summaryrefslogtreecommitdiff
path: root/llvm/lib/CodeGen/GlobalISel
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/CodeGen/GlobalISel')
-rw-r--r--llvm/lib/CodeGen/GlobalISel/CSEInfo.cpp382
-rw-r--r--llvm/lib/CodeGen/GlobalISel/CSEMIRBuilder.cpp255
-rw-r--r--llvm/lib/CodeGen/GlobalISel/CallLowering.cpp484
-rw-r--r--llvm/lib/CodeGen/GlobalISel/Combiner.cpp159
-rw-r--r--llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp1306
-rw-r--r--llvm/lib/CodeGen/GlobalISel/GISelChangeObserver.cpp40
-rw-r--r--llvm/lib/CodeGen/GlobalISel/GISelKnownBits.cpp383
-rw-r--r--llvm/lib/CodeGen/GlobalISel/GlobalISel.cpp24
-rw-r--r--llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp2400
-rw-r--r--llvm/lib/CodeGen/GlobalISel/InstructionSelect.cpp264
-rw-r--r--llvm/lib/CodeGen/GlobalISel/InstructionSelector.cpp83
-rw-r--r--llvm/lib/CodeGen/GlobalISel/LegalityPredicates.cpp155
-rw-r--r--llvm/lib/CodeGen/GlobalISel/LegalizeMutations.cpp71
-rw-r--r--llvm/lib/CodeGen/GlobalISel/Legalizer.cpp299
-rw-r--r--llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp4277
-rw-r--r--llvm/lib/CodeGen/GlobalISel/LegalizerInfo.cpp748
-rw-r--r--llvm/lib/CodeGen/GlobalISel/Localizer.cpp225
-rw-r--r--llvm/lib/CodeGen/GlobalISel/MachineIRBuilder.cpp1180
-rw-r--r--llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp1073
-rw-r--r--llvm/lib/CodeGen/GlobalISel/RegisterBank.cpp114
-rw-r--r--llvm/lib/CodeGen/GlobalISel/RegisterBankInfo.cpp800
-rw-r--r--llvm/lib/CodeGen/GlobalISel/Utils.cpp450
22 files changed, 15172 insertions, 0 deletions
diff --git a/llvm/lib/CodeGen/GlobalISel/CSEInfo.cpp b/llvm/lib/CodeGen/GlobalISel/CSEInfo.cpp
new file mode 100644
index 000000000000..7d9d812d34bc
--- /dev/null
+++ b/llvm/lib/CodeGen/GlobalISel/CSEInfo.cpp
@@ -0,0 +1,382 @@
+//===- CSEInfo.cpp ------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//===----------------------------------------------------------------------===//
+#include "llvm/CodeGen/GlobalISel/CSEInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+
+#define DEBUG_TYPE "cseinfo"
+
+using namespace llvm;
+char llvm::GISelCSEAnalysisWrapperPass::ID = 0;
+INITIALIZE_PASS_BEGIN(GISelCSEAnalysisWrapperPass, DEBUG_TYPE,
+ "Analysis containing CSE Info", false, true)
+INITIALIZE_PASS_END(GISelCSEAnalysisWrapperPass, DEBUG_TYPE,
+ "Analysis containing CSE Info", false, true)
+
+/// -------- UniqueMachineInstr -------------//
+
+void UniqueMachineInstr::Profile(FoldingSetNodeID &ID) {
+ GISelInstProfileBuilder(ID, MI->getMF()->getRegInfo()).addNodeID(MI);
+}
+/// -----------------------------------------
+
+/// --------- CSEConfigFull ---------- ///
+bool CSEConfigFull::shouldCSEOpc(unsigned Opc) {
+ switch (Opc) {
+ default:
+ break;
+ case TargetOpcode::G_ADD:
+ case TargetOpcode::G_AND:
+ case TargetOpcode::G_ASHR:
+ case TargetOpcode::G_LSHR:
+ case TargetOpcode::G_MUL:
+ case TargetOpcode::G_OR:
+ case TargetOpcode::G_SHL:
+ case TargetOpcode::G_SUB:
+ case TargetOpcode::G_XOR:
+ case TargetOpcode::G_UDIV:
+ case TargetOpcode::G_SDIV:
+ case TargetOpcode::G_UREM:
+ case TargetOpcode::G_SREM:
+ case TargetOpcode::G_CONSTANT:
+ case TargetOpcode::G_FCONSTANT:
+ case TargetOpcode::G_ZEXT:
+ case TargetOpcode::G_SEXT:
+ case TargetOpcode::G_ANYEXT:
+ case TargetOpcode::G_UNMERGE_VALUES:
+ case TargetOpcode::G_TRUNC:
+ case TargetOpcode::G_GEP:
+ return true;
+ }
+ return false;
+}
+
+bool CSEConfigConstantOnly::shouldCSEOpc(unsigned Opc) {
+ return Opc == TargetOpcode::G_CONSTANT;
+}
+
+std::unique_ptr<CSEConfigBase>
+llvm::getStandardCSEConfigForOpt(CodeGenOpt::Level Level) {
+ std::unique_ptr<CSEConfigBase> Config;
+ if (Level == CodeGenOpt::None)
+ Config = std::make_unique<CSEConfigConstantOnly>();
+ else
+ Config = std::make_unique<CSEConfigFull>();
+ return Config;
+}
+
+/// -----------------------------------------
+
+/// -------- GISelCSEInfo -------------//
+void GISelCSEInfo::setMF(MachineFunction &MF) {
+ this->MF = &MF;
+ this->MRI = &MF.getRegInfo();
+}
+
+GISelCSEInfo::~GISelCSEInfo() {}
+
+bool GISelCSEInfo::isUniqueMachineInstValid(
+ const UniqueMachineInstr &UMI) const {
+ // Should we check here and assert that the instruction has been fully
+ // constructed?
+ // FIXME: Any other checks required to be done here? Remove this method if
+ // none.
+ return true;
+}
+
+void GISelCSEInfo::invalidateUniqueMachineInstr(UniqueMachineInstr *UMI) {
+ bool Removed = CSEMap.RemoveNode(UMI);
+ (void)Removed;
+ assert(Removed && "Invalidation called on invalid UMI");
+ // FIXME: Should UMI be deallocated/destroyed?
+}
+
+UniqueMachineInstr *GISelCSEInfo::getNodeIfExists(FoldingSetNodeID &ID,
+ MachineBasicBlock *MBB,
+ void *&InsertPos) {
+ auto *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
+ if (Node) {
+ if (!isUniqueMachineInstValid(*Node)) {
+ invalidateUniqueMachineInstr(Node);
+ return nullptr;
+ }
+
+ if (Node->MI->getParent() != MBB)
+ return nullptr;
+ }
+ return Node;
+}
+
+void GISelCSEInfo::insertNode(UniqueMachineInstr *UMI, void *InsertPos) {
+ handleRecordedInsts();
+ assert(UMI);
+ UniqueMachineInstr *MaybeNewNode = UMI;
+ if (InsertPos)
+ CSEMap.InsertNode(UMI, InsertPos);
+ else
+ MaybeNewNode = CSEMap.GetOrInsertNode(UMI);
+ if (MaybeNewNode != UMI) {
+ // A similar node exists in the folding set. Let's ignore this one.
+ return;
+ }
+ assert(InstrMapping.count(UMI->MI) == 0 &&
+ "This instruction should not be in the map");
+ InstrMapping[UMI->MI] = MaybeNewNode;
+}
+
+UniqueMachineInstr *GISelCSEInfo::getUniqueInstrForMI(const MachineInstr *MI) {
+ assert(shouldCSE(MI->getOpcode()) && "Trying to CSE an unsupported Node");
+ auto *Node = new (UniqueInstrAllocator) UniqueMachineInstr(MI);
+ return Node;
+}
+
+void GISelCSEInfo::insertInstr(MachineInstr *MI, void *InsertPos) {
+ assert(MI);
+ // If it exists in temporary insts, remove it.
+ TemporaryInsts.remove(MI);
+ auto *Node = getUniqueInstrForMI(MI);
+ insertNode(Node, InsertPos);
+}
+
+MachineInstr *GISelCSEInfo::getMachineInstrIfExists(FoldingSetNodeID &ID,
+ MachineBasicBlock *MBB,
+ void *&InsertPos) {
+ handleRecordedInsts();
+ if (auto *Inst = getNodeIfExists(ID, MBB, InsertPos)) {
+ LLVM_DEBUG(dbgs() << "CSEInfo::Found Instr " << *Inst->MI;);
+ return const_cast<MachineInstr *>(Inst->MI);
+ }
+ return nullptr;
+}
+
+void GISelCSEInfo::countOpcodeHit(unsigned Opc) {
+#ifndef NDEBUG
+ if (OpcodeHitTable.count(Opc))
+ OpcodeHitTable[Opc] += 1;
+ else
+ OpcodeHitTable[Opc] = 1;
+#endif
+ // Else do nothing.
+}
+
+void GISelCSEInfo::recordNewInstruction(MachineInstr *MI) {
+ if (shouldCSE(MI->getOpcode())) {
+ TemporaryInsts.insert(MI);
+ LLVM_DEBUG(dbgs() << "CSEInfo::Recording new MI " << *MI);
+ }
+}
+
+void GISelCSEInfo::handleRecordedInst(MachineInstr *MI) {
+ assert(shouldCSE(MI->getOpcode()) && "Invalid instruction for CSE");
+ auto *UMI = InstrMapping.lookup(MI);
+ LLVM_DEBUG(dbgs() << "CSEInfo::Handling recorded MI " << *MI);
+ if (UMI) {
+ // Invalidate this MI.
+ invalidateUniqueMachineInstr(UMI);
+ InstrMapping.erase(MI);
+ }
+ /// Now insert the new instruction.
+ if (UMI) {
+ /// We'll reuse the same UniqueMachineInstr to avoid the new
+ /// allocation.
+ *UMI = UniqueMachineInstr(MI);
+ insertNode(UMI, nullptr);
+ } else {
+ /// This is a new instruction. Allocate a new UniqueMachineInstr and
+ /// Insert.
+ insertInstr(MI);
+ }
+}
+
+void GISelCSEInfo::handleRemoveInst(MachineInstr *MI) {
+ if (auto *UMI = InstrMapping.lookup(MI)) {
+ invalidateUniqueMachineInstr(UMI);
+ InstrMapping.erase(MI);
+ }
+ TemporaryInsts.remove(MI);
+}
+
+void GISelCSEInfo::handleRecordedInsts() {
+ while (!TemporaryInsts.empty()) {
+ auto *MI = TemporaryInsts.pop_back_val();
+ handleRecordedInst(MI);
+ }
+}
+
+bool GISelCSEInfo::shouldCSE(unsigned Opc) const {
+ // Only GISel opcodes are CSEable
+ if (!isPreISelGenericOpcode(Opc))
+ return false;
+ assert(CSEOpt.get() && "CSEConfig not set");
+ return CSEOpt->shouldCSEOpc(Opc);
+}
+
+void GISelCSEInfo::erasingInstr(MachineInstr &MI) { handleRemoveInst(&MI); }
+void GISelCSEInfo::createdInstr(MachineInstr &MI) { recordNewInstruction(&MI); }
+void GISelCSEInfo::changingInstr(MachineInstr &MI) {
+ // For now, perform erase, followed by insert.
+ erasingInstr(MI);
+ createdInstr(MI);
+}
+void GISelCSEInfo::changedInstr(MachineInstr &MI) { changingInstr(MI); }
+
+void GISelCSEInfo::analyze(MachineFunction &MF) {
+ setMF(MF);
+ for (auto &MBB : MF) {
+ if (MBB.empty())
+ continue;
+ for (MachineInstr &MI : MBB) {
+ if (!shouldCSE(MI.getOpcode()))
+ continue;
+ LLVM_DEBUG(dbgs() << "CSEInfo::Add MI: " << MI);
+ insertInstr(&MI);
+ }
+ }
+}
+
+void GISelCSEInfo::releaseMemory() {
+ print();
+ CSEMap.clear();
+ InstrMapping.clear();
+ UniqueInstrAllocator.Reset();
+ TemporaryInsts.clear();
+ CSEOpt.reset();
+ MRI = nullptr;
+ MF = nullptr;
+#ifndef NDEBUG
+ OpcodeHitTable.clear();
+#endif
+}
+
+void GISelCSEInfo::print() {
+ LLVM_DEBUG(for (auto &It
+ : OpcodeHitTable) {
+ dbgs() << "CSEInfo::CSE Hit for Opc " << It.first << " : " << It.second
+ << "\n";
+ };);
+}
+/// -----------------------------------------
+// ---- Profiling methods for FoldingSetNode --- //
+const GISelInstProfileBuilder &
+GISelInstProfileBuilder::addNodeID(const MachineInstr *MI) const {
+ addNodeIDMBB(MI->getParent());
+ addNodeIDOpcode(MI->getOpcode());
+ for (auto &Op : MI->operands())
+ addNodeIDMachineOperand(Op);
+ addNodeIDFlag(MI->getFlags());
+ return *this;
+}
+
+const GISelInstProfileBuilder &
+GISelInstProfileBuilder::addNodeIDOpcode(unsigned Opc) const {
+ ID.AddInteger(Opc);
+ return *this;
+}
+
+const GISelInstProfileBuilder &
+GISelInstProfileBuilder::addNodeIDRegType(const LLT &Ty) const {
+ uint64_t Val = Ty.getUniqueRAWLLTData();
+ ID.AddInteger(Val);
+ return *this;
+}
+
+const GISelInstProfileBuilder &
+GISelInstProfileBuilder::addNodeIDRegType(const TargetRegisterClass *RC) const {
+ ID.AddPointer(RC);
+ return *this;
+}
+
+const GISelInstProfileBuilder &
+GISelInstProfileBuilder::addNodeIDRegType(const RegisterBank *RB) const {
+ ID.AddPointer(RB);
+ return *this;
+}
+
+const GISelInstProfileBuilder &
+GISelInstProfileBuilder::addNodeIDImmediate(int64_t Imm) const {
+ ID.AddInteger(Imm);
+ return *this;
+}
+
+const GISelInstProfileBuilder &
+GISelInstProfileBuilder::addNodeIDRegNum(unsigned Reg) const {
+ ID.AddInteger(Reg);
+ return *this;
+}
+
+const GISelInstProfileBuilder &
+GISelInstProfileBuilder::addNodeIDRegType(const unsigned Reg) const {
+ addNodeIDMachineOperand(MachineOperand::CreateReg(Reg, false));
+ return *this;
+}
+
+const GISelInstProfileBuilder &
+GISelInstProfileBuilder::addNodeIDMBB(const MachineBasicBlock *MBB) const {
+ ID.AddPointer(MBB);
+ return *this;
+}
+
+const GISelInstProfileBuilder &
+GISelInstProfileBuilder::addNodeIDFlag(unsigned Flag) const {
+ if (Flag)
+ ID.AddInteger(Flag);
+ return *this;
+}
+
+const GISelInstProfileBuilder &GISelInstProfileBuilder::addNodeIDMachineOperand(
+ const MachineOperand &MO) const {
+ if (MO.isReg()) {
+ Register Reg = MO.getReg();
+ if (!MO.isDef())
+ addNodeIDRegNum(Reg);
+ LLT Ty = MRI.getType(Reg);
+ if (Ty.isValid())
+ addNodeIDRegType(Ty);
+ auto *RB = MRI.getRegBankOrNull(Reg);
+ if (RB)
+ addNodeIDRegType(RB);
+ auto *RC = MRI.getRegClassOrNull(Reg);
+ if (RC)
+ addNodeIDRegType(RC);
+ assert(!MO.isImplicit() && "Unhandled case");
+ } else if (MO.isImm())
+ ID.AddInteger(MO.getImm());
+ else if (MO.isCImm())
+ ID.AddPointer(MO.getCImm());
+ else if (MO.isFPImm())
+ ID.AddPointer(MO.getFPImm());
+ else if (MO.isPredicate())
+ ID.AddInteger(MO.getPredicate());
+ else
+ llvm_unreachable("Unhandled operand type");
+ // Handle other types
+ return *this;
+}
+
+GISelCSEInfo &
+GISelCSEAnalysisWrapper::get(std::unique_ptr<CSEConfigBase> CSEOpt,
+ bool Recompute) {
+ if (!AlreadyComputed || Recompute) {
+ Info.setCSEConfig(std::move(CSEOpt));
+ Info.analyze(*MF);
+ AlreadyComputed = true;
+ }
+ return Info;
+}
+void GISelCSEAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+bool GISelCSEAnalysisWrapperPass::runOnMachineFunction(MachineFunction &MF) {
+ releaseMemory();
+ Wrapper.setMF(MF);
+ return false;
+}
diff --git a/llvm/lib/CodeGen/GlobalISel/CSEMIRBuilder.cpp b/llvm/lib/CodeGen/GlobalISel/CSEMIRBuilder.cpp
new file mode 100644
index 000000000000..51a74793f029
--- /dev/null
+++ b/llvm/lib/CodeGen/GlobalISel/CSEMIRBuilder.cpp
@@ -0,0 +1,255 @@
+//===-- llvm/CodeGen/GlobalISel/CSEMIRBuilder.cpp - MIBuilder--*- C++ -*-==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file implements the CSEMIRBuilder class which CSEs as it builds
+/// instructions.
+//===----------------------------------------------------------------------===//
+//
+
+#include "llvm/CodeGen/GlobalISel/CSEMIRBuilder.h"
+#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
+
+using namespace llvm;
+
+bool CSEMIRBuilder::dominates(MachineBasicBlock::const_iterator A,
+ MachineBasicBlock::const_iterator B) const {
+ auto MBBEnd = getMBB().end();
+ if (B == MBBEnd)
+ return true;
+ assert(A->getParent() == B->getParent() &&
+ "Iterators should be in same block");
+ const MachineBasicBlock *BBA = A->getParent();
+ MachineBasicBlock::const_iterator I = BBA->begin();
+ for (; &*I != A && &*I != B; ++I)
+ ;
+ return &*I == A;
+}
+
+MachineInstrBuilder
+CSEMIRBuilder::getDominatingInstrForID(FoldingSetNodeID &ID,
+ void *&NodeInsertPos) {
+ GISelCSEInfo *CSEInfo = getCSEInfo();
+ assert(CSEInfo && "Can't get here without setting CSEInfo");
+ MachineBasicBlock *CurMBB = &getMBB();
+ MachineInstr *MI =
+ CSEInfo->getMachineInstrIfExists(ID, CurMBB, NodeInsertPos);
+ if (MI) {
+ CSEInfo->countOpcodeHit(MI->getOpcode());
+ auto CurrPos = getInsertPt();
+ if (!dominates(MI, CurrPos))
+ CurMBB->splice(CurrPos, CurMBB, MI);
+ return MachineInstrBuilder(getMF(), MI);
+ }
+ return MachineInstrBuilder();
+}
+
+bool CSEMIRBuilder::canPerformCSEForOpc(unsigned Opc) const {
+ const GISelCSEInfo *CSEInfo = getCSEInfo();
+ if (!CSEInfo || !CSEInfo->shouldCSE(Opc))
+ return false;
+ return true;
+}
+
+void CSEMIRBuilder::profileDstOp(const DstOp &Op,
+ GISelInstProfileBuilder &B) const {
+ switch (Op.getDstOpKind()) {
+ case DstOp::DstType::Ty_RC:
+ B.addNodeIDRegType(Op.getRegClass());
+ break;
+ default:
+ B.addNodeIDRegType(Op.getLLTTy(*getMRI()));
+ break;
+ }
+}
+
+void CSEMIRBuilder::profileSrcOp(const SrcOp &Op,
+ GISelInstProfileBuilder &B) const {
+ switch (Op.getSrcOpKind()) {
+ case SrcOp::SrcType::Ty_Predicate:
+ B.addNodeIDImmediate(static_cast<int64_t>(Op.getPredicate()));
+ break;
+ default:
+ B.addNodeIDRegType(Op.getReg());
+ break;
+ }
+}
+
+void CSEMIRBuilder::profileMBBOpcode(GISelInstProfileBuilder &B,
+ unsigned Opc) const {
+ // First add the MBB (Local CSE).
+ B.addNodeIDMBB(&getMBB());
+ // Then add the opcode.
+ B.addNodeIDOpcode(Opc);
+}
+
+void CSEMIRBuilder::profileEverything(unsigned Opc, ArrayRef<DstOp> DstOps,
+ ArrayRef<SrcOp> SrcOps,
+ Optional<unsigned> Flags,
+ GISelInstProfileBuilder &B) const {
+
+ profileMBBOpcode(B, Opc);
+ // Then add the DstOps.
+ profileDstOps(DstOps, B);
+ // Then add the SrcOps.
+ profileSrcOps(SrcOps, B);
+ // Add Flags if passed in.
+ if (Flags)
+ B.addNodeIDFlag(*Flags);
+}
+
+MachineInstrBuilder CSEMIRBuilder::memoizeMI(MachineInstrBuilder MIB,
+ void *NodeInsertPos) {
+ assert(canPerformCSEForOpc(MIB->getOpcode()) &&
+ "Attempting to CSE illegal op");
+ MachineInstr *MIBInstr = MIB;
+ getCSEInfo()->insertInstr(MIBInstr, NodeInsertPos);
+ return MIB;
+}
+
+bool CSEMIRBuilder::checkCopyToDefsPossible(ArrayRef<DstOp> DstOps) {
+ if (DstOps.size() == 1)
+ return true; // always possible to emit copy to just 1 vreg.
+
+ return std::all_of(DstOps.begin(), DstOps.end(), [](const DstOp &Op) {
+ DstOp::DstType DT = Op.getDstOpKind();
+ return DT == DstOp::DstType::Ty_LLT || DT == DstOp::DstType::Ty_RC;
+ });
+}
+
+MachineInstrBuilder
+CSEMIRBuilder::generateCopiesIfRequired(ArrayRef<DstOp> DstOps,
+ MachineInstrBuilder &MIB) {
+ assert(checkCopyToDefsPossible(DstOps) &&
+ "Impossible return a single MIB with copies to multiple defs");
+ if (DstOps.size() == 1) {
+ const DstOp &Op = DstOps[0];
+ if (Op.getDstOpKind() == DstOp::DstType::Ty_Reg)
+ return buildCopy(Op.getReg(), MIB->getOperand(0).getReg());
+ }
+ return MIB;
+}
+
+MachineInstrBuilder CSEMIRBuilder::buildInstr(unsigned Opc,
+ ArrayRef<DstOp> DstOps,
+ ArrayRef<SrcOp> SrcOps,
+ Optional<unsigned> Flag) {
+ switch (Opc) {
+ default:
+ break;
+ case TargetOpcode::G_ADD:
+ case TargetOpcode::G_AND:
+ case TargetOpcode::G_ASHR:
+ case TargetOpcode::G_LSHR:
+ case TargetOpcode::G_MUL:
+ case TargetOpcode::G_OR:
+ case TargetOpcode::G_SHL:
+ case TargetOpcode::G_SUB:
+ case TargetOpcode::G_XOR:
+ case TargetOpcode::G_UDIV:
+ case TargetOpcode::G_SDIV:
+ case TargetOpcode::G_UREM:
+ case TargetOpcode::G_SREM: {
+ // Try to constant fold these.
+ assert(SrcOps.size() == 2 && "Invalid sources");
+ assert(DstOps.size() == 1 && "Invalid dsts");
+ if (Optional<APInt> Cst = ConstantFoldBinOp(Opc, SrcOps[0].getReg(),
+ SrcOps[1].getReg(), *getMRI()))
+ return buildConstant(DstOps[0], Cst->getSExtValue());
+ break;
+ }
+ case TargetOpcode::G_SEXT_INREG: {
+ assert(DstOps.size() == 1 && "Invalid dst ops");
+ assert(SrcOps.size() == 2 && "Invalid src ops");
+ const DstOp &Dst = DstOps[0];
+ const SrcOp &Src0 = SrcOps[0];
+ const SrcOp &Src1 = SrcOps[1];
+ if (auto MaybeCst =
+ ConstantFoldExtOp(Opc, Src0.getReg(), Src1.getImm(), *getMRI()))
+ return buildConstant(Dst, MaybeCst->getSExtValue());
+ break;
+ }
+ }
+ bool CanCopy = checkCopyToDefsPossible(DstOps);
+ if (!canPerformCSEForOpc(Opc))
+ return MachineIRBuilder::buildInstr(Opc, DstOps, SrcOps, Flag);
+ // If we can CSE this instruction, but involves generating copies to multiple
+ // regs, give up. This frequently happens to UNMERGEs.
+ if (!CanCopy) {
+ auto MIB = MachineIRBuilder::buildInstr(Opc, DstOps, SrcOps, Flag);
+ // CSEInfo would have tracked this instruction. Remove it from the temporary
+ // insts.
+ getCSEInfo()->handleRemoveInst(&*MIB);
+ return MIB;
+ }
+ FoldingSetNodeID ID;
+ GISelInstProfileBuilder ProfBuilder(ID, *getMRI());
+ void *InsertPos = nullptr;
+ profileEverything(Opc, DstOps, SrcOps, Flag, ProfBuilder);
+ MachineInstrBuilder MIB = getDominatingInstrForID(ID, InsertPos);
+ if (MIB) {
+ // Handle generating copies here.
+ return generateCopiesIfRequired(DstOps, MIB);
+ }
+ // This instruction does not exist in the CSEInfo. Build it and CSE it.
+ MachineInstrBuilder NewMIB =
+ MachineIRBuilder::buildInstr(Opc, DstOps, SrcOps, Flag);
+ return memoizeMI(NewMIB, InsertPos);
+}
+
+MachineInstrBuilder CSEMIRBuilder::buildConstant(const DstOp &Res,
+ const ConstantInt &Val) {
+ constexpr unsigned Opc = TargetOpcode::G_CONSTANT;
+ if (!canPerformCSEForOpc(Opc))
+ return MachineIRBuilder::buildConstant(Res, Val);
+
+ // For vectors, CSE the element only for now.
+ LLT Ty = Res.getLLTTy(*getMRI());
+ if (Ty.isVector())
+ return buildSplatVector(Res, buildConstant(Ty.getElementType(), Val));
+
+ FoldingSetNodeID ID;
+ GISelInstProfileBuilder ProfBuilder(ID, *getMRI());
+ void *InsertPos = nullptr;
+ profileMBBOpcode(ProfBuilder, Opc);
+ profileDstOp(Res, ProfBuilder);
+ ProfBuilder.addNodeIDMachineOperand(MachineOperand::CreateCImm(&Val));
+ MachineInstrBuilder MIB = getDominatingInstrForID(ID, InsertPos);
+ if (MIB) {
+ // Handle generating copies here.
+ return generateCopiesIfRequired({Res}, MIB);
+ }
+
+ MachineInstrBuilder NewMIB = MachineIRBuilder::buildConstant(Res, Val);
+ return memoizeMI(NewMIB, InsertPos);
+}
+
+MachineInstrBuilder CSEMIRBuilder::buildFConstant(const DstOp &Res,
+ const ConstantFP &Val) {
+ constexpr unsigned Opc = TargetOpcode::G_FCONSTANT;
+ if (!canPerformCSEForOpc(Opc))
+ return MachineIRBuilder::buildFConstant(Res, Val);
+
+ // For vectors, CSE the element only for now.
+ LLT Ty = Res.getLLTTy(*getMRI());
+ if (Ty.isVector())
+ return buildSplatVector(Res, buildFConstant(Ty.getElementType(), Val));
+
+ FoldingSetNodeID ID;
+ GISelInstProfileBuilder ProfBuilder(ID, *getMRI());
+ void *InsertPos = nullptr;
+ profileMBBOpcode(ProfBuilder, Opc);
+ profileDstOp(Res, ProfBuilder);
+ ProfBuilder.addNodeIDMachineOperand(MachineOperand::CreateFPImm(&Val));
+ MachineInstrBuilder MIB = getDominatingInstrForID(ID, InsertPos);
+ if (MIB) {
+ // Handle generating copies here.
+ return generateCopiesIfRequired({Res}, MIB);
+ }
+ MachineInstrBuilder NewMIB = MachineIRBuilder::buildFConstant(Res, Val);
+ return memoizeMI(NewMIB, InsertPos);
+}
diff --git a/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp b/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp
new file mode 100644
index 000000000000..cdad92f7db4f
--- /dev/null
+++ b/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp
@@ -0,0 +1,484 @@
+//===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// This file implements some simple delegations needed for call lowering.
+///
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/Analysis.h"
+#include "llvm/CodeGen/GlobalISel/CallLowering.h"
+#include "llvm/CodeGen/GlobalISel/Utils.h"
+#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+
+#define DEBUG_TYPE "call-lowering"
+
+using namespace llvm;
+
+void CallLowering::anchor() {}
+
+bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, ImmutableCallSite CS,
+ ArrayRef<Register> ResRegs,
+ ArrayRef<ArrayRef<Register>> ArgRegs,
+ Register SwiftErrorVReg,
+ std::function<unsigned()> GetCalleeReg) const {
+ CallLoweringInfo Info;
+ auto &DL = CS.getParent()->getParent()->getParent()->getDataLayout();
+
+ // First step is to marshall all the function's parameters into the correct
+ // physregs and memory locations. Gather the sequence of argument types that
+ // we'll pass to the assigner function.
+ unsigned i = 0;
+ unsigned NumFixedArgs = CS.getFunctionType()->getNumParams();
+ for (auto &Arg : CS.args()) {
+ ArgInfo OrigArg{ArgRegs[i], Arg->getType(), ISD::ArgFlagsTy{},
+ i < NumFixedArgs};
+ setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CS);
+ Info.OrigArgs.push_back(OrigArg);
+ ++i;
+ }
+
+ if (const Function *F = CS.getCalledFunction())
+ Info.Callee = MachineOperand::CreateGA(F, 0);
+ else
+ Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
+
+ Info.OrigRet = ArgInfo{ResRegs, CS.getType(), ISD::ArgFlagsTy{}};
+ if (!Info.OrigRet.Ty->isVoidTy())
+ setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CS);
+
+ Info.KnownCallees =
+ CS.getInstruction()->getMetadata(LLVMContext::MD_callees);
+ Info.CallConv = CS.getCallingConv();
+ Info.SwiftErrorVReg = SwiftErrorVReg;
+ Info.IsMustTailCall = CS.isMustTailCall();
+ Info.IsTailCall = CS.isTailCall() &&
+ isInTailCallPosition(CS, MIRBuilder.getMF().getTarget());
+ Info.IsVarArg = CS.getFunctionType()->isVarArg();
+ return lowerCall(MIRBuilder, Info);
+}
+
+template <typename FuncInfoTy>
+void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
+ const DataLayout &DL,
+ const FuncInfoTy &FuncInfo) const {
+ auto &Flags = Arg.Flags[0];
+ const AttributeList &Attrs = FuncInfo.getAttributes();
+ if (Attrs.hasAttribute(OpIdx, Attribute::ZExt))
+ Flags.setZExt();
+ if (Attrs.hasAttribute(OpIdx, Attribute::SExt))
+ Flags.setSExt();
+ if (Attrs.hasAttribute(OpIdx, Attribute::InReg))
+ Flags.setInReg();
+ if (Attrs.hasAttribute(OpIdx, Attribute::StructRet))
+ Flags.setSRet();
+ if (Attrs.hasAttribute(OpIdx, Attribute::SwiftSelf))
+ Flags.setSwiftSelf();
+ if (Attrs.hasAttribute(OpIdx, Attribute::SwiftError))
+ Flags.setSwiftError();
+ if (Attrs.hasAttribute(OpIdx, Attribute::ByVal))
+ Flags.setByVal();
+ if (Attrs.hasAttribute(OpIdx, Attribute::InAlloca))
+ Flags.setInAlloca();
+
+ if (Flags.isByVal() || Flags.isInAlloca()) {
+ Type *ElementTy = cast<PointerType>(Arg.Ty)->getElementType();
+
+ auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType();
+ Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy));
+
+ // For ByVal, alignment should be passed from FE. BE will guess if
+ // this info is not there but there are cases it cannot get right.
+ unsigned FrameAlign;
+ if (FuncInfo.getParamAlignment(OpIdx - 2))
+ FrameAlign = FuncInfo.getParamAlignment(OpIdx - 2);
+ else
+ FrameAlign = getTLI()->getByValTypeAlignment(ElementTy, DL);
+ Flags.setByValAlign(Align(FrameAlign));
+ }
+ if (Attrs.hasAttribute(OpIdx, Attribute::Nest))
+ Flags.setNest();
+ Flags.setOrigAlign(Align(DL.getABITypeAlignment(Arg.Ty)));
+}
+
+template void
+CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
+ const DataLayout &DL,
+ const Function &FuncInfo) const;
+
+template void
+CallLowering::setArgFlags<CallInst>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
+ const DataLayout &DL,
+ const CallInst &FuncInfo) const;
+
+Register CallLowering::packRegs(ArrayRef<Register> SrcRegs, Type *PackedTy,
+ MachineIRBuilder &MIRBuilder) const {
+ assert(SrcRegs.size() > 1 && "Nothing to pack");
+
+ const DataLayout &DL = MIRBuilder.getMF().getDataLayout();
+ MachineRegisterInfo *MRI = MIRBuilder.getMRI();
+
+ LLT PackedLLT = getLLTForType(*PackedTy, DL);
+
+ SmallVector<LLT, 8> LLTs;
+ SmallVector<uint64_t, 8> Offsets;
+ computeValueLLTs(DL, *PackedTy, LLTs, &Offsets);
+ assert(LLTs.size() == SrcRegs.size() && "Regs / types mismatch");
+
+ Register Dst = MRI->createGenericVirtualRegister(PackedLLT);
+ MIRBuilder.buildUndef(Dst);
+ for (unsigned i = 0; i < SrcRegs.size(); ++i) {
+ Register NewDst = MRI->createGenericVirtualRegister(PackedLLT);
+ MIRBuilder.buildInsert(NewDst, Dst, SrcRegs[i], Offsets[i]);
+ Dst = NewDst;
+ }
+
+ return Dst;
+}
+
+void CallLowering::unpackRegs(ArrayRef<Register> DstRegs, Register SrcReg,
+ Type *PackedTy,
+ MachineIRBuilder &MIRBuilder) const {
+ assert(DstRegs.size() > 1 && "Nothing to unpack");
+
+ const DataLayout &DL = MIRBuilder.getMF().getDataLayout();
+
+ SmallVector<LLT, 8> LLTs;
+ SmallVector<uint64_t, 8> Offsets;
+ computeValueLLTs(DL, *PackedTy, LLTs, &Offsets);
+ assert(LLTs.size() == DstRegs.size() && "Regs / types mismatch");
+
+ for (unsigned i = 0; i < DstRegs.size(); ++i)
+ MIRBuilder.buildExtract(DstRegs[i], SrcReg, Offsets[i]);
+}
+
+bool CallLowering::handleAssignments(MachineIRBuilder &MIRBuilder,
+ SmallVectorImpl<ArgInfo> &Args,
+ ValueHandler &Handler) const {
+ MachineFunction &MF = MIRBuilder.getMF();
+ const Function &F = MF.getFunction();
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
+ return handleAssignments(CCInfo, ArgLocs, MIRBuilder, Args, Handler);
+}
+
+bool CallLowering::handleAssignments(CCState &CCInfo,
+ SmallVectorImpl<CCValAssign> &ArgLocs,
+ MachineIRBuilder &MIRBuilder,
+ SmallVectorImpl<ArgInfo> &Args,
+ ValueHandler &Handler) const {
+ MachineFunction &MF = MIRBuilder.getMF();
+ const Function &F = MF.getFunction();
+ const DataLayout &DL = F.getParent()->getDataLayout();
+
+ unsigned NumArgs = Args.size();
+ for (unsigned i = 0; i != NumArgs; ++i) {
+ MVT CurVT = MVT::getVT(Args[i].Ty);
+ if (Handler.assignArg(i, CurVT, CurVT, CCValAssign::Full, Args[i],
+ Args[i].Flags[0], CCInfo)) {
+ if (!CurVT.isValid())
+ return false;
+ MVT NewVT = TLI->getRegisterTypeForCallingConv(
+ F.getContext(), F.getCallingConv(), EVT(CurVT));
+
+ // If we need to split the type over multiple regs, check it's a scenario
+ // we currently support.
+ unsigned NumParts = TLI->getNumRegistersForCallingConv(
+ F.getContext(), F.getCallingConv(), CurVT);
+ if (NumParts > 1) {
+ // For now only handle exact splits.
+ if (NewVT.getSizeInBits() * NumParts != CurVT.getSizeInBits())
+ return false;
+ }
+
+ // For incoming arguments (physregs to vregs), we could have values in
+ // physregs (or memlocs) which we want to extract and copy to vregs.
+ // During this, we might have to deal with the LLT being split across
+ // multiple regs, so we have to record this information for later.
+ //
+ // If we have outgoing args, then we have the opposite case. We have a
+ // vreg with an LLT which we want to assign to a physical location, and
+ // we might have to record that the value has to be split later.
+ if (Handler.isIncomingArgumentHandler()) {
+ if (NumParts == 1) {
+ // Try to use the register type if we couldn't assign the VT.
+ if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i],
+ Args[i].Flags[0], CCInfo))
+ return false;
+ } else {
+ // We're handling an incoming arg which is split over multiple regs.
+ // E.g. passing an s128 on AArch64.
+ ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
+ Args[i].OrigRegs.push_back(Args[i].Regs[0]);
+ Args[i].Regs.clear();
+ Args[i].Flags.clear();
+ LLT NewLLT = getLLTForMVT(NewVT);
+ // For each split register, create and assign a vreg that will store
+ // the incoming component of the larger value. These will later be
+ // merged to form the final vreg.
+ for (unsigned Part = 0; Part < NumParts; ++Part) {
+ Register Reg =
+ MIRBuilder.getMRI()->createGenericVirtualRegister(NewLLT);
+ ISD::ArgFlagsTy Flags = OrigFlags;
+ if (Part == 0) {
+ Flags.setSplit();
+ } else {
+ Flags.setOrigAlign(Align::None());
+ if (Part == NumParts - 1)
+ Flags.setSplitEnd();
+ }
+ Args[i].Regs.push_back(Reg);
+ Args[i].Flags.push_back(Flags);
+ if (Handler.assignArg(i + Part, NewVT, NewVT, CCValAssign::Full,
+ Args[i], Args[i].Flags[Part], CCInfo)) {
+ // Still couldn't assign this smaller part type for some reason.
+ return false;
+ }
+ }
+ }
+ } else {
+ // Handling an outgoing arg that might need to be split.
+ if (NumParts < 2)
+ return false; // Don't know how to deal with this type combination.
+
+ // This type is passed via multiple registers in the calling convention.
+ // We need to extract the individual parts.
+ Register LargeReg = Args[i].Regs[0];
+ LLT SmallTy = LLT::scalar(NewVT.getSizeInBits());
+ auto Unmerge = MIRBuilder.buildUnmerge(SmallTy, LargeReg);
+ assert(Unmerge->getNumOperands() == NumParts + 1);
+ ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
+ // We're going to replace the regs and flags with the split ones.
+ Args[i].Regs.clear();
+ Args[i].Flags.clear();
+ for (unsigned PartIdx = 0; PartIdx < NumParts; ++PartIdx) {
+ ISD::ArgFlagsTy Flags = OrigFlags;
+ if (PartIdx == 0) {
+ Flags.setSplit();
+ } else {
+ Flags.setOrigAlign(Align::None());
+ if (PartIdx == NumParts - 1)
+ Flags.setSplitEnd();
+ }
+ Args[i].Regs.push_back(Unmerge.getReg(PartIdx));
+ Args[i].Flags.push_back(Flags);
+ if (Handler.assignArg(i + PartIdx, NewVT, NewVT, CCValAssign::Full,
+ Args[i], Args[i].Flags[PartIdx], CCInfo))
+ return false;
+ }
+ }
+ }
+ }
+
+ for (unsigned i = 0, e = Args.size(), j = 0; i != e; ++i, ++j) {
+ assert(j < ArgLocs.size() && "Skipped too many arg locs");
+
+ CCValAssign &VA = ArgLocs[j];
+ assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
+
+ if (VA.needsCustom()) {
+ j += Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j));
+ continue;
+ }
+
+ // FIXME: Pack registers if we have more than one.
+ Register ArgReg = Args[i].Regs[0];
+
+ MVT OrigVT = MVT::getVT(Args[i].Ty);
+ MVT VAVT = VA.getValVT();
+ if (VA.isRegLoc()) {
+ if (Handler.isIncomingArgumentHandler() && VAVT != OrigVT) {
+ if (VAVT.getSizeInBits() < OrigVT.getSizeInBits()) {
+ // Expected to be multiple regs for a single incoming arg.
+ unsigned NumArgRegs = Args[i].Regs.size();
+ if (NumArgRegs < 2)
+ return false;
+
+ assert((j + (NumArgRegs - 1)) < ArgLocs.size() &&
+ "Too many regs for number of args");
+ for (unsigned Part = 0; Part < NumArgRegs; ++Part) {
+ // There should be Regs.size() ArgLocs per argument.
+ VA = ArgLocs[j + Part];
+ Handler.assignValueToReg(Args[i].Regs[Part], VA.getLocReg(), VA);
+ }
+ j += NumArgRegs - 1;
+ // Merge the split registers into the expected larger result vreg
+ // of the original call.
+ MIRBuilder.buildMerge(Args[i].OrigRegs[0], Args[i].Regs);
+ continue;
+ }
+ const LLT VATy(VAVT);
+ Register NewReg =
+ MIRBuilder.getMRI()->createGenericVirtualRegister(VATy);
+ Handler.assignValueToReg(NewReg, VA.getLocReg(), VA);
+ // If it's a vector type, we either need to truncate the elements
+ // or do an unmerge to get the lower block of elements.
+ if (VATy.isVector() &&
+ VATy.getNumElements() > OrigVT.getVectorNumElements()) {
+ const LLT OrigTy(OrigVT);
+ // Just handle the case where the VA type is 2 * original type.
+ if (VATy.getNumElements() != OrigVT.getVectorNumElements() * 2) {
+ LLVM_DEBUG(dbgs()
+ << "Incoming promoted vector arg has too many elts");
+ return false;
+ }
+ auto Unmerge = MIRBuilder.buildUnmerge({OrigTy, OrigTy}, {NewReg});
+ MIRBuilder.buildCopy(ArgReg, Unmerge.getReg(0));
+ } else {
+ MIRBuilder.buildTrunc(ArgReg, {NewReg}).getReg(0);
+ }
+ } else if (!Handler.isIncomingArgumentHandler()) {
+ assert((j + (Args[i].Regs.size() - 1)) < ArgLocs.size() &&
+ "Too many regs for number of args");
+ // This is an outgoing argument that might have been split.
