SizeAndActionsVec +LegalizerInfo::increaseToLargerTypesAndDecreaseToLargest( +    const SizeAndActionsVec &v, LegalizeAction IncreaseAction, +    LegalizeAction DecreaseAction) { +  SizeAndActionsVec result; +  unsigned LargestSizeSoFar = 0; +  if (v.size() >= 1 && v[0].first != 1) +    result.push_back({1, IncreaseAction}); +  for (size_t i = 0; i < v.size(); ++i) { +    result.push_back(v[i]); +    LargestSizeSoFar = v[i].first; +    if (i + 1 < v.size() && v[i + 1].first != v[i].first + 1) { +      result.push_back({LargestSizeSoFar + 1, IncreaseAction}); +      LargestSizeSoFar = v[i].first + 1; +    } +  } +  result.push_back({LargestSizeSoFar + 1, DecreaseAction}); +  return result; +} + +LegalizerInfo::SizeAndActionsVec +LegalizerInfo::decreaseToSmallerTypesAndIncreaseToSmallest( +    const SizeAndActionsVec &v, LegalizeAction DecreaseAction, +    LegalizeAction IncreaseAction) { +  SizeAndActionsVec result; +  if (v.size() == 0 || v[0].first != 1) +    result.push_back({1, IncreaseAction}); +  for (size_t i = 0; i < v.size(); ++i) { +    result.push_back(v[i]); +    if (i + 1 == v.size() || v[i + 1].first != v[i].first + 1) { +      result.push_back({v[i].first + 1, DecreaseAction}); +    } +  } +  return result; +} + +LegalizerInfo::SizeAndAction +LegalizerInfo::findAction(const SizeAndActionsVec &Vec, const uint32_t Size) { +  assert(Size >= 1); +  // Find the last element in Vec that has a bitsize equal to or smaller than +  // the requested bit size. +  // That is the element just before the first element that is bigger than Size. +  auto It = partition_point( +      Vec, [=](const SizeAndAction &A) { return A.first <= Size; }); +  assert(It != Vec.begin() && "Does Vec not start with size 1?"); +  int VecIdx = It - Vec.begin() - 1; + +  LegalizeAction Action = Vec[VecIdx].second; +  switch (Action) { +  case Legal: +  case Lower: +  case Libcall: +  case Custom: +    return {Size, Action}; +  case FewerElements: +    // FIXME: is this special case still needed and correct? +    // Special case for scalarization: +    if (Vec == SizeAndActionsVec({{1, FewerElements}})) +      return {1, FewerElements}; +    LLVM_FALLTHROUGH; +  case NarrowScalar: { +    // The following needs to be a loop, as for now, we do allow needing to +    // go over "Unsupported" bit sizes before finding a legalizable bit size. +    // e.g. (s8, WidenScalar), (s9, Unsupported), (s32, Legal). if Size==8, +    // we need to iterate over s9, and then to s32 to return (s32, Legal). +    // If we want to get rid of the below loop, we should have stronger asserts +    // when building the SizeAndActionsVecs, probably not allowing +    // "Unsupported" unless at the ends of the vector. +    for (int i = VecIdx - 1; i >= 0; --i) +      if (!needsLegalizingToDifferentSize(Vec[i].second) && +          Vec[i].second != Unsupported) +        return {Vec[i].first, Action}; +    llvm_unreachable(""); +  } +  case WidenScalar: +  case MoreElements: { +    // See above, the following needs to be a loop, at least for now. +    for (std::size_t i = VecIdx + 1; i < Vec.size(); ++i) +      if (!needsLegalizingToDifferentSize(Vec[i].second) && +          Vec[i].second != Unsupported) +        return {Vec[i].first, Action}; +    llvm_unreachable(""); +  } +  case Unsupported: +    return {Size, Unsupported}; +  case NotFound: +  case UseLegacyRules: +    llvm_unreachable("NotFound"); +  } +  llvm_unreachable("Action has an unknown enum value"); +} + +std::pair<LegalizeAction, LLT> +LegalizerInfo::findScalarLegalAction(const InstrAspect &Aspect) const { +  assert(Aspect.Type.isScalar() || Aspect.Type.isPointer()); +  if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp) +    return {NotFound, LLT()}; +  const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode); +  if (Aspect.Type.isPointer() && +      AddrSpace2PointerActions[OpcodeIdx].find(Aspect.Type.getAddressSpace()) == +          AddrSpace2PointerActions[OpcodeIdx].end()) { +    return {NotFound, LLT()}; +  } +  const SmallVector<SizeAndActionsVec, 1> &Actions = +      Aspect.Type.isPointer() +          ? AddrSpace2PointerActions[OpcodeIdx] +                .find(Aspect.Type.getAddressSpace()) +                ->second +          : ScalarActions[OpcodeIdx]; +  if (Aspect.Idx >= Actions.size()) +    return {NotFound, LLT()}; +  const SizeAndActionsVec &Vec = Actions[Aspect.Idx]; +  // FIXME: speed up this search, e.g. by using a results cache for repeated +  // queries? +  auto SizeAndAction = findAction(Vec, Aspect.Type.getSizeInBits()); +  return {SizeAndAction.second, +          