+ for (unsigned Part = 0; Part < Args[i].Regs.size(); ++Part) {
+ // There should be Regs.size() ArgLocs per argument.
+ VA = ArgLocs[j + Part];
+ Handler.assignValueToReg(Args[i].Regs[Part], VA.getLocReg(), VA);
+ }
+ j += Args[i].Regs.size() - 1;
+ } else {
+ Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
+ }
+ } else if (VA.isMemLoc()) {
+ // Don't currently support loading/storing a type that needs to be split
+ // to the stack. Should be easy, just not implemented yet.
+ if (Args[i].Regs.size() > 1) {
+ LLVM_DEBUG(
+ dbgs()
+ << "Load/store a split arg to/from the stack not implemented yet");
+ return false;
+ }
+ MVT VT = MVT::getVT(Args[i].Ty);
+ unsigned Size = VT == MVT::iPTR ? DL.getPointerSize()
+ : alignTo(VT.getSizeInBits(), 8) / 8;
+ unsigned Offset = VA.getLocMemOffset();
+ MachinePointerInfo MPO;
+ Register StackAddr = Handler.getStackAddress(Size, Offset, MPO);
+ Handler.assignValueToAddress(ArgReg, StackAddr, Size, MPO, VA);
+ } else {
+ // FIXME: Support byvals and other weirdness
+ return false;
+ }
+ }
+ return true;
+}
+
+bool CallLowering::analyzeArgInfo(CCState &CCState,
+ SmallVectorImpl<ArgInfo> &Args,
+ CCAssignFn &AssignFnFixed,
+ CCAssignFn &AssignFnVarArg) const {
+ for (unsigned i = 0, e = Args.size(); i < e; ++i) {
+ MVT VT = MVT::getVT(Args[i].Ty);
+ CCAssignFn &Fn = Args[i].IsFixed ? AssignFnFixed : AssignFnVarArg;
+ if (Fn(i, VT, VT, CCValAssign::Full, Args[i].Flags[0], CCState)) {
+ // Bail out on anything we can't handle.
+ LLVM_DEBUG(dbgs() << "Cannot analyze " << EVT(VT).getEVTString()
+ << " (arg number = " << i << "\n");
+ return false;
+ }
+ }
+ return true;
+}
+
+bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
+ MachineFunction &MF,
+ SmallVectorImpl<ArgInfo> &InArgs,
+ CCAssignFn &CalleeAssignFnFixed,
+ CCAssignFn &CalleeAssignFnVarArg,
+ CCAssignFn &CallerAssignFnFixed,
+ CCAssignFn &CallerAssignFnVarArg) const {
+ const Function &F = MF.getFunction();
+ CallingConv::ID CalleeCC = Info.CallConv;
+ CallingConv::ID CallerCC = F.getCallingConv();
+
+ if (CallerCC == CalleeCC)
+ return true;
+
+ SmallVector<CCValAssign, 16> ArgLocs1;
+ CCState CCInfo1(CalleeCC, false, MF, ArgLocs1, F.getContext());
+ if (!analyzeArgInfo(CCInfo1, InArgs, CalleeAssignFnFixed,
+ CalleeAssignFnVarArg))
+ return false;
+
+ SmallVector<CCValAssign, 16> ArgLocs2;
+ CCState CCInfo2(CallerCC, false, MF, ArgLocs2, F.getContext());
+ if (!analyzeArgInfo(CCInfo2, InArgs, CallerAssignFnFixed,
+ CalleeAssignFnVarArg))
+ return false;
+
+ // We need the argument locations to match up exactly. If there's more in
+ // one than the other, then we are done.
+ if (ArgLocs1.size() != ArgLocs2.size())
+ return false;
+
+ // Make sure that each location is passed in exactly the same way.
+ for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
+ const CCValAssign &Loc1 = ArgLocs1[i];
+ const CCValAssign &Loc2 = ArgLocs2[i];
+
+ // We need both of them to be the same. So if one is a register and one
+ // isn't, we're done.
+ if (Loc1.isRegLoc() != Loc2.isRegLoc())
+ return false;
+
+ if (Loc1.isRegLoc()) {
+ // If they don't have the same register location, we're done.
+ if (Loc1.getLocReg() != Loc2.getLocReg())
+ return false;
+
+ // They matched, so we can move to the next ArgLoc.
+ continue;
+ }
+
+ // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
+ if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
+ return false;
+ }
+
+ return true;
+}
+
+Register CallLowering::ValueHandler::extendRegister(Register ValReg,
+ CCValAssign &VA) {
+ LLT LocTy{VA.getLocVT()};
+ if (LocTy.getSizeInBits() == MRI.getType(ValReg).getSizeInBits())
+ return ValReg;
+ switch (VA.getLocInfo()) {
+ default: break;
+ case CCValAssign::Full:
+ case CCValAssign::BCvt:
+ // FIXME: bitconverting between vector types may or may not be a
+ // nop in big-endian situations.
+ return ValReg;
+ case CCValAssign::AExt: {
+ auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
+ return MIB->getOperand(0).getReg();
+ }
+ case CCValAssign::SExt: {
+ Register NewReg = MRI.createGenericVirtualRegister(LocTy);
+ MIRBuilder.buildSExt(NewReg, ValReg);
+ return NewReg;
+ }
+ case CCValAssign::ZExt: {
+ Register NewReg = MRI.createGenericVirtualRegister(LocTy);
+ MIRBuilder.buildZExt(NewReg, ValReg);
+ return NewReg;
+ }
+ }
+ llvm_unreachable("unable to extend register");
+}
+
+void CallLowering::ValueHandler::anchor() {}
diff --git a/llvm/lib/CodeGen/GlobalISel/Combiner.cpp b/llvm/lib/CodeGen/GlobalISel/Combiner.cpp
new file mode 100644
index 000000000000..b4562a5c6601
--- /dev/null
+++ b/llvm/lib/CodeGen/GlobalISel/Combiner.cpp
@@ -0,0 +1,159 @@
+//===-- lib/CodeGen/GlobalISel/Combiner.cpp -------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file constains common code to combine machine functions at generic
+// level.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GlobalISel/Combiner.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/CodeGen/GlobalISel/CSEInfo.h"
+#include "llvm/CodeGen/GlobalISel/CombinerInfo.h"
+#include "llvm/CodeGen/GlobalISel/CSEMIRBuilder.h"
+#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
+#include "llvm/CodeGen/GlobalISel/GISelWorkList.h"
+#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
+#include "llvm/CodeGen/GlobalISel/Utils.h"
+#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/Debug.h"
+
+#define DEBUG_TYPE "gi-combiner"
+
+using namespace llvm;
+
+namespace llvm {
+cl::OptionCategory GICombinerOptionCategory(
+ "GlobalISel Combiner",
+ "Control the rules which are enabled. These options all take a comma "
+ "separated list of rules to disable and may be specified by number "
+ "or number range (e.g. 1-10)."
+#ifndef NDEBUG
+ " They may also be specified by name."
+#endif
+);
+} // end namespace llvm
+
+namespace {
+/// This class acts as the glue the joins the CombinerHelper to the overall
+/// Combine algorithm. The CombinerHelper is intended to report the
+/// modifications it makes to the MIR to the GISelChangeObserver and the
+/// observer subclass will act on these events. In this case, instruction
+/// erasure will cancel any future visits to the erased instruction and
+/// instruction creation will schedule that instruction for a future visit.
+/// Other Combiner implementations may require more complex behaviour from
+/// their GISelChangeObserver subclass.
+class WorkListMaintainer : public GISelChangeObserver {
+ using WorkListTy = GISelWorkList<512>;
+ WorkListTy &WorkList;
+ /// The instructions that have been created but we want to report once they
+ /// have their operands. This is only maintained if debug output is requested.
+ SmallPtrSet<const MachineInstr *, 4> CreatedInstrs;
+
+public:
+ WorkListMaintainer(WorkListTy &WorkList)
+ : GISelChangeObserver(), WorkList(WorkList) {}
+ virtual ~WorkListMaintainer() {
+ }
+
+ void erasingInstr(MachineInstr &MI) override {
+ LLVM_DEBUG(dbgs() << "Erasing: " << MI << "\n");
+ WorkList.remove(&MI);
+ }
+ void createdInstr(MachineInstr &MI) override {
+ LLVM_DEBUG(dbgs() << "Creating: " << MI << "\n");
+ WorkList.insert(&MI);
+ LLVM_DEBUG(CreatedInstrs.insert(&MI));
+ }
+ void changingInstr(MachineInstr &MI) override {
+ LLVM_DEBUG(dbgs() << "Changing: " << MI << "\n");
+ WorkList.insert(&MI);
+ }
+ void changedInstr(MachineInstr &MI) override {
+ LLVM_DEBUG(dbgs() << "Changed: " << MI << "\n");
+ WorkList.insert(&MI);
+ }
+
+ void reportFullyCreatedInstrs() {
+ LLVM_DEBUG(for (const auto *MI
+ : CreatedInstrs) {
+ dbgs() << "Created: ";
+ MI->print(dbgs());
+ });
+ LLVM_DEBUG(CreatedInstrs.clear());
+ }
+};
+}
+
+Combiner::Combiner(CombinerInfo &Info, const TargetPassConfig *TPC)
+ : CInfo(Info), TPC(TPC) {
+ (void)this->TPC; // FIXME: Remove when used.
+}
+
+bool Combiner::combineMachineInstrs(MachineFunction &MF,
+ GISelCSEInfo *CSEInfo) {
+ // If the ISel pipeline failed, do not bother running this pass.
+ // FIXME: Should this be here or in individual combiner passes.
+ if (MF.getProperties().hasProperty(
+ MachineFunctionProperties::Property::FailedISel))
+ return false;
+
+ Builder =
+ CSEInfo ? std::make_unique<CSEMIRBuilder>() : std::make_unique<MachineIRBuilder>();
+ MRI = &MF.getRegInfo();
+ Builder->setMF(MF);
+ if (CSEInfo)
+ Builder->setCSEInfo(CSEInfo);
+
+ LLVM_DEBUG(dbgs() << "Generic MI Combiner for: " << MF.getName() << '\n');
+
+ MachineOptimizationRemarkEmitter MORE(MF, /*MBFI=*/nullptr);
+
+ bool MFChanged = false;
+ bool Changed;
+ MachineIRBuilder &B = *Builder.get();
+
+ do {
+ // Collect all instructions. Do a post order traversal for basic blocks and
+ // insert with list bottom up, so while we pop_back_val, we'll traverse top
+ // down RPOT.
+ Changed = false;
+ GISelWorkList<512> WorkList;
+ WorkListMaintainer Observer(WorkList);
+ GISelObserverWrapper WrapperObserver(&Observer);
+ if (CSEInfo)
+ WrapperObserver.addObserver(CSEInfo);
+ RAIIDelegateInstaller DelInstall(MF, &WrapperObserver);
+ for (MachineBasicBlock *MBB : post_order(&MF)) {
+ if (MBB->empty())
+ continue;
+ for (auto MII = MBB->rbegin(), MIE = MBB->rend(); MII != MIE;) {
+ MachineInstr *CurMI = &*MII;
+ ++MII;
+ // Erase dead insts before even adding to the list.
+ if (isTriviallyDead(*CurMI, *MRI)) {
+ LLVM_DEBUG(dbgs() << *CurMI << "Is dead; erasing.\n");
+ CurMI->eraseFromParentAndMarkDBGValuesForRemoval();
+ continue;
+ }
+ WorkList.deferred_insert(CurMI);
+ }
+ }
+ WorkList.finalize();
+ // Main Loop. Process the instructions here.
+ while (!WorkList.empty()) {
+ MachineInstr *CurrInst = WorkList.pop_back_val();
+ LLVM_DEBUG(dbgs() << "\nTry combining " << *CurrInst;);
+ Changed |= CInfo.combine(WrapperObserver, *CurrInst, B);
+ Observer.reportFullyCreatedInstrs();
+ }
+ MFChanged |= Changed;
+ } while (Changed);
+
+ return MFChanged;
+}
diff --git a/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp b/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp
new file mode 100644
index 000000000000..854769d283f7
--- /dev/null
+++ b/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp
@@ -0,0 +1,1306 @@
+//===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+#include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
+#include "llvm/CodeGen/GlobalISel/Combiner.h"
+#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
+#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
+#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
+#include "llvm/CodeGen/GlobalISel/Utils.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/Target/TargetMachine.h"
+
+#define DEBUG_TYPE "gi-combiner"
+
+using namespace llvm;
+
+// Option to allow testing of the combiner while no targets know about indexed
+// addressing.
+static cl::opt<bool>
+ ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false),
+ cl::desc("Force all indexed operations to be "
+ "legal for the GlobalISel combiner"));
+
+
+CombinerHelper::CombinerHelper(GISelChangeObserver &Observer,
+ MachineIRBuilder &B, GISelKnownBits *KB,
+ MachineDominatorTree *MDT)
+ : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer),
+ KB(KB), MDT(MDT) {
+ (void)this->KB;
+}
+
+void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg,
+ Register ToReg) const {
+ Observer.changingAllUsesOfReg(MRI, FromReg);
+
+ if (MRI.constrainRegAttrs(ToReg, FromReg))
+ MRI.replaceRegWith(FromReg, ToReg);
+ else
+ Builder.buildCopy(ToReg, FromReg);
+
+ Observer.finishedChangingAllUsesOfReg();
+}
+
+void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI,
+ MachineOperand &FromRegOp,
+ Register ToReg) const {
+ assert(FromRegOp.getParent() && "Expected an operand in an MI");
+ Observer.changingInstr(*FromRegOp.getParent());
+
+ FromRegOp.setReg(ToReg);
+
+ Observer.changedInstr(*FromRegOp.getParent());
+}
+
+bool CombinerHelper::tryCombineCopy(MachineInstr &MI) {
+ if (matchCombineCopy(MI)) {
+ applyCombineCopy(MI);
+ return true;
+ }
+ return false;
+}
+bool CombinerHelper::matchCombineCopy(MachineInstr &MI) {
+ if (MI.getOpcode() != TargetOpcode::COPY)
+ return false;
+ Register DstReg = MI.getOperand(0).getReg();
+ Register SrcReg = MI.getOperand(1).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ LLT SrcTy = MRI.getType(SrcReg);
+ // Simple Copy Propagation.
+ // a(sx) = COPY b(sx) -> Replace all uses of a with b.
+ if (DstTy.isValid() && SrcTy.isValid() && DstTy == SrcTy)
+ return true;
+ return false;
+}
+void CombinerHelper::applyCombineCopy(MachineInstr &MI) {
+ Register DstReg = MI.getOperand(0).getReg();
+ Register SrcReg = MI.getOperand(1).getReg();
+ MI.eraseFromParent();
+ replaceRegWith(MRI, DstReg, SrcReg);
+}
+
+bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) {
+ bool IsUndef = false;
+ SmallVector<Register, 4> Ops;
+ if (matchCombineConcatVectors(MI, IsUndef, Ops)) {
+ applyCombineConcatVectors(MI, IsUndef, Ops);
+ return true;
+ }
+ return false;
+}
+
+bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef,
+ SmallVectorImpl<Register> &Ops) {
+ assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
+ "Invalid instruction");
+ IsUndef = true;
+ MachineInstr *Undef = nullptr;
+
+ // Walk over all the operands of concat vectors and check if they are
+ // build_vector themselves or undef.
+ // Then collect their operands in Ops.
+ for (const MachineOperand &MO : MI.operands()) {
+ // Skip the instruction definition.
+ if (MO.isDef())
+ continue;
+ Register Reg = MO.getReg();
+ MachineInstr *Def = MRI.getVRegDef(Reg);
+ assert(Def && "Operand not defined");
+ switch (Def->getOpcode()) {
+ case TargetOpcode::G_BUILD_VECTOR:
+ IsUndef = false;
+ // Remember the operands of the build_vector to fold
+ // them into the yet-to-build flattened concat vectors.
+ for (const MachineOperand &BuildVecMO : Def->operands()) {
+ // Skip the definition.
+ if (BuildVecMO.isDef())
+ continue;
+ Ops.push_back(BuildVecMO.getReg());
+ }
+ break;
+ case TargetOpcode::G_IMPLICIT_DEF: {
+ LLT OpType = MRI.getType(Reg);
+ // Keep one undef value for all the undef operands.
+ if (!Undef) {
+ Builder.setInsertPt(*MI.getParent(), MI);
+ Undef = Builder.buildUndef(OpType.getScalarType());
+ }
+ assert(MRI.getType(Undef->getOperand(0).getReg()) ==
+ OpType.getScalarType() &&
+ "All undefs should have the same type");
+ // Break the undef vector in as many scalar elements as needed
+ // for the flattening.
+ for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements();
+ EltIdx != EltEnd; ++EltIdx)
+ Ops.push_back(Undef->getOperand(0).getReg());
+ break;
+ }
+ default:
+ return false;
+ }
+ }
+ return true;
+}
+void CombinerHelper::applyCombineConcatVectors(
+ MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) {
+ // We determined that the concat_vectors can be flatten.
+ // Generate the flattened build_vector.
+ Register DstReg = MI.getOperand(0).getReg();
+ Builder.setInsertPt(*MI.getParent(), MI);
+ Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
+
+ // Note: IsUndef is sort of redundant. We could have determine it by
+ // checking that at all Ops are undef. Alternatively, we could have
+ // generate a build_vector of undefs and rely on another combine to
+ // clean that up. For now, given we already gather this information
+ // in tryCombineConcatVectors, just save compile time and issue the
+ // right thing.
+ if (IsUndef)
+ Builder.buildUndef(NewDstReg);
+ else
+ Builder.buildBuildVector(NewDstReg, Ops);
+ MI.eraseFromParent();
+ replaceRegWith(MRI, DstReg, NewDstReg);
+}
+
+bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) {
+ SmallVector<Register, 4> Ops;
+ if (matchCombineShuffleVector(MI, Ops)) {
+ applyCombineShuffleVector(MI, Ops);
+ return true;
+ }
+ return false;
+}
+
+bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI,
+ SmallVectorImpl<Register> &Ops) {
+ assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
+ "Invalid instruction kind");
+ LLT DstType = MRI.getType(MI.getOperand(0).getReg());
+ Register Src1 = MI.getOperand(1).getReg();
+ LLT SrcType = MRI.getType(Src1);
+ unsigned DstNumElts = DstType.getNumElements();
+ unsigned SrcNumElts = SrcType.getNumElements();
+
+ // If the resulting vector is smaller than the size of the source
+ // vectors being concatenated, we won't be able to replace the
+ // shuffle vector into a concat_vectors.
+ //
+ // Note: We may still be able to produce a concat_vectors fed by
+ // extract_vector_elt and so on. It is less clear that would
+ // be better though, so don't bother for now.
+ if (DstNumElts < 2 * SrcNumElts)
+ return false;
+
+ // Check that the shuffle mask can be broken evenly between the
+ // different sources.
+ if (DstNumElts % SrcNumElts != 0)
+ return false;
+
+ // Mask length is a multiple of the source vector length.
+ // Check if the shuffle is some kind of concatenation of the input
+ // vectors.
+ unsigned NumConcat = DstNumElts / SrcNumElts;
+ SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
+ SmallVector<int, 8> Mask;
+ ShuffleVectorInst::getShuffleMask(MI.getOperand(3).getShuffleMask(), Mask);
+ for (unsigned i = 0; i != DstNumElts; ++i) {
+ int Idx = Mask[i];
+ // Undef value.
+ if (Idx < 0)
+ continue;
+ // Ensure the indices in each SrcType sized piece are sequential and that
+ // the same source is used for the whole piece.
+ if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
+ (ConcatSrcs[i / SrcNumElts] >= 0 &&
+ ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts)))
+ return false;
+ // Remember which source this index came from.
+ ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
+ }
+
+ // The shuffle is concatenating multiple vectors together.
+ // Collect the different operands for that.
+ Register UndefReg;
+ Register Src2 = MI.getOperand(2).getReg();
+ for (auto Src : ConcatSrcs) {
+ if (Src < 0) {
+ if (!UndefReg) {
+ Builder.setInsertPt(*MI.getParent(), MI);
+ UndefReg = Builder.buildUndef(SrcType).getReg(0);
+ }
+ Ops.push_back(UndefReg);
+ } else if (Src == 0)
+ Ops.push_back(Src1);
+ else
+ Ops.push_back(Src2);
+ }
+ return true;
+}
+
+void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI,
+ const ArrayRef<Register> Ops) {
+ Register DstReg = MI.getOperand(0).getReg();
+ Builder.setInsertPt(*MI.getParent(), MI);
+ Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
+
+ Builder.buildConcatVectors(NewDstReg, Ops);
+
+ MI.eraseFromParent();
+ replaceRegWith(MRI, DstReg, NewDstReg);
+}
+
+namespace {
+
+/// Select a preference between two uses. CurrentUse is the current preference
+/// while *ForCandidate is attributes of the candidate under consideration.
+PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse,
+ const LLT &TyForCandidate,
+ unsigned OpcodeForCandidate,
+ MachineInstr *MIForCandidate) {
+ if (!CurrentUse.Ty.isValid()) {
+ if (CurrentUse.ExtendOpcode == OpcodeForCandidate ||
+ CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT)
+ return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
+ return CurrentUse;
+ }
+
+ // We permit the extend to hoist through basic blocks but this is only
+ // sensible if the target has extending loads. If you end up lowering back
+ // into a load and extend during the legalizer then the end result is
+ // hoisting the extend up to the load.
+
+ // Prefer defined extensions to undefined extensions as these are more
+ // likely to reduce the number of instructions.
+ if (OpcodeForCandidate == TargetOpcode::G_ANYEXT &&
+ CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT)
+ return CurrentUse;
+ else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT &&
+ OpcodeForCandidate != TargetOpcode::G_ANYEXT)
+ return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
+
+ // Prefer sign extensions to zero extensions as sign-extensions tend to be
+ // more expensive.
+ if (CurrentUse.Ty == TyForCandidate) {
+ if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT &&
+ OpcodeForCandidate == TargetOpcode::G_ZEXT)
+ return CurrentUse;
+ else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT &&
+ OpcodeForCandidate == TargetOpcode::G_SEXT)
+ return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
+ }
+
+ // This is potentially target specific. We've chosen the largest type
+ // because G_TRUNC is usually free. One potential catch with this is that
+ // some targets have a reduced number of larger registers than smaller
+ // registers and this choice potentially increases the live-range for the
+ // larger value.
+ if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) {
+ return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
+ }
+ return CurrentUse;
+}
+
+/// Find a suitable place to insert some instructions and insert them. This
+/// function accounts for special cases like inserting before a PHI node.
+/// The current strategy for inserting before PHI's is to duplicate the
+/// instructions for each predecessor. However, while that's ok for G_TRUNC
+/// on most targets since it generally requires no code, other targets/cases may
+/// want to try harder to find a dominating block.
+static void InsertInsnsWithoutSideEffectsBeforeUse(
+ MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO,
+ std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator,
+ MachineOperand &UseMO)>
+ Inserter) {
+ MachineInstr &UseMI = *UseMO.getParent();
+
+ MachineBasicBlock *InsertBB = UseMI.getParent();
+
+ // If the use is a PHI then we want the predecessor block instead.
+ if (UseMI.isPHI()) {
+ MachineOperand *PredBB = std::next(&UseMO);
+ InsertBB = PredBB->getMBB();
+ }
+
+ // If the block is the same block as the def then we want to insert just after
+ // the def instead of at the start of the block.
+ if (InsertBB == DefMI.getParent()) {
+ MachineBasicBlock::iterator InsertPt = &DefMI;
+ Inserter(InsertBB, std::next(InsertPt), UseMO);
+ return;
+ }
+
+ // Otherwise we want the start of the BB
+ Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO);
+}
+} // end anonymous namespace
+
+bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) {
+ PreferredTuple Preferred;
+ if (matchCombineExtendingLoads(MI, Preferred)) {
+ applyCombineExtendingLoads(MI, Preferred);
+ return true;
+ }
+ return false;
+}
+
+bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI,
+ PreferredTuple &Preferred) {
+ // We match the loads and follow the uses to the extend instead of matching
+ // the extends and following the def to the load. This is because the load
+ // must remain in the same position for correctness (unless we also add code
+ // to find a safe place to sink it) whereas the extend is freely movable.
+ // It also prevents us from duplicating the load for the volatile case or just
+ // for performance.
+
+ if (MI.getOpcode() != TargetOpcode::G_LOAD &&
+ MI.getOpcode() != TargetOpcode::G_SEXTLOAD &&
+ MI.getOpcode() != TargetOpcode::G_ZEXTLOAD)
+ return false;
+
+ auto &LoadValue = MI.getOperand(0);
+ assert(LoadValue.isReg() && "Result wasn't a register?");
+
+ LLT LoadValueTy = MRI.getType(LoadValue.getReg());
+ if (!LoadValueTy.isScalar())
+ return false;
+
+ // Most architectures are going to legalize <s8 loads into at least a 1 byte
+ // load, and the MMOs can only describe memory accesses in multiples of bytes.
+ // If we try to perform extload combining on those, we can end up with
+ // %a(s8) = extload %ptr (load 1 byte from %ptr)
+ // ... which is an illegal extload instruction.
+ if (LoadValueTy.getSizeInBits() < 8)
+ return false;
+
+ // For non power-of-2 types, they will very likely be legalized into multiple
+ // loads. Don't bother trying to match them into extending loads.
+ if (!isPowerOf2_32(LoadValueTy.getSizeInBits()))
+ return false;
+
+ // Find the preferred type aside from the any-extends (unless it's the only
+ // one) and non-extending ops. We'll emit an extending load to that type and
+ // and emit a variant of (extend (trunc X)) for the others according to the
+ // relative type sizes. At the same time, pick an extend to use based on the
+ // extend involved in the chosen type.
+ unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD
+ ? TargetOpcode::G_ANYEXT
+ : MI.getOpcode() == TargetOpcode::G_SEXTLOAD
+ ? TargetOpcode::G_SEXT
+ : TargetOpcode::G_ZEXT;
+ Preferred = {LLT(), PreferredOpcode, nullptr};
+ for (auto &UseMI : MRI.use_instructions(LoadValue.getReg())) {
+ if (UseMI.getOpcode() == TargetOpcode::G_SEXT ||
+ UseMI.getOpcode() == TargetOpcode::G_ZEXT ||
+ UseMI.getOpcode() == TargetOpcode::G_ANYEXT) {
+ Preferred = ChoosePreferredUse(Preferred,
+ MRI.getType(UseMI.getOperand(0).getReg()),
+ UseMI.getOpcode(), &UseMI);
+ }
+ }
+
+ // There were no extends
+ if (!Preferred.MI)
+ return false;
+ // It should be impossible to chose an extend without selecting a different
+ // type since by definition the result of an extend is larger.
+ assert(Preferred.Ty != LoadValueTy && "Extending to same type?");
+
+ LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI);
+ return true;
+}
+
+void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI,
+ PreferredTuple &Preferred) {
+ // Rewrite the load to the chosen extending load.
+ Register ChosenDstReg = Preferred.MI->getOperand(0).getReg();
+
+ // Inserter to insert a truncate back to the original type at a given point
+ // with some basic CSE to limit truncate duplication to one per BB.
+ DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns;
+ auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB,
+ MachineBasicBlock::iterator InsertBefore,
+ MachineOperand &UseMO) {
+ MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB);
+ if (PreviouslyEmitted) {
+ Observer.changingInstr(*UseMO.getParent());
+ UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg());
+ Observer.changedInstr(*UseMO.getParent());
+ return;
+ }
+
+ Builder.setInsertPt(*InsertIntoBB, InsertBefore);
+ Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg());
+ MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg);
+ EmittedInsns[InsertIntoBB] = NewMI;
+ replaceRegOpWith(MRI, UseMO, NewDstReg);
+ };
+
+ Observer.changingInstr(MI);
+ MI.setDesc(
+ Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT
+ ? TargetOpcode::G_SEXTLOAD
+ : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT
+ ? TargetOpcode::G_ZEXTLOAD
+ : TargetOpcode::G_LOAD));
+
+ // Rewrite all the uses to fix up the types.
+ auto &LoadValue = MI.getOperand(0);
+ SmallVector<MachineOperand *, 4> Uses;
+ for (auto &UseMO : MRI.use_operands(LoadValue.getReg()))
+ Uses.push_back(&UseMO);
+
+ for (auto *UseMO : Uses) {
+ MachineInstr *UseMI = UseMO->getParent();
+
+ // If the extend is compatible with the preferred extend then we should fix
+ // up the type and extend so that it uses the preferred use.
+ if (UseMI->getOpcode() == Preferred.ExtendOpcode ||
+ UseMI->getOpcode() == TargetOpcode::G_ANYEXT) {
+ Register UseDstReg = UseMI->getOperand(0).getReg();
+ MachineOperand &UseSrcMO = UseMI->getOperand(1);
+ const LLT &UseDstTy = MRI.getType(UseDstReg);
+ if (UseDstReg != ChosenDstReg) {
+ if (Preferred.Ty == UseDstTy) {
+ // If the use has the same type as the preferred use, then merge
+ // the vregs and erase the extend. For example:
+ // %1:_(s8) = G_LOAD ...
+ // %2:_(s32) = G_SEXT %1(s8)
+ // %3:_(s32) = G_ANYEXT %1(s8)
+ // ... = ... %3(s32)
+ // rewrites to:
+ // %2:_(s32) = G_SEXTLOAD ...
+ // ... = ... %2(s32)
+ replaceRegWith(MRI, UseDstReg, ChosenDstReg);
+ Observer.erasingInstr(*UseMO->getParent());
+ UseMO->getParent()->eraseFromParent();
+ } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) {
+ // If the preferred size is smaller, then keep the extend but extend
+ // from the result of the extending load. For example:
+ // %1:_(s8) = G_LOAD ...
+ // %2:_(s32) = G_SEXT %1(s8)
+ // %3:_(s64) = G_ANYEXT %1(s8)
+ // ... = ... %3(s64)
+ /// rewrites to:
+ // %2:_(s32) = G_SEXTLOAD ...
+ // %3:_(s64) = G_ANYEXT %2:_(s32)
+ // ... = ... %3(s64)
+ replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg);
+ } else {
+ // If the preferred size is large, then insert a truncate. For
+ // example:
+ // %1:_(s8) = G_LOAD ...
+ // %2:_(s64) = G_SEXT %1(s8)
+ // %3:_(s32) = G_ZEXT %1(s8)
+ // ... = ... %3(s32)
+ /// rewrites to:
+ // %2:_(s64) = G_SEXTLOAD ...
+ // %4:_(s8) = G_TRUNC %2:_(s32)
+ // %3:_(s64) = G_ZEXT %2:_(s8)
+ // ... = ... %3(s64)
+ InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO,
+ InsertTruncAt);
+ }
+ continue;
+ }
+ // The use is (one of) the uses of the preferred use we chose earlier.
+ // We're going to update the load to def this value later so just erase
+ // the old extend.
+ Observer.erasingInstr(*UseMO->getParent());
+ UseMO->getParent()->eraseFromParent();
+ continue;
+ }
+
+ // The use isn't an extend. Truncate back to the type we originally loaded.
+ // This is free on many targets.
+ InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt);
+ }
+
+ MI.getOperand(0).setReg(ChosenDstReg);
+ Observer.changedInstr(MI);
+}
+
+bool CombinerHelper::isPredecessor(MachineInstr &DefMI, MachineInstr &UseMI) {
+ assert(DefMI.getParent() == UseMI.getParent());
+ if (&DefMI == &UseMI)
+ return false;
+
+ // Loop through the basic block until we find one of the instructions.
+ MachineBasicBlock::const_iterator I = DefMI.getParent()->begin();
+ for (; &*I != &DefMI && &*I != &UseMI; ++I)
+ return &*I == &DefMI;
+
+ llvm_unreachable("Block must contain instructions");
+}
+
+bool CombinerHelper::dominates(MachineInstr &DefMI, MachineInstr &UseMI) {
+ if (MDT)
+ return MDT->dominates(&DefMI, &UseMI);
+ else if (DefMI.getParent() != UseMI.getParent())
+ return false;
+
+ return isPredecessor(DefMI, UseMI);
+}
+
+bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr,
+ Register &Base, Register &Offset) {
+ auto &MF = *MI.getParent()->getParent();
+ const auto &TLI = *MF.getSubtarget().getTargetLowering();
+
+#ifndef NDEBUG
+ unsigned Opcode = MI.getOpcode();
+ assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||
+ Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE);
+#endif
+
+ Base = MI.getOperand(1).getReg();
+ MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base);
+ if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
+ return false;
+
+ LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI);
+
+ for (auto &Use : MRI.use_instructions(Base)) {
+ if (Use.getOpcode() != TargetOpcode::G_GEP)
+ continue;
+
+ Offset = Use.getOperand(2).getReg();
+ if (!ForceLegalIndexing &&
+ !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) {
+ LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: "
+ << Use);
+ continue;
+ }
+
+ // Make sure the offset calculation is before the potentially indexed op.
+ // FIXME: we really care about dependency here. The offset calculation might
+ // be movable.
+ MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset);
+ if (!OffsetDef || !dominates(*OffsetDef, MI)) {
+ LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: "
+ << Use);
+ continue;
+ }
+
+ // FIXME: check whether all uses of Base are load/store with foldable
+ // addressing modes. If so, using the normal addr-modes is better than
+ // forming an indexed one.
+
+ bool MemOpDominatesAddrUses = true;
+ for (auto &GEPUse : MRI.use_instructions(Use.getOperand(0).getReg())) {
+ if (!dominates(MI, GEPUse)) {
+ MemOpDominatesAddrUses = false;
+ break;
+ }
+ }
+
+ if (!MemOpDominatesAddrUses) {
+ LLVM_DEBUG(
+ dbgs() << " Ignoring candidate as memop does not dominate uses: "
+ << Use);
+ continue;
+ }
+
+ LLVM_DEBUG(dbgs() << " Found match: " << Use);
+ Addr = Use.getOperand(0).getReg();
+ return true;
+ }
+
+ return false;
+}
+
+bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr,
+ Register &Base, Register &Offset) {
+ auto &MF = *MI.getParent()->getParent();
+ const auto &TLI = *MF.getSubtarget().getTargetLowering();
+
+#ifndef NDEBUG
+ unsigned Opcode = MI.getOpcode();
+ assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||
+ Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE);
+#endif
+
+ Addr = MI.getOperand(1).getReg();
+ MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_GEP, Addr, MRI);
+ if (!AddrDef || MRI.hasOneUse(Addr))
+ return false;
+
+ Base = AddrDef->getOperand(1).getReg();
+ Offset = AddrDef->getOperand(2).getReg();
+
+ LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI);
+
+ if (!ForceLegalIndexing &&
+ !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) {
+ LLVM_DEBUG(dbgs() << " Skipping, not legal for target");
+ return false;
+ }
+
+ MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI);
+ if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
+ LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway.");
+ return false;
+ }
+
+ if (MI.getOpcode() == TargetOpcode::G_STORE) {
+ // Would require a copy.
+ if (Base == MI.getOperand(0).getReg()) {
+ LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway.");
+ return false;
+ }
+
+ // We're expecting one use of Addr in MI, but it could also be the
+ // value stored, which isn't actually dominated by the instruction.
+ if (MI.getOperand(0).getReg() == Addr) {
+ LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses");
+ return false;
+ }
+ }
+
+ // FIXME: check whether all uses of the base pointer are constant GEPs. That
+ // might allow us to end base's liveness here by adjusting the constant.
+
+ for (auto &UseMI : MRI.use_instructions(Addr)) {
+ if (!dominates(MI, UseMI)) {
+ LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses.");
+ return false;
+ }
+ }
+
+ return true;
+}
+
+bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) {
+ unsigned Opcode = MI.getOpcode();
+ if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD &&
+ Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE)
+ return false;
+
+ bool IsStore = Opcode == TargetOpcode::G_STORE;
+ Register Addr, Base, Offset;
+ bool IsPre = findPreIndexCandidate(MI, Addr, Base, Offset);
+ if (!IsPre && !findPostIndexCandidate(MI, Addr, Base, Offset))
+ return false;
+
+
+ unsigned NewOpcode;
+ switch (Opcode) {
+ case TargetOpcode::G_LOAD:
+ NewOpcode = TargetOpcode::G_INDEXED_LOAD;
+ break;
+ case TargetOpcode::G_SEXTLOAD:
+ NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD;
+ break;
+ case TargetOpcode::G_ZEXTLOAD:
+ NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD;
+ break;
+ case TargetOpcode::G_STORE:
+ NewOpcode = TargetOpcode::G_INDEXED_STORE;
+ break;
+ default:
+ llvm_unreachable("Unknown load/store opcode");
+ }
+
+ MachineInstr &AddrDef = *MRI.getUniqueVRegDef(Addr);
+ MachineIRBuilder MIRBuilder(MI);
+ auto MIB = MIRBuilder.buildInstr(NewOpcode);
+ if (IsStore) {
+ MIB.addDef(Addr);
+ MIB.addUse(MI.getOperand(0).getReg());
+ } else {
+ MIB.addDef(MI.getOperand(0).getReg());
+ MIB.addDef(Addr);
+ }
+
+ MIB.addUse(Base);
+ MIB.addUse(Offset);
+ MIB.addImm(IsPre);
+ MI.eraseFromParent();
+ AddrDef.eraseFromParent();
+
+ LLVM_DEBUG(dbgs() << " Combinined to indexed operation");
+ return true;
+}
+
+bool CombinerHelper::matchElideBrByInvertingCond(MachineInstr &MI) {
+ if (MI.getOpcode() != TargetOpcode::G_BR)
+ return false;
+
+ // Try to match the following:
+ // bb1:
+ // %c(s32) = G_ICMP pred, %a, %b
+ // %c1(s1) = G_TRUNC %c(s32)
+ // G_BRCOND %c1, %bb2
+ // G_BR %bb3
+ // bb2:
+ // ...
+ // bb3:
+
+ // The above pattern does not have a fall through to the successor bb2, always
+ // resulting in a branch no matter which path is taken. Here we try to find
+ // and replace that pattern with conditional branch to bb3 and otherwise
+ // fallthrough to bb2.
+
+ MachineBasicBlock *MBB = MI.getParent();
+ MachineBasicBlock::iterator BrIt(MI);
+ if (BrIt == MBB->begin())
+ return false;
+ assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator");
+
+ MachineInstr *BrCond = &*std::prev(BrIt);
+ if (BrCond->getOpcode() != TargetOpcode::G_BRCOND)
+ return false;
+
+ // Check that the next block is the conditional branch target.
+ if (!MBB->isLayoutSuccessor(BrCond->getOperand(1).getMBB()))
+ return false;
+
+ MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg());
+ if (!CmpMI || CmpMI->getOpcode() != TargetOpcode::G_ICMP ||
+ !MRI.hasOneUse(CmpMI->getOperand(0).getReg()))
+ return false;
+ return true;
+}
+
+bool CombinerHelper::tryElideBrByInvertingCond(MachineInstr &MI) {
+ if (!matchElideBrByInvertingCond(MI))
+ return false;
+ applyElideBrByInvertingCond(MI);
+ return true;
+}
+
+void CombinerHelper::applyElideBrByInvertingCond(MachineInstr &MI) {
+ MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB();
+ MachineBasicBlock::iterator BrIt(MI);
+ MachineInstr *BrCond = &*std::prev(BrIt);
+ MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg());
+
+ CmpInst::Predicate InversePred = CmpInst::getInversePredicate(
+ (CmpInst::Predicate)CmpMI->getOperand(1).getPredicate());
+
+ // Invert the G_ICMP condition.
+ Observer.changingInstr(*CmpMI);
+ CmpMI->getOperand(1).setPredicate(InversePred);
+ Observer.changedInstr(*CmpMI);
+
+ // Change the conditional branch target.
+ Observer.changingInstr(*BrCond);
+ BrCond->getOperand(1).setMBB(BrTarget);
+ Observer.changedInstr(*BrCond);
+ MI.eraseFromParent();
+}
+
+static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
+ // On Darwin, -Os means optimize for size without hurting performance, so
+ // only really optimize for size when -Oz (MinSize) is used.
+ if (MF.getTarget().getTargetTriple().isOSDarwin())
+ return MF.getFunction().hasMinSize();
+ return MF.getFunction().hasOptSize();
+}
+
+// Returns a list of types to use for memory op lowering in MemOps. A partial
+// port of findOptimalMemOpLowering in TargetLowering.
+static bool findGISelOptimalMemOpLowering(
+ std::vector<LLT> &MemOps, unsigned Limit, uint64_t Size, unsigned DstAlign,
+ unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
+ bool AllowOverlap, unsigned DstAS, unsigned SrcAS,
+ const AttributeList &FuncAttributes, const TargetLowering &TLI) {
+ // If 'SrcAlign' is zero, that means the memory operation does not need to
+ // load the value, i.e. memset or memcpy from constant string. Otherwise,
+ // it's the inferred alignment of the source. 'DstAlign', on the other hand,
+ // is the specified alignment of the memory operation. If it is zero, that
+ // means it's possible to change the alignment of the destination.
+ // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
+ // not need to be loaded.
+ if (SrcAlign != 0 && SrcAlign < DstAlign)
+ return false;
+
+ LLT Ty = TLI.getOptimalMemOpLLT(Size, DstAlign, SrcAlign, IsMemset,
+ ZeroMemset, MemcpyStrSrc, FuncAttributes);
+
+ if (Ty == LLT()) {
+ // Use the largest scalar type whose alignment constraints are satisfied.
+ // We only need to check DstAlign here as SrcAlign is always greater or
+ // equal to DstAlign (or zero).
+ Ty = LLT::scalar(64);
+ while (DstAlign && DstAlign < Ty.getSizeInBytes() &&
+ !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, DstAlign))
+ Ty = LLT::scalar(Ty.getSizeInBytes());
+ assert(Ty.getSizeInBits() > 0 && "Could not find valid type");
+ // FIXME: check for the largest legal type we can load/store to.
+ }
+
+ unsigned NumMemOps = 0;
+ while (Size != 0) {
+ unsigned TySize = Ty.getSizeInBytes();
+ while (TySize > Size) {
+ // For now, only use non-vector load / store's for the left-over pieces.
+ LLT NewTy = Ty;
+ // FIXME: check for mem op safety and legality of the types. Not all of
+ // SDAGisms map cleanly to GISel concepts.
+ if (NewTy.isVector())
+ NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32);
+ NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1));
+ unsigned NewTySize = NewTy.getSizeInBytes();
+ assert(NewTySize > 0 && "Could not find appropriate type");
+
+ // If the new LLT cannot cover all of the remaining bits, then consider
+ // issuing a (or a pair of) unaligned and overlapping load / store.
+ bool Fast;
+ // Need to get a VT equivalent for allowMisalignedMemoryAccesses().
+ MVT VT = getMVTForLLT(Ty);
+ if (NumMemOps && AllowOverlap && NewTySize < Size &&
+ TLI.allowsMisalignedMemoryAccesses(
+ VT, DstAS, DstAlign, MachineMemOperand::MONone, &Fast) &&
+ Fast)
+ TySize = Size;
+ else {
+ Ty = NewTy;
+ TySize = NewTySize;
+ }
+ }
+
+ if (++NumMemOps > Limit)
+ return false;
+
+ MemOps.push_back(Ty);
+ Size -= TySize;
+ }
+
+ return true;
+}
+
+static Type *getTypeForLLT(LLT Ty, LLVMContext &C) {
+ if (Ty.isVector())
+ return VectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
+ Ty.getNumElements());
+ return IntegerType::get(C, Ty.getSizeInBits());
+}
+
+// Get a vectorized representation of the memset value operand, GISel edition.
+static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) {
+ MachineRegisterInfo &MRI = *MIB.getMRI();
+ unsigned NumBits = Ty.getScalarSizeInBits();
+ auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI);
+ if (!Ty.isVector() && ValVRegAndVal) {
+ unsigned KnownVal = ValVRegAndVal->Value;
+ APInt Scalar = APInt(8, KnownVal);
+ APInt SplatVal = APInt::getSplat(NumBits, Scalar);
+ return MIB.buildConstant(Ty, SplatVal).getReg(0);
+ }
+ // FIXME: for vector types create a G_BUILD_VECTOR.
+ if (Ty.isVector())
+ return Register();
+
+ // Extend the byte value to the larger type, and then multiply by a magic
+ // value 0x010101... in order to replicate it across every byte.
+ LLT ExtType = Ty.getScalarType();
+ auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val);
+ if (NumBits > 8) {
+ APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
+ auto MagicMI = MIB.buildConstant(ExtType, Magic);
+ Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0);
+ }
+
+ assert(ExtType == Ty && "Vector memset value type not supported yet");
+ return Val;
+}
+
+bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, Register Val,
+ unsigned KnownLen, unsigned Align,
+ bool IsVolatile) {
+ auto &MF = *MI.getParent()->getParent();
+ const auto &TLI = *MF.getSubtarget().getTargetLowering();
+ auto &DL = MF.getDataLayout();
+ LLVMContext &C = MF.getFunction().getContext();
+
+ assert(KnownLen != 0 && "Have a zero length memset length!");
+
+ bool DstAlignCanChange = false;
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ bool OptSize = shouldLowerMemFuncForSize(MF);
+
+ MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
+ if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
+ DstAlignCanChange = true;
+
+ unsigned Limit = TLI.getMaxStoresPerMemset(OptSize);
+ std::vector<LLT> MemOps;
+
+ const auto &DstMMO = **MI.memoperands_begin();
+ MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
+
+ auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI);
+ bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0;
+
+ if (!findGISelOptimalMemOpLowering(
+ MemOps, Limit, KnownLen, (DstAlignCanChange ? 0 : Align), 0,
+ /*IsMemset=*/true,
+ /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false,
+ /*AllowOverlap=*/!IsVolatile, DstPtrInfo.getAddrSpace(), ~0u,
+ MF.getFunction().getAttributes(), TLI))
+ return false;
+
+ if (DstAlignCanChange) {
+ // Get an estimate of the type from the LLT.
+ Type *IRTy = getTypeForLLT(MemOps[0], C);
+ unsigned NewAlign = (unsigned)DL.getABITypeAlignment(IRTy);
+ if (NewAlign > Align) {
+ Align = NewAlign;
+ unsigned FI = FIDef->getOperand(1).getIndex();
+ // Give the stack frame object a larger alignment if needed.
+ if (MFI.getObjectAlignment(FI) < Align)
+ MFI.setObjectAlignment(FI, Align);
+ }
+ }
+
+ MachineIRBuilder MIB(MI);
+ // Find the largest store and generate the bit pattern for it.
+ LLT LargestTy = MemOps[0];
+ for (unsigned i = 1; i < MemOps.size(); i++)
+ if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits())
+ LargestTy = MemOps[i];
+
+ // The memset stored value is always defined as an s8, so in order to make it
+ // work with larger store types we need to repeat the bit pattern across the
+ // wider type.
+ Register MemSetValue = getMemsetValue(Val, LargestTy, MIB);
+
+ if (!MemSetValue)
+ return false;
+
+ // Generate the stores. For each store type in the list, we generate the
+ // matching store of that type to the destination address.
+ LLT PtrTy = MRI.getType(Dst);
+ unsigned DstOff = 0;
+ unsigned Size = KnownLen;
+ for (unsigned I = 0; I < MemOps.size(); I++) {
+ LLT Ty = MemOps[I];
+ unsigned TySize = Ty.getSizeInBytes();
+ if (TySize > Size) {
+ // Issuing an unaligned load / store pair that overlaps with the previous
+ // pair. Adjust the offset accordingly.
+ assert(I == MemOps.size() - 1 && I != 0);
+ DstOff -= TySize - Size;
+ }
+
+ // If this store is smaller than the largest store see whether we can get
+ // the smaller value for free with a truncate.
+ Register Value = MemSetValue;
+ if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) {
+ MVT VT = getMVTForLLT(Ty);
+ MVT LargestVT = getMVTForLLT(LargestTy);
+ if (!LargestTy.isVector() && !Ty.isVector() &&
+ TLI.isTruncateFree(LargestVT, VT))
+ Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0);
+ else
+ Value = getMemsetValue(Val, Ty, MIB);
+ if (!Value)
+ return false;
+ }
+
+ auto *StoreMMO =
+ MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes());
+
+ Register Ptr = Dst;
+ if (DstOff != 0) {
+ auto Offset =
+ MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff);
+ Ptr = MIB.buildGEP(PtrTy, Dst, Offset).getReg(0);
+ }
+
+ MIB.buildStore(Value, Ptr, *StoreMMO);
+ DstOff += Ty.getSizeInBytes();
+ Size -= TySize;
+ }
+
+ MI.eraseFromParent();
+ return true;
+}
+
+
+bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst,
+ Register Src, unsigned KnownLen,
+ unsigned DstAlign, unsigned SrcAlign,
+ bool IsVolatile) {
+ auto &MF = *MI.getParent()->getParent();
+ const auto &TLI = *MF.getSubtarget().getTargetLowering();
+ auto &DL = MF.getDataLayout();
+ LLVMContext &C = MF.getFunction().getContext();
+
+ assert(KnownLen != 0 && "Have a zero length memcpy length!");
+
+ bool DstAlignCanChange = false;
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ bool OptSize = shouldLowerMemFuncForSize(MF);
+ unsigned Alignment = MinAlign(DstAlign, SrcAlign);
+
+ MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
+ if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
+ DstAlignCanChange = true;
+
+ // FIXME: infer better src pointer alignment like SelectionDAG does here.
+ // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining
+ // if the memcpy is in a tail call position.
+
+ unsigned Limit = TLI.getMaxStoresPerMemcpy(OptSize);
+ std::vector<LLT> MemOps;
+
+ const auto &DstMMO = **MI.memoperands_begin();
+ const auto &SrcMMO = **std::next(MI.memoperands_begin());
+ MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
+ MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
+
+ if (!findGISelOptimalMemOpLowering(
+ MemOps, Limit, KnownLen, (DstAlignCanChange ? 0 : Alignment),
+ SrcAlign,
+ /*IsMemset=*/false,
+ /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false,
+ /*AllowOverlap=*/!IsVolatile, DstPtrInfo.getAddrSpace(),
+ SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes(), TLI))
+ return false;
+
+ if (DstAlignCanChange) {
+ // Get an estimate of the type from the LLT.
+ Type *IRTy = getTypeForLLT(MemOps[0], C);
+ unsigned NewAlign = (unsigned)DL.getABITypeAlignment(IRTy);
+
+ // Don't promote to an alignment that would require dynamic stack
+ // realignment.
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ if (!TRI->needsStackRealignment(MF))
+ while (NewAlign > Alignment &&
+ DL.exceedsNaturalStackAlignment(Align(NewAlign)))
+ NewAlign /= 2;
+
+ if (NewAlign > Alignment) {
+ Alignment = NewAlign;
+ unsigned FI = FIDef->getOperand(1).getIndex();
+ // Give the stack frame object a larger alignment if needed.
+ if (MFI.getObjectAlignment(FI) < Alignment)
+ MFI.setObjectAlignment(FI, Alignment);
+ }
+ }
+
+ LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n");
+
+ MachineIRBuilder MIB(MI);
+ // Now we need to emit a pair of load and stores for each of the types we've
+ // collected. I.e. for each type, generate a load from the source pointer of
+ // that type width, and then generate a corresponding store to the dest buffer
+ // of that value loaded. This can result in a sequence of loads and stores
+ // mixed types, depending on what the target specifies as good types to use.
+ unsigned CurrOffset = 0;
+ LLT PtrTy = MRI.getType(Src);
+ unsigned Size = KnownLen;
+ for (auto CopyTy : MemOps) {
+ // Issuing an unaligned load / store pair that overlaps with the previous
+ // pair. Adjust the offset accordingly.
+ if (CopyTy.getSizeInBytes() > Size)
+ CurrOffset -= CopyTy.getSizeInBytes() - Size;
+
+ // Construct MMOs for the accesses.
+ auto *LoadMMO =
+ MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
+ auto *StoreMMO =
+ MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
+
+ // Create the load.
+ Register LoadPtr = Src;
+ Register Offset;
+ if (CurrOffset != 0) {
+ Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset)
+ .getReg(0);
+ LoadPtr = MIB.buildGEP(PtrTy, Src, Offset).getReg(0);
+ }
+ auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO);
+
+ // Create the store.
+ Register StorePtr =
+ CurrOffset == 0 ? Dst : MIB.buildGEP(PtrTy, Dst, Offset).getReg(0);
+ MIB.buildStore(LdVal, StorePtr, *StoreMMO);
+ CurrOffset += CopyTy.getSizeInBytes();
+ Size -= CopyTy.getSizeInBytes();
+ }
+
+ MI.eraseFromParent();
+ return true;
+}
+
+bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst,
+ Register Src, unsigned KnownLen,
+ unsigned DstAlign, unsigned SrcAlign,
+ bool IsVolatile) {
+ auto &MF = *MI.getParent()->getParent();
+ const auto &TLI = *MF.getSubtarget().getTargetLowering();
+ auto &DL = MF.getDataLayout();
+ LLVMContext &C = MF.getFunction().getContext();
+
+ assert(KnownLen != 0 && "Have a zero length memmove length!");
+
+ bool DstAlignCanChange = false;
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ bool OptSize = shouldLowerMemFuncForSize(MF);
+ unsigned Alignment = MinAlign(DstAlign, SrcAlign);
+
+ MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
+ if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
+ DstAlignCanChange = true;
+
+ unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize);
+ std::vector<LLT> MemOps;
+
+ const auto &DstMMO = **MI.memoperands_begin();
+ const auto &SrcMMO = **std::next(MI.memoperands_begin());
+ MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
+ MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
+
+ // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due
+ // to a bug in it's findOptimalMemOpLowering implementation. For now do the
+ // same thing here.
+ if (!findGISelOptimalMemOpLowering(
+ MemOps, Limit, KnownLen, (DstAlignCanChange ? 0 : Alignment),
+ SrcAlign,
+ /*IsMemset=*/false,
+ /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false,
+ /*AllowOverlap=*/false, DstPtrInfo.getAddrSpace(),
+ SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes(), TLI))
+ return false;
+
+ if (DstAlignCanChange) {
+ // Get an estimate of the type from the LLT.
+ Type *IRTy = getTypeForLLT(MemOps[0], C);
+ unsigned NewAlign = (unsigned)DL.getABITypeAlignment(IRTy);
+
+ // Don't promote to an alignment that would require dynamic stack
+ // realignment.
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ if (!TRI->needsStackRealignment(MF))
+ while (NewAlign > Alignment &&
+ DL.exceedsNaturalStackAlignment(Align(NewAlign)))
+ NewAlign /= 2;
+
+ if (NewAlign > Alignment) {
+ Alignment = NewAlign;
+ unsigned FI = FIDef->getOperand(1).getIndex();
+ // Give the stack frame object a larger alignment if needed.
+ if (MFI.getObjectAlignment(FI) < Alignment)
+ MFI.setObjectAlignment(FI, Alignment);
+ }
+ }
+
+ LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n");
+
+ MachineIRBuilder MIB(MI);
+ // Memmove requires that we perform the loads first before issuing the stores.
+ // Apart from that, this loop is pretty much doing the same thing as the
+ // memcpy codegen function.
+ unsigned CurrOffset = 0;
+ LLT PtrTy = MRI.getType(Src);
+ SmallVector<Register, 16> LoadVals;
+ for (auto CopyTy : MemOps) {
+ // Construct MMO for the load.
+ auto *LoadMMO =
+ MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
+
+ // Create the load.
+ Register LoadPtr = Src;
+ if (CurrOffset != 0) {
+ auto Offset =
+ MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset);
+ LoadPtr = MIB.buildGEP(PtrTy, Src, Offset).getReg(0);
+ }
+ LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0));
+ CurrOffset += CopyTy.getSizeInBytes();
+ }
+
+ CurrOffset = 0;
+ for (unsigned I = 0; I < MemOps.size(); ++I) {
+ LLT CopyTy = MemOps[I];
+ // Now store the values loaded.
+ auto *StoreMMO =
+ MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
+
+ Register StorePtr = Dst;
+ if (CurrOffset != 0) {
+ auto Offset =
+ MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset);
+ StorePtr = MIB.buildGEP(PtrTy, Dst, Offset).getReg(0);
+ }
+ MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO);
+ CurrOffset += CopyTy.getSizeInBytes();
+ }
+ MI.eraseFromParent();
+ return true;
+}
+
+bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
+ // This combine is fairly complex so it's not written with a separate
+ // matcher function.
+ assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
+ Intrinsic::ID ID = (Intrinsic::ID)MI.getIntrinsicID();
+ assert((ID == Intrinsic::memcpy || ID == Intrinsic::memmove ||
+ ID == Intrinsic::memset) &&
+ "Expected a memcpy like intrinsic");
+
+ auto MMOIt = MI.memoperands_begin();
+ const MachineMemOperand *MemOp = *MMOIt;
+ bool IsVolatile = MemOp->isVolatile();
+ // Don't try to optimize volatile.
+ if (IsVolatile)
+ return false;
+
+ unsigned DstAlign = MemOp->getBaseAlignment();
+ unsigned SrcAlign = 0;
+ Register Dst = MI.getOperand(1).getReg();
+ Register Src = MI.getOperand(2).getReg();
+ Register Len = MI.getOperand(3).getReg();
+
+ if (ID != Intrinsic::memset) {
+ assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI");
+ MemOp = *(++MMOIt);
+ SrcAlign = MemOp->getBaseAlignment();
+ }
+
+ // See if this is a constant length copy
+ auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI);
+ if (!LenVRegAndVal)
+ return false; // Leave it to the legalizer to lower it to a libcall.
+ unsigned KnownLen = LenVRegAndVal->Value;
+
+ if (KnownLen == 0) {
+ MI.eraseFromParent();
+ return true;
+ }
+
+ if (MaxLen && KnownLen > MaxLen)
+ return false;
+
+ if (ID == Intrinsic::memcpy)
+ return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile);
+ if (ID == Intrinsic::memmove)
+ return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile);
+ if (ID == Intrinsic::memset)
+ return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile);
+ return false;
+}
+
+bool CombinerHelper::tryCombine(MachineInstr &MI) {
+ if (tryCombineCopy(MI))
+ return true;
+ if (tryCombineExtendingLoads(MI))
+ return true;
+ if (tryCombineIndexedLoadStore(MI))
+ return true;
+ return false;
+}
diff --git a/llvm/lib/CodeGen/GlobalISel/GISelChangeObserver.cpp b/llvm/lib/CodeGen/GlobalISel/GISelChangeObserver.cpp
new file mode 100644
index 000000000000..62b903c30b89
--- /dev/null
+++ b/llvm/lib/CodeGen/GlobalISel/GISelChangeObserver.cpp
@@ -0,0 +1,40 @@
+//===-- lib/CodeGen/GlobalISel/GISelChangeObserver.cpp --------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file constains common code to combine machine functions at generic
+// level.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+
+using namespace llvm;
+
+void GISelChangeObserver::changingAllUsesOfReg(
+ const MachineRegisterInfo &MRI, unsigned Reg) {
+ for (auto &ChangingMI : MRI.use_instructions(Reg)) {
+ changingInstr(ChangingMI);
+ ChangingAllUsesOfReg.insert(&ChangingMI);
+ }
+}
+
+void GISelChangeObserver::finishedChangingAllUsesOfReg() {
+ for (auto *ChangedMI : ChangingAllUsesOfReg)
+ changedInstr(*ChangedMI);
+ ChangingAllUsesOfReg.clear();
+}
+
+RAIIDelegateInstaller::RAIIDelegateInstaller(MachineFunction &MF,
+ MachineFunction::Delegate *Del)
+ : MF(MF), Delegate(Del) {
+ // Register this as the delegate for handling insertions and deletions of
+ // instructions.
+ MF.setDelegate(Del);
+}
+
+RAIIDelegateInstaller::~RAIIDelegateInstaller() { MF.resetDelegate(Delegate); }
diff --git a/llvm/lib/CodeGen/GlobalISel/GISelKnownBits.cpp b/llvm/lib/CodeGen/GlobalISel/GISelKnownBits.cpp
new file mode 100644
index 000000000000..be8efa8795f3
--- /dev/null
+++ b/llvm/lib/CodeGen/GlobalISel/GISelKnownBits.cpp
@@ -0,0 +1,383 @@
+//===- lib/CodeGen/GlobalISel/GISelKnownBits.cpp --------------*- C++ *-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+/// Provides analysis for querying information about KnownBits during GISel
+/// passes.
+//
+//===------------------
+#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/CodeGen/GlobalISel/Utils.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetOpcodes.h"
+
+#define DEBUG_TYPE "gisel-known-bits"
+
+using namespace llvm;
+
+char llvm::GISelKnownBitsAnalysis::ID = 0;
+
+INITIALIZE_PASS_BEGIN(GISelKnownBitsAnalysis, DEBUG_TYPE,
+ "Analysis for ComputingKnownBits", false, true)
+INITIALIZE_PASS_END(GISelKnownBitsAnalysis, DEBUG_TYPE,
+ "Analysis for ComputingKnownBits", false, true)
+
+GISelKnownBits::GISelKnownBits(MachineFunction &MF)
+ : MF(MF), MRI(MF.getRegInfo()), TL(*MF.getSubtarget().getTargetLowering()),
+ DL(MF.getFunction().getParent()->getDataLayout()) {}
+
+Align GISelKnownBits::inferAlignmentForFrameIdx(int FrameIdx, int Offset,
+ const MachineFunction &MF) {
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
+ return commonAlignment(Align(MFI.getObjectAlignment(FrameIdx)), Offset);
+ // TODO: How to handle cases with Base + Offset?
+}
+
+MaybeAlign GISelKnownBits::inferPtrAlignment(const MachineInstr &MI) {
+ if (MI.getOpcode() == TargetOpcode::G_FRAME_INDEX) {
+ int FrameIdx = MI.getOperand(1).getIndex();
+ return inferAlignmentForFrameIdx(FrameIdx, 0, *MI.getMF());
+ }
+ return None;
+}
+
+void GISelKnownBits::computeKnownBitsForFrameIndex(Register R, KnownBits &Known,
+ const APInt &DemandedElts,
+ unsigned Depth) {
+ const MachineInstr &MI = *MRI.getVRegDef(R);
+ computeKnownBitsForAlignment(Known, inferPtrAlignment(MI));
+}
+
+void GISelKnownBits::computeKnownBitsForAlignment(KnownBits &Known,
+ MaybeAlign Alignment) {
+ if (Alignment)
+ // The low bits are known zero if the pointer is aligned.
+ Known.Zero.setLowBits(Log2(Alignment));
+}
+
+KnownBits GISelKnownBits::getKnownBits(MachineInstr &MI) {
+ return getKnownBits(MI.getOperand(0).getReg());
+}
+
+KnownBits GISelKnownBits::getKnownBits(Register R) {
+ KnownBits Known;
+ LLT Ty = MRI.getType(R);
+ APInt DemandedElts =
+ Ty.isVector() ? APInt::getAllOnesValue(Ty.getNumElements()) : APInt(1, 1);
+ computeKnownBitsImpl(R, Known, DemandedElts);
+ return Known;
+}
+
+bool GISelKnownBits::signBitIsZero(Register R) {
+ LLT Ty = MRI.getType(R);
+ unsigned BitWidth = Ty.getScalarSizeInBits();
+ return maskedValueIsZero(R, APInt::getSignMask(BitWidth));
+}
+
+APInt GISelKnownBits::getKnownZeroes(Register R) {
+ return getKnownBits(R).Zero;
+}
+
+APInt GISelKnownBits::getKnownOnes(Register R) { return getKnownBits(R).One; }
+
+void GISelKnownBits::computeKnownBitsImpl(Register R, KnownBits &Known,
+ const APInt &DemandedElts,
+ unsigned Depth) {
+ MachineInstr &MI = *MRI.getVRegDef(R);
+ unsigned Opcode = MI.getOpcode();
+ LLT DstTy = MRI.getType(R);
+
+ // Handle the case where this is called on a register that does not have a
+ // type constraint (i.e. it has a register class constraint instead). This is
+ // unlikely to occur except by looking through copies but it is possible for
+ // the initial register being queried to be in this state.
+ if (!DstTy.isValid()) {
+ Known = KnownBits();
+ return;
+ }
+
+ unsigned BitWidth = DstTy.getSizeInBits();
+ Known = KnownBits(BitWidth); // Don't know anything
+
+ if (DstTy.isVector())
+ return; // TODO: Handle vectors.
+
+ if (Depth == getMaxDepth())
+ return;
+
+ if (!DemandedElts)
+ return; // No demanded elts, better to assume we don't know anything.
+
+ KnownBits Known2;
+
+ switch (Opcode) {
+ default:
+ TL.computeKnownBitsForTargetInstr(*this, R, Known, DemandedElts, MRI,
+ Depth);
+ break;
+ case TargetOpcode::COPY: {
+ MachineOperand Dst = MI.getOperand(0);
+ MachineOperand Src = MI.getOperand(1);
+ // Look through trivial copies but don't look through trivial copies of the
+ // form `%1:(s32) = OP %0:gpr32` known-bits analysis is currently unable to
+ // determine the bit width of a register class.
+ //
+ // We can't use NoSubRegister by name as it's defined by each target but
+ // it's always defined to be 0 by tablegen.
+ if (Dst.getSubReg() == 0 /*NoSubRegister*/ && Src.getReg().isVirtual() &&
+ Src.getSubReg() == 0 /*NoSubRegister*/ &&
+ MRI.getType(Src.getReg()).isValid()) {
+ // Don't increment Depth for this one since we didn't do any work.
+ computeKnownBitsImpl(Src.getReg(), Known, DemandedElts, Depth);
+ }
+ break;
+ }
+ case TargetOpcode::G_CONSTANT: {
+ auto CstVal = getConstantVRegVal(R, MRI);
+ if (!CstVal)
+ break;
+ Known.One = *CstVal;
+ Known.Zero = ~Known.One;
+ break;
+ }
+ case TargetOpcode::G_FRAME_INDEX: {
+ computeKnownBitsForFrameIndex(R, Known, DemandedElts);
+ break;
+ }
+ case TargetOpcode::G_SUB: {
+ // If low bits are known to be zero in both operands, then we know they are
+ // going to be 0 in the result. Both addition and complement operations
+ // preserve the low zero bits.
+ computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
+ Depth + 1);
+ unsigned KnownZeroLow = Known2.countMinTrailingZeros();
+ if (KnownZeroLow == 0)
+ break;
+ computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
+ Depth + 1);
+ KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
+ Known.Zero.setLowBits(KnownZeroLow);
+ break;
+ }
+ case TargetOpcode::G_XOR: {
+ computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
+ Depth + 1);
+ computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
+ Depth + 1);
+
+ // Output known-0 bits are known if clear or set in both the LHS & RHS.
+ APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
+ // Output known-1 are known to be set if set in only one of the LHS, RHS.
+ Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
+ Known.Zero = KnownZeroOut;
+ break;
+ }
+ case TargetOpcode::G_GEP: {
+ // G_GEP is like G_ADD. FIXME: Is this true for all targets?
+ LLT Ty = MRI.getType(MI.getOperand(1).getReg());
+ if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
+ break;
+ LLVM_FALLTHROUGH;
+ }
+ case TargetOpcode::G_ADD: {
+ // Output known-0 bits are known if clear or set in both the low clear bits
+ // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
+ // low 3 bits clear.
+ // Output known-0 bits are also known if the top bits of each input are
+ // known to be clear. For example, if one input has the top 10 bits clear
+ // and the other has the top 8 bits clear, we know the top 7 bits of the
+ // output must be clear.
+ computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
+ Depth + 1);
+ unsigned KnownZeroHigh = Known2.countMinLeadingZeros();
+ unsigned KnownZeroLow = Known2.countMinTrailingZeros();
+ computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
+ Depth + 1);
+ KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros());
+ KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
+ Known.Zero.setLowBits(KnownZeroLow);
+ if (KnownZeroHigh > 1)
+ Known.Zero.setHighBits(KnownZeroHigh - 1);
+ break;
+ }
+ case TargetOpcode::G_AND: {
+ // If either the LHS or the RHS are Zero, the result is zero.
+ computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
+ Depth + 1);
+ computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
+ Depth + 1);
+
+ // Output known-1 bits are only known if set in both the LHS & RHS.
+ Known.One &= Known2.One;
+ // Output known-0 are known to be clear if zero in either the LHS | RHS.
+ Known.Zero |= Known2.Zero;
+ break;
+ }
+ case TargetOpcode::G_OR: {
+ // If either the LHS or the RHS are Zero, the result is zero.
+ computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
+ Depth + 1);
+ computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
+ Depth + 1);
+
+ // Output known-0 bits are only known if clear in both the LHS & RHS.
+ Known.Zero &= Known2.Zero;
+ // Output known-1 are known to be set if set in either the LHS | RHS.
+ Known.One |= Known2.One;
+ break;
+ }
+ case TargetOpcode::G_MUL: {
+ computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
+ Depth + 1);
+ computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
+ Depth + 1);
+ // If low bits are zero in either operand, output low known-0 bits.
+ // Also compute a conservative estimate for high known-0 bits.
+ // More trickiness is possible, but this is sufficient for the
+ // interesting case of alignment computation.
+ unsigned TrailZ =
+ Known.countMinTrailingZeros() + Known2.countMinTrailingZeros();
+ unsigned LeadZ =
+ std::max(Known.countMinLeadingZeros() + Known2.countMinLeadingZeros(),
+ BitWidth) -
+ BitWidth;
+
+ Known.resetAll();
+ Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
+ Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
+ break;
+ }
+ case TargetOpcode::G_SELECT: {
+ computeKnownBitsImpl(MI.getOperand(3).getReg(), Known, DemandedElts,
+ Depth + 1);
+ // If we don't know any bits, early out.
+ if (Known.isUnknown())
+ break;
+ computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
+ Depth + 1);
+ // Only known if known in both the LHS and RHS.
+ Known.One &= Known2.One;
+ Known.Zero &= Known2.Zero;
+ break;
+ }
+ case TargetOpcode::G_FCMP:
+ case TargetOpcode::G_ICMP: {
+ if (TL.getBooleanContents(DstTy.isVector(),
+ Opcode == TargetOpcode::G_FCMP) ==
+ TargetLowering::ZeroOrOneBooleanContent &&
+ BitWidth > 1)
+ Known.Zero.setBitsFrom(1);
+ break;
+ }
+ case TargetOpcode::G_SEXT: {
+ computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
+ Depth + 1);
+ // If the sign bit is known to be zero or one, then sext will extend
+ // it to the top bits, else it will just zext.
+ Known = Known.sext(BitWidth);
+ break;
+ }
+ case TargetOpcode::G_ANYEXT: {
+ computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
+ Depth + 1);
+ Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
+ break;
+ }
+ case TargetOpcode::G_LOAD: {
+ if (MI.hasOneMemOperand()) {
+ const MachineMemOperand *MMO = *MI.memoperands_begin();
+ if (const MDNode *Ranges = MMO->getRanges()) {
+ computeKnownBitsFromRangeMetadata(*Ranges, Known);
+ }
+ }
+ break;
+ }
+ case TargetOpcode::G_ZEXTLOAD: {
+ // Everything above the retrieved bits is zero
+ if (MI.hasOneMemOperand())
+ Known.Zero.setBitsFrom((*MI.memoperands_begin())->getSizeInBits());
+ break;
+ }
+ case TargetOpcode::G_ASHR:
+ case TargetOpcode::G_LSHR:
+ case TargetOpcode::G_SHL: {
+ KnownBits RHSKnown;
+ computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts,
+ Depth + 1);
+ if (!RHSKnown.isConstant()) {
+ LLVM_DEBUG(
+ MachineInstr *RHSMI = MRI.getVRegDef(MI.getOperand(2).getReg());
+ dbgs() << '[' << Depth << "] Shift not known constant: " << *RHSMI);
+ break;
+ }
+ uint64_t Shift = RHSKnown.getConstant().getZExtValue();
+ LLVM_DEBUG(dbgs() << '[' << Depth << "] Shift is " << Shift << '\n');
+
+ computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
+ Depth + 1);
+
+ switch (Opcode) {
+ case TargetOpcode::G_ASHR:
+ Known.Zero = Known.Zero.ashr(Shift);
+ Known.One = Known.One.ashr(Shift);
+ break;
+ case TargetOpcode::G_LSHR:
+ Known.Zero = Known.Zero.lshr(Shift);
+ Known.One = Known.One.lshr(Shift);
+ Known.Zero.setBitsFrom(Known.Zero.getBitWidth() - Shift);
+ break;
+ case TargetOpcode::G_SHL:
+ Known.Zero = Known.Zero.shl(Shift);
+ Known.One = Known.One.shl(Shift);
+ Known.Zero.setBits(0, Shift);
+ break;
+ }
+ break;
+ }
+ case TargetOpcode::G_INTTOPTR:
+ case TargetOpcode::G_PTRTOINT:
+ // Fall through and handle them the same as zext/trunc.
+ LLVM_FALLTHROUGH;
+ case TargetOpcode::G_ZEXT:
+ case TargetOpcode::G_TRUNC: {
+ Register SrcReg = MI.getOperand(1).getReg();
+ LLT SrcTy = MRI.getType(SrcReg);
+ unsigned SrcBitWidth = SrcTy.isPointer()
+ ? DL.getIndexSizeInBits(SrcTy.getAddressSpace())
+ : SrcTy.getSizeInBits();
+ assert(SrcBitWidth && "SrcBitWidth can't be zero");
+ Known = Known.zextOrTrunc(SrcBitWidth, true);
+ computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1);
+ Known = Known.zextOrTrunc(BitWidth, true);
+ if (BitWidth > SrcBitWidth)
+ Known.Zero.setBitsFrom(SrcBitWidth);
+ break;
+ }
+ }
+
+ assert(!Known.hasConflict() && "Bits known to be one AND zero?");
+ LLVM_DEBUG(dbgs() << "[" << Depth << "] Compute known bits: " << MI << "["
+ << Depth << "] Computed for: " << MI << "[" << Depth
+ << "] Known: 0x"
+ << (Known.Zero | Known.One).toString(16, false) << "\n"
+ << "[" << Depth << "] Zero: 0x"
+ << Known.Zero.toString(16, false) << "\n"
+ << "[" << Depth << "] One: 0x"
+ << Known.One.toString(16, false) << "\n");
+}
+
+void GISelKnownBitsAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+bool GISelKnownBitsAnalysis::runOnMachineFunction(MachineFunction &MF) {
+ return false;
+}
diff --git a/llvm/lib/CodeGen/GlobalISel/GlobalISel.cpp b/llvm/lib/CodeGen/GlobalISel/GlobalISel.cpp
new file mode 100644
index 000000000000..e0391e6f6467
--- /dev/null
+++ b/llvm/lib/CodeGen/GlobalISel/GlobalISel.cpp
@@ -0,0 +1,24 @@
+//===-- llvm/CodeGen/GlobalISel/GlobalIsel.cpp --- GlobalISel ----*- C++ -*-==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \file
+// This file implements the common initialization routines for the
+// GlobalISel library.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/InitializePasses.h"
+#include "llvm/PassRegistry.h"
+
+using namespace llvm;
+
+void llvm::initializeGlobalISel(PassRegistry &Registry) {
+ initializeIRTranslatorPass(Registry);
+ initializeLegalizerPass(Registry);
+ initializeLocalizerPass(Registry);
+ initializeRegBankSelectPass(Registry);
+ initializeInstructionSelectPass(Registry);
+}
diff --git a/llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp b/llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp
new file mode 100644
index 000000000000..45cef4aca888
--- /dev/null
+++ b/llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp
@@ -0,0 +1,2400 @@
+//===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file implements the IRTranslator class.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/ScopeExit.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Analysis/BranchProbabilityInfo.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/CodeGen/Analysis.h"
+#include "llvm/CodeGen/FunctionLoweringInfo.h"
+#include "llvm/CodeGen/GlobalISel/CallLowering.h"
+#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
+#include "llvm/CodeGen/LowLevelType.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/StackProtector.h"
+#include "llvm/CodeGen/TargetFrameLowering.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CodeGen.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/LowLevelTypeImpl.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetIntrinsicInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <string>
+#include <utility>
+#include <vector>
+
+#define DEBUG_TYPE "irtranslator"
+
+using namespace llvm;
+
+static cl::opt<bool>
+ EnableCSEInIRTranslator("enable-cse-in-irtranslator",
+ cl::desc("Should enable CSE in irtranslator"),
+ cl::Optional, cl::init(false));
+char IRTranslator::ID = 0;
+
+INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
+ false, false)
+INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
+INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
+INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
+ false, false)
+
+static void reportTranslationError(MachineFunction &MF,
+ const TargetPassConfig &TPC,
+ OptimizationRemarkEmitter &ORE,
+ OptimizationRemarkMissed &R) {
+ MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
+
+ // Print the function name explicitly if we don't have a debug location (which
+ // makes the diagnostic less useful) or if we're going to emit a raw error.
+ if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
+ R << (" (in function: " + MF.getName() + ")").str();
+
+ if (TPC.isGlobalISelAbortEnabled())
+ report_fatal_error(R.getMsg());
+ else
+ ORE.emit(R);
+}
+
+IRTranslator::IRTranslator() : MachineFunctionPass(ID) { }
+
+#ifndef NDEBUG
+namespace {
+/// Verify that every instruction created has the same DILocation as the
+/// instruction being translated.
+class DILocationVerifier : public GISelChangeObserver {
+ const Instruction *CurrInst = nullptr;
+
+public:
+ DILocationVerifier() = default;
+ ~DILocationVerifier() = default;
+
+ const Instruction *getCurrentInst() const { return CurrInst; }
+ void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
+
+ void erasingInstr(MachineInstr &MI) override {}
+ void changingInstr(MachineInstr &MI) override {}
+ void changedInstr(MachineInstr &MI) override {}
+
+ void createdInstr(MachineInstr &MI) override {
+ assert(getCurrentInst() && "Inserted instruction without a current MI");
+
+ // Only print the check message if we're actually checking it.
+#ifndef NDEBUG
+ LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
+ << " was copied to " << MI);
+#endif
+ // We allow insts in the entry block to have a debug loc line of 0 because
+ // they could have originated from constants, and we don't want a jumpy
+ // debug experience.
+ assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
+ MI.getDebugLoc().getLine() == 0) &&
+ "Line info was not transferred to all instructions");
+ }
+};
+} // namespace
+#endif // ifndef NDEBUG
+
+
+void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<StackProtector>();
+ AU.addRequired<TargetPassConfig>();
+ AU.addRequired<GISelCSEAnalysisWrapperPass>();
+ getSelectionDAGFallbackAnalysisUsage(AU);
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+IRTranslator::ValueToVRegInfo::VRegListT &
+IRTranslator::allocateVRegs(const Value &Val) {
+ assert(!VMap.contains(Val) && "Value already allocated in VMap");
+ auto *Regs = VMap.getVRegs(Val);
+ auto *Offsets = VMap.getOffsets(Val);
+ SmallVector<LLT, 4> SplitTys;
+ computeValueLLTs(*DL, *Val.getType(), SplitTys,
+ Offsets->empty() ? Offsets : nullptr);
+ for (unsigned i = 0; i < SplitTys.size(); ++i)
+ Regs->push_back(0);
+ return *Regs;
+}
+
+ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
+ auto VRegsIt = VMap.findVRegs(Val);
+ if (VRegsIt != VMap.vregs_end())
+ return *VRegsIt->second;
+
+ if (Val.getType()->isVoidTy())
+ return *VMap.getVRegs(Val);
+
+ // Create entry for this type.
+ auto *VRegs = VMap.getVRegs(Val);
+ auto *Offsets = VMap.getOffsets(Val);
+
+ assert(Val.getType()->isSized() &&
+ "Don't know how to create an empty vreg");
+
+ SmallVector<LLT, 4> SplitTys;
+ computeValueLLTs(*DL, *Val.getType(), SplitTys,
+ Offsets->empty() ? Offsets : nullptr);
+
+ if (!isa<Constant>(Val)) {
+ for (auto Ty : SplitTys)
+ VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
+ return *VRegs;
+ }
+
+ if (Val.getType()->isAggregateType()) {
+ // UndefValue, ConstantAggregateZero
+ auto &C = cast<Constant>(Val);
+ unsigned Idx = 0;
+ while (auto Elt = C.getAggregateElement(Idx++)) {
+ auto EltRegs = getOrCreateVRegs(*Elt);
+ llvm::copy(EltRegs, std::back_inserter(*VRegs));
+ }
+ } else {
+ assert(SplitTys.size() == 1 && "unexpectedly split LLT");
+ VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
+ bool Success = translate(cast<Constant>(Val), VRegs->front());
+ if (!Success) {
+ OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
+ MF->getFunction().getSubprogram(),
+ &MF->getFunction().getEntryBlock());
+ R << "unable to translate constant: " << ore::NV("Type", Val.getType());
+ reportTranslationError(*MF, *TPC, *ORE, R);
+ return *VRegs;
+ }
+ }
+
+ return *VRegs;
+}
+
+int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
+ if (FrameIndices.find(&AI) != FrameIndices.end())
+ return FrameIndices[&AI];
+
+ unsigned ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
+ unsigned Size =
+ ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
+
+ // Always allocate at least one byte.
+ Size = std::max(Size, 1u);
+
+ unsigned Alignment = AI.getAlignment();
+ if (!Alignment)
+ Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
+
+ int &FI = FrameIndices[&AI];
+ FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI);
+ return FI;
+}
+
+unsigned IRTranslator::getMemOpAlignment(const Instruction &I) {
+ unsigned Alignment = 0;
+ Type *ValTy = nullptr;
+ if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
+ Alignment = SI->getAlignment();
+ ValTy = SI->getValueOperand()->getType();
+ } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
+ Alignment = LI->getAlignment();
+ ValTy = LI->getType();
+ } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
+ // TODO(PR27168): This instruction has no alignment attribute, but unlike
+ // the default alignment for load/store, the default here is to assume
+ // it has NATURAL alignment, not DataLayout-specified alignment.
+ const DataLayout &DL = AI->getModule()->getDataLayout();
+ Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType());
+ ValTy = AI->getCompareOperand()->getType();
+ } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
+ // TODO(PR27168): This instruction has no alignment attribute, but unlike
+ // the default alignment for load/store, the default here is to assume
+ // it has NATURAL alignment, not DataLayout-specified alignment.
+ const DataLayout &DL = AI->getModule()->getDataLayout();
+ Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType());
+ ValTy = AI->getType();
+ } else {
+ OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
+ R << "unable to translate memop: " << ore::NV("Opcode", &I);
+ reportTranslationError(*MF, *TPC, *ORE, R);
+ return 1;
+ }
+
+ return Alignment ? Alignment : DL->getABITypeAlignment(ValTy);
+}
+
+MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
+ MachineBasicBlock *&MBB = BBToMBB[&BB];
+ assert(MBB && "BasicBlock was not encountered before");
+ return *MBB;
+}
+
+void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
+ assert(NewPred && "new predecessor must be a real MachineBasicBlock");
+ MachinePreds[Edge].push_back(NewPred);
+}
+
+bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ // Get or create a virtual register for each value.
+ // Unless the value is a Constant => loadimm cst?
+ // or inline constant each time?
+ // Creation of a virtual register needs to have a size.
+ Register Op0 = getOrCreateVReg(*U.getOperand(0));
+ Register Op1 = getOrCreateVReg(*U.getOperand(1));
+ Register Res = getOrCreateVReg(U);
+ uint16_t Flags = 0;
+ if (isa<Instruction>(U)) {
+ const Instruction &I = cast<Instruction>(U);
+ Flags = MachineInstr::copyFlagsFromInstruction(I);
+ }
+
+ MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
+ return true;
+}
+
+bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) {
+ // -0.0 - X --> G_FNEG
+ if (isa<Constant>(U.getOperand(0)) &&
+ U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) {
+ Register Op1 = getOrCreateVReg(*U.getOperand(1));
+ Register Res = getOrCreateVReg(U);
+ uint16_t Flags = 0;
+ if (isa<Instruction>(U)) {
+ const Instruction &I = cast<Instruction>(U);
+ Flags = MachineInstr::copyFlagsFromInstruction(I);
+ }
+ // Negate the last operand of the FSUB
+ MIRBuilder.buildInstr(TargetOpcode::G_FNEG, {Res}, {Op1}, Flags);
+ return true;
+ }
+ return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder);
+}
+
+bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
+ Register Op0 = getOrCreateVReg(*U.getOperand(0));
+ Register Res = getOrCreateVReg(U);
+ uint16_t Flags = 0;
+ if (isa<Instruction>(U)) {
+ const Instruction &I = cast<Instruction>(U);
+ Flags = MachineInstr::copyFlagsFromInstruction(I);
+ }
+ MIRBuilder.buildInstr(TargetOpcode::G_FNEG, {Res}, {Op0}, Flags);
+ return true;
+}
+
+bool IRTranslator::translateCompare(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ auto *CI = dyn_cast<CmpInst>(&U);
+ Register Op0 = getOrCreateVReg(*U.getOperand(0));
+ Register Op1 = getOrCreateVReg(*U.getOperand(1));
+ Register Res = getOrCreateVReg(U);
+ CmpInst::Predicate Pred =
+ CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
+ cast<ConstantExpr>(U).getPredicate());
+ if (CmpInst::isIntPredicate(Pred))
+ MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
+ else if (Pred == CmpInst::FCMP_FALSE)
+ MIRBuilder.buildCopy(
+ Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
+ else if (Pred == CmpInst::FCMP_TRUE)
+ MIRBuilder.buildCopy(
+ Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
+ else {
+ assert(CI && "Instruction should be CmpInst");
+ MIRBuilder.buildInstr(TargetOpcode::G_FCMP, {Res}, {Pred, Op0, Op1},
+ MachineInstr::copyFlagsFromInstruction(*CI));
+ }
+
+ return true;
+}
+
+bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
+ const ReturnInst &RI = cast<ReturnInst>(U);
+ const Value *Ret = RI.getReturnValue();
+ if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
+ Ret = nullptr;
+
+ ArrayRef<Register> VRegs;
+ if (Ret)
+ VRegs = getOrCreateVRegs(*Ret);
+
+ Register SwiftErrorVReg = 0;
+ if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
+ SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
+ &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
+ }
+
+ // The target may mess up with the insertion point, but
+ // this is not important as a return is the last instruction
+ // of the block anyway.