Aspect.Type.isScalar() ? LLT::scalar(SizeAndAction.first) +                                 : LLT::pointer(Aspect.Type.getAddressSpace(), +                                                SizeAndAction.first)}; +} + +std::pair<LegalizeAction, LLT> +LegalizerInfo::findVectorLegalAction(const InstrAspect &Aspect) const { +  assert(Aspect.Type.isVector()); +  // First legalize the vector element size, then legalize the number of +  // lanes in the vector. +  if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp) +    return {NotFound, Aspect.Type}; +  const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode); +  const unsigned TypeIdx = Aspect.Idx; +  if (TypeIdx >= ScalarInVectorActions[OpcodeIdx].size()) +    return {NotFound, Aspect.Type}; +  const SizeAndActionsVec &ElemSizeVec = +      ScalarInVectorActions[OpcodeIdx][TypeIdx]; + +  LLT IntermediateType; +  auto ElementSizeAndAction = +      findAction(ElemSizeVec, Aspect.Type.getScalarSizeInBits()); +  IntermediateType = +      LLT::vector(Aspect.Type.getNumElements(), ElementSizeAndAction.first); +  if (ElementSizeAndAction.second != Legal) +    return {ElementSizeAndAction.second, IntermediateType}; + +  auto i = NumElements2Actions[OpcodeIdx].find( +      IntermediateType.getScalarSizeInBits()); +  if (i == NumElements2Actions[OpcodeIdx].end()) { +    return {NotFound, IntermediateType}; +  } +  const SizeAndActionsVec &NumElementsVec = (*i).second[TypeIdx]; +  auto NumElementsAndAction = +      findAction(NumElementsVec, IntermediateType.getNumElements()); +  return {NumElementsAndAction.second, +          LLT::vector(NumElementsAndAction.first, +                      IntermediateType.getScalarSizeInBits())}; +} + +bool LegalizerInfo::legalizeIntrinsic(MachineInstr &MI, +                                      MachineRegisterInfo &MRI, +                                      MachineIRBuilder &MIRBuilder) const { +  return true; +} + +/// \pre Type indices of every opcode form a dense set starting from 0. +void LegalizerInfo::verify(const MCInstrInfo &MII) const { +#ifndef NDEBUG +  std::vector<unsigned> FailedOpcodes; +  for (unsigned Opcode = FirstOp; Opcode <= LastOp; ++Opcode) { +    const MCInstrDesc &MCID = MII.get(Opcode); +    const unsigned NumTypeIdxs = std::accumulate( +        MCID.opInfo_begin(), MCID.opInfo_end(), 0U, +        [](unsigned Acc, const MCOperandInfo &OpInfo) { +          return OpInfo.isGenericType() +                     ? std::max(OpInfo.getGenericTypeIndex() + 1U, Acc) +                     : Acc; +        }); +    const unsigned NumImmIdxs = std::accumulate( +        MCID.opInfo_begin(), MCID.opInfo_end(), 0U, +        [](unsigned Acc, const MCOperandInfo &OpInfo) { +          return OpInfo.isGenericImm() +                     ? std::max(OpInfo.getGenericImmIndex() + 1U, Acc) +                     : Acc; +        }); +    LLVM_DEBUG(dbgs() << MII.getName(Opcode) << " (opcode " << Opcode +                      << "): " << NumTypeIdxs << " type ind" +                      << (NumTypeIdxs == 1 ? "ex" : "ices") << ", " +                      << NumImmIdxs << " imm ind" +                      << (NumImmIdxs == 1 ? "ex" : "ices") << "\n"); +    const LegalizeRuleSet &RuleSet = getActionDefinitions(Opcode); +    if (!RuleSet.verifyTypeIdxsCoverage(NumTypeIdxs)) +      FailedOpcodes.push_back(Opcode); +    else if (!RuleSet.verifyImmIdxsCoverage(NumImmIdxs)) +      FailedOpcodes.push_back(Opcode); +  } +  if (!FailedOpcodes.empty()) { +    errs() << "The following opcodes have ill-defined legalization rules:"; +    for (unsigned Opcode : FailedOpcodes) +      errs() << " " << MII.getName(Opcode); +    errs() << "\n"; + +    report_fatal_error("ill-defined LegalizerInfo" +                       ", try -debug-only=legalizer-info for details"); +  } +#endif +} + +#ifndef NDEBUG +// FIXME: This should be in the MachineVerifier, but it can't use the +// LegalizerInfo as it's currently in the separate GlobalISel library. +// Note that RegBankSelected property already checked in the verifier +// has the same layering problem, but we only use inline methods so +// end up not needing to link against the GlobalISel library. +const MachineInstr *llvm::machineFunctionIsIllegal(const MachineFunction &MF) { +  if (const LegalizerInfo *MLI = MF.getSubtarget().getLegalizerInfo()) { +    const MachineRegisterInfo &MRI = MF.getRegInfo(); +    for (const MachineBasicBlock &MBB : MF) +      for (const MachineInstr &MI : MBB) +        if (isPreISelGenericOpcode(MI.getOpcode()) && +            !MLI->isLegalOrCustom(MI, MRI)) +          return &MI; +  } +  return nullptr; +} +#endif  | 