+ return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg);
+}
+
+bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
+ const BranchInst &BrInst = cast<BranchInst>(U);
+ unsigned Succ = 0;
+ if (!BrInst.isUnconditional()) {
+ // We want a G_BRCOND to the true BB followed by an unconditional branch.
+ Register Tst = getOrCreateVReg(*BrInst.getCondition());
+ const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++));
+ MachineBasicBlock &TrueBB = getMBB(TrueTgt);
+ MIRBuilder.buildBrCond(Tst, TrueBB);
+ }
+
+ const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ));
+ MachineBasicBlock &TgtBB = getMBB(BrTgt);
+ MachineBasicBlock &CurBB = MIRBuilder.getMBB();
+
+ // If the unconditional target is the layout successor, fallthrough.
+ if (!CurBB.isLayoutSuccessor(&TgtBB))
+ MIRBuilder.buildBr(TgtBB);
+
+ // Link successors.
+ for (const BasicBlock *Succ : successors(&BrInst))
+ CurBB.addSuccessor(&getMBB(*Succ));
+ return true;
+}
+
+void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
+ MachineBasicBlock *Dst,
+ BranchProbability Prob) {
+ if (!FuncInfo.BPI) {
+ Src->addSuccessorWithoutProb(Dst);
+ return;
+ }
+ if (Prob.isUnknown())
+ Prob = getEdgeProbability(Src, Dst);
+ Src->addSuccessor(Dst, Prob);
+}
+
+BranchProbability
+IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
+ const MachineBasicBlock *Dst) const {
+ const BasicBlock *SrcBB = Src->getBasicBlock();
+ const BasicBlock *DstBB = Dst->getBasicBlock();
+ if (!FuncInfo.BPI) {
+ // If BPI is not available, set the default probability as 1 / N, where N is
+ // the number of successors.
+ auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
+ return BranchProbability(1, SuccSize);
+ }
+ return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
+}
+
+bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
+ using namespace SwitchCG;
+ // Extract cases from the switch.
+ const SwitchInst &SI = cast<SwitchInst>(U);
+ BranchProbabilityInfo *BPI = FuncInfo.BPI;
+ CaseClusterVector Clusters;
+ Clusters.reserve(SI.getNumCases());
+ for (auto &I : SI.cases()) {
+ MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
+ assert(Succ && "Could not find successor mbb in mapping");
+ const ConstantInt *CaseVal = I.getCaseValue();
+ BranchProbability Prob =
+ BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
+ : BranchProbability(1, SI.getNumCases() + 1);
+ Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
+ }
+
+ MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
+
+ // Cluster adjacent cases with the same destination. We do this at all
+ // optimization levels because it's cheap to do and will make codegen faster
+ // if there are many clusters.
+ sortAndRangeify(Clusters);
+
+ MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
+
+ // If there is only the default destination, jump there directly.
+ if (Clusters.empty()) {
+ SwitchMBB->addSuccessor(DefaultMBB);
+ if (DefaultMBB != SwitchMBB->getNextNode())
+ MIB.buildBr(*DefaultMBB);
+ return true;
+ }
+
+ SL->findJumpTables(Clusters, &SI, DefaultMBB);
+
+ LLVM_DEBUG({
+ dbgs() << "Case clusters: ";
+ for (const CaseCluster &C : Clusters) {
+ if (C.Kind == CC_JumpTable)
+ dbgs() << "JT:";
+ if (C.Kind == CC_BitTests)
+ dbgs() << "BT:";
+
+ C.Low->getValue().print(dbgs(), true);
+ if (C.Low != C.High) {
+ dbgs() << '-';
+ C.High->getValue().print(dbgs(), true);
+ }
+ dbgs() << ' ';
+ }
+ dbgs() << '\n';
+ });
+
+ assert(!Clusters.empty());
+ SwitchWorkList WorkList;
+ CaseClusterIt First = Clusters.begin();
+ CaseClusterIt Last = Clusters.end() - 1;
+ auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
+ WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
+
+ // FIXME: At the moment we don't do any splitting optimizations here like
+ // SelectionDAG does, so this worklist only has one entry.
+ while (!WorkList.empty()) {
+ SwitchWorkListItem W = WorkList.back();
+ WorkList.pop_back();
+ if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
+ return false;
+ }
+ return true;
+}
+
+void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
+ MachineBasicBlock *MBB) {
+ // Emit the code for the jump table
+ assert(JT.Reg != -1U && "Should lower JT Header first!");
+ MachineIRBuilder MIB(*MBB->getParent());
+ MIB.setMBB(*MBB);
+ MIB.setDebugLoc(CurBuilder->getDebugLoc());
+
+ Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
+ const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
+
+ auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
+ MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
+}
+
+bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
+ SwitchCG::JumpTableHeader &JTH,
+ MachineBasicBlock *HeaderBB) {
+ MachineIRBuilder MIB(*HeaderBB->getParent());
+ MIB.setMBB(*HeaderBB);
+ MIB.setDebugLoc(CurBuilder->getDebugLoc());
+
+ const Value &SValue = *JTH.SValue;
+ // Subtract the lowest switch case value from the value being switched on.
+ const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
+ Register SwitchOpReg = getOrCreateVReg(SValue);
+ auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
+ auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
+
+ // This value may be smaller or larger than the target's pointer type, and
+ // therefore require extension or truncating.
+ Type *PtrIRTy = SValue.getType()->getPointerTo();
+ const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
+ Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
+
+ JT.Reg = Sub.getReg(0);
+
+ if (JTH.OmitRangeCheck) {
+ if (JT.MBB != HeaderBB->getNextNode())
+ MIB.buildBr(*JT.MBB);
+ return true;
+ }
+
+ // Emit the range check for the jump table, and branch to the default block
+ // for the switch statement if the value being switched on exceeds the
+ // largest case in the switch.
+ auto Cst = getOrCreateVReg(
+ *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
+ Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
+ auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
+
+ auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
+
+ // Avoid emitting unnecessary branches to the next block.
+ if (JT.MBB != HeaderBB->getNextNode())
+ BrCond = MIB.buildBr(*JT.MBB);
+ return true;
+}
+
+void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
+ MachineBasicBlock *SwitchBB,
+ MachineIRBuilder &MIB) {
+ Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
+ Register Cond;
+ DebugLoc OldDbgLoc = MIB.getDebugLoc();
+ MIB.setDebugLoc(CB.DbgLoc);
+ MIB.setMBB(*CB.ThisBB);
+
+ if (CB.PredInfo.NoCmp) {
+ // Branch or fall through to TrueBB.
+ addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
+ addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
+ CB.ThisBB);
+ CB.ThisBB->normalizeSuccProbs();
+ if (CB.TrueBB != CB.ThisBB->getNextNode())
+ MIB.buildBr(*CB.TrueBB);
+ MIB.setDebugLoc(OldDbgLoc);
+ return;
+ }
+
+ const LLT i1Ty = LLT::scalar(1);
+ // Build the compare.
+ if (!CB.CmpMHS) {
+ Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
+ Cond = MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
+ } else {
+ assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
+ "Can only handle SLE ranges");
+
+ const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
+ const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
+
+ Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
+ if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
+ Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
+ Cond =
+ MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
+ } else {
+ const LLT &CmpTy = MRI->getType(CmpOpReg);
+ auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
+ auto Diff = MIB.buildConstant(CmpTy, High - Low);
+ Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
+ }
+ }
+
+ // Update successor info
+ addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
+
+ addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
+ CB.ThisBB);
+
+ // TrueBB and FalseBB are always different unless the incoming IR is
+ // degenerate. This only happens when running llc on weird IR.
+ if (CB.TrueBB != CB.FalseBB)
+ addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
+ CB.ThisBB->normalizeSuccProbs();
+
+ // if (SwitchBB->getBasicBlock() != CB.FalseBB->getBasicBlock())
+ addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
+ CB.ThisBB);
+
+ // If the lhs block is the next block, invert the condition so that we can
+ // fall through to the lhs instead of the rhs block.
+ if (CB.TrueBB == CB.ThisBB->getNextNode()) {
+ std::swap(CB.TrueBB, CB.FalseBB);
+ auto True = MIB.buildConstant(i1Ty, 1);
+ Cond = MIB.buildInstr(TargetOpcode::G_XOR, {i1Ty}, {Cond, True}, None)
+ .getReg(0);
+ }
+
+ MIB.buildBrCond(Cond, *CB.TrueBB);
+ MIB.buildBr(*CB.FalseBB);
+ MIB.setDebugLoc(OldDbgLoc);
+}
+
+bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
+ MachineBasicBlock *SwitchMBB,
+ MachineBasicBlock *CurMBB,
+ MachineBasicBlock *DefaultMBB,
+ MachineIRBuilder &MIB,
+ MachineFunction::iterator BBI,
+ BranchProbability UnhandledProbs,
+ SwitchCG::CaseClusterIt I,
+ MachineBasicBlock *Fallthrough,
+ bool FallthroughUnreachable) {
+ using namespace SwitchCG;
+ MachineFunction *CurMF = SwitchMBB->getParent();
+ // FIXME: Optimize away range check based on pivot comparisons.
+ JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
+ SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
+ BranchProbability DefaultProb = W.DefaultProb;
+
+ // The jump block hasn't been inserted yet; insert it here.
+ MachineBasicBlock *JumpMBB = JT->MBB;
+ CurMF->insert(BBI, JumpMBB);
+
+ // Since the jump table block is separate from the switch block, we need
+ // to keep track of it as a machine predecessor to the default block,
+ // otherwise we lose the phi edges.
+ addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
+ CurMBB);
+ addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
+ JumpMBB);
+
+ auto JumpProb = I->Prob;
+ auto FallthroughProb = UnhandledProbs;
+
+ // If the default statement is a target of the jump table, we evenly
+ // distribute the default probability to successors of CurMBB. Also
+ // update the probability on the edge from JumpMBB to Fallthrough.
+ for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
+ SE = JumpMBB->succ_end();
+ SI != SE; ++SI) {
+ if (*SI == DefaultMBB) {
+ JumpProb += DefaultProb / 2;
+ FallthroughProb -= DefaultProb / 2;
+ JumpMBB->setSuccProbability(SI, DefaultProb / 2);
+ JumpMBB->normalizeSuccProbs();
+ } else {
+ // Also record edges from the jump table block to it's successors.
+ addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
+ JumpMBB);
+ }
+ }
+
+ // Skip the range check if the fallthrough block is unreachable.
+ if (FallthroughUnreachable)
+ JTH->OmitRangeCheck = true;
+
+ if (!JTH->OmitRangeCheck)
+ addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
+ addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
+ CurMBB->normalizeSuccProbs();
+
+ // The jump table header will be inserted in our current block, do the
+ // range check, and fall through to our fallthrough block.
+ JTH->HeaderBB = CurMBB;
+ JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
+
+ // If we're in the right place, emit the jump table header right now.
+ if (CurMBB == SwitchMBB) {
+ if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
+ return false;
+ JTH->Emitted = true;
+ }
+ return true;
+}
+bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
+ Value *Cond,
+ MachineBasicBlock *Fallthrough,
+ bool FallthroughUnreachable,
+ BranchProbability UnhandledProbs,
+ MachineBasicBlock *CurMBB,
+ MachineIRBuilder &MIB,
+ MachineBasicBlock *SwitchMBB) {
+ using namespace SwitchCG;
+ const Value *RHS, *LHS, *MHS;
+ CmpInst::Predicate Pred;
+ if (I->Low == I->High) {
+ // Check Cond == I->Low.
+ Pred = CmpInst::ICMP_EQ;
+ LHS = Cond;
+ RHS = I->Low;
+ MHS = nullptr;
+ } else {
+ // Check I->Low <= Cond <= I->High.
+ Pred = CmpInst::ICMP_SLE;
+ LHS = I->Low;
+ MHS = Cond;
+ RHS = I->High;
+ }
+
+ // If Fallthrough is unreachable, fold away the comparison.
+ // The false probability is the sum of all unhandled cases.
+ CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
+ CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
+
+ emitSwitchCase(CB, SwitchMBB, MIB);
+ return true;
+}
+
+bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
+ Value *Cond,
+ MachineBasicBlock *SwitchMBB,
+ MachineBasicBlock *DefaultMBB,
+ MachineIRBuilder &MIB) {
+ using namespace SwitchCG;
+ MachineFunction *CurMF = FuncInfo.MF;
+ MachineBasicBlock *NextMBB = nullptr;
+ MachineFunction::iterator BBI(W.MBB);
+ if (++BBI != FuncInfo.MF->end())
+ NextMBB = &*BBI;
+
+ if (EnableOpts) {
+ // Here, we order cases by probability so the most likely case will be
+ // checked first. However, two clusters can have the same probability in
+ // which case their relative ordering is non-deterministic. So we use Low
+ // as a tie-breaker as clusters are guaranteed to never overlap.
+ llvm::sort(W.FirstCluster, W.LastCluster + 1,
+ [](const CaseCluster &a, const CaseCluster &b) {
+ return a.Prob != b.Prob
+ ? a.Prob > b.Prob
+ : a.Low->getValue().slt(b.Low->getValue());
+ });
+
+ // Rearrange the case blocks so that the last one falls through if possible
+ // without changing the order of probabilities.
+ for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
+ --I;
+ if (I->Prob > W.LastCluster->Prob)
+ break;
+ if (I->Kind == CC_Range && I->MBB == NextMBB) {
+ std::swap(*I, *W.LastCluster);
+ break;
+ }
+ }
+ }
+
+ // Compute total probability.
+ BranchProbability DefaultProb = W.DefaultProb;
+ BranchProbability UnhandledProbs = DefaultProb;
+ for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
+ UnhandledProbs += I->Prob;
+
+ MachineBasicBlock *CurMBB = W.MBB;
+ for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
+ bool FallthroughUnreachable = false;
+ MachineBasicBlock *Fallthrough;
+ if (I == W.LastCluster) {
+ // For the last cluster, fall through to the default destination.
+ Fallthrough = DefaultMBB;
+ FallthroughUnreachable = isa<UnreachableInst>(
+ DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
+ } else {
+ Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
+ CurMF->insert(BBI, Fallthrough);
+ }
+ UnhandledProbs -= I->Prob;
+
+ switch (I->Kind) {
+ case CC_BitTests: {
+ LLVM_DEBUG(dbgs() << "Switch to bit test optimization unimplemented");
+ return false; // Bit tests currently unimplemented.
+ }
+ case CC_JumpTable: {
+ if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
+ UnhandledProbs, I, Fallthrough,
+ FallthroughUnreachable)) {
+ LLVM_DEBUG(dbgs() << "Failed to lower jump table");
+ return false;
+ }
+ break;
+ }
+ case CC_Range: {
+ if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
+ FallthroughUnreachable, UnhandledProbs,
+ CurMBB, MIB, SwitchMBB)) {
+ LLVM_DEBUG(dbgs() << "Failed to lower switch range");
+ return false;
+ }
+ break;
+ }
+ }
+ CurMBB = Fallthrough;
+ }
+
+ return true;
+}
+
+bool IRTranslator::translateIndirectBr(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
+
+ const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
+ MIRBuilder.buildBrIndirect(Tgt);
+
+ // Link successors.
+ MachineBasicBlock &CurBB = MIRBuilder.getMBB();
+ for (const BasicBlock *Succ : successors(&BrInst))
+ CurBB.addSuccessor(&getMBB(*Succ));
+
+ return true;
+}
+
+static bool isSwiftError(const Value *V) {
+ if (auto Arg = dyn_cast<Argument>(V))
+ return Arg->hasSwiftErrorAttr();
+ if (auto AI = dyn_cast<AllocaInst>(V))
+ return AI->isSwiftError();
+ return false;
+}
+
+bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
+ const LoadInst &LI = cast<LoadInst>(U);
+
+ auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile
+ : MachineMemOperand::MONone;
+ Flags |= MachineMemOperand::MOLoad;
+
+ if (DL->getTypeStoreSize(LI.getType()) == 0)
+ return true;
+
+ ArrayRef<Register> Regs = getOrCreateVRegs(LI);
+ ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
+ Register Base = getOrCreateVReg(*LI.getPointerOperand());
+
+ Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType());
+ LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
+
+ if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) {
+ assert(Regs.size() == 1 && "swifterror should be single pointer");
+ Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(),
+ LI.getPointerOperand());
+ MIRBuilder.buildCopy(Regs[0], VReg);
+ return true;
+ }
+
+ const MDNode *Ranges =
+ Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
+ for (unsigned i = 0; i < Regs.size(); ++i) {
+ Register Addr;
+ MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8);
+
+ MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
+ unsigned BaseAlign = getMemOpAlignment(LI);
+ auto MMO = MF->getMachineMemOperand(
+ Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8,
+ MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), Ranges,
+ LI.getSyncScopeID(), LI.getOrdering());
+ MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
+ }
+
+ return true;
+}
+
+bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
+ const StoreInst &SI = cast<StoreInst>(U);
+ auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile
+ : MachineMemOperand::MONone;
+ Flags |= MachineMemOperand::MOStore;
+
+ if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
+ return true;
+
+ ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
+ ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
+ Register Base = getOrCreateVReg(*SI.getPointerOperand());
+
+ Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType());
+ LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
+
+ if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
+ assert(Vals.size() == 1 && "swifterror should be single pointer");
+
+ Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
+ SI.getPointerOperand());
+ MIRBuilder.buildCopy(VReg, Vals[0]);
+ return true;
+ }
+
+ for (unsigned i = 0; i < Vals.size(); ++i) {
+ Register Addr;
+ MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8);
+
+ MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
+ unsigned BaseAlign = getMemOpAlignment(SI);
+ auto MMO = MF->getMachineMemOperand(
+ Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8,
+ MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr,
+ SI.getSyncScopeID(), SI.getOrdering());
+ MIRBuilder.buildStore(Vals[i], Addr, *MMO);
+ }
+ return true;
+}
+
+static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
+ const Value *Src = U.getOperand(0);
+ Type *Int32Ty = Type::getInt32Ty(U.getContext());
+
+ // getIndexedOffsetInType is designed for GEPs, so the first index is the
+ // usual array element rather than looking into the actual aggregate.
+ SmallVector<Value *, 1> Indices;
+ Indices.push_back(ConstantInt::get(Int32Ty, 0));
+
+ if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
+ for (auto Idx : EVI->indices())
+ Indices.push_back(ConstantInt::get(Int32Ty, Idx));
+ } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
+ for (auto Idx : IVI->indices())
+ Indices.push_back(ConstantInt::get(Int32Ty, Idx));
+ } else {
+ for (unsigned i = 1; i < U.getNumOperands(); ++i)
+ Indices.push_back(U.getOperand(i));
+ }
+
+ return 8 * static_cast<uint64_t>(
+ DL.getIndexedOffsetInType(Src->getType(), Indices));
+}
+
+bool IRTranslator::translateExtractValue(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ const Value *Src = U.getOperand(0);
+ uint64_t Offset = getOffsetFromIndices(U, *DL);
+ ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
+ ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
+ unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
+ auto &DstRegs = allocateVRegs(U);
+
+ for (unsigned i = 0; i < DstRegs.size(); ++i)
+ DstRegs[i] = SrcRegs[Idx++];
+
+ return true;
+}
+
+bool IRTranslator::translateInsertValue(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ const Value *Src = U.getOperand(0);
+ uint64_t Offset = getOffsetFromIndices(U, *DL);
+ auto &DstRegs = allocateVRegs(U);
+ ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
+ ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
+ ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
+ auto InsertedIt = InsertedRegs.begin();
+
+ for (unsigned i = 0; i < DstRegs.size(); ++i) {
+ if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
+ DstRegs[i] = *InsertedIt++;
+ else
+ DstRegs[i] = SrcRegs[i];
+ }
+
+ return true;
+}
+
+bool IRTranslator::translateSelect(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ Register Tst = getOrCreateVReg(*U.getOperand(0));
+ ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
+ ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
+ ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
+
+ const SelectInst &SI = cast<SelectInst>(U);
+ uint16_t Flags = 0;
+ if (const CmpInst *Cmp = dyn_cast<CmpInst>(SI.getCondition()))
+ Flags = MachineInstr::copyFlagsFromInstruction(*Cmp);
+
+ for (unsigned i = 0; i < ResRegs.size(); ++i) {
+ MIRBuilder.buildInstr(TargetOpcode::G_SELECT, {ResRegs[i]},
+ {Tst, Op0Regs[i], Op1Regs[i]}, Flags);
+ }
+
+ return true;
+}
+
+bool IRTranslator::translateBitCast(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ // If we're bitcasting to the source type, we can reuse the source vreg.
+ if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
+ getLLTForType(*U.getType(), *DL)) {
+ Register SrcReg = getOrCreateVReg(*U.getOperand(0));
+ auto &Regs = *VMap.getVRegs(U);
+ // If we already assigned a vreg for this bitcast, we can't change that.
+ // Emit a copy to satisfy the users we already emitted.
+ if (!Regs.empty())
+ MIRBuilder.buildCopy(Regs[0], SrcReg);
+ else {
+ Regs.push_back(SrcReg);
+ VMap.getOffsets(U)->push_back(0);
+ }
+ return true;
+ }
+ return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
+}
+
+bool IRTranslator::translateCast(unsigned Opcode, const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ Register Op = getOrCreateVReg(*U.getOperand(0));
+ Register Res = getOrCreateVReg(U);
+ MIRBuilder.buildInstr(Opcode, {Res}, {Op});
+ return true;
+}
+
+bool IRTranslator::translateGetElementPtr(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ // FIXME: support vector GEPs.
+ if (U.getType()->isVectorTy())
+ return false;
+
+ Value &Op0 = *U.getOperand(0);
+ Register BaseReg = getOrCreateVReg(Op0);
+ Type *PtrIRTy = Op0.getType();
+ LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
+ Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
+ LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
+
+ int64_t Offset = 0;
+ for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
+ GTI != E; ++GTI) {
+ const Value *Idx = GTI.getOperand();
+ if (StructType *StTy = GTI.getStructTypeOrNull()) {
+ unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
+ Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
+ continue;
+ } else {
+ uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
+
+ // If this is a scalar constant or a splat vector of constants,
+ // handle it quickly.
+ if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
+ Offset += ElementSize * CI->getSExtValue();
+ continue;
+ }
+
+ if (Offset != 0) {
+ LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
+ auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
+ BaseReg =
+ MIRBuilder.buildGEP(PtrTy, BaseReg, OffsetMIB.getReg(0)).getReg(0);
+ Offset = 0;
+ }
+
+ Register IdxReg = getOrCreateVReg(*Idx);
+ if (MRI->getType(IdxReg) != OffsetTy)
+ IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
+
+ // N = N + Idx * ElementSize;
+ // Avoid doing it for ElementSize of 1.
+ Register GepOffsetReg;
+ if (ElementSize != 1) {
+ auto ElementSizeMIB = MIRBuilder.buildConstant(
+ getLLTForType(*OffsetIRTy, *DL), ElementSize);
+ GepOffsetReg =
+ MIRBuilder.buildMul(OffsetTy, ElementSizeMIB, IdxReg).getReg(0);
+ } else
+ GepOffsetReg = IdxReg;
+
+ BaseReg = MIRBuilder.buildGEP(PtrTy, BaseReg, GepOffsetReg).getReg(0);
+ }
+ }
+
+ if (Offset != 0) {
+ auto OffsetMIB =
+ MIRBuilder.buildConstant(getLLTForType(*OffsetIRTy, *DL), Offset);
+ MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0));
+ return true;
+ }
+
+ MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
+ return true;
+}
+
+bool IRTranslator::translateMemFunc(const CallInst &CI,
+ MachineIRBuilder &MIRBuilder,
+ Intrinsic::ID ID) {
+
+ // If the source is undef, then just emit a nop.
+ if (isa<UndefValue>(CI.getArgOperand(1)))
+ return true;
+
+ ArrayRef<Register> Res;
+ auto ICall = MIRBuilder.buildIntrinsic(ID, Res, true);
+ for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI)
+ ICall.addUse(getOrCreateVReg(**AI));
+
+ unsigned DstAlign = 0, SrcAlign = 0;
+ unsigned IsVol =
+ cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1))
+ ->getZExtValue();
+
+ if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
+ DstAlign = std::max<unsigned>(MCI->getDestAlignment(), 1);
+ SrcAlign = std::max<unsigned>(MCI->getSourceAlignment(), 1);
+ } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
+ DstAlign = std::max<unsigned>(MMI->getDestAlignment(), 1);
+ SrcAlign = std::max<unsigned>(MMI->getSourceAlignment(), 1);
+ } else {
+ auto *MSI = cast<MemSetInst>(&CI);
+ DstAlign = std::max<unsigned>(MSI->getDestAlignment(), 1);
+ }
+
+ // We need to propagate the tail call flag from the IR inst as an argument.
+ // Otherwise, we have to pessimize and assume later that we cannot tail call
+ // any memory intrinsics.
+ ICall.addImm(CI.isTailCall() ? 1 : 0);
+
+ // Create mem operands to store the alignment and volatile info.
+ auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
+ ICall.addMemOperand(MF->getMachineMemOperand(
+ MachinePointerInfo(CI.getArgOperand(0)),
+ MachineMemOperand::MOStore | VolFlag, 1, DstAlign));
+ if (ID != Intrinsic::memset)
+ ICall.addMemOperand(MF->getMachineMemOperand(
+ MachinePointerInfo(CI.getArgOperand(1)),
+ MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign));
+
+ return true;
+}
+
+void IRTranslator::getStackGuard(Register DstReg,
+ MachineIRBuilder &MIRBuilder) {
+ const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
+ MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
+ auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD);
+ MIB.addDef(DstReg);
+
+ auto &TLI = *MF->getSubtarget().getTargetLowering();
+ Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
+ if (!Global)
+ return;
+
+ MachinePointerInfo MPInfo(Global);
+ auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
+ MachineMemOperand::MODereferenceable;
+ MachineMemOperand *MemRef =
+ MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8,
+ DL->getPointerABIAlignment(0).value());
+ MIB.setMemRefs({MemRef});
+}
+
+bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
+ MachineIRBuilder &MIRBuilder) {
+ ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
+ MIRBuilder.buildInstr(Op)
+ .addDef(ResRegs[0])
+ .addDef(ResRegs[1])
+ .addUse(getOrCreateVReg(*CI.getOperand(0)))
+ .addUse(getOrCreateVReg(*CI.getOperand(1)));
+
+ return true;
+}
+
+unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
+ switch (ID) {
+ default:
+ break;
+ case Intrinsic::bswap:
+ return TargetOpcode::G_BSWAP;
+ case Intrinsic::bitreverse:
+ return TargetOpcode::G_BITREVERSE;
+ case Intrinsic::ceil:
+ return TargetOpcode::G_FCEIL;
+ case Intrinsic::cos:
+ return TargetOpcode::G_FCOS;
+ case Intrinsic::ctpop:
+ return TargetOpcode::G_CTPOP;
+ case Intrinsic::exp:
+ return TargetOpcode::G_FEXP;
+ case Intrinsic::exp2:
+ return TargetOpcode::G_FEXP2;
+ case Intrinsic::fabs:
+ return TargetOpcode::G_FABS;
+ case Intrinsic::copysign:
+ return TargetOpcode::G_FCOPYSIGN;
+ case Intrinsic::minnum:
+ return TargetOpcode::G_FMINNUM;
+ case Intrinsic::maxnum:
+ return TargetOpcode::G_FMAXNUM;
+ case Intrinsic::minimum:
+ return TargetOpcode::G_FMINIMUM;
+ case Intrinsic::maximum:
+ return TargetOpcode::G_FMAXIMUM;
+ case Intrinsic::canonicalize:
+ return TargetOpcode::G_FCANONICALIZE;
+ case Intrinsic::floor:
+ return TargetOpcode::G_FFLOOR;
+ case Intrinsic::fma:
+ return TargetOpcode::G_FMA;
+ case Intrinsic::log:
+ return TargetOpcode::G_FLOG;
+ case Intrinsic::log2:
+ return TargetOpcode::G_FLOG2;
+ case Intrinsic::log10:
+ return TargetOpcode::G_FLOG10;
+ case Intrinsic::nearbyint:
+ return TargetOpcode::G_FNEARBYINT;
+ case Intrinsic::pow:
+ return TargetOpcode::G_FPOW;
+ case Intrinsic::rint:
+ return TargetOpcode::G_FRINT;
+ case Intrinsic::round:
+ return TargetOpcode::G_INTRINSIC_ROUND;
+ case Intrinsic::sin:
+ return TargetOpcode::G_FSIN;
+ case Intrinsic::sqrt:
+ return TargetOpcode::G_FSQRT;
+ case Intrinsic::trunc:
+ return TargetOpcode::G_INTRINSIC_TRUNC;
+ }
+ return Intrinsic::not_intrinsic;
+}
+
+bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
+ Intrinsic::ID ID,
+ MachineIRBuilder &MIRBuilder) {
+
+ unsigned Op = getSimpleIntrinsicOpcode(ID);
+
+ // Is this a simple intrinsic?
+ if (Op == Intrinsic::not_intrinsic)
+ return false;
+
+ // Yes. Let's translate it.
+ SmallVector<llvm::SrcOp, 4> VRegs;
+ for (auto &Arg : CI.arg_operands())
+ VRegs.push_back(getOrCreateVReg(*Arg));
+
+ MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
+ MachineInstr::copyFlagsFromInstruction(CI));
+ return true;
+}
+
+bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
+ MachineIRBuilder &MIRBuilder) {
+
+ // If this is a simple intrinsic (that is, we just need to add a def of
+ // a vreg, and uses for each arg operand, then translate it.
+ if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
+ return true;
+
+ switch (ID) {
+ default:
+ break;
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end: {
+ // No stack colouring in O0, discard region information.
+ if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
+ return true;
+
+ unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
+ : TargetOpcode::LIFETIME_END;
+
+ // Get the underlying objects for the location passed on the lifetime
+ // marker.
+ SmallVector<const Value *, 4> Allocas;
+ GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL);
+
+ // Iterate over each underlying object, creating lifetime markers for each
+ // static alloca. Quit if we find a non-static alloca.
+ for (const Value *V : Allocas) {
+ const AllocaInst *AI = dyn_cast<AllocaInst>(V);
+ if (!AI)
+ continue;
+
+ if (!AI->isStaticAlloca())
+ return true;
+
+ MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
+ }
+ return true;
+ }
+ case Intrinsic::dbg_declare: {
+ const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
+ assert(DI.getVariable() && "Missing variable");
+
+ const Value *Address = DI.getAddress();
+ if (!Address || isa<UndefValue>(Address)) {
+ LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
+ return true;
+ }
+
+ assert(DI.getVariable()->isValidLocationForIntrinsic(
+ MIRBuilder.getDebugLoc()) &&
+ "Expected inlined-at fields to agree");
+ auto AI = dyn_cast<AllocaInst>(Address);
+ if (AI && AI->isStaticAlloca()) {
+ // Static allocas are tracked at the MF level, no need for DBG_VALUE
+ // instructions (in fact, they get ignored if they *do* exist).
+ MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
+ getOrCreateFrameIndex(*AI), DI.getDebugLoc());
+ } else {
+ // A dbg.declare describes the address of a source variable, so lower it
+ // into an indirect DBG_VALUE.
+ MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
+ DI.getVariable(), DI.getExpression());
+ }
+ return true;
+ }
+ case Intrinsic::dbg_label: {
+ const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
+ assert(DI.getLabel() && "Missing label");
+
+ assert(DI.getLabel()->isValidLocationForIntrinsic(
+ MIRBuilder.getDebugLoc()) &&
+ "Expected inlined-at fields to agree");
+
+ MIRBuilder.buildDbgLabel(DI.getLabel());
+ return true;
+ }
+ case Intrinsic::vaend:
+ // No target I know of cares about va_end. Certainly no in-tree target
+ // does. Simplest intrinsic ever!
+ return true;
+ case Intrinsic::vastart: {
+ auto &TLI = *MF->getSubtarget().getTargetLowering();
+ Value *Ptr = CI.getArgOperand(0);
+ unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
+
+ // FIXME: Get alignment
+ MIRBuilder.buildInstr(TargetOpcode::G_VASTART)
+ .addUse(getOrCreateVReg(*Ptr))
+ .addMemOperand(MF->getMachineMemOperand(
+ MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 1));
+ return true;
+ }
+ case Intrinsic::dbg_value: {
+ // This form of DBG_VALUE is target-independent.
+ const DbgValueInst &DI = cast<DbgValueInst>(CI);
+ const Value *V = DI.getValue();
+ assert(DI.getVariable()->isValidLocationForIntrinsic(
+ MIRBuilder.getDebugLoc()) &&
+ "Expected inlined-at fields to agree");
+ if (!V) {
+ // Currently the optimizer can produce this; insert an undef to
+ // help debugging. Probably the optimizer should not do this.
+ MIRBuilder.buildDirectDbgValue(0, DI.getVariable(), DI.getExpression());
+ } else if (const auto *CI = dyn_cast<Constant>(V)) {
+ MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
+ } else {
+ for (Register Reg : getOrCreateVRegs(*V)) {
+ // FIXME: This does not handle register-indirect values at offset 0. The
+ // direct/indirect thing shouldn't really be handled by something as
+ // implicit as reg+noreg vs reg+imm in the first place, but it seems
+ // pretty baked in right now.
+ MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
+ }
+ }
+ return true;
+ }
+ case Intrinsic::uadd_with_overflow:
+ return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
+ case Intrinsic::sadd_with_overflow:
+ return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
+ case Intrinsic::usub_with_overflow:
+ return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
+ case Intrinsic::ssub_with_overflow:
+ return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
+ case Intrinsic::umul_with_overflow:
+ return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
+ case Intrinsic::smul_with_overflow:
+ return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
+ case Intrinsic::fmuladd: {
+ const TargetMachine &TM = MF->getTarget();
+ const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
+ Register Dst = getOrCreateVReg(CI);
+ Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
+ Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
+ Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
+ if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
+ TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) {
+ // TODO: Revisit this to see if we should move this part of the
+ // lowering to the combiner.
+ MIRBuilder.buildInstr(TargetOpcode::G_FMA, {Dst}, {Op0, Op1, Op2},
+ MachineInstr::copyFlagsFromInstruction(CI));
+ } else {
+ LLT Ty = getLLTForType(*CI.getType(), *DL);
+ auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, {Ty}, {Op0, Op1},
+ MachineInstr::copyFlagsFromInstruction(CI));
+ MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Dst}, {FMul, Op2},
+ MachineInstr::copyFlagsFromInstruction(CI));
+ }
+ return true;
+ }
+ case Intrinsic::memcpy:
+ case Intrinsic::memmove:
+ case Intrinsic::memset:
+ return translateMemFunc(CI, MIRBuilder, ID);
+ case Intrinsic::eh_typeid_for: {
+ GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
+ Register Reg = getOrCreateVReg(CI);
+ unsigned TypeID = MF->getTypeIDFor(GV);
+ MIRBuilder.buildConstant(Reg, TypeID);
+ return true;
+ }
+ case Intrinsic::objectsize:
+ llvm_unreachable("llvm.objectsize.* should have been lowered already");
+
+ case Intrinsic::is_constant:
+ llvm_unreachable("llvm.is.constant.* should have been lowered already");
+
+ case Intrinsic::stackguard:
+ getStackGuard(getOrCreateVReg(CI), MIRBuilder);
+ return true;
+ case Intrinsic::stackprotector: {
+ LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
+ Register GuardVal = MRI->createGenericVirtualRegister(PtrTy);
+ getStackGuard(GuardVal, MIRBuilder);
+
+ AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
+ int FI = getOrCreateFrameIndex(*Slot);
+ MF->getFrameInfo().setStackProtectorIndex(FI);
+
+ MIRBuilder.buildStore(
+ GuardVal, getOrCreateVReg(*Slot),
+ *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
+ MachineMemOperand::MOStore |
+ MachineMemOperand::MOVolatile,
+ PtrTy.getSizeInBits() / 8, 8));
+ return true;
+ }
+ case Intrinsic::stacksave: {
+ // Save the stack pointer to the location provided by the intrinsic.
+ Register Reg = getOrCreateVReg(CI);
+ Register StackPtr = MF->getSubtarget()
+ .getTargetLowering()
+ ->getStackPointerRegisterToSaveRestore();
+
+ // If the target doesn't specify a stack pointer, then fall back.
+ if (!StackPtr)
+ return false;
+
+ MIRBuilder.buildCopy(Reg, StackPtr);
+ return true;
+ }
+ case Intrinsic::stackrestore: {
+ // Restore the stack pointer from the location provided by the intrinsic.
+ Register Reg = getOrCreateVReg(*CI.getArgOperand(0));
+ Register StackPtr = MF->getSubtarget()
+ .getTargetLowering()
+ ->getStackPointerRegisterToSaveRestore();
+
+ // If the target doesn't specify a stack pointer, then fall back.
+ if (!StackPtr)
+ return false;
+
+ MIRBuilder.buildCopy(StackPtr, Reg);
+ return true;
+ }
+ case Intrinsic::cttz:
+ case Intrinsic::ctlz: {
+ ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
+ bool isTrailing = ID == Intrinsic::cttz;
+ unsigned Opcode = isTrailing
+ ? Cst->isZero() ? TargetOpcode::G_CTTZ
+ : TargetOpcode::G_CTTZ_ZERO_UNDEF
+ : Cst->isZero() ? TargetOpcode::G_CTLZ
+ : TargetOpcode::G_CTLZ_ZERO_UNDEF;
+ MIRBuilder.buildInstr(Opcode)
+ .addDef(getOrCreateVReg(CI))
+ .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
+ return true;
+ }
+ case Intrinsic::invariant_start: {
+ LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
+ Register Undef = MRI->createGenericVirtualRegister(PtrTy);
+ MIRBuilder.buildUndef(Undef);
+ return true;
+ }
+ case Intrinsic::invariant_end:
+ return true;
+ case Intrinsic::assume:
+ case Intrinsic::var_annotation:
+ case Intrinsic::sideeffect:
+ // Discard annotate attributes, assumptions, and artificial side-effects.
+ return true;
+ }
+ return false;
+}
+
+bool IRTranslator::translateInlineAsm(const CallInst &CI,
+ MachineIRBuilder &MIRBuilder) {
+ const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue());
+ if (!IA.getConstraintString().empty())
+ return false;
+
+ unsigned ExtraInfo = 0;
+ if (IA.hasSideEffects())
+ ExtraInfo |= InlineAsm::Extra_HasSideEffects;
+ if (IA.getDialect() == InlineAsm::AD_Intel)
+ ExtraInfo |= InlineAsm::Extra_AsmDialect;
+
+ MIRBuilder.buildInstr(TargetOpcode::INLINEASM)
+ .addExternalSymbol(IA.getAsmString().c_str())
+ .addImm(ExtraInfo);
+
+ return true;
+}
+
+bool IRTranslator::translateCallSite(const ImmutableCallSite &CS,
+ MachineIRBuilder &MIRBuilder) {
+ const Instruction &I = *CS.getInstruction();
+ ArrayRef<Register> Res = getOrCreateVRegs(I);
+
+ SmallVector<ArrayRef<Register>, 8> Args;
+ Register SwiftInVReg = 0;
+ Register SwiftErrorVReg = 0;
+ for (auto &Arg : CS.args()) {
+ if (CLI->supportSwiftError() && isSwiftError(Arg)) {
+ assert(SwiftInVReg == 0 && "Expected only one swift error argument");
+ LLT Ty = getLLTForType(*Arg->getType(), *DL);
+ SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
+ MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
+ &I, &MIRBuilder.getMBB(), Arg));
+ Args.emplace_back(makeArrayRef(SwiftInVReg));
+ SwiftErrorVReg =
+ SwiftError.getOrCreateVRegDefAt(&I, &MIRBuilder.getMBB(), Arg);
+ continue;
+ }
+ Args.push_back(getOrCreateVRegs(*Arg));
+ }
+
+ // We don't set HasCalls on MFI here yet because call lowering may decide to
+ // optimize into tail calls. Instead, we defer that to selection where a final
+ // scan is done to check if any instructions are calls.
+ bool Success =
+ CLI->lowerCall(MIRBuilder, CS, Res, Args, SwiftErrorVReg,
+ [&]() { return getOrCreateVReg(*CS.getCalledValue()); });
+
+ // Check if we just inserted a tail call.
+ if (Success) {
+ assert(!HasTailCall && "Can't tail call return twice from block?");
+ const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
+ HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
+ }
+
+ return Success;
+}
+
+bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
+ const CallInst &CI = cast<CallInst>(U);
+ auto TII = MF->getTarget().getIntrinsicInfo();
+ const Function *F = CI.getCalledFunction();
+
+ // FIXME: support Windows dllimport function calls.
+ if (F && F->hasDLLImportStorageClass())
+ return false;
+
+ if (CI.isInlineAsm())
+ return translateInlineAsm(CI, MIRBuilder);
+
+ Intrinsic::ID ID = Intrinsic::not_intrinsic;
+ if (F && F->isIntrinsic()) {
+ ID = F->getIntrinsicID();
+ if (TII && ID == Intrinsic::not_intrinsic)
+ ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
+ }
+
+ if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
+ return translateCallSite(&CI, MIRBuilder);
+
+ assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
+
+ if (translateKnownIntrinsic(CI, ID, MIRBuilder))
+ return true;
+
+ ArrayRef<Register> ResultRegs;
+ if (!CI.getType()->isVoidTy())
+ ResultRegs = getOrCreateVRegs(CI);
+
+ // Ignore the callsite attributes. Backend code is most likely not expecting
+ // an intrinsic to sometimes have side effects and sometimes not.
+ MachineInstrBuilder MIB =
+ MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory());
+ if (isa<FPMathOperator>(CI))
+ MIB->copyIRFlags(CI);
+
+ for (auto &Arg : enumerate(CI.arg_operands())) {
+ // Some intrinsics take metadata parameters. Reject them.
+ if (isa<MetadataAsValue>(Arg.value()))
+ return false;
+
+ // If this is required to be an immediate, don't materialize it in a
+ // register.
+ if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
+ // imm arguments are more convenient than cimm (and realistically
+ // probably sufficient), so use them.
+ assert(CI->getBitWidth() <= 64 &&
+ "large intrinsic immediates not handled");
+ MIB.addImm(CI->getSExtValue());
+ } else {
+ MIB.addFPImm(cast<ConstantFP>(Arg.value()));
+ }
+ } else {
+ ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
+ if (VRegs.size() > 1)
+ return false;
+ MIB.addUse(VRegs[0]);
+ }
+ }
+
+ // Add a MachineMemOperand if it is a target mem intrinsic.
+ const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
+ TargetLowering::IntrinsicInfo Info;
+ // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
+ if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
+ MaybeAlign Align = Info.align;
+ if (!Align)
+ Align = MaybeAlign(
+ DL->getABITypeAlignment(Info.memVT.getTypeForEVT(F->getContext())));
+
+ uint64_t Size = Info.memVT.getStoreSize();
+ MIB.addMemOperand(MF->getMachineMemOperand(
+ MachinePointerInfo(Info.ptrVal), Info.flags, Size, Align->value()));
+ }
+
+ return true;
+}
+
+bool IRTranslator::translateInvoke(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ const InvokeInst &I = cast<InvokeInst>(U);
+ MCContext &Context = MF->getContext();
+
+ const BasicBlock *ReturnBB = I.getSuccessor(0);
+ const BasicBlock *EHPadBB = I.getSuccessor(1);
+
+ const Value *Callee = I.getCalledValue();
+ const Function *Fn = dyn_cast<Function>(Callee);
+ if (isa<InlineAsm>(Callee))
+ return false;
+
+ // FIXME: support invoking patchpoint and statepoint intrinsics.
+ if (Fn && Fn->isIntrinsic())
+ return false;
+
+ // FIXME: support whatever these are.
+ if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
+ return false;
+
+ // FIXME: support Windows exception handling.
+ if (!isa<LandingPadInst>(EHPadBB->front()))
+ return false;
+
+ // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
+ // the region covered by the try.
+ MCSymbol *BeginSymbol = Context.createTempSymbol();
+ MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
+
+ if (!translateCallSite(&I, MIRBuilder))
+ return false;
+
+ MCSymbol *EndSymbol = Context.createTempSymbol();
+ MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
+
+ // FIXME: track probabilities.
+ MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
+ &ReturnMBB = getMBB(*ReturnBB);
+ MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
+ MIRBuilder.getMBB().addSuccessor(&ReturnMBB);
+ MIRBuilder.getMBB().addSuccessor(&EHPadMBB);
+ MIRBuilder.buildBr(ReturnMBB);
+
+ return true;
+}
+
+bool IRTranslator::translateCallBr(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ // FIXME: Implement this.
+ return false;
+}
+
+bool IRTranslator::translateLandingPad(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ const LandingPadInst &LP = cast<LandingPadInst>(U);
+
+ MachineBasicBlock &MBB = MIRBuilder.getMBB();
+
+ MBB.setIsEHPad();
+
+ // If there aren't registers to copy the values into (e.g., during SjLj
+ // exceptions), then don't bother.
+ auto &TLI = *MF->getSubtarget().getTargetLowering();
+ const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
+ if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
+ TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
+ return true;
+
+ // If landingpad's return type is token type, we don't create DAG nodes
+ // for its exception pointer and selector value. The extraction of exception
+ // pointer or selector value from token type landingpads is not currently
+ // supported.
+ if (LP.getType()->isTokenTy())
+ return true;
+
+ // Add a label to mark the beginning of the landing pad. Deletion of the
+ // landing pad can thus be detected via the MachineModuleInfo.
+ MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
+ .addSym(MF->addLandingPad(&MBB));
+
+ LLT Ty = getLLTForType(*LP.getType(), *DL);
+ Register Undef = MRI->createGenericVirtualRegister(Ty);
+ MIRBuilder.buildUndef(Undef);
+
+ SmallVector<LLT, 2> Tys;
+ for (Type *Ty : cast<StructType>(LP.getType())->elements())
+ Tys.push_back(getLLTForType(*Ty, *DL));
+ assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
+
+ // Mark exception register as live in.
+ Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
+ if (!ExceptionReg)
+ return false;
+
+ MBB.addLiveIn(ExceptionReg);
+ ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
+ MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
+
+ Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
+ if (!SelectorReg)
+ return false;
+
+ MBB.addLiveIn(SelectorReg);
+ Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
+ MIRBuilder.buildCopy(PtrVReg, SelectorReg);
+ MIRBuilder.buildCast(ResRegs[1], PtrVReg);
+
+ return true;
+}
+
+bool IRTranslator::translateAlloca(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ auto &AI = cast<AllocaInst>(U);
+
+ if (AI.isSwiftError())
+ return true;
+
+ if (AI.isStaticAlloca()) {
+ Register Res = getOrCreateVReg(AI);
+ int FI = getOrCreateFrameIndex(AI);
+ MIRBuilder.buildFrameIndex(Res, FI);
+ return true;
+ }
+
+ // FIXME: support stack probing for Windows.
+ if (MF->getTarget().getTargetTriple().isOSWindows())
+ return false;
+
+ // Now we're in the harder dynamic case.
+ Type *Ty = AI.getAllocatedType();
+ unsigned Align =
+ std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment());
+
+ Register NumElts = getOrCreateVReg(*AI.getArraySize());
+
+ Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
+ LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
+ if (MRI->getType(NumElts) != IntPtrTy) {
+ Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
+ MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
+ NumElts = ExtElts;
+ }
+
+ Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
+ Register TySize =
+ getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
+ MIRBuilder.buildMul(AllocSize, NumElts, TySize);
+
+ unsigned StackAlign =
+ MF->getSubtarget().getFrameLowering()->getStackAlignment();
+ if (Align <= StackAlign)
+ Align = 0;
+
+ // Round the size of the allocation up to the stack alignment size
+ // by add SA-1 to the size. This doesn't overflow because we're computing
+ // an address inside an alloca.
+ auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign - 1);
+ auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
+ MachineInstr::NoUWrap);
+ auto AlignCst =
+ MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign - 1));
+ auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);
+
+ MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Align);
+
+ MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI);
+ assert(MF->getFrameInfo().hasVarSizedObjects());
+ return true;
+}
+
+bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
+ // FIXME: We may need more info about the type. Because of how LLT works,
+ // we're completely discarding the i64/double distinction here (amongst
+ // others). Fortunately the ABIs I know of where that matters don't use va_arg
+ // anyway but that's not guaranteed.
+ MIRBuilder.buildInstr(TargetOpcode::G_VAARG)
+ .addDef(getOrCreateVReg(U))
+ .addUse(getOrCreateVReg(*U.getOperand(0)))
+ .addImm(DL->getABITypeAlignment(U.getType()));
+ return true;
+}
+
+bool IRTranslator::translateInsertElement(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ // If it is a <1 x Ty> vector, use the scalar as it is
+ // not a legal vector type in LLT.
+ if (U.getType()->getVectorNumElements() == 1) {
+ Register Elt = getOrCreateVReg(*U.getOperand(1));
+ auto &Regs = *VMap.getVRegs(U);
+ if (Regs.empty()) {
+ Regs.push_back(Elt);
+ VMap.getOffsets(U)->push_back(0);
+ } else {
+ MIRBuilder.buildCopy(Regs[0], Elt);
+ }
+ return true;
+ }
+
+ Register Res = getOrCreateVReg(U);
+ Register Val = getOrCreateVReg(*U.getOperand(0));
+ Register Elt = getOrCreateVReg(*U.getOperand(1));
+ Register Idx = getOrCreateVReg(*U.getOperand(2));
+ MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
+ return true;
+}
+
+bool IRTranslator::translateExtractElement(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ // If it is a <1 x Ty> vector, use the scalar as it is
+ // not a legal vector type in LLT.
+ if (U.getOperand(0)->getType()->getVectorNumElements() == 1) {
+ Register Elt = getOrCreateVReg(*U.getOperand(0));
+ auto &Regs = *VMap.getVRegs(U);
+ if (Regs.empty()) {
+ Regs.push_back(Elt);
+ VMap.getOffsets(U)->push_back(0);
+ } else {
+ MIRBuilder.buildCopy(Regs[0], Elt);
+ }
+ return true;
+ }
+ Register Res = getOrCreateVReg(U);
+ Register Val = getOrCreateVReg(*U.getOperand(0));
+ const auto &TLI = *MF->getSubtarget().getTargetLowering();
+ unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
+ Register Idx;
+ if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
+ if (CI->getBitWidth() != PreferredVecIdxWidth) {
+ APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth);
+ auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
+ Idx = getOrCreateVReg(*NewIdxCI);
+ }
+ }
+ if (!Idx)
+ Idx = getOrCreateVReg(*U.getOperand(1));
+ if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
+ const LLT &VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
+ Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx)->getOperand(0).getReg();
+ }
+ MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
+ return true;
+}
+
+bool IRTranslator::translateShuffleVector(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR)
+ .addDef(getOrCreateVReg(U))
+ .addUse(getOrCreateVReg(*U.getOperand(0)))
+ .addUse(getOrCreateVReg(*U.getOperand(1)))
+ .addShuffleMask(cast<Constant>(U.getOperand(2)));
+ return true;
+}
+
+bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
+ const PHINode &PI = cast<PHINode>(U);
+
+ SmallVector<MachineInstr *, 4> Insts;
+ for (auto Reg : getOrCreateVRegs(PI)) {
+ auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
+ Insts.push_back(MIB.getInstr());
+ }
+
+ PendingPHIs.emplace_back(&PI, std::move(Insts));
+ return true;
+}
+
+bool IRTranslator::translateAtomicCmpXchg(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
+
+ if (I.isWeak())
+ return false;
+
+ auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile
+ : MachineMemOperand::MONone;
+ Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
+
+ Type *ResType = I.getType();
+ Type *ValType = ResType->Type::getStructElementType(0);
+
+ auto Res = getOrCreateVRegs(I);
+ Register OldValRes = Res[0];
+ Register SuccessRes = Res[1];
+ Register Addr = getOrCreateVReg(*I.getPointerOperand());
+ Register Cmp = getOrCreateVReg(*I.getCompareOperand());
+ Register NewVal = getOrCreateVReg(*I.getNewValOperand());
+
+ MIRBuilder.buildAtomicCmpXchgWithSuccess(
+ OldValRes, SuccessRes, Addr, Cmp, NewVal,
+ *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
+ Flags, DL->getTypeStoreSize(ValType),
+ getMemOpAlignment(I), AAMDNodes(), nullptr,
+ I.getSyncScopeID(), I.getSuccessOrdering(),
+ I.getFailureOrdering()));
+ return true;
+}
+
+bool IRTranslator::translateAtomicRMW(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
+
+ auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile
+ : MachineMemOperand::MONone;
+ Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
+
+ Type *ResType = I.getType();
+
+ Register Res = getOrCreateVReg(I);
+ Register Addr = getOrCreateVReg(*I.getPointerOperand());
+ Register Val = getOrCreateVReg(*I.getValOperand());
+
+ unsigned Opcode = 0;
+ switch (I.getOperation()) {
+ default:
+ return false;
+ case AtomicRMWInst::Xchg:
+ Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
+ break;
+ case AtomicRMWInst::Add:
+ Opcode = TargetOpcode::G_ATOMICRMW_ADD;
+ break;
+ case AtomicRMWInst::Sub:
+ Opcode = TargetOpcode::G_ATOMICRMW_SUB;
+ break;
+ case AtomicRMWInst::And:
+ Opcode = TargetOpcode::G_ATOMICRMW_AND;
+ break;
+ case AtomicRMWInst::Nand:
+ Opcode = TargetOpcode::G_ATOMICRMW_NAND;
+ break;
+ case AtomicRMWInst::Or:
+ Opcode = TargetOpcode::G_ATOMICRMW_OR;
+ break;
+ case AtomicRMWInst::Xor:
+ Opcode = TargetOpcode::G_ATOMICRMW_XOR;
+ break;
+ case AtomicRMWInst::Max:
+ Opcode = TargetOpcode::G_ATOMICRMW_MAX;
+ break;
+ case AtomicRMWInst::Min:
+ Opcode = TargetOpcode::G_ATOMICRMW_MIN;
+ break;
+ case AtomicRMWInst::UMax:
+ Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
+ break;
+ case AtomicRMWInst::UMin:
+ Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
+ break;
+ case AtomicRMWInst::FAdd:
+ Opcode = TargetOpcode::G_ATOMICRMW_FADD;
+ break;
+ case AtomicRMWInst::FSub:
+ Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
+ break;
+ }
+
+ MIRBuilder.buildAtomicRMW(
+ Opcode, Res, Addr, Val,
+ *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
+ Flags, DL->getTypeStoreSize(ResType),
+ getMemOpAlignment(I), AAMDNodes(), nullptr,
+ I.getSyncScopeID(), I.getOrdering()));
+ return true;
+}
+
+bool IRTranslator::translateFence(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ const FenceInst &Fence = cast<FenceInst>(U);
+ MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
+ Fence.getSyncScopeID());
+ return true;
+}
+
+void IRTranslator::finishPendingPhis() {
+#ifndef NDEBUG
+ DILocationVerifier Verifier;
+ GISelObserverWrapper WrapperObserver(&Verifier);
+ RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
+#endif // ifndef NDEBUG
+ for (auto &Phi : PendingPHIs) {
+ const PHINode *PI = Phi.first;
+ ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
+ MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
+ EntryBuilder->setDebugLoc(PI->getDebugLoc());
+#ifndef NDEBUG
+ Verifier.setCurrentInst(PI);
+#endif // ifndef NDEBUG
+
+ SmallSet<const MachineBasicBlock *, 16> SeenPreds;
+ for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
+ auto IRPred = PI->getIncomingBlock(i);
+ ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
+ for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
+ if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
+ continue;
+ SeenPreds.insert(Pred);
+ for (unsigned j = 0; j < ValRegs.size(); ++j) {
+ MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
+ MIB.addUse(ValRegs[j]);
+ MIB.addMBB(Pred);
+ }
+ }
+ }
+ }
+}
+
+bool IRTranslator::valueIsSplit(const Value &V,
+ SmallVectorImpl<uint64_t> *Offsets) {
+ SmallVector<LLT, 4> SplitTys;
+ if (Offsets && !Offsets->empty())
+ Offsets->clear();
+ computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets);
+ return SplitTys.size() > 1;
+}
+
+bool IRTranslator::translate(const Instruction &Inst) {
+ CurBuilder->setDebugLoc(Inst.getDebugLoc());
+ // We only emit constants into the entry block from here. To prevent jumpy
+ // debug behaviour set the line to 0.
+ if (const DebugLoc &DL = Inst.getDebugLoc())
+ EntryBuilder->setDebugLoc(
+ DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
+ else
+ EntryBuilder->setDebugLoc(DebugLoc());
+
+ switch (Inst.getOpcode()) {
+#define HANDLE_INST(NUM, OPCODE, CLASS) \
+ case Instruction::OPCODE: \
+ return translate##OPCODE(Inst, *CurBuilder.get());
+#include "llvm/IR/Instruction.def"
+ default:
+ return false;
+ }
+}
+
+bool IRTranslator::translate(const Constant &C, Register Reg) {
+ if (auto CI = dyn_cast<ConstantInt>(&C))
+ EntryBuilder->buildConstant(Reg, *CI);
+ else if (auto CF = dyn_cast<ConstantFP>(&C))
+ EntryBuilder->buildFConstant(Reg, *CF);
+ else if (isa<UndefValue>(C))
+ EntryBuilder->buildUndef(Reg);
+ else if (isa<ConstantPointerNull>(C)) {
+ // As we are trying to build a constant val of 0 into a pointer,
+ // insert a cast to make them correct with respect to types.
+ unsigned NullSize = DL->getTypeSizeInBits(C.getType());
+ auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize);
+ auto *ZeroVal = ConstantInt::get(ZeroTy, 0);
+ Register ZeroReg = getOrCreateVReg(*ZeroVal);
+ EntryBuilder->buildCast(Reg, ZeroReg);
+ } else if (auto GV = dyn_cast<GlobalValue>(&C))
+ EntryBuilder->buildGlobalValue(Reg, GV);
+ else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
+ if (!CAZ->getType()->isVectorTy())
+ return false;
+ // Return the scalar if it is a <1 x Ty> vector.
+ if (CAZ->getNumElements() == 1)
+ return translate(*CAZ->getElementValue(0u), Reg);
+ SmallVector<Register, 4> Ops;
+ for (unsigned i = 0; i < CAZ->getNumElements(); ++i) {
+ Constant &Elt = *CAZ->getElementValue(i);
+ Ops.push_back(getOrCreateVReg(Elt));
+ }
+ EntryBuilder->buildBuildVector(Reg, Ops);
+ } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
+ // Return the scalar if it is a <1 x Ty> vector.
+ if (CV->getNumElements() == 1)
+ return translate(*CV->getElementAsConstant(0), Reg);
+ SmallVector<Register, 4> Ops;
+ for (unsigned i = 0; i < CV->getNumElements(); ++i) {
+ Constant &Elt = *CV->getElementAsConstant(i);
+ Ops.push_back(getOrCreateVReg(Elt));
+ }
+ EntryBuilder->buildBuildVector(Reg, Ops);
+ } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
+ switch(CE->getOpcode()) {
+#define HANDLE_INST(NUM, OPCODE, CLASS) \
+ case Instruction::OPCODE: \
+ return translate##OPCODE(*CE, *EntryBuilder.get());
+#include "llvm/IR/Instruction.def"
+ default:
+ return false;
+ }
+ } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
+ if (CV->getNumOperands() == 1)
+ return translate(*CV->getOperand(0), Reg);
+ SmallVector<Register, 4> Ops;
+ for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
+ Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
+ }
+ EntryBuilder->buildBuildVector(Reg, Ops);
+ } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
+ EntryBuilder->buildBlockAddress(Reg, BA);
+ } else
+ return false;
+
+ return true;
+}
+
+void IRTranslator::finalizeBasicBlock() {
+ for (auto &JTCase : SL->JTCases) {
+ // Emit header first, if it wasn't already emitted.
+ if (!JTCase.first.Emitted)
+ emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
+
+ emitJumpTable(JTCase.second, JTCase.second.MBB);
+ }
+ SL->JTCases.clear();
+}
+
+void IRTranslator::finalizeFunction() {
+ // Release the memory used by the different maps we
+ // needed during the translation.
+ PendingPHIs.clear();
+ VMap.reset();
+ FrameIndices.clear();
+ MachinePreds.clear();
+ // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
+ // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
+ // destroying it twice (in ~IRTranslator() and ~LLVMContext())
+ EntryBuilder.reset();
+ CurBuilder.reset();
+ FuncInfo.clear();
+}
+
+/// Returns true if a BasicBlock \p BB within a variadic function contains a
+/// variadic musttail call.
+static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
+ if (!IsVarArg)
+ return false;
+
+ // Walk the block backwards, because tail calls usually only appear at the end
+ // of a block.
+ return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) {
+ const auto *CI = dyn_cast<CallInst>(&I);
+ return CI && CI->isMustTailCall();
+ });
+}
+
+bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
+ MF = &CurMF;
+ const Function &F = MF->getFunction();
+ if (F.empty())
+ return false;
+ GISelCSEAnalysisWrapper &Wrapper =
+ getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
+ // Set the CSEConfig and run the analysis.
+ GISelCSEInfo *CSEInfo = nullptr;
+ TPC = &getAnalysis<TargetPassConfig>();
+ bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
+ ? EnableCSEInIRTranslator
+ : TPC->isGISelCSEEnabled();
+
+ if (EnableCSE) {
+ EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
+ CSEInfo = &Wrapper.get(TPC->getCSEConfig());
+ EntryBuilder->setCSEInfo(CSEInfo);
+ CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
+ CurBuilder->setCSEInfo(CSEInfo);
+ } else {
+ EntryBuilder = std::make_unique<MachineIRBuilder>();
+ CurBuilder = std::make_unique<MachineIRBuilder>();
+ }
+ CLI = MF->getSubtarget().getCallLowering();
+ CurBuilder->setMF(*MF);
+ EntryBuilder->setMF(*MF);
+ MRI = &MF->getRegInfo();
+ DL = &F.getParent()->getDataLayout();
+ ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
+ FuncInfo.MF = MF;
+ FuncInfo.BPI = nullptr;
+ const auto &TLI = *MF->getSubtarget().getTargetLowering();
+ const TargetMachine &TM = MF->getTarget();
+ SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
+ SL->init(TLI, TM, *DL);
+
+ EnableOpts = TM.getOptLevel() != CodeGenOpt::None && !skipFunction(F);
+
+ assert(PendingPHIs.empty() && "stale PHIs");
+
+ if (!DL->isLittleEndian()) {
+ // Currently we don't properly handle big endian code.
+ OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
+ F.getSubprogram(), &F.getEntryBlock());
+ R << "unable to translate in big endian mode";
+ reportTranslationError(*MF, *TPC, *ORE, R);
+ }
+
+ // Release the per-function state when we return, whether we succeeded or not.
+ auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
+
+ // Setup a separate basic-block for the arguments and constants
+ MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
+ MF->push_back(EntryBB);
+ EntryBuilder->setMBB(*EntryBB);
+
+ DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
+ SwiftError.setFunction(CurMF);
+ SwiftError.createEntriesInEntryBlock(DbgLoc);
+
+ bool IsVarArg = F.isVarArg();
+ bool HasMustTailInVarArgFn = false;
+
+ // Create all blocks, in IR order, to preserve the layout.
+ for (const BasicBlock &BB: F) {
+ auto *&MBB = BBToMBB[&BB];
+
+ MBB = MF->CreateMachineBasicBlock(&BB);
+ MF->push_back(MBB);
+
+ if (BB.hasAddressTaken())
+ MBB->setHasAddressTaken();
+
+ if (!HasMustTailInVarArgFn)
+ HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
+ }
+
+ MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
+
+ // Make our arguments/constants entry block fallthrough to the IR entry block.
+ EntryBB->addSuccessor(&getMBB(F.front()));
+
+ // Lower the actual args into this basic block.
+ SmallVector<ArrayRef<Register>, 8> VRegArgs;
+ for (const Argument &Arg: F.args()) {
+ if (DL->getTypeStoreSize(Arg.getType()) == 0)
+ continue; // Don't handle zero sized types.
+ ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
+ VRegArgs.push_back(VRegs);
+
+ if (Arg.hasSwiftErrorAttr()) {
+ assert(VRegs.size() == 1 && "Too many vregs for Swift error");
+ SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
+ }
+ }
+
+ if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) {
+ OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
+ F.getSubprogram(), &F.getEntryBlock());
+ R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
+ reportTranslationError(*MF, *TPC, *ORE, R);
+ return false;
+ }
+
+ // Need to visit defs before uses when translating instructions.
+ GISelObserverWrapper WrapperObserver;
+ if (EnableCSE && CSEInfo)
+ WrapperObserver.addObserver(CSEInfo);
+ {
+ ReversePostOrderTraversal<const Function *> RPOT(&F);
+#ifndef NDEBUG
+ DILocationVerifier Verifier;
+ WrapperObserver.addObserver(&Verifier);
+#endif // ifndef NDEBUG
+ RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
+ for (const BasicBlock *BB : RPOT) {
+ MachineBasicBlock &MBB = getMBB(*BB);
+ // Set the insertion point of all the following translations to
+ // the end of this basic block.
+ CurBuilder->setMBB(MBB);
+ HasTailCall = false;
+ for (const Instruction &Inst : *BB) {
+ // If we translated a tail call in the last step, then we know
+ // everything after the call is either a return, or something that is
+ // handled by the call itself. (E.g. a lifetime marker or assume
+ // intrinsic.) In this case, we should stop translating the block and
+ // move on.
+ if (HasTailCall)
+ break;
+#ifndef NDEBUG
+ Verifier.setCurrentInst(&Inst);
+#endif // ifndef NDEBUG
+ if (translate(Inst))
+ continue;
+
+ OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
+ Inst.getDebugLoc(), BB);
+ R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
+
+ if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
+ std::string InstStrStorage;
+ raw_string_ostream InstStr(InstStrStorage);
+ InstStr << Inst;
+
+ R << ": '" << InstStr.str() << "'";
+ }
+
+ reportTranslationError(*MF, *TPC, *ORE, R);
+ return false;
+ }
+
+ finalizeBasicBlock();
+ }
+#ifndef NDEBUG
+ WrapperObserver.removeObserver(&Verifier);
+#endif
+ }
+
+ finishPendingPhis();
+
+ SwiftError.propagateVRegs();
+
+ // Merge the argument lowering and constants block with its single
+ // successor, the LLVM-IR entry block. We want the basic block to
+ // be maximal.
+ assert(EntryBB->succ_size() == 1 &&
+ "Custom BB used for lowering should have only one successor");
+ // Get the successor of the current entry block.
+ MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
+ assert(NewEntryBB.pred_size() == 1 &&
+ "LLVM-IR entry block has a predecessor!?");
+ // Move all the instruction from the current entry block to the
+ // new entry block.
+ NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
+ EntryBB->end());
+
+ // Update the live-in information for the new entry block.
+ for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
+ NewEntryBB.addLiveIn(LiveIn);
+ NewEntryBB.sortUniqueLiveIns();
+
+ // Get rid of the now empty basic block.
+ EntryBB->removeSuccessor(&NewEntryBB);
+ MF->remove(EntryBB);
+ MF->DeleteMachineBasicBlock(EntryBB);
+
+ assert(&MF->front() == &NewEntryBB &&
+ "New entry wasn't next in the list of basic block!");
+
+ // Initialize stack protector information.
+ StackProtector &SP = getAnalysis<StackProtector>();
+ SP.copyToMachineFrameInfo(MF->getFrameInfo());
+
+ return false;
+}
diff --git a/llvm/lib/CodeGen/GlobalISel/InstructionSelect.cpp b/llvm/lib/CodeGen/GlobalISel/InstructionSelect.cpp
new file mode 100644
index 000000000000..7c4fd2d140d3
--- /dev/null
+++ b/llvm/lib/CodeGen/GlobalISel/InstructionSelect.cpp
@@ -0,0 +1,264 @@
+//===- llvm/CodeGen/GlobalISel/InstructionSelect.cpp - InstructionSelect ---==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file implements the InstructionSelect class.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
+#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
+#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
+#include "llvm/CodeGen/GlobalISel/Utils.h"
+#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/Config/config.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/TargetRegistry.h"
+
+#define DEBUG_TYPE "instruction-select"
+
+using namespace llvm;
+
+#ifdef LLVM_GISEL_COV_PREFIX
+static cl::opt<std::string>
+ CoveragePrefix("gisel-coverage-prefix", cl::init(LLVM_GISEL_COV_PREFIX),
+ cl::desc("Record GlobalISel rule coverage files of this "
+ "prefix if instrumentation was generated"));
+#else
+static const std::string CoveragePrefix = "";
+#endif
+
+char InstructionSelect::ID = 0;
+INITIALIZE_PASS_BEGIN(InstructionSelect, DEBUG_TYPE,
+ "Select target instructions out of generic instructions",
+ false, false)
+INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
+INITIALIZE_PASS_DEPENDENCY(GISelKnownBitsAnalysis)
+INITIALIZE_PASS_END(InstructionSelect, DEBUG_TYPE,
+ "Select target instructions out of generic instructions",
+ false, false)
+
+InstructionSelect::InstructionSelect() : MachineFunctionPass(ID) { }
+
+void InstructionSelect::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<TargetPassConfig>();
+ AU.addRequired<GISelKnownBitsAnalysis>();
+ AU.addPreserved<GISelKnownBitsAnalysis>();
+ getSelectionDAGFallbackAnalysisUsage(AU);
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+bool InstructionSelect::runOnMachineFunction(MachineFunction &MF) {
+ // If the ISel pipeline failed, do not bother running that pass.
+ if (MF.getProperties().hasProperty(
+ MachineFunctionProperties::Property::FailedISel))
+ return false;
+
+ LLVM_DEBUG(dbgs() << "Selecting function: " << MF.getName() << '\n');
+ GISelKnownBits &KB = getAnalysis<GISelKnownBitsAnalysis>().get(MF);
+
+ const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
+ InstructionSelector *ISel = MF.getSubtarget().getInstructionSelector();
+ CodeGenCoverage CoverageInfo;
+ assert(ISel && "Cannot work without InstructionSelector");
+ ISel->setupMF(MF, KB, CoverageInfo);
+
+ // An optimization remark emitter. Used to report failures.
+ MachineOptimizationRemarkEmitter MORE(MF, /*MBFI=*/nullptr);
+
+ // FIXME: There are many other MF/MFI fields we need to initialize.
+
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+#ifndef NDEBUG
+ // Check that our input is fully legal: we require the function to have the
+ // Legalized property, so it should be.
+ // FIXME: This should be in the MachineVerifier, as the RegBankSelected
+ // property check already is.
+ if (!DisableGISelLegalityCheck)
+ if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) {
+ reportGISelFailure(MF, TPC, MORE, "gisel-select",
+ "instruction is not legal", *MI);
+ return false;
+ }
+ // FIXME: We could introduce new blocks and will need to fix the outer loop.
+ // Until then, keep track of the number of blocks to assert that we don't.
+ const size_t NumBlocks = MF.size();
+#endif
+
+ for (MachineBasicBlock *MBB : post_order(&MF)) {
+ if (MBB->empty())
+ continue;
+
+ // Select instructions in reverse block order. We permit erasing so have
+ // to resort to manually iterating and recognizing the begin (rend) case.
+ bool ReachedBegin = false;
+ for (auto MII = std::prev(MBB->end()), Begin = MBB->begin();
+ !ReachedBegin;) {
+#ifndef NDEBUG
+ // Keep track of the insertion range for debug printing.
+ const auto AfterIt = std::next(MII);
+#endif
+ // Select this instruction.
+ MachineInstr &MI = *MII;
+
+ // And have our iterator point to the next instruction, if there is one.
+ if (MII == Begin)
+ ReachedBegin = true;
+ else
+ --MII;
+
+ LLVM_DEBUG(dbgs() << "Selecting: \n " << MI);
+
+ // We could have folded this instruction away already, making it dead.
+ // If so, erase it.
+ if (isTriviallyDead(MI, MRI)) {
+ LLVM_DEBUG(dbgs() << "Is dead; erasing.\n");
+ MI.eraseFromParentAndMarkDBGValuesForRemoval();
+ continue;
+ }
+
+ if (!ISel->select(MI)) {
+ // FIXME: It would be nice to dump all inserted instructions. It's
+ // not obvious how, esp. considering select() can insert after MI.
+ reportGISelFailure(MF, TPC, MORE, "gisel-select", "cannot select", MI);
+ return false;
+ }
+
+ // Dump the range of instructions that MI expanded into.
+ LLVM_DEBUG({
+ auto InsertedBegin = ReachedBegin ? MBB->begin() : std::next(MII);
+ dbgs() << "Into:\n";
+ for (auto &InsertedMI : make_range(InsertedBegin, AfterIt))
+ dbgs() << " " << InsertedMI;
+ dbgs() << '\n';
+ });
+ }
+ }
+
+ for (MachineBasicBlock &MBB : MF) {
+ if (MBB.empty())
+ continue;
+
+ // Try to find redundant copies b/w vregs of the same register class.
+ bool ReachedBegin = false;
+ for (auto MII = std::prev(MBB.end()), Begin = MBB.begin(); !ReachedBegin;) {
+ // Select this instruction.
+ MachineInstr &MI = *MII;
+
+ // And have our iterator point to the next instruction, if there is one.
+ if (MII == Begin)
+ ReachedBegin = true;
+ else
+ --MII;
+ if (MI.getOpcode() != TargetOpcode::COPY)
+ continue;
+ Register SrcReg = MI.getOperand(1).getReg();
+ Register DstReg = MI.getOperand(0).getReg();
+ if (Register::isVirtualRegister(SrcReg) &&
+ Register::isVirtualRegister(DstReg)) {
+ auto SrcRC = MRI.getRegClass(SrcReg);
+ auto DstRC = MRI.getRegClass(DstReg);
+ if (SrcRC == DstRC) {
+ MRI.replaceRegWith(DstReg, SrcReg);
+ MI.eraseFromParentAndMarkDBGValuesForRemoval();
+ }
+ }
+ }
+ }
+
+#ifndef NDEBUG
+ const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
+ // Now that selection is complete, there are no more generic vregs. Verify
+ // that the size of the now-constrained vreg is unchanged and that it has a
+ // register class.
+ for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
+ unsigned VReg = Register::index2VirtReg(I);
+
+ MachineInstr *MI = nullptr;
+ if (!MRI.def_empty(VReg))
+ MI = &*MRI.def_instr_begin(VReg);
+ else if (!MRI.use_empty(VReg))
+ MI = &*MRI.use_instr_begin(VReg);
+ if (!MI)
+ continue;
+
+ const TargetRegisterClass *RC = MRI.getRegClassOrNull(VReg);
+ if (!RC) {
+ reportGISelFailure(MF, TPC, MORE, "gisel-select",
+ "VReg has no regclass after selection", *MI);
+ return false;
+ }
+
+ const LLT Ty = MRI.getType(VReg);
+ if (Ty.isValid() && Ty.getSizeInBits() > TRI.getRegSizeInBits(*RC)) {
+ reportGISelFailure(
+ MF, TPC, MORE, "gisel-select",
+ "VReg's low-level type and register class have different sizes", *MI);
+ return false;
+ }
+ }
+
+ if (MF.size() != NumBlocks) {
+ MachineOptimizationRemarkMissed R("gisel-select", "GISelFailure",
+ MF.getFunction().getSubprogram(),
+ /*MBB=*/nullptr);
+ R << "inserting blocks is not supported yet";
+ reportGISelFailure(MF, TPC, MORE, R);
+ return false;
+ }
+#endif
+ auto &TLI = *MF.getSubtarget().getTargetLowering();
+ TLI.finalizeLowering(MF);
+
+ // Determine if there are any calls in this machine function. Ported from
+ // SelectionDAG.
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ for (const auto &MBB : MF) {
+ if (MFI.hasCalls() && MF.hasInlineAsm())
+ break;
+
+ for (const auto &MI : MBB) {
+ if ((MI.isCall() && !MI.isReturn()) || MI.isStackAligningInlineAsm())
+ MFI.setHasCalls(true);
+ if (MI.isInlineAsm())
+ MF.setHasInlineAsm(true);
+ }
+ }
+
+
+ LLVM_DEBUG({
+ dbgs() << "Rules covered by selecting function: " << MF.getName() << ":";
+ for (auto RuleID : CoverageInfo.covered())
+ dbgs() << " id" << RuleID;
+ dbgs() << "\n\n";
+ });
+ CoverageInfo.emit(CoveragePrefix,
+ MF.getSubtarget()
+ .getTargetLowering()
+ ->getTargetMachine()
+ .getTarget()
+ .getBackendName());
+
+ // If we successfully selected the function nothing is going to use the vreg
+ // types after us (otherwise MIRPrinter would need them). Make sure the types
+ // disappear.
+ MRI.clearVirtRegTypes();
+
+ // FIXME: Should we accurately track changes?
+ return true;
+}
diff --git a/llvm/lib/CodeGen/GlobalISel/InstructionSelector.cpp b/llvm/lib/CodeGen/GlobalISel/InstructionSelector.cpp
new file mode 100644
index 000000000000..28143b30d4e8
--- /dev/null
+++ b/llvm/lib/CodeGen/GlobalISel/InstructionSelector.cpp
@@ -0,0 +1,83 @@
+//===- llvm/CodeGen/GlobalISel/InstructionSelector.cpp --------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// This file implements the InstructionSelector class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
+#include "llvm/CodeGen/GlobalISel/Utils.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cassert>
+
+#define DEBUG_TYPE "instructionselector"
+
+using namespace llvm;
+
+InstructionSelector::MatcherState::MatcherState(unsigned MaxRenderers)
+ : Renderers(MaxRenderers), MIs() {}
+
+InstructionSelector::InstructionSelector() = default;
+
+bool InstructionSelector::constrainOperandRegToRegClass(
+ MachineInstr &I, unsigned OpIdx, const TargetRegisterClass &RC,
+ const TargetInstrInfo &TII, const TargetRegisterInfo &TRI,
+ const RegisterBankInfo &RBI) const {
+ MachineBasicBlock &MBB = *I.getParent();
+ MachineFunction &MF = *MBB.getParent();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, RC,
+ I.getOperand(OpIdx), OpIdx);
+}
+
+bool InstructionSelector::isOperandImmEqual(
+ const MachineOperand &MO, int64_t Value,
+ const MachineRegisterInfo &MRI) const {
+ if (MO.isReg() && MO.getReg())
+ if (auto VRegVal = getConstantVRegValWithLookThrough(MO.getReg(), MRI))
+ return VRegVal->Value == Value;
+ return false;
+}
+
+bool InstructionSelector::isBaseWithConstantOffset(
+ const MachineOperand &Root, const MachineRegisterInfo &MRI) const {
+ if (!Root.isReg())
+ return false;
+
+ MachineInstr *RootI = MRI.getVRegDef(Root.getReg());
+ if (RootI->getOpcode() != TargetOpcode::G_GEP)
+ return false;
+
+ MachineOperand &RHS = RootI->getOperand(2);
+ MachineInstr *RHSI = MRI.getVRegDef(RHS.getReg());
+ if (RHSI->getOpcode() != TargetOpcode::G_CONSTANT)
+ return false;
+
+ return true;
+}
+
+bool InstructionSelector::isObviouslySafeToFold(MachineInstr &MI,
+ MachineInstr &IntoMI) const {
+ // Immediate neighbours are already folded.
+ if (MI.getParent() == IntoMI.getParent() &&
+ std::next(MI.getIterator()) == IntoMI.getIterator())
+ return true;
+
+ return !MI.mayLoadOrStore() && !MI.mayRaiseFPException() &&
+ !MI.hasUnmodeledSideEffects() && MI.implicit_operands().empty();
+}
diff --git a/llvm/lib/CodeGen/GlobalISel/LegalityPredicates.cpp b/llvm/lib/CodeGen/GlobalISel/LegalityPredicates.cpp
new file mode 100644
index 000000000000..601d50e9806f
--- /dev/null
+++ b/llvm/lib/CodeGen/GlobalISel/LegalityPredicates.cpp
@@ -0,0 +1,155 @@
+//===- lib/CodeGen/GlobalISel/LegalizerPredicates.cpp - Predicates --------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// A library of predicate factories to use for LegalityPredicate.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
+
+using namespace llvm;
+
+LegalityPredicate LegalityPredicates::typeIs(unsigned TypeIdx, LLT Type) {
+ return
+ [=](const LegalityQuery &Query) { return Query.Types[TypeIdx] == Type; };
+}
+
+LegalityPredicate
+LegalityPredicates::typeInSet(unsigned TypeIdx,
+ std::initializer_list<LLT> TypesInit) {
+ SmallVector<LLT, 4> Types = TypesInit;
+ return [=](const LegalityQuery &Query) {
+ return std::find(Types.begin(), Types.end(), Query.Types[TypeIdx]) != Types.end();
+ };
+}
+
+LegalityPredicate LegalityPredicates::typePairInSet(
+ unsigned TypeIdx0, unsigned TypeIdx1,
+ std::initializer_list<std::pair<LLT, LLT>> TypesInit) {
+ SmallVector<std::pair<LLT, LLT>, 4> Types = TypesInit;
+ return [=](const LegalityQuery &Query) {
+ std::pair<LLT, LLT> Match = {Query.Types[TypeIdx0], Query.Types[TypeIdx1]};
+ return std::find(Types.begin(), Types.end(), Match) != Types.end();
+ };
+}
+
+LegalityPredicate LegalityPredicates::typePairAndMemDescInSet(
+ unsigned TypeIdx0, unsigned TypeIdx1, unsigned MMOIdx,
+ std::initializer_list<TypePairAndMemDesc> TypesAndMemDescInit) {
+ SmallVector<TypePairAndMemDesc, 4> TypesAndMemDesc = TypesAndMemDescInit;
+ return [=](const LegalityQuery &Query) {
+ TypePairAndMemDesc Match = {Query.Types[TypeIdx0], Query.Types[TypeIdx1],
+ Query.MMODescrs[MMOIdx].SizeInBits,
+ Query.MMODescrs[MMOIdx].AlignInBits};
+ return std::find_if(
+ TypesAndMemDesc.begin(), TypesAndMemDesc.end(),
+ [=](const TypePairAndMemDesc &Entry) ->bool {
+ return Match.isCompatible(Entry);
+ }) != TypesAndMemDesc.end();
+ };
+}
+
+LegalityPredicate LegalityPredicates::isScalar(unsigned TypeIdx) {
+ return [=](const LegalityQuery &Query) {
+ return Query.Types[TypeIdx].isScalar();
+ };
+}
+
+LegalityPredicate LegalityPredicates::isVector(unsigned TypeIdx) {
+ return [=](const LegalityQuery &Query) {
+ return Query.Types[TypeIdx].isVector();
+ };
+}
+
+LegalityPredicate LegalityPredicates::isPointer(unsigned TypeIdx) {
+ return [=](const LegalityQuery &Query) {
+ return Query.Types[TypeIdx].isPointer();
+ };
+}
+
+LegalityPredicate LegalityPredicates::isPointer(unsigned TypeIdx,
+ unsigned AddrSpace) {
+ return [=](const LegalityQuery &Query) {
+ LLT Ty = Query.Types[TypeIdx];
+ return Ty.isPointer() && Ty.getAddressSpace() == AddrSpace;
+ };
+}
+
+LegalityPredicate LegalityPredicates::narrowerThan(unsigned TypeIdx,
+ unsigned Size) {
+ return [=](const LegalityQuery &Query) {
+ const LLT QueryTy = Query.Types[TypeIdx];
+ return QueryTy.isScalar() && QueryTy.getSizeInBits() < Size;
+ };
+}
+
+LegalityPredicate LegalityPredicates::widerThan(unsigned TypeIdx,
+ unsigned Size) {
+ return [=](const LegalityQuery &Query) {
+ const LLT QueryTy = Query.Types[TypeIdx];
+ return QueryTy.isScalar() && QueryTy.getSizeInBits() > Size;
+ };
+}
+
+LegalityPredicate LegalityPredicates::scalarOrEltNarrowerThan(unsigned TypeIdx,
+ unsigned Size) {
+ return [=](const LegalityQuery &Query) {
+ const LLT QueryTy = Query.Types[TypeIdx];
+ return QueryTy.getScalarSizeInBits() < Size;
+ };
+}
+
+LegalityPredicate LegalityPredicates::scalarOrEltWiderThan(unsigned TypeIdx,
+ unsigned Size) {
+ return [=](const LegalityQuery &Query) {
+ const LLT QueryTy = Query.Types[TypeIdx];
+ return QueryTy.getScalarSizeInBits() > Size;
+ };
+}
+
+LegalityPredicate LegalityPredicates::scalarOrEltSizeNotPow2(unsigned TypeIdx) {
+ return [=](const LegalityQuery &Query) {
+ const LLT QueryTy = Query.Types[TypeIdx];
+ return !isPowerOf2_32(QueryTy.getScalarSizeInBits());
+ };
+}
+
+LegalityPredicate LegalityPredicates::sizeNotPow2(unsigned TypeIdx) {
+ return [=](const LegalityQuery &Query) {
+ const LLT QueryTy = Query.Types[TypeIdx];
+ return QueryTy.isScalar() && !isPowerOf2_32(QueryTy.getSizeInBits());
+ };
+}
+
+LegalityPredicate LegalityPredicates::sameSize(unsigned TypeIdx0,
+ unsigned TypeIdx1) {
+ return [=](const LegalityQuery &Query) {
+ return Query.Types[TypeIdx0].getSizeInBits() ==
+ Query.Types[TypeIdx1].getSizeInBits();
+ };
+}
+
+LegalityPredicate LegalityPredicates::memSizeInBytesNotPow2(unsigned MMOIdx) {
+ return [=](const LegalityQuery &Query) {
+ return !isPowerOf2_32(Query.MMODescrs[MMOIdx].SizeInBits / 8);
+ };
+}
+
+LegalityPredicate LegalityPredicates::numElementsNotPow2(unsigned TypeIdx) {
+ return [=](const LegalityQuery &Query) {
+ const LLT QueryTy = Query.Types[TypeIdx];
+ return QueryTy.isVector() && !isPowerOf2_32(QueryTy.getNumElements());
+ };
+}
+
+LegalityPredicate LegalityPredicates::atomicOrderingAtLeastOrStrongerThan(
+ unsigned MMOIdx, AtomicOrdering Ordering) {
+ return [=](const LegalityQuery &Query) {
+ return isAtLeastOrStrongerThan(Query.MMODescrs[MMOIdx].Ordering, Ordering);
+ };
+}
diff --git a/llvm/lib/CodeGen/GlobalISel/LegalizeMutations.cpp b/llvm/lib/CodeGen/GlobalISel/LegalizeMutations.cpp
new file mode 100644
index 000000000000..fcbecf90a845
--- /dev/null
+++ b/llvm/lib/CodeGen/GlobalISel/LegalizeMutations.cpp
@@ -0,0 +1,71 @@
+//===- lib/CodeGen/GlobalISel/LegalizerMutations.cpp - Mutations ----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// A library of mutation factories to use for LegalityMutation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
+
+using namespace llvm;
+
+LegalizeMutation LegalizeMutations::changeTo(unsigned TypeIdx, LLT Ty) {
+ return
+ [=](const LegalityQuery &Query) { return std::make_pair(TypeIdx, Ty); };
+}
+
+LegalizeMutation LegalizeMutations::changeTo(unsigned TypeIdx,
+ unsigned FromTypeIdx) {
+ return [=](const LegalityQuery &Query) {
+ return std::make_pair(TypeIdx, Query.Types[FromTypeIdx]);
+ };
+}
+
+LegalizeMutation LegalizeMutations::changeElementTo(unsigned TypeIdx,
+ unsigned FromTypeIdx) {
+ return [=](const LegalityQuery &Query) {
+ const LLT OldTy = Query.Types[TypeIdx];
+ const LLT NewTy = Query.Types[FromTypeIdx];
+ return std::make_pair(TypeIdx, OldTy.changeElementType(NewTy));
+ };
+}
+
+LegalizeMutation LegalizeMutations::changeElementTo(unsigned TypeIdx,
+ LLT NewEltTy) {
+ return [=](const LegalityQuery &Query) {
+ const LLT OldTy = Query.Types[TypeIdx];
+ return std::make_pair(TypeIdx, OldTy.changeElementType(NewEltTy));
+ };
+}
+
+LegalizeMutation LegalizeMutations::widenScalarOrEltToNextPow2(unsigned TypeIdx,
+ unsigned Min) {
+ return [=](const LegalityQuery &Query) {
+ const LLT Ty = Query.Types[TypeIdx];
+ unsigned NewEltSizeInBits =
+ std::max(1u << Log2_32_Ceil(Ty.getScalarSizeInBits()), Min);
+ return std::make_pair(TypeIdx, Ty.changeElementSize(NewEltSizeInBits));
+ };
+}
+
+LegalizeMutation LegalizeMutations::moreElementsToNextPow2(unsigned TypeIdx,
+ unsigned Min) {
+ return [=](const LegalityQuery &Query) {
+ const LLT VecTy = Query.Types[TypeIdx];
+ unsigned NewNumElements =
+ std::max(1u << Log2_32_Ceil(VecTy.getNumElements()), Min);
+ return std::make_pair(TypeIdx,
+ LLT::vector(NewNumElements, VecTy.getElementType()));
+ };
+}
+
+LegalizeMutation LegalizeMutations::scalarize(unsigned TypeIdx) {
+ return [=](const LegalityQuery &Query) {
+ return std::make_pair(TypeIdx, Query.Types[TypeIdx].getElementType());
+ };
+}
diff --git a/llvm/lib/CodeGen/GlobalISel/Legalizer.cpp b/llvm/lib/CodeGen/GlobalISel/Legalizer.cpp
new file mode 100644
index 000000000000..1593e21fe07e
--- /dev/null
+++ b/llvm/lib/CodeGen/GlobalISel/Legalizer.cpp
@@ -0,0 +1,299 @@
+//===-- llvm/CodeGen/GlobalISel/Legalizer.cpp -----------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file This file implements the LegalizerHelper class to legalize individual
+/// instructions and the LegalizePass wrapper pass for the primary
+/// legalization.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GlobalISel/Legalizer.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/CodeGen/GlobalISel/CSEInfo.h"
+#include "llvm/CodeGen/GlobalISel/CSEMIRBuilder.h"
+#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
+#include "llvm/CodeGen/GlobalISel/GISelWorkList.h"
+#include "llvm/CodeGen/GlobalISel/LegalizationArtifactCombiner.h"
+#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
+#include "llvm/CodeGen/GlobalISel/Utils.h"
+#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/TargetMachine.h"
+
+#include <iterator>
+
+#define DEBUG_TYPE "legalizer"
+
+using namespace llvm;
+
+static cl::opt<bool>
+ EnableCSEInLegalizer("enable-cse-in-legalizer",
+ cl::desc("Should enable CSE in Legalizer"),
+ cl::Optional, cl::init(false));
+
+char Legalizer::ID = 0;
+INITIALIZE_PASS_BEGIN(Legalizer, DEBUG_TYPE,
+ "Legalize the Machine IR a function's Machine IR", false,
+ false)
+INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
+INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
+INITIALIZE_PASS_END(Legalizer, DEBUG_TYPE,
+ "Legalize the Machine IR a function's Machine IR", false,
+ false)
+
+Legalizer::Legalizer() : MachineFunctionPass(ID) { }
+
+void Legalizer::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<TargetPassConfig>();
+ AU.addRequired<GISelCSEAnalysisWrapperPass>();
+ AU.addPreserved<GISelCSEAnalysisWrapperPass>();
+ getSelectionDAGFallbackAnalysisUsage(AU);
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+void Legalizer::init(MachineFunction &MF) {
+}
+
+static bool isArtifact(const MachineInstr &MI) {
+ switch (MI.getOpcode()) {
+ default:
+ return false;
+ case TargetOpcode::G_TRUNC:
+ case TargetOpcode::G_ZEXT:
+ case TargetOpcode::G_ANYEXT:
+ case TargetOpcode::G_SEXT:
+ case TargetOpcode::G_MERGE_VALUES:
+ case TargetOpcode::G_UNMERGE_VALUES:
+ case TargetOpcode::G_CONCAT_VECTORS:
+ case TargetOpcode::G_BUILD_VECTOR:
+ case TargetOpcode::G_EXTRACT:
+ return true;
+ }
+}
+using InstListTy = GISelWorkList<256>;
+using ArtifactListTy = GISelWorkList<128>;
+
+namespace {
+class LegalizerWorkListManager : public GISelChangeObserver {
+ InstListTy &InstList;
+ ArtifactListTy &ArtifactList;
+#ifndef NDEBUG
+ SmallVector<MachineInstr *, 4> NewMIs;
+#endif
+
+public:
+ LegalizerWorkListManager(InstListTy &Insts, ArtifactListTy &Arts)
+ : InstList(Insts), ArtifactList(Arts) {}
+
+ void createdOrChangedInstr(MachineInstr &MI) {
+ // Only legalize pre-isel generic instructions.
+ // Legalization process could generate Target specific pseudo
+ // instructions with generic types. Don't record them
+ if (isPreISelGenericOpcode(MI.getOpcode())) {
+ if (isArtifact(MI))
+ ArtifactList.insert(&MI);
+ else
+ InstList.insert(&MI);
+ }
+ }
+
+ void createdInstr(MachineInstr &MI) override {
+ LLVM_DEBUG(dbgs() << ".. .. New MI: " << MI);
+ LLVM_DEBUG(NewMIs.push_back(&MI));
+ createdOrChangedInstr(MI);
+ }
+
+ void printNewInstrs() {
+ LLVM_DEBUG({
+ for (const auto *MI : NewMIs)
+ dbgs() << ".. .. New MI: " << *MI;
+ NewMIs.clear();
+ });
+ }
+
+ void erasingInstr(MachineInstr &MI) override {
+ LLVM_DEBUG(dbgs() << ".. .. Erasing: " << MI);
+ InstList.remove(&MI);
+ ArtifactList.remove(&MI);
+ }
+
+ void changingInstr(MachineInstr &MI) override {
+ LLVM_DEBUG(dbgs() << ".. .. Changing MI: " << MI);
+ }
+
+ void changedInstr(MachineInstr &MI) override {
+ // When insts change, we want to revisit them to legalize them again.
+ // We'll consider them the same as created.
+ LLVM_DEBUG(dbgs() << ".. .. Changed MI: " << MI);
+ createdOrChangedInstr(MI);
+ }
+};
+} // namespace
+
+bool Legalizer::runOnMachineFunction(MachineFunction &MF) {
+ // If the ISel pipeline failed, do not bother running that pass.
+ if (MF.getProperties().hasProperty(
+ MachineFunctionProperties::Property::FailedISel))
+ return false;
+ LLVM_DEBUG(dbgs() << "Legalize Machine IR for: " << MF.getName() << '\n');
+ init(MF);
+ const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
+ GISelCSEAnalysisWrapper &Wrapper =
+ getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
+ MachineOptimizationRemarkEmitter MORE(MF, /*MBFI=*/nullptr);
+
+ const size_t NumBlocks = MF.size();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ // Populate Insts
+ InstListTy InstList;
+ ArtifactListTy ArtifactList;
+ ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
+ // Perform legalization bottom up so we can DCE as we legalize.
+ // Traverse BB in RPOT and within each basic block, add insts top down,
+ // so when we pop_back_val in the legalization process, we traverse bottom-up.
+ for (auto *MBB : RPOT) {
+ if (MBB->empty())
+ continue;
+ for (MachineInstr &MI : *MBB) {
+ // Only legalize pre-isel generic instructions: others don't have types
+ // and are assumed to be legal.
+ if (!isPreISelGenericOpcode(MI.getOpcode()))
+ continue;
+ if (isArtifact(MI))
+ ArtifactList.deferred_insert(&MI);
+ else
+ InstList.deferred_insert(&MI);
+ }
+ }
+ ArtifactList.finalize();
+ InstList.finalize();
+ std::unique_ptr<MachineIRBuilder> MIRBuilder;
+ GISelCSEInfo *CSEInfo = nullptr;
+ bool EnableCSE = EnableCSEInLegalizer.getNumOccurrences()
+ ? EnableCSEInLegalizer
+ : TPC.isGISelCSEEnabled();
+
+ if (EnableCSE) {
+ MIRBuilder = std::make_unique<CSEMIRBuilder>();
+ CSEInfo = &Wrapper.get(TPC.getCSEConfig());
+ MIRBuilder->setCSEInfo(CSEInfo);
+ } else
+ MIRBuilder = std::make_unique<MachineIRBuilder>();
+ // This observer keeps the worklist updated.
+ LegalizerWorkListManager WorkListObserver(InstList, ArtifactList);
+ // We want both WorkListObserver as well as CSEInfo to observe all changes.
+ // Use the wrapper observer.
+ GISelObserverWrapper WrapperObserver(&WorkListObserver);
+ if (EnableCSE && CSEInfo)
+ WrapperObserver.addObserver(CSEInfo);
+ // Now install the observer as the delegate to MF.
+ // This will keep all the observers notified about new insertions/deletions.
+ RAIIDelegateInstaller DelInstall(MF, &WrapperObserver);
+ LegalizerHelper Helper(MF, WrapperObserver, *MIRBuilder.get());
+ const LegalizerInfo &LInfo(Helper.getLegalizerInfo());
+ LegalizationArtifactCombiner ArtCombiner(*MIRBuilder.get(), MF.getRegInfo(),
+ LInfo);
+ auto RemoveDeadInstFromLists = [&WrapperObserver](MachineInstr *DeadMI) {
+ WrapperObserver.erasingInstr(*DeadMI);
+ };
+ auto stopLegalizing = [&](MachineInstr &MI) {
+ Helper.MIRBuilder.stopObservingChanges();
+ reportGISelFailure(MF, TPC, MORE, "gisel-legalize",
+ "unable to legalize instruction", MI);
+ };
+ bool Changed = false;
+ SmallVector<MachineInstr *, 128> RetryList;
+ do {
+ assert(RetryList.empty() && "Expected no instructions in RetryList");
+ unsigned NumArtifacts = ArtifactList.size();
+ while (!InstList.empty()) {
+ MachineInstr &MI = *InstList.pop_back_val();
+ assert(isPreISelGenericOpcode(MI.getOpcode()) && "Expecting generic opcode");
+ if (isTriviallyDead(MI, MRI)) {
+ LLVM_DEBUG(dbgs() << MI << "Is dead; erasing.\n");
+ MI.eraseFromParentAndMarkDBGValuesForRemoval();
+ continue;
+ }
+
+ // Do the legalization for this instruction.
+ auto Res = Helper.legalizeInstrStep(MI);
+ // Error out if we couldn't legalize this instruction. We may want to
+ // fall back to DAG ISel instead in the future.
+ if (Res == LegalizerHelper::UnableToLegalize) {
+ // Move illegal artifacts to RetryList instead of aborting because
+ // legalizing InstList may generate artifacts that allow
+ // ArtifactCombiner to combine away them.
+ if (isArtifact(MI)) {
+ RetryList.push_back(&MI);
+ continue;
+ }
+ stopLegalizing(MI);
+ return false;
+ }
+ WorkListObserver.printNewInstrs();
+ Changed |= Res == LegalizerHelper::Legalized;
+ }
+ // Try to combine the instructions in RetryList again if there
+ // are new artifacts. If not, stop legalizing.
+ if (!RetryList.empty()) {
+ if (ArtifactList.size() > NumArtifacts) {
+ while (!RetryList.empty())
+ ArtifactList.insert(RetryList.pop_back_val());
+ } else {
+ MachineInstr *MI = *RetryList.begin();
+ stopLegalizing(*MI);
+ return false;
+ }
+ }
+ while (!ArtifactList.empty()) {
+ MachineInstr &MI = *ArtifactList.pop_back_val();
+ assert(isPreISelGenericOpcode(MI.getOpcode()) && "Expecting generic opcode");
+ if (isTriviallyDead(MI, MRI)) {
+ LLVM_DEBUG(dbgs() << MI << "Is dead\n");
+ RemoveDeadInstFromLists(&MI);
+ MI.eraseFromParentAndMarkDBGValuesForRemoval();
+ continue;
+ }
+ SmallVector<MachineInstr *, 4> DeadInstructions;
+ if (ArtCombiner.tryCombineInstruction(MI, DeadInstructions,
+ WrapperObserver)) {
+ WorkListObserver.printNewInstrs();
+ for (auto *DeadMI : DeadInstructions) {
+ LLVM_DEBUG(dbgs() << *DeadMI << "Is dead\n");
+ RemoveDeadInstFromLists(DeadMI);
+ DeadMI->eraseFromParentAndMarkDBGValuesForRemoval();
+ }
+ Changed = true;
+ continue;
+ }
+ // If this was not an artifact (that could be combined away), this might
+ // need special handling. Add it to InstList, so when it's processed
+ // there, it has to be legal or specially handled.
+ else
+ InstList.insert(&MI);
+ }
+ } while (!InstList.empty());
+
+ // For now don't support if new blocks are inserted - we would need to fix the
+ // outerloop for that.
+ if (MF.size() != NumBlocks) {
+ MachineOptimizationRemarkMissed R("gisel-legalize", "GISelFailure",
+ MF.getFunction().getSubprogram(),
+ /*MBB=*/nullptr);
+ R << "inserting blocks is not supported yet";
+ reportGISelFailure(MF, TPC, MORE, R);
+ return false;
+ }
+
+ return Changed;
+}
diff --git a/llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp b/llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp
new file mode 100644
index 000000000000..21512e543878
--- /dev/null
+++ b/llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp
@@ -0,0 +1,4277 @@
+//===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file This file implements the LegalizerHelper class to legalize
+/// individual instructions and the LegalizeMachineIR wrapper pass for the
+/// primary legalization.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
+#include "llvm/CodeGen/GlobalISel/CallLowering.h"
+#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
+#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetFrameLowering.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+
+#define DEBUG_TYPE "legalizer"
+
+using namespace llvm;
+using namespace LegalizeActions;
+
+/// Try to break down \p OrigTy into \p NarrowTy sized pieces.
+///
+/// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
+/// with any leftover piece as type \p LeftoverTy
+///
+/// Returns -1 in the first element of the pair if the breakdown is not
+/// satisfiable.
+static std::pair<int, int>
+getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
+ assert(!LeftoverTy.isValid() && "this is an out argument");
+
+ unsigned Size = OrigTy.getSizeInBits();
+ unsigned NarrowSize = NarrowTy.getSizeInBits();
+ unsigned NumParts = Size / NarrowSize;
+ unsigned LeftoverSize = Size - NumParts * NarrowSize;
+ assert(Size > NarrowSize);
+
+ if (LeftoverSize == 0)
+ return {NumParts, 0};
+
+ if (NarrowTy.isVector()) {
+ unsigned EltSize = OrigTy.getScalarSizeInBits();
+ if (LeftoverSize % EltSize != 0)
+ return {-1, -1};
+ LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
+ } else {
+ LeftoverTy = LLT::scalar(LeftoverSize);
+ }
+
+ int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
+ return std::make_pair(NumParts, NumLeftover);
+}
+
+LegalizerHelper::LegalizerHelper(MachineFunction &MF,
+ GISelChangeObserver &Observer,
+ MachineIRBuilder &Builder)
+ : MIRBuilder(Builder), MRI(MF.getRegInfo()),
+ LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) {
+ MIRBuilder.setMF(MF);
+ MIRBuilder.setChangeObserver(Observer);
+}
+
+LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
+ GISelChangeObserver &Observer,
+ MachineIRBuilder &B)
+ : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) {
+ MIRBuilder.setMF(MF);
+ MIRBuilder.setChangeObserver(Observer);
+}
+LegalizerHelper::LegalizeResult
+LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
+ LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs()));
+
+ if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
+ MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
+ return LI.legalizeIntrinsic(MI, MRI, MIRBuilder) ? Legalized
+ : UnableToLegalize;
+ auto Step = LI.getAction(MI, MRI);
+ switch (Step.Action) {
+ case Legal:
+ LLVM_DEBUG(dbgs() << ".. Already legal\n");
+ return AlreadyLegal;
+ case Libcall:
+ LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
+ return libcall(MI);
+ case NarrowScalar:
+ LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
+ return narrowScalar(MI, Step.TypeIdx, Step.NewType);
+ case WidenScalar:
+ LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
+ return widenScalar(MI, Step.TypeIdx, Step.NewType);
+ case Lower:
+ LLVM_DEBUG(dbgs() << ".. Lower\n");
+ return lower(MI, Step.TypeIdx, Step.NewType);
+ case FewerElements:
+ LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
+ return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
+ case MoreElements:
+ LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
+ return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
+ case Custom:
+ LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
+ return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized
+ : UnableToLegalize;
+ default:
+ LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
+ return UnableToLegalize;
+ }
+}
+
+void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
+ SmallVectorImpl<Register> &VRegs) {
+ for (int i = 0; i < NumParts; ++i)
+ VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
+ MIRBuilder.buildUnmerge(VRegs, Reg);
+}
+
+bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
+ LLT MainTy, LLT &LeftoverTy,
+ SmallVectorImpl<Register> &VRegs,
+ SmallVectorImpl<Register> &LeftoverRegs) {
+ assert(!LeftoverTy.isValid() && "this is an out argument");
+
+ unsigned RegSize = RegTy.getSizeInBits();
+ unsigned MainSize = MainTy.getSizeInBits();
+ unsigned NumParts = RegSize / MainSize;
+ unsigned LeftoverSize = RegSize - NumParts * MainSize;
+
+ // Use an unmerge when possible.
+ if (LeftoverSize == 0) {
+ for (unsigned I = 0; I < NumParts; ++I)
+ VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
+ MIRBuilder.buildUnmerge(VRegs, Reg);
+ return true;
+ }
+
+ if (MainTy.isVector()) {
+ unsigned EltSize = MainTy.getScalarSizeInBits();
+ if (LeftoverSize % EltSize != 0)
+ return false;
+ LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
+ } else {
+ LeftoverTy = LLT::scalar(LeftoverSize);
+ }
+
+ // For irregular sizes, extract the individual parts.
+ for (unsigned I = 0; I != NumParts; ++I) {
+ Register NewReg = MRI.createGenericVirtualRegister(MainTy);
+ VRegs.push_back(NewReg);
+ MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
+ }
+
+ for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
+ Offset += LeftoverSize) {
+ Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
+ LeftoverRegs.push_back(NewReg);
+ MIRBuilder.buildExtract(NewReg, Reg, Offset);
+ }
+
+ return true;
+}
+
+static LLT getGCDType(LLT OrigTy, LLT TargetTy) {
+ if (OrigTy.isVector() && TargetTy.isVector()) {
+ assert(OrigTy.getElementType() == TargetTy.getElementType());
+ int GCD = greatestCommonDivisor(OrigTy.getNumElements(),
+ TargetTy.getNumElements());
+ return LLT::scalarOrVector(GCD, OrigTy.getElementType());
+ }
+
+ if (OrigTy.isVector() && !TargetTy.isVector()) {
+ assert(OrigTy.getElementType() == TargetTy);
+ return TargetTy;
+ }
+
+ assert(!OrigTy.isVector() && !TargetTy.isVector());
+
+ int GCD = greatestCommonDivisor(OrigTy.getSizeInBits(),
+ TargetTy.getSizeInBits());
+ return LLT::scalar(GCD);
+}
+
+void LegalizerHelper::insertParts(Register DstReg,
+ LLT ResultTy, LLT PartTy,
+ ArrayRef<Register> PartRegs,
+ LLT LeftoverTy,
+ ArrayRef<Register> LeftoverRegs) {
+ if (!LeftoverTy.isValid()) {
+ assert(LeftoverRegs.empty());
+
+ if (!ResultTy.isVector()) {
+ MIRBuilder.buildMerge(DstReg, PartRegs);
+ return;
+ }
+
+ if (PartTy.isVector())
+ MIRBuilder.buildConcatVectors(DstReg, PartRegs);
+ else
+ MIRBuilder.buildBuildVector(DstReg, PartRegs);
+ return;
+ }
+
+ unsigned PartSize = PartTy.getSizeInBits();
+ unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
+
+ Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
+ MIRBuilder.buildUndef(CurResultReg);
+
+ unsigned Offset = 0;
+ for (Register PartReg : PartRegs) {
+ Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
+ MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
+ CurResultReg = NewResultReg;
+ Offset += PartSize;
+ }
+
+ for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
+ // Use the original output register for the final insert to avoid a copy.
+ Register NewResultReg = (I + 1 == E) ?
+ DstReg : MRI.createGenericVirtualRegister(ResultTy);
+
+ MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
+ CurResultReg = NewResultReg;
+ Offset += LeftoverPartSize;
+ }
+}
+
+static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
+ switch (Opcode) {
+ case TargetOpcode::G_SDIV:
+ assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
+ switch (Size) {
+ case 32:
+ return RTLIB::SDIV_I32;
+ case 64:
+ return RTLIB::SDIV_I64;
+ case 128:
+ return RTLIB::SDIV_I128;
+ default:
+ llvm_unreachable("unexpected size");
+ }
+ case TargetOpcode::G_UDIV:
+ assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
+ switch (Size) {
+ case 32:
+ return RTLIB::UDIV_I32;
+ case 64:
+ return RTLIB::UDIV_I64;
+ case 128:
+ return RTLIB::UDIV_I128;
+ default:
+ llvm_unreachable("unexpected size");
+ }
+ case TargetOpcode::G_SREM:
+ assert((Size == 32 || Size == 64) && "Unsupported size");
+ return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32;
+ case TargetOpcode::G_UREM:
+ assert((Size == 32 || Size == 64) && "Unsupported size");
+ return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32;
+ case TargetOpcode::G_CTLZ_ZERO_UNDEF:
+ assert(Size == 32 && "Unsupported size");
+ return RTLIB::CTLZ_I32;
+ case TargetOpcode::G_FADD:
+ assert((Size == 32 || Size == 64) && "Unsupported size");
+ return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32;
+ case TargetOpcode::G_FSUB:
+ assert((Size == 32 || Size == 64) && "Unsupported size");
+ return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32;
+ case TargetOpcode::G_FMUL:
+ assert((Size == 32 || Size == 64) && "Unsupported size");
+ return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32;
+ case TargetOpcode::G_FDIV:
+ assert((Size == 32 || Size == 64) && "Unsupported size");
+ return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32;
+ case TargetOpcode::G_FEXP:
+ assert((Size == 32 || Size == 64) && "Unsupported size");
+ return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32;
+ case TargetOpcode::G_FEXP2:
+ assert((Size == 32 || Size == 64) && "Unsupported size");
+ return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32;
+ case TargetOpcode::G_FREM:
+ return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32;
+ case TargetOpcode::G_FPOW:
+ return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32;
+ case TargetOpcode::G_FMA:
+ assert((Size == 32 || Size == 64) && "Unsupported size");
+ return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32;
+ case TargetOpcode::G_FSIN:
+ assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
+ return Size == 128 ? RTLIB::SIN_F128
+ : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32;
+ case TargetOpcode::G_FCOS:
+ assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
+ return Size == 128 ? RTLIB::COS_F128
+ : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32;
+ case TargetOpcode::G_FLOG10:
+ assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
+ return Size == 128 ? RTLIB::LOG10_F128
+ : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32;
+ case TargetOpcode::G_FLOG:
+ assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
+ return Size == 128 ? RTLIB::LOG_F128
+ : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32;
+ case TargetOpcode::G_FLOG2:
+ assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
+ return Size == 128 ? RTLIB::LOG2_F128
+ : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32;
+ case TargetOpcode::G_FCEIL:
+ assert((Size == 32 || Size == 64) && "Unsupported size");
+ return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32;
+ case TargetOpcode::G_FFLOOR:
+ assert((Size == 32 || Size == 64) && "Unsupported size");
+ return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32;
+ }
+ llvm_unreachable("Unknown libcall function");
+}
+
+/// True if an instruction is in tail position in its caller. Intended for
+/// legalizing libcalls as tail calls when possible.
+static bool isLibCallInTailPosition(MachineInstr &MI) {
+ const Function &F = MI.getParent()->getParent()->getFunction();
+
+ // Conservatively require the attributes of the call to match those of
+ // the return. Ignore NoAlias and NonNull because they don't affect the
+ // call sequence.
+ AttributeList CallerAttrs = F.getAttributes();
+ if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
+ .removeAttribute(Attribute::NoAlias)
+ .removeAttribute(Attribute::NonNull)
+ .hasAttributes())
+ return false;
+
+ // It's not safe to eliminate the sign / zero extension of the return value.
+ if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
+ CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
+ return false;
+
+ // Only tail call if the following instruction is a standard return.
+ auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
+ MachineInstr *Next = MI.getNextNode();
+ if (!Next || TII.isTailCall(*Next) || !Next->isReturn())
+ return false;
+
+ return true;
+}
+
+LegalizerHelper::LegalizeResult
+llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
+ const CallLowering::ArgInfo &Result,
+ ArrayRef<CallLowering::ArgInfo> Args) {
+ auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
+ auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
+ const char *Name = TLI.getLibcallName(Libcall);
+
+ CallLowering::CallLoweringInfo Info;
+ Info.CallConv = TLI.getLibcallCallingConv(Libcall);
+ Info.Callee = MachineOperand::CreateES(Name);
+ Info.OrigRet = Result;
+ std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
+ if (!CLI.lowerCall(MIRBuilder, Info))
+ return LegalizerHelper::UnableToLegalize;
+
+ return LegalizerHelper::Legalized;
+}
+
+// Useful for libcalls where all operands have the same type.
+static LegalizerHelper::LegalizeResult
+simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
+ Type *OpType) {
+ auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
+
+ SmallVector<CallLowering::ArgInfo, 3> Args;
+ for (unsigned i = 1; i < MI.getNumOperands(); i++)
+ Args.push_back({MI.getOperand(i).getReg(), OpType});
+ return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
+ Args);
+}
+
+LegalizerHelper::LegalizeResult
+llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
+ MachineInstr &MI) {
+ assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
+ auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
+
+ SmallVector<CallLowering::ArgInfo, 3> Args;
+ // Add all the args, except for the last which is an imm denoting 'tail'.
+ for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) {
+ Register Reg = MI.getOperand(i).getReg();
+
+ // Need derive an IR type for call lowering.
+ LLT OpLLT = MRI.getType(Reg);
+ Type *OpTy = nullptr;
+ if (OpLLT.isPointer())
+ OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
+ else
+ OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
+ Args.push_back({Reg, OpTy});
+ }
+
+ auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
+ auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
+ Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID();
+ RTLIB::Libcall RTLibcall;
+ switch (ID) {
+ case Intrinsic::memcpy:
+ RTLibcall = RTLIB::MEMCPY;
+ break;
+ case Intrinsic::memset:
+ RTLibcall = RTLIB::MEMSET;
+ break;
+ case Intrinsic::memmove:
+ RTLibcall = RTLIB::MEMMOVE;
+ break;
+ default:
+ return LegalizerHelper::UnableToLegalize;
+ }
+ const char *Name = TLI.getLibcallName(RTLibcall);
+
+ MIRBuilder.setInstr(MI);
+
+ CallLowering::CallLoweringInfo Info;
+ Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
+ Info.Callee = MachineOperand::CreateES(Name);
+ Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
+ Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 &&
+ isLibCallInTailPosition(MI);
+
+ std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
+ if (!CLI.lowerCall(MIRBuilder, Info))
+ return LegalizerHelper::UnableToLegalize;
+
+ if (Info.LoweredTailCall) {
+ assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
+ // We must have a return following the call to get past
+ // isLibCallInTailPosition.
+ assert(MI.getNextNode() && MI.getNextNode()->isReturn() &&
+ "Expected instr following MI to be a return?");
+
+ // We lowered a tail call, so the call is now the return from the block.
+ // Delete the old return.
+ MI.getNextNode()->eraseFromParent();
+ }
+
+ return LegalizerHelper::Legalized;
+}
+
+static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
+ Type *FromType) {
+ auto ToMVT = MVT::getVT(ToType);
+ auto FromMVT = MVT::getVT(FromType);
+
+ switch (Opcode) {
+ case TargetOpcode::G_FPEXT:
+ return RTLIB::getFPEXT(FromMVT, ToMVT);
+ case TargetOpcode::G_FPTRUNC:
+ return RTLIB::getFPROUND(FromMVT, ToMVT);
+ case TargetOpcode::G_FPTOSI:
+ return RTLIB::getFPTOSINT(FromMVT, ToMVT);
+ case TargetOpcode::G_FPTOUI:
+ return RTLIB::getFPTOUINT(FromMVT, ToMVT);
+ case TargetOpcode::G_SITOFP:
+ return RTLIB::getSINTTOFP(FromMVT, ToMVT);
+ case TargetOpcode::G_UITOFP:
+ return RTLIB::getUINTTOFP(FromMVT, ToMVT);
+ }
+ llvm_unreachable("Unsupported libcall function");
+}
+
+static LegalizerHelper::LegalizeResult
+conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
+ Type *FromType) {
+ RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
+ return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
+ {{MI.getOperand(1).getReg(), FromType}});
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::libcall(MachineInstr &MI) {
+ LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
+ unsigned Size = LLTy.getSizeInBits();
+ auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
+
+ MIRBuilder.setInstr(MI);
+
+ switch (MI.getOpcode()) {
+ default:
+ return UnableToLegalize;
+ case TargetOpcode::G_SDIV:
+ case TargetOpcode::G_UDIV:
+ case TargetOpcode::G_SREM:
+ case TargetOpcode::G_UREM:
+ case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
+ Type *HLTy = IntegerType::get(Ctx, Size);
+ auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
+ if (Status != Legalized)
+ return Status;
+ break;
+ }
+ case TargetOpcode::G_FADD:
+ case TargetOpcode::G_FSUB:
+ case TargetOpcode::G_FMUL:
+ case TargetOpcode::G_FDIV:
+ case TargetOpcode::G_FMA:
+ case TargetOpcode::G_FPOW:
+ case TargetOpcode::G_FREM:
+ case TargetOpcode::G_FCOS:
+ case TargetOpcode::G_FSIN:
+ case TargetOpcode::G_FLOG10:
+ case TargetOpcode::G_FLOG:
+ case TargetOpcode::G_FLOG2:
+ case TargetOpcode::G_FEXP:
+ case TargetOpcode::G_FEXP2:
+ case TargetOpcode::G_FCEIL:
+ case TargetOpcode::G_FFLOOR: {
+ if (Size > 64) {
+ LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n");
+ return UnableToLegalize;
+ }
+ Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx);
+ auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
+ if (Status != Legalized)
+ return Status;
+ break;
+ }
+ case TargetOpcode::G_FPEXT: {
+ // FIXME: Support other floating point types (half, fp128 etc)
+ unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
+ unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
+ if (ToSize != 64 || FromSize != 32)
+ return UnableToLegalize;
+ LegalizeResult Status = conversionLibcall(
+ MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx));
+ if (Status != Legalized)
+ return Status;
+ break;
+ }
+ case TargetOpcode::G_FPTRUNC: {
+ // FIXME: Support other floating point types (half, fp128 etc)
+ unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
+ unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
+ if (ToSize != 32 || FromSize != 64)
+ return UnableToLegalize;
+ LegalizeResult Status = conversionLibcall(
+ MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx));
+ if (Status != Legalized)
+ return Status;
+ break;
+ }
+ case TargetOpcode::G_FPTOSI:
+ case TargetOpcode::G_FPTOUI: {
+ // FIXME: Support other types
+ unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
+ unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
+ if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
+ return UnableToLegalize;
+ LegalizeResult Status = conversionLibcall(
+ MI, MIRBuilder,
+ ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
+ FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
+ if (Status != Legalized)
+ return Status;
+ break;
+ }
+ case TargetOpcode::G_SITOFP:
+ case TargetOpcode::G_UITOFP: {
+ // FIXME: Support other types
+ unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
+ unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
+ if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
+ return UnableToLegalize;
+ LegalizeResult Status = conversionLibcall(
+ MI, MIRBuilder,
+ ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
+ FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
+ if (Status != Legalized)
+ return Status;
+ break;
+ }
+ }
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
+ unsigned TypeIdx,
+ LLT NarrowTy) {
+ MIRBuilder.setInstr(MI);
+
+ uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
+ uint64_t NarrowSize = NarrowTy.getSizeInBits();
+
+ switch (MI.getOpcode()) {
+ default:
+ return UnableToLegalize;
+ case TargetOpcode::G_IMPLICIT_DEF: {
+ // FIXME: add support for when SizeOp0 isn't an exact multiple of
+ // NarrowSize.
+ if (SizeOp0 % NarrowSize != 0)
+ return UnableToLegalize;
+ int NumParts = SizeOp0 / NarrowSize;
+
+ SmallVector<Register, 2> DstRegs;
+ for (int i = 0; i < NumParts; ++i)
+ DstRegs.push_back(
+ MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg());
+
+ Register DstReg = MI.getOperand(0).getReg();
+ if(MRI.getType(DstReg).isVector())
+ MIRBuilder.buildBuildVector(DstReg, DstRegs);
+ else
+ MIRBuilder.buildMerge(DstReg, DstRegs);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_CONSTANT: {
+ LLT Ty = MRI.getType(MI.getOperand(0).getReg());
+ const APInt &Val = MI.getOperand(1).getCImm()->getValue();
+ unsigned TotalSize = Ty.getSizeInBits();
+ unsigned NarrowSize = NarrowTy.getSizeInBits();
+ int NumParts = TotalSize / NarrowSize;
+
+ SmallVector<Register, 4> PartRegs;
+ for (int I = 0; I != NumParts; ++I) {
+ unsigned Offset = I * NarrowSize;
+ auto K = MIRBuilder.buildConstant(NarrowTy,
+ Val.lshr(Offset).trunc(NarrowSize));
+ PartRegs.push_back(K.getReg(0));
+ }
+
+ LLT LeftoverTy;
+ unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
+ SmallVector<Register, 1> LeftoverRegs;
+ if (LeftoverBits != 0) {
+ LeftoverTy = LLT::scalar(LeftoverBits);
+ auto K = MIRBuilder.buildConstant(
+ LeftoverTy,
+ Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
+ LeftoverRegs.push_back(K.getReg(0));
+ }
+
+ insertParts(MI.getOperand(0).getReg(),
+ Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
+
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_SEXT: {
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ Register SrcReg = MI.getOperand(1).getReg();
+ LLT SrcTy = MRI.getType(SrcReg);
+
+ // FIXME: support the general case where the requested NarrowTy may not be
+ // the same as the source type. E.g. s128 = sext(s32)
+ if ((SrcTy.getSizeInBits() != SizeOp0 / 2) ||
+ SrcTy.getSizeInBits() != NarrowTy.getSizeInBits()) {
+ LLVM_DEBUG(dbgs() << "Can't narrow sext to type " << NarrowTy << "\n");
+ return UnableToLegalize;
+ }
+
+ // Shift the sign bit of the low register through the high register.
+ auto ShiftAmt =
+ MIRBuilder.buildConstant(LLT::scalar(64), NarrowTy.getSizeInBits() - 1);
+ auto Shift = MIRBuilder.buildAShr(NarrowTy, SrcReg, ShiftAmt);
+ MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {SrcReg, Shift.getReg(0)});
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_ZEXT: {
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
+ uint64_t SizeOp1 = SrcTy.getSizeInBits();
+ if (SizeOp0 % SizeOp1 != 0)
+ return UnableToLegalize;
+
+ // Generate a merge where the bottom bits are taken from the source, and
+ // zero everything else.
+ Register ZeroReg = MIRBuilder.buildConstant(SrcTy, 0).getReg(0);
+ unsigned NumParts = SizeOp0 / SizeOp1;
+ SmallVector<Register, 4> Srcs = {MI.getOperand(1).getReg()};
+ for (unsigned Part = 1; Part < NumParts; ++Part)
+ Srcs.push_back(ZeroReg);
+ MIRBuilder.buildMerge(MI.getOperand(0).getReg(), Srcs);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_TRUNC: {
+ if (TypeIdx != 1)
+ return UnableToLegalize;
+
+ uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
+ if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
+ LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
+ return UnableToLegalize;
+ }
+
+ auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg());
+ MIRBuilder.buildCopy(MI.getOperand(0).getReg(), Unmerge.getReg(0));
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ case TargetOpcode::G_ADD: {
+ // FIXME: add support for when SizeOp0 isn't an exact multiple of
+ // NarrowSize.
+ if (SizeOp0 % NarrowSize != 0)
+ return UnableToLegalize;
+ // Expand in terms of carry-setting/consuming G_ADDE instructions.
+ int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
+
+ SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
+ extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
+ extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
+
+ Register CarryIn;
+ for (int i = 0; i < NumParts; ++i) {
+ Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
+ Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
+
+ if (i == 0)
+ MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
+ else {
+ MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
+ Src2Regs[i], CarryIn);
+ }
+
+ DstRegs.push_back(DstReg);
+ CarryIn = CarryOut;
+ }
+ Register DstReg = MI.getOperand(0).getReg();
+ if(MRI.getType(DstReg).isVector())
+ MIRBuilder.buildBuildVector(DstReg, DstRegs);
+ else
+ MIRBuilder.buildMerge(DstReg, DstRegs);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_SUB: {
+ // FIXME: add support for when SizeOp0 isn't an exact multiple of
+ // NarrowSize.
+ if (SizeOp0 % NarrowSize != 0)
+ return UnableToLegalize;
+
+ int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
+
+ SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
+ extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
+ extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
+
+ Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
+ Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
+ MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
+ {Src1Regs[0], Src2Regs[0]});
+ DstRegs.push_back(DstReg);
+ Register BorrowIn = BorrowOut;
+ for (int i = 1; i < NumParts; ++i) {
+ DstReg = MRI.createGenericVirtualRegister(NarrowTy);
+ BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
+
+ MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
+ {Src1Regs[i], Src2Regs[i], BorrowIn});
+
+ DstRegs.push_back(DstReg);
+ BorrowIn = BorrowOut;
+ }
+ MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_MUL:
+ case TargetOpcode::G_UMULH:
+ return narrowScalarMul(MI, NarrowTy);
+ case TargetOpcode::G_EXTRACT:
+ return narrowScalarExtract(MI, TypeIdx, NarrowTy);
+ case TargetOpcode::G_INSERT:
+ return narrowScalarInsert(MI, TypeIdx, NarrowTy);
+ case TargetOpcode::G_LOAD: {
+ const auto &MMO = **MI.memoperands_begin();
+ Register DstReg = MI.getOperand(0).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ if (DstTy.isVector())
+ return UnableToLegalize;
+
+ if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
+ Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
+ auto &MMO = **MI.memoperands_begin();
+ MIRBuilder.buildLoad(TmpReg, MI.getOperand(1).getReg(), MMO);
+ MIRBuilder.buildAnyExt(DstReg, TmpReg);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
+ }
+ case TargetOpcode::G_ZEXTLOAD:
+ case TargetOpcode::G_SEXTLOAD: {
+ bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
+ Register DstReg = MI.getOperand(0).getReg();
+ Register PtrReg = MI.getOperand(1).getReg();
+
+ Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
+ auto &MMO = **MI.memoperands_begin();
+ if (MMO.getSizeInBits() == NarrowSize) {
+ MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
+ } else {
+ unsigned ExtLoad = ZExt ? TargetOpcode::G_ZEXTLOAD
+ : TargetOpcode::G_SEXTLOAD;
+ MIRBuilder.buildInstr(ExtLoad)
+ .addDef(TmpReg)
+ .addUse(PtrReg)
+ .addMemOperand(&MMO);
+ }
+
+ if (ZExt)
+ MIRBuilder.buildZExt(DstReg, TmpReg);
+ else
+ MIRBuilder.buildSExt(DstReg, TmpReg);
+
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_STORE: {
+ const auto &MMO = **MI.memoperands_begin();
+
+ Register SrcReg = MI.getOperand(0).getReg();
+ LLT SrcTy = MRI.getType(SrcReg);
+ if (SrcTy.isVector())
+ return UnableToLegalize;
+
+ int NumParts = SizeOp0 / NarrowSize;
+ unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
+ unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
+ if (SrcTy.isVector() && LeftoverBits != 0)
+ return UnableToLegalize;
+
+ if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
+ Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
+ auto &MMO = **MI.memoperands_begin();
+ MIRBuilder.buildTrunc(TmpReg, SrcReg);
+ MIRBuilder.buildStore(TmpReg, MI.getOperand(1).getReg(), MMO);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ return reduceLoadStoreWidth(MI, 0, NarrowTy);
+ }
+ case TargetOpcode::G_SELECT:
+ return narrowScalarSelect(MI, TypeIdx, NarrowTy);
+ case TargetOpcode::G_AND:
+ case TargetOpcode::G_OR:
+ case TargetOpcode::G_XOR: {
+ // Legalize bitwise operation:
+ // A = BinOp<Ty> B, C
+ // into:
+ // B1, ..., BN = G_UNMERGE_VALUES B
+ // C1, ..., CN = G_UNMERGE_VALUES C
+ // A1 = BinOp<Ty/N> B1, C2
+ // ...
+ // AN = BinOp<Ty/N> BN, CN
+ // A = G_MERGE_VALUES A1, ..., AN
+ return narrowScalarBasic(MI, TypeIdx, NarrowTy);
+ }
+ case TargetOpcode::G_SHL:
+ case TargetOpcode::G_LSHR:
+ case TargetOpcode::G_ASHR:
+ return narrowScalarShift(MI, TypeIdx, NarrowTy);
+ case TargetOpcode::G_CTLZ:
+ case TargetOpcode::G_CTLZ_ZERO_UNDEF:
+ case TargetOpcode::G_CTTZ:
+ case TargetOpcode::G_CTTZ_ZERO_UNDEF:
+ case TargetOpcode::G_CTPOP:
+ if (TypeIdx != 0)
+ return UnableToLegalize; // TODO
+
+ Observer.changingInstr(MI);
+ narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
+ Observer.changedInstr(MI);
+ return Legalized;
+ case TargetOpcode::G_INTTOPTR:
+ if (TypeIdx != 1)
+ return UnableToLegalize;
+
+ Observer.changingInstr(MI);
+ narrowScalarSrc(MI, NarrowTy, 1);
+ Observer.changedInstr(MI);
+ return Legalized;
+ case TargetOpcode::G_PTRTOINT:
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ Observer.changingInstr(MI);
+ narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
+ Observer.changedInstr(MI);
+ return Legalized;
+ case TargetOpcode::G_PHI: {
+ unsigned NumParts = SizeOp0 / NarrowSize;
+ SmallVector<Register, 2> DstRegs;
+ SmallVector<SmallVector<Register, 2>, 2> SrcRegs;
+ DstRegs.resize(NumParts);
+ SrcRegs.resize(MI.getNumOperands() / 2);
+ Observer.changingInstr(MI);
+ for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
+ MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
+ MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
+ extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
+ SrcRegs[i / 2]);
+ }
+ MachineBasicBlock &MBB = *MI.getParent();
+ MIRBuilder.setInsertPt(MBB, MI);
+ for (unsigned i = 0; i < NumParts; ++i) {
+ DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
+ MachineInstrBuilder MIB =
+ MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
+ for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
+ MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
+ }
+ MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
+ MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs);
+ Observer.changedInstr(MI);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_EXTRACT_VECTOR_ELT:
+ case TargetOpcode::G_INSERT_VECTOR_ELT: {
+ if (TypeIdx != 2)
+ return UnableToLegalize;
+
+ int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
+ Observer.changingInstr(MI);
+ narrowScalarSrc(MI, NarrowTy, OpIdx);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_ICMP: {
+ uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
+ if (NarrowSize * 2 != SrcSize)
+ return UnableToLegalize;
+
+ Observer.changingInstr(MI);
+ Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
+ Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
+ MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2).getReg());
+
+ Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
+ Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
+ MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3).getReg());
+
+ CmpInst::Predicate Pred =
+ static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
+ LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
+
+ if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
+ MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
+ MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
+ MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
+ MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
+ MIRBuilder.buildICmp(Pred, MI.getOperand(0).getReg(), Or, Zero);
+ } else {
+ MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
+ MachineInstrBuilder CmpHEQ =
+ MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
+ MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
+ ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
+ MIRBuilder.buildSelect(MI.getOperand(0).getReg(), CmpHEQ, CmpLU, CmpH);
+ }
+ Observer.changedInstr(MI);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_SEXT_INREG: {
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ if (!MI.getOperand(2).isImm())
+ return UnableToLegalize;
+ int64_t SizeInBits = MI.getOperand(2).getImm();
+
+ // So long as the new type has more bits than the bits we're extending we
+ // don't need to break it apart.
+ if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
+ Observer.changingInstr(MI);
+ // We don't lose any non-extension bits by truncating the src and
+ // sign-extending the dst.
+ MachineOperand &MO1 = MI.getOperand(1);
+ auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1.getReg());
+ MO1.setReg(TruncMIB->getOperand(0).getReg());
+
+ MachineOperand &MO2 = MI.getOperand(0);
+ Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
+ MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
+ MIRBuilder.buildInstr(TargetOpcode::G_SEXT, {MO2.getReg()}, {DstExt});
+ MO2.setReg(DstExt);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+
+ // Break it apart. Components below the extension point are unmodified. The
+ // component containing the extension point becomes a narrower SEXT_INREG.
+ // Components above it are ashr'd from the component containing the
+ // extension point.
+ if (SizeOp0 % NarrowSize != 0)
+ return UnableToLegalize;
+ int NumParts = SizeOp0 / NarrowSize;
+
+ // List the registers where the destination will be scattered.
+ SmallVector<Register, 2> DstRegs;
+ // List the registers where the source will be split.
+ SmallVector<Register, 2> SrcRegs;
+
+ // Create all the temporary registers.
+ for (int i = 0; i < NumParts; ++i) {
+ Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
+
+ SrcRegs.push_back(SrcReg);
+ }
+
+ // Explode the big arguments into smaller chunks.
+ MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1).getReg());
+
+ Register AshrCstReg =
+ MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
+ ->getOperand(0)
+ .getReg();
+ Register FullExtensionReg = 0;
+ Register PartialExtensionReg = 0;
+
+ // Do the operation on each small part.
+ for (int i = 0; i < NumParts; ++i) {
+ if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
+ DstRegs.push_back(SrcRegs[i]);
+ else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
+ assert(PartialExtensionReg &&
+ "Expected to visit partial extension before full");
+ if (FullExtensionReg) {
+ DstRegs.push_back(FullExtensionReg);
+ continue;
+ }
+ DstRegs.push_back(MIRBuilder
+ .buildInstr(TargetOpcode::G_ASHR, {NarrowTy},
+ {PartialExtensionReg, AshrCstReg})
+ ->getOperand(0)
+ .getReg());
+ FullExtensionReg = DstRegs.back();
+ } else {
+ DstRegs.push_back(
+ MIRBuilder
+ .buildInstr(
+ TargetOpcode::G_SEXT_INREG, {NarrowTy},
+ {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
+ ->getOperand(0)
+ .getReg());
+ PartialExtensionReg = DstRegs.back();
+ }
+ }
+
+ // Gather the destination registers into the final destination.
+ Register DstReg = MI.getOperand(0).getReg();
+ MIRBuilder.buildMerge(DstReg, DstRegs);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ }
+}
+
+void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
+ unsigned OpIdx, unsigned ExtOpcode) {
+ MachineOperand &MO = MI.getOperand(OpIdx);
+ auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()});
+ MO.setReg(ExtB->getOperand(0).getReg());
+}
+
+void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
+ unsigned OpIdx) {
+ MachineOperand &MO = MI.getOperand(OpIdx);
+ auto ExtB = MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {NarrowTy},
+ {MO.getReg()});
+ MO.setReg(ExtB->getOperand(0).getReg());
+}
+
+void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
+ unsigned OpIdx, unsigned TruncOpcode) {
+ MachineOperand &MO = MI.getOperand(OpIdx);
+ Register DstExt = MRI.createGenericVirtualRegister(WideTy);
+ MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
+ MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt});
+ MO.setReg(DstExt);
+}
+
+void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
+ unsigned OpIdx, unsigned ExtOpcode) {
+ MachineOperand &MO = MI.getOperand(OpIdx);
+ Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
+ MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
+ MIRBuilder.buildInstr(ExtOpcode, {MO.getReg()}, {DstTrunc});
+ MO.setReg(DstTrunc);
+}
+
+void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
+ unsigned OpIdx) {
+ MachineOperand &MO = MI.getOperand(OpIdx);
+ Register DstExt = MRI.createGenericVirtualRegister(WideTy);
+ MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
+ MIRBuilder.buildExtract(MO.getReg(), DstExt, 0);
+ MO.setReg(DstExt);
+}
+
+void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
+ unsigned OpIdx) {
+ MachineOperand &MO = MI.getOperand(OpIdx);
+
+ LLT OldTy = MRI.getType(MO.getReg());
+ unsigned OldElts = OldTy.getNumElements();
+ unsigned NewElts = MoreTy.getNumElements();
+
+ unsigned NumParts = NewElts / OldElts;
+
+ // Use concat_vectors if the result is a multiple of the number of elements.
+ if (NumParts * OldElts == NewElts) {
+ SmallVector<Register, 8> Parts;
+ Parts.push_back(MO.getReg());
+
+ Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
+ for (unsigned I = 1; I != NumParts; ++I)
+ Parts.push_back(ImpDef);
+
+ auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
+ MO.setReg(Concat.getReg(0));
+ return;
+ }
+
+ Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
+ Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
+ MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
+ MO.setReg(MoreReg);
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
+ LLT WideTy) {
+ if (TypeIdx != 1)
+ return UnableToLegalize;
+
+ Register DstReg = MI.getOperand(0).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ if (DstTy.isVector())
+ return UnableToLegalize;
+
+ Register Src1 = MI.getOperand(1).getReg();
+ LLT SrcTy = MRI.getType(Src1);
+ const int DstSize = DstTy.getSizeInBits();
+ const int SrcSize = SrcTy.getSizeInBits();
+ const int WideSize = WideTy.getSizeInBits();
+ const int NumMerge = (DstSize + WideSize - 1) / WideSize;
+
+ unsigned NumOps = MI.getNumOperands();
+ unsigned NumSrc = MI.getNumOperands() - 1;
+ unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
+
+ if (WideSize >= DstSize) {
+ // Directly pack the bits in the target type.
+ Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
+
+ for (unsigned I = 2; I != NumOps; ++I) {
+ const unsigned Offset = (I - 1) * PartSize;
+
+ Register SrcReg = MI.getOperand(I).getReg();
+ assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
+
+ auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
+
+ Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
+ MRI.createGenericVirtualRegister(WideTy);
+
+ auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
+ auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
+ MIRBuilder.buildOr(NextResult, ResultReg, Shl);
+ ResultReg = NextResult;
+ }
+
+ if (WideSize > DstSize)
+ MIRBuilder.buildTrunc(DstReg, ResultReg);
+ else if (DstTy.isPointer())
+ MIRBuilder.buildIntToPtr(DstReg, ResultReg);
+
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ // Unmerge the original values to the GCD type, and recombine to the next
+ // multiple greater than the original type.
+ //
+ // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
+ // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
+ // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
+ // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
+ // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
+ // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
+ // %12:_(s12) = G_MERGE_VALUES %10, %11
+ //
+ // Padding with undef if necessary:
+ //
+ // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
+ // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
+ // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
+ // %7:_(s2) = G_IMPLICIT_DEF
+ // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
+ // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
+ // %10:_(s12) = G_MERGE_VALUES %8, %9
+
+ const int GCD = greatestCommonDivisor(SrcSize, WideSize);
+ LLT GCDTy = LLT::scalar(GCD);
+
+ SmallVector<Register, 8> Parts;
+ SmallVector<Register, 8> NewMergeRegs;
+ SmallVector<Register, 8> Unmerges;
+ LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
+
+ // Decompose the original operands if they don't evenly divide.
+ for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
+ Register SrcReg = MI.getOperand(I).getReg();
+ if (GCD == SrcSize) {
+ Unmerges.push_back(SrcReg);
+ } else {
+ auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
+ for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
+ Unmerges.push_back(Unmerge.getReg(J));
+ }
+ }
+
+ // Pad with undef to the next size that is a multiple of the requested size.
+ if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
+ Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
+ for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
+ Unmerges.push_back(UndefReg);
+ }
+
+ const int PartsPerGCD = WideSize / GCD;
+
+ // Build merges of each piece.
+ ArrayRef<Register> Slicer(Unmerges);
+ for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
+ auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
+ NewMergeRegs.push_back(Merge.getReg(0));
+ }
+
+ // A truncate may be necessary if the requested type doesn't evenly divide the
+ // original result type.
+ if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
+ MIRBuilder.buildMerge(DstReg, NewMergeRegs);
+ } else {
+ auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
+ MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
+ }
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
+ LLT WideTy) {
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ unsigned NumDst = MI.getNumOperands() - 1;
+ Register SrcReg = MI.getOperand(NumDst).getReg();
+ LLT SrcTy = MRI.getType(SrcReg);
+ if (!SrcTy.isScalar())
+ return UnableToLegalize;
+
+ Register Dst0Reg = MI.getOperand(0).getReg();
+ LLT DstTy = MRI.getType(Dst0Reg);
+ if (!DstTy.isScalar())
+ return UnableToLegalize;
+
+ unsigned NewSrcSize = NumDst * WideTy.getSizeInBits();
+ LLT NewSrcTy = LLT::scalar(NewSrcSize);
+ unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits();
+
+ auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg);
+
+ for (unsigned I = 1; I != NumDst; ++I) {
+ auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I);
+ auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt);
+ WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl);
+ }
+
+ Observer.changingInstr(MI);
+
+ MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg());
+ for (unsigned I = 0; I != NumDst; ++I)
+ widenScalarDst(MI, WideTy, I);
+
+ Observer.changedInstr(MI);
+
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
+ LLT WideTy) {
+ Register DstReg = MI.getOperand(0).getReg();
+ Register SrcReg = MI.getOperand(1).getReg();
+ LLT SrcTy = MRI.getType(SrcReg);
+
+ LLT DstTy = MRI.getType(DstReg);
+ unsigned Offset = MI.getOperand(2).getImm();
+
+ if (TypeIdx == 0) {
+ if (SrcTy.isVector() || DstTy.isVector())
+ return UnableToLegalize;
+
+ SrcOp Src(SrcReg);
+ if (SrcTy.isPointer()) {
+ // Extracts from pointers can be handled only if they are really just
+ // simple integers.
+ const DataLayout &DL = MIRBuilder.getDataLayout();
+ if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
+ return UnableToLegalize;
+
+ LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
+ Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
+ SrcTy = SrcAsIntTy;
+ }
+
+ if (DstTy.isPointer())
+ return UnableToLegalize;
+
+ if (Offset == 0) {
+ // Avoid a shift in the degenerate case.
+ MIRBuilder.buildTrunc(DstReg,
+ MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ // Do a shift in the source type.
+ LLT ShiftTy = SrcTy;
+ if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
+ Src = MIRBuilder.buildAnyExt(WideTy, Src);
+ ShiftTy = WideTy;
+ } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits())
+ return UnableToLegalize;
+
+ auto LShr = MIRBuilder.buildLShr(
+ ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
+ MIRBuilder.buildTrunc(DstReg, LShr);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ if (SrcTy.isScalar()) {
+ Observer.changingInstr(MI);
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+
+ if (!SrcTy.isVector())
+ return UnableToLegalize;
+
+ if (DstTy != SrcTy.getElementType())
+ return UnableToLegalize;
+
+ if (Offset % SrcTy.getScalarSizeInBits() != 0)
+ return UnableToLegalize;
+
+ Observer.changingInstr(MI);
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
+
+ MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
+ Offset);
+ widenScalarDst(MI, WideTy.getScalarType(), 0);
+ Observer.changedInstr(MI);
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
+ LLT WideTy) {
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+ Observer.changingInstr(MI);
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
+ widenScalarDst(MI, WideTy);
+ Observer.changedInstr(MI);
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
+ MIRBuilder.setInstr(MI);
+
+ switch (MI.getOpcode()) {
+ default:
+ return UnableToLegalize;
+ case TargetOpcode::G_EXTRACT:
+ return widenScalarExtract(MI, TypeIdx, WideTy);
+ case TargetOpcode::G_INSERT:
+ return widenScalarInsert(MI, TypeIdx, WideTy);
+ case TargetOpcode::G_MERGE_VALUES:
+ return widenScalarMergeValues(MI, TypeIdx, WideTy);
+ case TargetOpcode::G_UNMERGE_VALUES:
+ return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
+ case TargetOpcode::G_UADDO:
+ case TargetOpcode::G_USUBO: {
+ if (TypeIdx == 1)
+ return UnableToLegalize; // TODO
+ auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy},
+ {MI.getOperand(2).getReg()});
+ auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy},
+ {MI.getOperand(3).getReg()});
+ unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
+ ? TargetOpcode::G_ADD
+ : TargetOpcode::G_SUB;
+ // Do the arithmetic in the larger type.
+ auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
+ LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
+ APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits());
+ auto AndOp = MIRBuilder.buildInstr(
+ TargetOpcode::G_AND, {WideTy},
+ {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())});
+ // There is no overflow if the AndOp is the same as NewOp.
+ MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp,
+ AndOp);
+ // Now trunc the NewOp to the original result.
+ MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_CTTZ:
+ case TargetOpcode::G_CTTZ_ZERO_UNDEF:
+ case TargetOpcode::G_CTLZ:
+ case TargetOpcode::G_CTLZ_ZERO_UNDEF:
+ case TargetOpcode::G_CTPOP: {
+ if (TypeIdx == 0) {
+ Observer.changingInstr(MI);
+ widenScalarDst(MI, WideTy, 0);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+
+ Register SrcReg = MI.getOperand(1).getReg();
+
+ // First ZEXT the input.
+ auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
+ LLT CurTy = MRI.getType(SrcReg);
+ if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
+ // The count is the same in the larger type except if the original
+ // value was zero. This can be handled by setting the bit just off
+ // the top of the original type.
+ auto TopBit =
+ APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
+ MIBSrc = MIRBuilder.buildOr(
+ WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
+ }
+
+ // Perform the operation at the larger size.
+ auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
+ // This is already the correct result for CTPOP and CTTZs
+ if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
+ MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
+ // The correct result is NewOp - (Difference in widety and current ty).
+ unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
+ MIBNewOp = MIRBuilder.buildInstr(
+ TargetOpcode::G_SUB, {WideTy},
+ {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)});
+ }
+
+ MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_BSWAP: {
+ Observer.changingInstr(MI);
+ Register DstReg = MI.getOperand(0).getReg();
+
+ Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
+ Register DstExt = MRI.createGenericVirtualRegister(WideTy);
+ Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
+
+ MI.getOperand(0).setReg(DstExt);
+
+ MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
+
+ LLT Ty = MRI.getType(DstReg);
+ unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
+ MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
+ MIRBuilder.buildInstr(TargetOpcode::G_LSHR)
+ .addDef(ShrReg)
+ .addUse(DstExt)
+ .addUse(ShiftAmtReg);
+
+ MIRBuilder.buildTrunc(DstReg, ShrReg);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_BITREVERSE: {
+ Observer.changingInstr(MI);
+
+ Register DstReg = MI.getOperand(0).getReg();
+ LLT Ty = MRI.getType(DstReg);
+ unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
+
+ Register DstExt = MRI.createGenericVirtualRegister(WideTy);
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
+ MI.getOperand(0).setReg(DstExt);
+ MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
+
+ auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
+ auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
+ MIRBuilder.buildTrunc(DstReg, Shift);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_ADD:
+ case TargetOpcode::G_AND:
+ case TargetOpcode::G_MUL:
+ case TargetOpcode::G_OR:
+ case TargetOpcode::G_XOR:
+ case TargetOpcode::G_SUB:
+ // Perform operation at larger width (any extension is fines here, high bits
+ // don't affect the result) and then truncate the result back to the
+ // original type.
+ Observer.changingInstr(MI);
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
+ widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
+ widenScalarDst(MI, WideTy);
+ Observer.changedInstr(MI);
+ return Legalized;
+
+ case TargetOpcode::G_SHL:
+ Observer.changingInstr(MI);
+
+ if (TypeIdx == 0) {
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
+ widenScalarDst(MI, WideTy);
+ } else {
+ assert(TypeIdx == 1);
+ // The "number of bits to shift" operand must preserve its value as an
+ // unsigned integer:
+ widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
+ }
+
+ Observer.changedInstr(MI);
+ return Legalized;
+
+ case TargetOpcode::G_SDIV:
+ case TargetOpcode::G_SREM:
+ case TargetOpcode::G_SMIN:
+ case TargetOpcode::G_SMAX:
+ Observer.changingInstr(MI);
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
+ widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
+ widenScalarDst(MI, WideTy);
+ Observer.changedInstr(MI);
+ return Legalized;
+
+ case TargetOpcode::G_ASHR:
+ case TargetOpcode::G_LSHR:
+ Observer.changingInstr(MI);
+
+ if (TypeIdx == 0) {
+ unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
+ TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
+
+ widenScalarSrc(MI, WideTy, 1, CvtOp);
+ widenScalarDst(MI, WideTy);
+ } else {
+ assert(TypeIdx == 1);
+ // The "number of bits to shift" operand must preserve its value as an
+ // unsigned integer:
+ widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
+ }
+
+ Observer.changedInstr(MI);
+ return Legalized;
+ case TargetOpcode::G_UDIV:
+ case TargetOpcode::G_UREM:
+ case TargetOpcode::G_UMIN:
+ case TargetOpcode::G_UMAX:
+ Observer.changingInstr(MI);
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
+ widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
+ widenScalarDst(MI, WideTy);
+ Observer.changedInstr(MI);
+ return Legalized;
+
+ case TargetOpcode::G_SELECT:
+ Observer.changingInstr(MI);
+ if (TypeIdx == 0) {
+ // Perform operation at larger width (any extension is fine here, high
+ // bits don't affect the result) and then truncate the result back to the
+ // original type.
+ widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
+ widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
+ widenScalarDst(MI, WideTy);
+ } else {
+ bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
+ // Explicit extension is required here since high bits affect the result.
+ widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
+ }
+ Observer.changedInstr(MI);
+ return Legalized;
+
+ case TargetOpcode::G_FPTOSI:
+ case TargetOpcode::G_FPTOUI:
+ Observer.changingInstr(MI);
+
+ if (TypeIdx == 0)
+ widenScalarDst(MI, WideTy);
+ else
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
+
+ Observer.changedInstr(MI);
+ return Legalized;
+ case TargetOpcode::G_SITOFP:
+ if (TypeIdx != 1)
+ return UnableToLegalize;
+ Observer.changingInstr(MI);
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
+ Observer.changedInstr(MI);
+ return Legalized;
+
+ case TargetOpcode::G_UITOFP:
+ if (TypeIdx != 1)
+ return UnableToLegalize;
+ Observer.changingInstr(MI);
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
+ Observer.changedInstr(MI);
+ return Legalized;
+
+ case TargetOpcode::G_LOAD:
+ case TargetOpcode::G_SEXTLOAD:
+ case TargetOpcode::G_ZEXTLOAD:
+ Observer.changingInstr(MI);
+ widenScalarDst(MI, WideTy);
+ Observer.changedInstr(MI);
+ return Legalized;
+
+ case TargetOpcode::G_STORE: {
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ LLT Ty = MRI.getType(MI.getOperand(0).getReg());
+ if (!isPowerOf2_32(Ty.getSizeInBits()))
+ return UnableToLegalize;
+
+ Observer.changingInstr(MI);
+
+ unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
+ TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
+ widenScalarSrc(MI, WideTy, 0, ExtType);
+
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_CONSTANT: {
+ MachineOperand &SrcMO = MI.getOperand(1);
+ LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
+ const APInt &Val = SrcMO.getCImm()->getValue().sext(WideTy.getSizeInBits());
+ Observer.changingInstr(MI);
+ SrcMO.setCImm(ConstantInt::get(Ctx, Val));
+
+ widenScalarDst(MI, WideTy);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_FCONSTANT: {
+ MachineOperand &SrcMO = MI.getOperand(1);
+ LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
+ APFloat Val = SrcMO.getFPImm()->getValueAPF();
+ bool LosesInfo;
+ switch (WideTy.getSizeInBits()) {
+ case 32:
+ Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
+ &LosesInfo);
+ break;
+ case 64:
+ Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
+ &LosesInfo);
+ break;
+ default:
+ return UnableToLegalize;
+ }
+
+ assert(!LosesInfo && "extend should always be lossless");
+
+ Observer.changingInstr(MI);
+ SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
+
+ widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_IMPLICIT_DEF: {
+ Observer.changingInstr(MI);
+ widenScalarDst(MI, WideTy);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_BRCOND:
+ Observer.changingInstr(MI);
+ widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
+ Observer.changedInstr(MI);
+ return Legalized;
+
+ case TargetOpcode::G_FCMP:
+ Observer.changingInstr(MI);
+ if (TypeIdx == 0)
+ widenScalarDst(MI, WideTy);
+ else {
+ widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
+ widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
+ }
+ Observer.changedInstr(MI);
+ return Legalized;
+
+ case TargetOpcode::G_ICMP:
+ Observer.changingInstr(MI);
+ if (TypeIdx == 0)
+ widenScalarDst(MI, WideTy);
+ else {
+ unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
+ MI.getOperand(1).getPredicate()))
+ ? TargetOpcode::G_SEXT
+ : TargetOpcode::G_ZEXT;
+ widenScalarSrc(MI, WideTy, 2, ExtOpcode);
+ widenScalarSrc(MI, WideTy, 3, ExtOpcode);
+ }
+ Observer.changedInstr(MI);
+ return Legalized;
+
+ case TargetOpcode::G_GEP:
+ assert(TypeIdx == 1 && "unable to legalize pointer of GEP");
+ Observer.changingInstr(MI);
+ widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
+ Observer.changedInstr(MI);
+ return Legalized;
+
+ case TargetOpcode::G_PHI: {
+ assert(TypeIdx == 0 && "Expecting only Idx 0");
+
+ Observer.changingInstr(MI);
+ for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
+ MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
+ MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
+ widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
+ }
+
+ MachineBasicBlock &MBB = *MI.getParent();
+ MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
+ widenScalarDst(MI, WideTy);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
+ if (TypeIdx == 0) {
+ Register VecReg = MI.getOperand(1).getReg();
+ LLT VecTy = MRI.getType(VecReg);
+ Observer.changingInstr(MI);
+
+ widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
+ WideTy.getSizeInBits()),
+ 1, TargetOpcode::G_SEXT);
+
+ widenScalarDst(MI, WideTy, 0);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+
+ if (TypeIdx != 2)
+ return UnableToLegalize;
+ Observer.changingInstr(MI);
+ widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_FADD:
+ case TargetOpcode::G_FMUL:
+ case TargetOpcode::G_FSUB:
+ case TargetOpcode::G_FMA:
+ case TargetOpcode::G_FMAD:
+ case TargetOpcode::G_FNEG:
+ case TargetOpcode::G_FABS:
+ case TargetOpcode::G_FCANONICALIZE:
+ case TargetOpcode::G_FMINNUM:
+ case TargetOpcode::G_FMAXNUM:
+ case TargetOpcode::G_FMINNUM_IEEE:
+ case TargetOpcode::G_FMAXNUM_IEEE:
+ case TargetOpcode::G_FMINIMUM:
+ case TargetOpcode::G_FMAXIMUM:
+ case TargetOpcode::G_FDIV:
+ case TargetOpcode::G_FREM:
+ case TargetOpcode::G_FCEIL:
+ case TargetOpcode::G_FFLOOR:
+ case TargetOpcode::G_FCOS:
+ case TargetOpcode::G_FSIN:
+ case TargetOpcode::G_FLOG10:
+ case TargetOpcode::G_FLOG:
+ case TargetOpcode::G_FLOG2:
+ case TargetOpcode::G_FRINT:
+ case TargetOpcode::G_FNEARBYINT:
+ case TargetOpcode::G_FSQRT:
+ case TargetOpcode::G_FEXP:
+ case TargetOpcode::G_FEXP2:
+ case TargetOpcode::G_FPOW:
+ case TargetOpcode::G_INTRINSIC_TRUNC:
+ case TargetOpcode::G_INTRINSIC_ROUND:
+ assert(TypeIdx == 0);
+ Observer.changingInstr(MI);
+
+ for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
+ widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
+
+ widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
+ Observer.changedInstr(MI);
+ return Legalized;
+ case TargetOpcode::G_INTTOPTR:
+ if (TypeIdx != 1)
+ return UnableToLegalize;
+
+ Observer.changingInstr(MI);
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
+ Observer.changedInstr(MI);
+ return Legalized;
+ case TargetOpcode::G_PTRTOINT:
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ Observer.changingInstr(MI);
+ widenScalarDst(MI, WideTy, 0);
+ Observer.changedInstr(MI);
+ return Legalized;
+ case TargetOpcode::G_BUILD_VECTOR: {
+ Observer.changingInstr(MI);
+
+ const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
+ for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
+ widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
+
+ // Avoid changing the result vector type if the source element type was
+ // requested.
+ if (TypeIdx == 1) {
+ auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
+ MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
+ } else {
+ widenScalarDst(MI, WideTy, 0);
+ }
+
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_SEXT_INREG:
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ Observer.changingInstr(MI);
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
+ widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
+ using namespace TargetOpcode;
+ MIRBuilder.setInstr(MI);
+
+ switch(MI.getOpcode()) {
+ default:
+ return UnableToLegalize;
+ case TargetOpcode::G_SREM:
+ case TargetOpcode::G_UREM: {
+ Register QuotReg = MRI.createGenericVirtualRegister(Ty);
+ MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV)
+ .addDef(QuotReg)
+ .addUse(MI.getOperand(1).getReg())
+ .addUse(MI.getOperand(2).getReg());
+
+ Register ProdReg = MRI.createGenericVirtualRegister(Ty);
+ MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg());
+ MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(),
+ ProdReg);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_SADDO:
+ case TargetOpcode::G_SSUBO:
+ return lowerSADDO_SSUBO(MI);
+ case TargetOpcode::G_SMULO:
+ case TargetOpcode::G_UMULO: {
+ // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
+ // result.
+ Register Res = MI.getOperand(0).getReg();
+ Register Overflow = MI.getOperand(1).getReg();
+ Register LHS = MI.getOperand(2).getReg();
+ Register RHS = MI.getOperand(3).getReg();
+
+ MIRBuilder.buildMul(Res, LHS, RHS);
+
+ unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
+ ? TargetOpcode::G_SMULH
+ : TargetOpcode::G_UMULH;
+
+ Register HiPart = MRI.createGenericVirtualRegister(Ty);
+ MIRBuilder.buildInstr(Opcode)
+ .addDef(HiPart)
+ .addUse(LHS)
+ .addUse(RHS);
+
+ Register Zero = MRI.createGenericVirtualRegister(Ty);
+ MIRBuilder.buildConstant(Zero, 0);
+
+ // For *signed* multiply, overflow is detected by checking:
+ // (hi != (lo >> bitwidth-1))
+ if (Opcode == TargetOpcode::G_SMULH) {
+ Register Shifted = MRI.createGenericVirtualRegister(Ty);
+ Register ShiftAmt = MRI.createGenericVirtualRegister(Ty);
+ MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1);
+ MIRBuilder.buildInstr(TargetOpcode::G_ASHR)
+ .addDef(Shifted)
+ .addUse(Res)
+ .addUse(ShiftAmt);
+ MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
+ } else {
+ MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
+ }
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_FNEG: {
+ // TODO: Handle vector types once we are able to
+ // represent them.
+ if (Ty.isVector())
+ return UnableToLegalize;
+ Register Res = MI.getOperand(0).getReg();
+ Type *ZeroTy;
+ LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
+ switch (Ty.getSizeInBits()) {
+ case 16:
+ ZeroTy = Type::getHalfTy(Ctx);
+ break;
+ case 32:
+ ZeroTy = Type::getFloatTy(Ctx);
+ break;
+ case 64:
+ ZeroTy = Type::getDoubleTy(Ctx);
+ break;
+ case 128:
+ ZeroTy = Type::getFP128Ty(Ctx);
+ break;
+ default:
+ llvm_unreachable("unexpected floating-point type");
+ }
+ ConstantFP &ZeroForNegation =
+ *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
+ auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
+ Register SubByReg = MI.getOperand(1).getReg();
+ Register ZeroReg = Zero->getOperand(0).getReg();
+ MIRBuilder.buildInstr(TargetOpcode::G_FSUB, {Res}, {ZeroReg, SubByReg},
+ MI.getFlags());
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_FSUB: {
+ // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
+ // First, check if G_FNEG is marked as Lower. If so, we may
+ // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
+ if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
+ return UnableToLegalize;
+ Register Res = MI.getOperand(0).getReg();
+ Register LHS = MI.getOperand(1).getReg();
+ Register RHS = MI.getOperand(2).getReg();
+ Register Neg = MRI.createGenericVirtualRegister(Ty);
+ MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS);
+ MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Res}, {LHS, Neg}, MI.getFlags());
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_FMAD:
+ return lowerFMad(MI);
+ case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
+ Register OldValRes = MI.getOperand(0).getReg();
+ Register SuccessRes = MI.getOperand(1).getReg();
+ Register Addr = MI.getOperand(2).getReg();
+ Register CmpVal = MI.getOperand(3).getReg();
+ Register NewVal = MI.getOperand(4).getReg();
+ MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
+ **MI.memoperands_begin());
+ MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_LOAD:
+ case TargetOpcode::G_SEXTLOAD:
+ case TargetOpcode::G_ZEXTLOAD: {
+ // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
+ Register DstReg = MI.getOperand(0).getReg();
+ Register PtrReg = MI.getOperand(1).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ auto &MMO = **MI.memoperands_begin();
+
+ if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
+ if (MI.getOpcode() == TargetOpcode::G_LOAD) {
+ // This load needs splitting into power of 2 sized loads.
+ if (DstTy.isVector())
+ return UnableToLegalize;
+ if (isPowerOf2_32(DstTy.getSizeInBits()))
+ return UnableToLegalize; // Don't know what we're being asked to do.
+
+ // Our strategy here is to generate anyextending loads for the smaller
+ // types up to next power-2 result type, and then combine the two larger
+ // result values together, before truncating back down to the non-pow-2
+ // type.
+ // E.g. v1 = i24 load =>
+ // v2 = i32 load (2 byte)
+ // v3 = i32 load (1 byte)
+ // v4 = i32 shl v3, 16
+ // v5 = i32 or v4, v2
+ // v1 = i24 trunc v5
+ // By doing this we generate the correct truncate which should get
+ // combined away as an artifact with a matching extend.
+ uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
+ uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
+
+ MachineFunction &MF = MIRBuilder.getMF();
+ MachineMemOperand *LargeMMO =
+ MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
+ MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
+ &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
+
+ LLT PtrTy = MRI.getType(PtrReg);
+ unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
+ LLT AnyExtTy = LLT::scalar(AnyExtSize);
+ Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
+ Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
+ auto LargeLoad =
+ MIRBuilder.buildLoad(LargeLdReg, PtrReg, *LargeMMO);
+
+ auto OffsetCst =
+ MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8);
+ Register GEPReg = MRI.createGenericVirtualRegister(PtrTy);
+ auto SmallPtr = MIRBuilder.buildGEP(GEPReg, PtrReg, OffsetCst.getReg(0));
+ auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
+ *SmallMMO);
+
+ auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
+ auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
+ auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
+ MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ if (DstTy.isScalar()) {
+ Register TmpReg =
+ MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
+ MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
+ switch (MI.getOpcode()) {
+ default:
+ llvm_unreachable("Unexpected opcode");
+ case TargetOpcode::G_LOAD:
+ MIRBuilder.buildAnyExt(DstReg, TmpReg);
+ break;
+ case TargetOpcode::G_SEXTLOAD:
+ MIRBuilder.buildSExt(DstReg, TmpReg);
+ break;
+ case TargetOpcode::G_ZEXTLOAD:
+ MIRBuilder.buildZExt(DstReg, TmpReg);
+ break;
+ }
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ return UnableToLegalize;
+ }
+ case TargetOpcode::G_STORE: {
+ // Lower a non-power of 2 store into multiple pow-2 stores.
+ // E.g. split an i24 store into an i16 store + i8 store.
+ // We do this by first extending the stored value to the next largest power
+ // of 2 type, and then using truncating stores to store the components.
+ // By doing this, likewise with G_LOAD, generate an extend that can be
+ // artifact-combined away instead of leaving behind extracts.
+ Register SrcReg = MI.getOperand(0).getReg();
+ Register PtrReg = MI.getOperand(1).getReg();
+ LLT SrcTy = MRI.getType(SrcReg);
+ MachineMemOperand &MMO = **MI.memoperands_begin();
+ if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
+ return UnableToLegalize;
+ if (SrcTy.isVector())
+ return UnableToLegalize;
+ if (isPowerOf2_32(SrcTy.getSizeInBits()))
+ return UnableToLegalize; // Don't know what we're being asked to do.
+
+ // Extend to the next pow-2.
+ const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
+ auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
+
+ // Obtain the smaller value by shifting away the larger value.
+ uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
+ uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
+ auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
+ auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
+
+ // Generate the GEP and truncating stores.
+ LLT PtrTy = MRI.getType(PtrReg);
+ auto OffsetCst =
+ MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8);
+ Register GEPReg = MRI.createGenericVirtualRegister(PtrTy);
+ auto SmallPtr = MIRBuilder.buildGEP(GEPReg, PtrReg, OffsetCst.getReg(0));
+
+ MachineFunction &MF = MIRBuilder.getMF();
+ MachineMemOperand *LargeMMO =
+ MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
+ MachineMemOperand *SmallMMO =
+ MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
+ MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
+ MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_CTLZ_ZERO_UNDEF:
+ case TargetOpcode::G_CTTZ_ZERO_UNDEF:
+ case TargetOpcode::G_CTLZ:
+ case TargetOpcode::G_CTTZ:
+ case TargetOpcode::G_CTPOP:
+ return lowerBitCount(MI, TypeIdx, Ty);
+ case G_UADDO: {
+ Register Res = MI.getOperand(0).getReg();
+ Register CarryOut = MI.getOperand(1).getReg();
+ Register LHS = MI.getOperand(2).getReg();
+ Register RHS = MI.getOperand(3).getReg();
+
+ MIRBuilder.buildAdd(Res, LHS, RHS);
+ MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
+
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case G_UADDE: {
+ Register Res = MI.getOperand(0).getReg();
+ Register CarryOut = MI.getOperand(1).getReg();
+ Register LHS = MI.getOperand(2).getReg();
+ Register RHS = MI.getOperand(3).getReg();
+ Register CarryIn = MI.getOperand(4).getReg();
+
+ Register TmpRes = MRI.createGenericVirtualRegister(Ty);
+ Register ZExtCarryIn = MRI.createGenericVirtualRegister(Ty);
+
+ MIRBuilder.buildAdd(TmpRes, LHS, RHS);
+ MIRBuilder.buildZExt(ZExtCarryIn, CarryIn);
+ MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
+ MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
+
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case G_USUBO: {
+ Register Res = MI.getOperand(0).getReg();
+ Register BorrowOut = MI.getOperand(1).getReg();
+ Register LHS = MI.getOperand(2).getReg();
+ Register RHS = MI.getOperand(3).getReg();
+
+ MIRBuilder.buildSub(Res, LHS, RHS);
+ MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
+
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case G_USUBE: {
+ Register Res = MI.getOperand(0).getReg();
+ Register BorrowOut = MI.getOperand(1).getReg();
+ Register LHS = MI.getOperand(2).getReg();
+ Register RHS = MI.getOperand(3).getReg();
+ Register BorrowIn = MI.getOperand(4).getReg();
+
+ Register TmpRes = MRI.createGenericVirtualRegister(Ty);
+ Register ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty);
+ Register LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1));
+ Register LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1));
+
+ MIRBuilder.buildSub(TmpRes, LHS, RHS);
+ MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn);
+ MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
+ MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS);
+ MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS);
+ MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
+
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case G_UITOFP:
+ return lowerUITOFP(MI, TypeIdx, Ty);
+ case G_SITOFP:
+ return lowerSITOFP(MI, TypeIdx, Ty);
+ case G_FPTOUI:
+ return lowerFPTOUI(MI, TypeIdx, Ty);
+ case G_SMIN:
+ case G_SMAX:
+ case G_UMIN:
+ case G_UMAX:
+ return lowerMinMax(MI, TypeIdx, Ty);
+ case G_FCOPYSIGN:
+ return lowerFCopySign(MI, TypeIdx, Ty);
+ case G_FMINNUM:
+ case G_FMAXNUM:
+ return lowerFMinNumMaxNum(MI);
+ case G_UNMERGE_VALUES:
+ return lowerUnmergeValues(MI);
+ case TargetOpcode::G_SEXT_INREG: {
+ assert(MI.getOperand(2).isImm() && "Expected immediate");
+ int64_t SizeInBits = MI.getOperand(2).getImm();
+
+ Register DstReg = MI.getOperand(0).getReg();
+ Register SrcReg = MI.getOperand(1).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
+
+ auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
+ MIRBuilder.buildInstr(TargetOpcode::G_SHL, {TmpRes}, {SrcReg, MIBSz->getOperand(0).getReg()});
+ MIRBuilder.buildInstr(TargetOpcode::G_ASHR, {DstReg}, {TmpRes, MIBSz->getOperand(0).getReg()});
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case G_SHUFFLE_VECTOR:
+ return lowerShuffleVector(MI);
+ case G_DYN_STACKALLOC:
+ return lowerDynStackAlloc(MI);
+ case G_EXTRACT:
+ return lowerExtract(MI);
+ case G_INSERT:
+ return lowerInsert(MI);
+ }
+}
+
+LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
+ MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
+ SmallVector<Register, 2> DstRegs;
+
+ unsigned NarrowSize = NarrowTy.getSizeInBits();
+ Register DstReg = MI.getOperand(0).getReg();
+ unsigned Size = MRI.getType(DstReg).getSizeInBits();
+ int NumParts = Size / NarrowSize;
+ // FIXME: Don't know how to handle the situation where the small vectors
+ // aren't all the same size yet.
+ if (Size % NarrowSize != 0)
+ return UnableToLegalize;
+
+ for (int i = 0; i < NumParts; ++i) {
+ Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
+ MIRBuilder.buildUndef(TmpReg);
+ DstRegs.push_back(TmpReg);
+ }
+
+ if (NarrowTy.isVector())
+ MIRBuilder.buildConcatVectors(DstReg, DstRegs);
+ else
+ MIRBuilder.buildBuildVector(DstReg, DstRegs);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ const unsigned Opc = MI.getOpcode();
+ const unsigned NumOps = MI.getNumOperands() - 1;
+ const unsigned NarrowSize = NarrowTy.getSizeInBits();
+ const Register DstReg = MI.getOperand(0).getReg();
+ const unsigned Flags = MI.getFlags();
+ const LLT DstTy = MRI.getType(DstReg);
+ const unsigned Size = DstTy.getSizeInBits();
+ const int NumParts = Size / NarrowSize;
+ const LLT EltTy = DstTy.getElementType();
+ const unsigned EltSize = EltTy.getSizeInBits();
+ const unsigned BitsForNumParts = NarrowSize * NumParts;
+
+ // Check if we have any leftovers. If we do, then only handle the case where
+ // the leftover is one element.
+ if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size)
+ return UnableToLegalize;
+
+ if (BitsForNumParts != Size) {
+ Register AccumDstReg = MRI.createGenericVirtualRegister(DstTy);
+ MIRBuilder.buildUndef(AccumDstReg);
+
+ // Handle the pieces which evenly divide into the requested type with
+ // extract/op/insert sequence.
+ for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) {
+ SmallVector<SrcOp, 4> SrcOps;
+ for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
+ Register PartOpReg = MRI.createGenericVirtualRegister(NarrowTy);
+ MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), Offset);
+ SrcOps.push_back(PartOpReg);
+ }
+
+ Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy);
+ MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags);
+
+ Register PartInsertReg = MRI.createGenericVirtualRegister(DstTy);
+ MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset);
+ AccumDstReg = PartInsertReg;
+ }
+
+ // Handle the remaining element sized leftover piece.
+ SmallVector<SrcOp, 4> SrcOps;
+ for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
+ Register PartOpReg = MRI.createGenericVirtualRegister(EltTy);
+ MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(),
+ BitsForNumParts);
+ SrcOps.push_back(PartOpReg);
+ }
+
+ Register PartDstReg = MRI.createGenericVirtualRegister(EltTy);
+ MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags);
+ MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts);
+ MI.eraseFromParent();
+
+ return Legalized;
+ }
+
+ SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
+
+ extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs);
+
+ if (NumOps >= 2)
+ extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs);
+
+ if (NumOps >= 3)
+ extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs);
+
+ for (int i = 0; i < NumParts; ++i) {
+ Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
+
+ if (NumOps == 1)
+ MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags);
+ else if (NumOps == 2) {
+ MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags);
+ } else if (NumOps == 3) {
+ MIRBuilder.buildInstr(Opc, {DstReg},
+ {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags);
+ }
+
+ DstRegs.push_back(DstReg);
+ }
+
+ if (NarrowTy.isVector())
+ MIRBuilder.buildConcatVectors(DstReg, DstRegs);
+ else
+ MIRBuilder.buildBuildVector(DstReg, DstRegs);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+// Handle splitting vector operations which need to have the same number of
+// elements in each type index, but each type index may have a different element
+// type.
+//
+// e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
+// <2 x s64> = G_SHL <2 x s64>, <2 x s32>
+// <2 x s64> = G_SHL <2 x s64>, <2 x s32>
+//
+// Also handles some irregular breakdown cases, e.g.
+// e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
+// <2 x s64> = G_SHL <2 x s64>, <2 x s32>
+// s64 = G_SHL s64, s32
+LegalizerHelper::LegalizeResult
+LegalizerHelper::fewerElementsVectorMultiEltType(
+ MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ const LLT NarrowTy0 = NarrowTyArg;
+ const unsigned NewNumElts =
+ NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
+
+ const Register DstReg = MI.getOperand(0).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ LLT LeftoverTy0;
+
+ // All of the operands need to have the same number of elements, so if we can
+ // determine a type breakdown for the result type, we can for all of the
+ // source types.
+ int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
+ if (NumParts < 0)
+ return UnableToLegalize;
+
+ SmallVector<MachineInstrBuilder, 4> NewInsts;
+
+ SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
+ SmallVector<Register, 4> PartRegs, LeftoverRegs;
+
+ for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
+ LLT LeftoverTy;
+ Register SrcReg = MI.getOperand(I).getReg();
+ LLT SrcTyI = MRI.getType(SrcReg);
+ LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
+ LLT LeftoverTyI;
+
+ // Split this operand into the requested typed registers, and any leftover
+ // required to reproduce the original type.
+ if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
+ LeftoverRegs))
+ return UnableToLegalize;
+
+ if (I == 1) {
+ // For the first operand, create an instruction for each part and setup
+ // the result.
+ for (Register PartReg : PartRegs) {
+ Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
+ NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
+ .addDef(PartDstReg)
+ .addUse(PartReg));
+ DstRegs.push_back(PartDstReg);
+ }
+
+ for (Register LeftoverReg : LeftoverRegs) {
+ Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
+ NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
+ .addDef(PartDstReg)
+ .addUse(LeftoverReg));
+ LeftoverDstRegs.push_back(PartDstReg);
+ }
+ } else {
+ assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
+
+ // Add the newly created operand splits to the existing instructions. The
+ // odd-sized pieces are ordered after the requested NarrowTyArg sized
+ // pieces.
+ unsigned InstCount = 0;
+ for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
+ NewInsts[InstCount++].addUse(PartRegs[J]);
+ for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
+ NewInsts[InstCount++].addUse(LeftoverRegs[J]);
+ }
+
+ PartRegs.clear();
+ LeftoverRegs.clear();
+ }
+
+ // Insert the newly built operations and rebuild the result register.
+ for (auto &MIB : NewInsts)
+ MIRBuilder.insertInstr(MIB);
+
+ insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ Register DstReg = MI.getOperand(0).getReg();
+ Register SrcReg = MI.getOperand(1).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ LLT SrcTy = MRI.getType(SrcReg);
+
+ LLT NarrowTy0 = NarrowTy;
+ LLT NarrowTy1;
+ unsigned NumParts;
+
+ if (NarrowTy.isVector()) {
+ // Uneven breakdown not handled.
+ NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
+ if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
+ return UnableToLegalize;
+
+ NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
+ } else {
+ NumParts = DstTy.getNumElements();
+ NarrowTy1 = SrcTy.getElementType();
+ }
+
+ SmallVector<Register, 4> SrcRegs, DstRegs;
+ extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
+
+ for (unsigned I = 0; I < NumParts; ++I) {
+ Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
+ MachineInstr *NewInst = MIRBuilder.buildInstr(MI.getOpcode())
+ .addDef(DstReg)
+ .addUse(SrcRegs[I]);
+
+ NewInst->setFlags(MI.getFlags());
+ DstRegs.push_back(DstReg);
+ }
+
+ if (NarrowTy.isVector())
+ MIRBuilder.buildConcatVectors(DstReg, DstRegs);
+ else
+ MIRBuilder.buildBuildVector(DstReg, DstRegs);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ Register DstReg = MI.getOperand(0).getReg();
+ Register Src0Reg = MI.getOperand(2).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ LLT SrcTy = MRI.getType(Src0Reg);
+
+ unsigned NumParts;
+ LLT NarrowTy0, NarrowTy1;
+
+ if (TypeIdx == 0) {
+ unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
+ unsigned OldElts = DstTy.getNumElements();
+
+ NarrowTy0 = NarrowTy;
+ NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
+ NarrowTy1 = NarrowTy.isVector() ?
+ LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
+ SrcTy.getElementType();
+
+ } else {
+ unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
+ unsigned OldElts = SrcTy.getNumElements();
+
+ NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
+ NarrowTy.getNumElements();
+ NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
+ DstTy.getScalarSizeInBits());
+ NarrowTy1 = NarrowTy;
+ }
+
+ // FIXME: Don't know how to handle the situation where the small vectors
+ // aren't all the same size yet.
+ if (NarrowTy1.isVector() &&
+ NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
+ return UnableToLegalize;
+
+ CmpInst::Predicate Pred
+ = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
+
+ SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
+ extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
+ extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
+
+ for (unsigned I = 0; I < NumParts; ++I) {
+ Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
+ DstRegs.push_back(DstReg);
+
+ if (MI.getOpcode() == TargetOpcode::G_ICMP)
+ MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
+ else {
+ MachineInstr *NewCmp
+ = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
+ NewCmp->setFlags(MI.getFlags());
+ }
+ }
+
+ if (NarrowTy1.isVector())
+ MIRBuilder.buildConcatVectors(DstReg, DstRegs);
+ else
+ MIRBuilder.buildBuildVector(DstReg, DstRegs);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ Register DstReg = MI.getOperand(0).getReg();
+ Register CondReg = MI.getOperand(1).getReg();
+
+ unsigned NumParts = 0;
+ LLT NarrowTy0, NarrowTy1;
+
+ LLT DstTy = MRI.getType(DstReg);
+ LLT CondTy = MRI.getType(CondReg);
+ unsigned Size = DstTy.getSizeInBits();
+
+ assert(TypeIdx == 0 || CondTy.isVector());
+
+ if (TypeIdx == 0) {
+ NarrowTy0 = NarrowTy;
+ NarrowTy1 = CondTy;
+
+ unsigned NarrowSize = NarrowTy0.getSizeInBits();
+ // FIXME: Don't know how to handle the situation where the small vectors
+ // aren't all the same size yet.
+ if (Size % NarrowSize != 0)
+ return UnableToLegalize;
+
+ NumParts = Size / NarrowSize;
+
+ // Need to break down the condition type
+ if (CondTy.isVector()) {
+ if (CondTy.getNumElements() == NumParts)
+ NarrowTy1 = CondTy.getElementType();
+ else
+ NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
+ CondTy.getScalarSizeInBits());
+ }
+ } else {
+ NumParts = CondTy.getNumElements();
+ if (NarrowTy.isVector()) {
+ // TODO: Handle uneven breakdown.
+ if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
+ return UnableToLegalize;
+
+ return UnableToLegalize;
+ } else {
+ NarrowTy0 = DstTy.getElementType();
+ NarrowTy1 = NarrowTy;
+ }
+ }
+
+ SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
+ if (CondTy.isVector())
+ extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
+
+ extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
+ extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
+
+ for (unsigned i = 0; i < NumParts; ++i) {
+ Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
+ MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
+ Src1Regs[i], Src2Regs[i]);
+ DstRegs.push_back(DstReg);
+ }
+
+ if (NarrowTy0.isVector())
+ MIRBuilder.buildConcatVectors(DstReg, DstRegs);
+ else
+ MIRBuilder.buildBuildVector(DstReg, DstRegs);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ const Register DstReg = MI.getOperand(0).getReg();
+ LLT PhiTy = MRI.getType(DstReg);
+ LLT LeftoverTy;
+
+ // All of the operands need to have the same number of elements, so if we can
+ // determine a type breakdown for the result type, we can for all of the
+ // source types.
+ int NumParts, NumLeftover;
+ std::tie(NumParts, NumLeftover)
+ = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
+ if (NumParts < 0)
+ return UnableToLegalize;
+
+ SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
+ SmallVector<MachineInstrBuilder, 4> NewInsts;
+
+ const int TotalNumParts = NumParts + NumLeftover;
+
+ // Insert the new phis in the result block first.
+ for (int I = 0; I != TotalNumParts; ++I) {
+ LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
+ Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
+ NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
+ .addDef(PartDstReg));
+ if (I < NumParts)
+ DstRegs.push_back(PartDstReg);
+ else
+ LeftoverDstRegs.push_back(PartDstReg);
+ }
+
+ MachineBasicBlock *MBB = MI.getParent();
+ MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
+ insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
+
+ SmallVector<Register, 4> PartRegs, LeftoverRegs;
+
+ // Insert code to extract the incoming values in each predecessor block.
+ for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
+ PartRegs.clear();
+ LeftoverRegs.clear();
+
+ Register SrcReg = MI.getOperand(I).getReg();
+ MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
+ MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
+
+ LLT Unused;
+ if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
+ LeftoverRegs))
+ return UnableToLegalize;
+
+ // Add the newly created operand splits to the existing instructions. The
+ // odd-sized pieces are ordered after the requested NarrowTyArg sized
+ // pieces.
+ for (int J = 0; J != TotalNumParts; ++J) {
+ MachineInstrBuilder MIB = NewInsts[J];
+ MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
+ MIB.addMBB(&OpMBB);
+ }
+ }
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
+ unsigned TypeIdx,
+ LLT NarrowTy) {
+ if (TypeIdx != 1)
+ return UnableToLegalize;
+
+ const int NumDst = MI.getNumOperands() - 1;
+ const Register SrcReg = MI.getOperand(NumDst).getReg();
+ LLT SrcTy = MRI.getType(SrcReg);
+
+ LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
+
+ // TODO: Create sequence of extracts.
+ if (DstTy == NarrowTy)
+ return UnableToLegalize;
+
+ LLT GCDTy = getGCDType(SrcTy, NarrowTy);
+ if (DstTy == GCDTy) {
+ // This would just be a copy of the same unmerge.
+ // TODO: Create extracts, pad with undef and create intermediate merges.
+ return UnableToLegalize;
+ }
+
+ auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
+ const int NumUnmerge = Unmerge->getNumOperands() - 1;
+ const int PartsPerUnmerge = NumDst / NumUnmerge;
+
+ for (int I = 0; I != NumUnmerge; ++I) {
+ auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
+
+ for (int J = 0; J != PartsPerUnmerge; ++J)
+ MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
+ MIB.addUse(Unmerge.getReg(I));
+ }
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI,
+ unsigned TypeIdx,
+ LLT NarrowTy) {
+ assert(TypeIdx == 0 && "not a vector type index");
+ Register DstReg = MI.getOperand(0).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ LLT SrcTy = DstTy.getElementType();
+
+ int DstNumElts = DstTy.getNumElements();
+ int NarrowNumElts = NarrowTy.getNumElements();
+ int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts;
+ LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy);
+
+ SmallVector<Register, 8> ConcatOps;
+ SmallVector<Register, 8> SubBuildVector;
+
+ Register UndefReg;
+ if (WidenedDstTy != DstTy)
+ UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0);
+
+ // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as
+ // necessary.
+ //
+ // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
+ // -> <2 x s16>
+ //
+ // %4:_(s16) = G_IMPLICIT_DEF
+ // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
+ // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
+ // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6
+ // %3:_(<3 x s16>) = G_EXTRACT %7, 0
+ for (int I = 0; I != NumConcat; ++I) {
+ for (int J = 0; J != NarrowNumElts; ++J) {
+ int SrcIdx = NarrowNumElts * I + J;
+
+ if (SrcIdx < DstNumElts) {
+ Register SrcReg = MI.getOperand(SrcIdx + 1).getReg();
+ SubBuildVector.push_back(SrcReg);
+ } else
+ SubBuildVector.push_back(UndefReg);
+ }
+
+ auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector);
+ ConcatOps.push_back(BuildVec.getReg(0));
+ SubBuildVector.clear();
+ }
+
+ if (DstTy == WidenedDstTy)
+ MIRBuilder.buildConcatVectors(DstReg, ConcatOps);
+ else {
+ auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps);
+ MIRBuilder.buildExtract(DstReg, Concat, 0);
+ }
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ // FIXME: Don't know how to handle secondary types yet.
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ MachineMemOperand *MMO = *MI.memoperands_begin();
+
+ // This implementation doesn't work for atomics. Give up instead of doing
+ // something invalid.
+ if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
+ MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
+ return UnableToLegalize;
+
+ bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
+ Register ValReg = MI.getOperand(0).getReg();
+ Register AddrReg = MI.getOperand(1).getReg();
+ LLT ValTy = MRI.getType(ValReg);
+
+ int NumParts = -1;
+ int NumLeftover = -1;
+ LLT LeftoverTy;
+ SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
+ if (IsLoad) {
+ std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
+ } else {
+ if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
+ NarrowLeftoverRegs)) {
+ NumParts = NarrowRegs.size();
+ NumLeftover = NarrowLeftoverRegs.size();
+ }
+ }
+
+ if (NumParts == -1)
+ return UnableToLegalize;
+
+ const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits());
+
+ unsigned TotalSize = ValTy.getSizeInBits();
+
+ // Split the load/store into PartTy sized pieces starting at Offset. If this
+ // is a load, return the new registers in ValRegs. For a store, each elements
+ // of ValRegs should be PartTy. Returns the next offset that needs to be
+ // handled.
+ auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
+ unsigned Offset) -> unsigned {
+ MachineFunction &MF = MIRBuilder.getMF();
+ unsigned PartSize = PartTy.getSizeInBits();
+ for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
+ Offset += PartSize, ++Idx) {
+ unsigned ByteSize = PartSize / 8;
+ unsigned ByteOffset = Offset / 8;
+ Register NewAddrReg;
+
+ MIRBuilder.materializeGEP(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
+
+ MachineMemOperand *NewMMO =
+ MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
+
+ if (IsLoad) {
+ Register Dst = MRI.createGenericVirtualRegister(PartTy);
+ ValRegs.push_back(Dst);
+ MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
+ } else {
+ MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
+ }
+ }
+
+ return Offset;
+ };
+
+ unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
+
+ // Handle the rest of the register if this isn't an even type breakdown.
+ if (LeftoverTy.isValid())
+ splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
+
+ if (IsLoad) {
+ insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
+ LeftoverTy, NarrowLeftoverRegs);
+ }
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ using namespace TargetOpcode;
+
+ MIRBuilder.setInstr(MI);
+ switch (MI.getOpcode()) {
+ case G_IMPLICIT_DEF:
+ return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
+ case G_AND:
+ case G_OR:
+ case G_XOR:
+ case G_ADD:
+ case G_SUB:
+ case G_MUL:
+ case G_SMULH:
+ case G_UMULH:
+ case G_FADD:
+ case G_FMUL:
+ case G_FSUB:
+ case G_FNEG:
+ case G_FABS:
+ case G_FCANONICALIZE:
+ case G_FDIV:
+ case G_FREM:
+ case G_FMA:
+ case G_FMAD:
+ case G_FPOW:
+ case G_FEXP:
+ case G_FEXP2:
+ case G_FLOG:
+ case G_FLOG2:
+ case G_FLOG10:
+ case G_FNEARBYINT:
+ case G_FCEIL:
+ case G_FFLOOR:
+ case G_FRINT:
+ case G_INTRINSIC_ROUND:
+ case G_INTRINSIC_TRUNC:
+ case G_FCOS:
+ case G_FSIN:
+ case G_FSQRT:
+ case G_BSWAP:
+ case G_BITREVERSE:
+ case G_SDIV:
+ case G_SMIN:
+ case G_SMAX:
+ case G_UMIN:
+ case G_UMAX:
+ case G_FMINNUM:
+ case G_FMAXNUM:
+ case G_FMINNUM_IEEE:
+ case G_FMAXNUM_IEEE:
+ case G_FMINIMUM:
+ case G_FMAXIMUM:
+ return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy);
+ case G_SHL:
+ case G_LSHR:
+ case G_ASHR:
+ case G_CTLZ:
+ case G_CTLZ_ZERO_UNDEF:
+ case G_CTTZ:
+ case G_CTTZ_ZERO_UNDEF:
+ case G_CTPOP:
+ case G_FCOPYSIGN:
+ return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
+ case G_ZEXT:
+ case G_SEXT:
+ case G_ANYEXT:
+ case G_FPEXT:
+ case G_FPTRUNC:
+ case G_SITOFP:
+ case G_UITOFP:
+ case G_FPTOSI:
+ case G_FPTOUI:
+ case G_INTTOPTR:
+ case G_PTRTOINT:
+ case G_ADDRSPACE_CAST:
+ return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
+ case G_ICMP:
+ case G_FCMP:
+ return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
+ case G_SELECT:
+ return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
+ case G_PHI:
+ return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
+ case G_UNMERGE_VALUES:
+ return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
+ case G_BUILD_VECTOR:
+ return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy);
+ case G_LOAD:
+ case G_STORE:
+ return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
+ default:
+ return UnableToLegalize;
+ }
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
+ const LLT HalfTy, const LLT AmtTy) {
+
+ Register InL = MRI.createGenericVirtualRegister(HalfTy);
+ Register InH = MRI.createGenericVirtualRegister(HalfTy);
+ MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg());
+
+ if (Amt.isNullValue()) {
+ MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {InL, InH});
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ LLT NVT = HalfTy;
+ unsigned NVTBits = HalfTy.getSizeInBits();
+ unsigned VTBits = 2 * NVTBits;
+
+ SrcOp Lo(Register(0)), Hi(Register(0));
+ if (MI.getOpcode() == TargetOpcode::G_SHL) {
+ if (Amt.ugt(VTBits)) {
+ Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
+ } else if (Amt.ugt(NVTBits)) {
+ Lo = MIRBuilder.buildConstant(NVT, 0);
+ Hi = MIRBuilder.buildShl(NVT, InL,
+ MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
+ } else if (Amt == NVTBits) {
+ Lo = MIRBuilder.buildConstant(NVT, 0);
+ Hi = InL;
+ } else {
+ Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
+ auto OrLHS =
+ MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
+ auto OrRHS = MIRBuilder.buildLShr(
+ NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
+ Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
+ }
+ } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
+ if (Amt.ugt(VTBits)) {
+ Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
+ } else if (Amt.ugt(NVTBits)) {
+ Lo = MIRBuilder.buildLShr(NVT, InH,
+ MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
+ Hi = MIRBuilder.buildConstant(NVT, 0);
+ } else if (Amt == NVTBits) {
+ Lo = InH;
+ Hi = MIRBuilder.buildConstant(NVT, 0);
+ } else {
+ auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
+
+ auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
+ auto OrRHS = MIRBuilder.buildShl(
+ NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
+
+ Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
+ Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
+ }
+ } else {
+ if (Amt.ugt(VTBits)) {
+ Hi = Lo = MIRBuilder.buildAShr(
+ NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
+ } else if (Amt.ugt(NVTBits)) {
+ Lo = MIRBuilder.buildAShr(NVT, InH,
+ MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
+ Hi = MIRBuilder.buildAShr(NVT, InH,
+ MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
+ } else if (Amt == NVTBits) {
+ Lo = InH;
+ Hi = MIRBuilder.buildAShr(NVT, InH,
+ MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
+ } else {
+ auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
+
+ auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
+ auto OrRHS = MIRBuilder.buildShl(
+ NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
+
+ Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
+ Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
+ }
+ }
+
+ MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {Lo.getReg(), Hi.getReg()});
+ MI.eraseFromParent();
+
+ return Legalized;
+}
+
+// TODO: Optimize if constant shift amount.
+LegalizerHelper::LegalizeResult
+LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
+ LLT RequestedTy) {
+ if (TypeIdx == 1) {
+ Observer.changingInstr(MI);
+ narrowScalarSrc(MI, RequestedTy, 2);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+
+ Register DstReg = MI.getOperand(0).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ if (DstTy.isVector())
+ return UnableToLegalize;
+
+ Register Amt = MI.getOperand(2).getReg();
+ LLT ShiftAmtTy = MRI.getType(Amt);
+ const unsigned DstEltSize = DstTy.getScalarSizeInBits();
+ if (DstEltSize % 2 != 0)
+ return UnableToLegalize;
+
+ // Ignore the input type. We can only go to exactly half the size of the
+ // input. If that isn't small enough, the resulting pieces will be further
+ // legalized.
+ const unsigned NewBitSize = DstEltSize / 2;
+ const LLT HalfTy = LLT::scalar(NewBitSize);
+ const LLT CondTy = LLT::scalar(1);
+
+ if (const MachineInstr *KShiftAmt =
+ getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
+ return narrowScalarShiftByConstant(
+ MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
+ }
+
+ // TODO: Expand with known bits.
+
+ // Handle the fully general expansion by an unknown amount.
+ auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
+
+ Register InL = MRI.createGenericVirtualRegister(HalfTy);
+ Register InH = MRI.createGenericVirtualRegister(HalfTy);
+ MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg());
+
+ auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
+ auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
+
+ auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
+ auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
+ auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
+
+ Register ResultRegs[2];
+ switch (MI.getOpcode()) {
+ case TargetOpcode::G_SHL: {
+ // Short: ShAmt < NewBitSize
+ auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
+
+ auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
+ auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
+ auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
+
+ // Long: ShAmt >= NewBitSize
+ auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero.
+ auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
+
+ auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
+ auto Hi = MIRBuilder.buildSelect(
+ HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
+
+ ResultRegs[0] = Lo.getReg(0);
+ ResultRegs[1] = Hi.getReg(0);
+ break;
+ }
+ case TargetOpcode::G_LSHR:
+ case TargetOpcode::G_ASHR: {
+ // Short: ShAmt < NewBitSize
+ auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
+
+ auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
+ auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
+ auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
+
+ // Long: ShAmt >= NewBitSize
+ MachineInstrBuilder HiL;
+ if (MI.getOpcode() == TargetOpcode::G_LSHR) {
+ HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero.
+ } else {
+ auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
+ HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part.
+ }
+ auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
+ {InH, AmtExcess}); // Lo from Hi part.
+
+ auto Lo = MIRBuilder.buildSelect(
+ HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
+
+ auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
+
+ ResultRegs[0] = Lo.getReg(0);
+ ResultRegs[1] = Hi.getReg(0);
+ break;
+ }
+ default:
+ llvm_unreachable("not a shift");
+ }
+
+ MIRBuilder.buildMerge(DstReg, ResultRegs);
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
+ LLT MoreTy) {
+ assert(TypeIdx == 0 && "Expecting only Idx 0");
+
+ Observer.changingInstr(MI);
+ for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
+ MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
+ MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
+ moreElementsVectorSrc(MI, MoreTy, I);
+ }
+
+ MachineBasicBlock &MBB = *MI.getParent();
+ MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
+ moreElementsVectorDst(MI, MoreTy, 0);
+ Observer.changedInstr(MI);
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
+ LLT MoreTy) {
+ MIRBuilder.setInstr(MI);
+ unsigned Opc = MI.getOpcode();
+ switch (Opc) {
+ case TargetOpcode::G_IMPLICIT_DEF:
+ case TargetOpcode::G_LOAD: {
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+ Observer.changingInstr(MI);
+ moreElementsVectorDst(MI, MoreTy, 0);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_STORE:
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+ Observer.changingInstr(MI);
+ moreElementsVectorSrc(MI, MoreTy, 0);
+ Observer.changedInstr(MI);
+ return Legalized;
+ case TargetOpcode::G_AND:
+ case TargetOpcode::G_OR:
+ case TargetOpcode::G_XOR:
+ case TargetOpcode::G_SMIN:
+ case TargetOpcode::G_SMAX:
+ case TargetOpcode::G_UMIN:
+ case TargetOpcode::G_UMAX: {
+ Observer.changingInstr(MI);
+ moreElementsVectorSrc(MI, MoreTy, 1);
+ moreElementsVectorSrc(MI, MoreTy, 2);
+ moreElementsVectorDst(MI, MoreTy, 0);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_EXTRACT:
+ if (TypeIdx != 1)
+ return UnableToLegalize;
+ Observer.changingInstr(MI);
+ moreElementsVectorSrc(MI, MoreTy, 1);
+ Observer.changedInstr(MI);
+ return Legalized;
+ case TargetOpcode::G_INSERT:
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+ Observer.changingInstr(MI);
+ moreElementsVectorSrc(MI, MoreTy, 1);
+ moreElementsVectorDst(MI, MoreTy, 0);
+ Observer.changedInstr(MI);
+ return Legalized;
+ case TargetOpcode::G_SELECT:
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+ if (MRI.getType(MI.getOperand(1).getReg()).isVector())
+ return UnableToLegalize;
+
+ Observer.changingInstr(MI);
+ moreElementsVectorSrc(MI, MoreTy, 2);
+ moreElementsVectorSrc(MI, MoreTy, 3);
+ moreElementsVectorDst(MI, MoreTy, 0);
+ Observer.changedInstr(MI);
+ return Legalized;
+ case TargetOpcode::G_UNMERGE_VALUES: {
+ if (TypeIdx != 1)
+ return UnableToLegalize;
+
+ LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
+ int NumDst = MI.getNumOperands() - 1;
+ moreElementsVectorSrc(MI, MoreTy, NumDst);
+
+ auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
+ for (int I = 0; I != NumDst; ++I)
+ MIB.addDef(MI.getOperand(I).getReg());
+
+ int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
+ for (int I = NumDst; I != NewNumDst; ++I)
+ MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
+
+ MIB.addUse(MI.getOperand(NumDst).getReg());
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_PHI:
+ return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
+ default:
+ return UnableToLegalize;
+ }
+}
+
+void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
+ ArrayRef<Register> Src1Regs,
+ ArrayRef<Register> Src2Regs,
+ LLT NarrowTy) {
+ MachineIRBuilder &B = MIRBuilder;
+ unsigned SrcParts = Src1Regs.size();
+ unsigned DstParts = DstRegs.size();
+
+ unsigned DstIdx = 0; // Low bits of the result.
+ Register FactorSum =
+ B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
+ DstRegs[DstIdx] = FactorSum;
+
+ unsigned CarrySumPrevDstIdx;
+ SmallVector<Register, 4> Factors;
+
+ for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
+ // Collect low parts of muls for DstIdx.
+ for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
+ i <= std::min(DstIdx, SrcParts - 1); ++i) {
+ MachineInstrBuilder Mul =
+ B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
+ Factors.push_back(Mul.getReg(0));
+ }
+ // Collect high parts of muls from previous DstIdx.
+ for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
+ i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
+ MachineInstrBuilder Umulh =
+ B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
+ Factors.push_back(Umulh.getReg(0));
+ }
+ // Add CarrySum from additons calculated for previous DstIdx.
+ if (DstIdx != 1) {
+ Factors.push_back(CarrySumPrevDstIdx);
+ }
+
+ Register CarrySum;
+ // Add all factors and accumulate all carries into CarrySum.
+ if (DstIdx != DstParts - 1) {
+ MachineInstrBuilder Uaddo =
+ B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
+ FactorSum = Uaddo.getReg(0);
+ CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
+ for (unsigned i = 2; i < Factors.size(); ++i) {
+ MachineInstrBuilder Uaddo =
+ B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
+ FactorSum = Uaddo.getReg(0);
+ MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
+ CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
+ }
+ } else {
+ // Since value for the next index is not calculated, neither is CarrySum.
+ FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
+ for (unsigned i = 2; i < Factors.size(); ++i)
+ FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
+ }
+
+ CarrySumPrevDstIdx = CarrySum;
+ DstRegs[DstIdx] = FactorSum;
+ Factors.clear();
+ }
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
+ Register DstReg = MI.getOperand(0).getReg();
+ Register Src1 = MI.getOperand(1).getReg();
+ Register Src2 = MI.getOperand(2).getReg();
+
+ LLT Ty = MRI.getType(DstReg);
+ if (Ty.isVector())
+ return UnableToLegalize;
+
+ unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
+ unsigned DstSize = Ty.getSizeInBits();
+ unsigned NarrowSize = NarrowTy.getSizeInBits();
+ if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
+ return UnableToLegalize;
+
+ unsigned NumDstParts = DstSize / NarrowSize;
+ unsigned NumSrcParts = SrcSize / NarrowSize;
+ bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
+ unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
+
+ SmallVector<Register, 2> Src1Parts, Src2Parts, DstTmpRegs;
+ extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
+ extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
+ DstTmpRegs.resize(DstTmpParts);
+ multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
+
+ // Take only high half of registers if this is high mul.
+ ArrayRef<Register> DstRegs(
+ IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
+ MIRBuilder.buildMerge(DstReg, DstRegs);
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ if (TypeIdx != 1)
+ return UnableToLegalize;
+
+ uint64_t NarrowSize = NarrowTy.getSizeInBits();
+
+ int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
+ // FIXME: add support for when SizeOp1 isn't an exact multiple of
+ // NarrowSize.
+ if (SizeOp1 % NarrowSize != 0)
+ return UnableToLegalize;
+ int NumParts = SizeOp1 / NarrowSize;
+
+ SmallVector<Register, 2> SrcRegs, DstRegs;
+ SmallVector<uint64_t, 2> Indexes;
+ extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
+
+ Register OpReg = MI.getOperand(0).getReg();
+ uint64_t OpStart = MI.getOperand(2).getImm();
+ uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
+ for (int i = 0; i < NumParts; ++i) {
+ unsigned SrcStart = i * NarrowSize;
+
+ if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
+ // No part of the extract uses this subregister, ignore it.
+ continue;
+ } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
+ // The entire subregister is extracted, forward the value.
+ DstRegs.push_back(SrcRegs[i]);
+ continue;
+ }
+
+ // OpSegStart is where this destination segment would start in OpReg if it
+ // extended infinitely in both directions.
+ int64_t ExtractOffset;
+ uint64_t SegSize;
+ if (OpStart < SrcStart) {
+ ExtractOffset = 0;
+ SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
+ } else {
+ ExtractOffset = OpStart - SrcStart;
+ SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
+ }
+
+ Register SegReg = SrcRegs[i];
+ if (ExtractOffset != 0 || SegSize != NarrowSize) {
+ // A genuine extract is needed.
+ SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
+ MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
+ }
+
+ DstRegs.push_back(SegReg);
+ }
+
+ Register DstReg = MI.getOperand(0).getReg();
+ if(MRI.getType(DstReg).isVector())
+ MIRBuilder.buildBuildVector(DstReg, DstRegs);
+ else
+ MIRBuilder.buildMerge(DstReg, DstRegs);
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ // FIXME: Don't know how to handle secondary types yet.
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
+ uint64_t NarrowSize = NarrowTy.getSizeInBits();
+
+ // FIXME: add support for when SizeOp0 isn't an exact multiple of
+ // NarrowSize.
+ if (SizeOp0 % NarrowSize != 0)
+ return UnableToLegalize;
+
+ int NumParts = SizeOp0 / NarrowSize;
+
+ SmallVector<Register, 2> SrcRegs, DstRegs;
+ SmallVector<uint64_t, 2> Indexes;
+ extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
+
+ Register OpReg = MI.getOperand(2).getReg();
+ uint64_t OpStart = MI.getOperand(3).getImm();
+ uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
+ for (int i = 0; i < NumParts; ++i) {
+ unsigned DstStart = i * NarrowSize;
+
+ if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
+ // No part of the insert affects this subregister, forward the original.
+ DstRegs.push_back(SrcRegs[i]);
+ continue;
+ } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
+ // The entire subregister is defined by this insert, forward the new
+ // value.
+ DstRegs.push_back(OpReg);
+ continue;
+ }
+
+ // OpSegStart is where this destination segment would start in OpReg if it
+ // extended infinitely in both directions.
+ int64_t ExtractOffset, InsertOffset;
+ uint64_t SegSize;
+ if (OpStart < DstStart) {
+ InsertOffset = 0;
+ ExtractOffset = DstStart - OpStart;
+ SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
+ } else {
+ InsertOffset = OpStart - DstStart;
+ ExtractOffset = 0;
+ SegSize =
+ std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
+ }
+
+ Register SegReg = OpReg;
+ if (ExtractOffset != 0 || SegSize != OpSize) {
+ // A genuine extract is needed.
+ SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
+ MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
+ }
+
+ Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
+ MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
+ DstRegs.push_back(DstReg);
+ }
+
+ assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
+ Register DstReg = MI.getOperand(0).getReg();
+ if(MRI.getType(DstReg).isVector())
+ MIRBuilder.buildBuildVector(DstReg, DstRegs);
+ else
+ MIRBuilder.buildMerge(DstReg, DstRegs);
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ Register DstReg = MI.getOperand(0).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+
+ assert(MI.getNumOperands() == 3 && TypeIdx == 0);
+
+ SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
+ SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
+ SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
+ LLT LeftoverTy;
+ if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
+ Src0Regs, Src0LeftoverRegs))
+ return UnableToLegalize;
+
+ LLT Unused;
+ if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
+ Src1Regs, Src1LeftoverRegs))
+ llvm_unreachable("inconsistent extractParts result");
+
+ for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
+ auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
+ {Src0Regs[I], Src1Regs[I]});
+ DstRegs.push_back(Inst->getOperand(0).getReg());
+ }
+
+ for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
+ auto Inst = MIRBuilder.buildInstr(
+ MI.getOpcode(),
+ {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
+ DstLeftoverRegs.push_back(Inst->getOperand(0).getReg());
+ }
+
+ insertParts(DstReg, DstTy, NarrowTy, DstRegs,
+ LeftoverTy, DstLeftoverRegs);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ Register CondReg = MI.getOperand(1).getReg();
+ LLT CondTy = MRI.getType(CondReg);
+ if (CondTy.isVector()) // TODO: Handle vselect
+ return UnableToLegalize;
+
+ Register DstReg = MI.getOperand(0).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+
+ SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
+ SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
+ SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
+ LLT LeftoverTy;
+ if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
+ Src1Regs, Src1LeftoverRegs))
+ return UnableToLegalize;
+
+ LLT Unused;
+ if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
+ Src2Regs, Src2LeftoverRegs))
+ llvm_unreachable("inconsistent extractParts result");
+
+ for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
+ auto Select = MIRBuilder.buildSelect(NarrowTy,
+ CondReg, Src1Regs[I], Src2Regs[I]);
+ DstRegs.push_back(Select->getOperand(0).getReg());
+ }
+
+ for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
+ auto Select = MIRBuilder.buildSelect(
+ LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
+ DstLeftoverRegs.push_back(Select->getOperand(0).getReg());
+ }
+
+ insertParts(DstReg, DstTy, NarrowTy, DstRegs,
+ LeftoverTy, DstLeftoverRegs);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
+ unsigned Opc = MI.getOpcode();
+ auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
+ auto isSupported = [this](const LegalityQuery &Q) {
+ auto QAction = LI.getAction(Q).Action;
+ return QAction == Legal || QAction == Libcall || QAction == Custom;
+ };
+ switch (Opc) {
+ default:
+ return UnableToLegalize;
+ case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
+ // This trivially expands to CTLZ.
+ Observer.changingInstr(MI);
+ MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_CTLZ: {
+ Register SrcReg = MI.getOperand(1).getReg();
+ unsigned Len = Ty.getSizeInBits();
+ if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) {
+ // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
+ auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF,
+ {Ty}, {SrcReg});
+ auto MIBZero = MIRBuilder.buildConstant(Ty, 0);
+ auto MIBLen = MIRBuilder.buildConstant(Ty, Len);
+ auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
+ SrcReg, MIBZero);
+ MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen,
+ MIBCtlzZU);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ // for now, we do this:
+ // NewLen = NextPowerOf2(Len);
+ // x = x | (x >> 1);
+ // x = x | (x >> 2);
+ // ...
+ // x = x | (x >>16);
+ // x = x | (x >>32); // for 64-bit input
+ // Upto NewLen/2
+ // return Len - popcount(x);
+ //
+ // Ref: "Hacker's Delight" by Henry Warren
+ Register Op = SrcReg;
+ unsigned NewLen = PowerOf2Ceil(Len);
+ for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
+ auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i);
+ auto MIBOp = MIRBuilder.buildInstr(
+ TargetOpcode::G_OR, {Ty},
+ {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty},
+ {Op, MIBShiftAmt})});
+ Op = MIBOp->getOperand(0).getReg();
+ }
+ auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op});
+ MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()},
+ {MIRBuilder.buildConstant(Ty, Len), MIBPop});
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
+ // This trivially expands to CTTZ.
+ Observer.changingInstr(MI);
+ MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_CTTZ: {
+ Register SrcReg = MI.getOperand(1).getReg();
+ unsigned Len = Ty.getSizeInBits();
+ if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) {
+ // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
+ // zero.
+ auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF,
+ {Ty}, {SrcReg});
+ auto MIBZero = MIRBuilder.buildConstant(Ty, 0);
+ auto MIBLen = MIRBuilder.buildConstant(Ty, Len);
+ auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
+ SrcReg, MIBZero);
+ MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen,
+ MIBCttzZU);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ // for now, we use: { return popcount(~x & (x - 1)); }
+ // unless the target has ctlz but not ctpop, in which case we use:
+ // { return 32 - nlz(~x & (x-1)); }
+ // Ref: "Hacker's Delight" by Henry Warren
+ auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1);
+ auto MIBNot =
+ MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1});
+ auto MIBTmp = MIRBuilder.buildInstr(
+ TargetOpcode::G_AND, {Ty},
+ {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty},
+ {SrcReg, MIBCstNeg1})});
+ if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) &&
+ isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) {
+ auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len);
+ MIRBuilder.buildInstr(
+ TargetOpcode::G_SUB, {MI.getOperand(0).getReg()},
+ {MIBCstLen,
+ MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})});
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
+ MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg());
+ return Legalized;
+ }
+ }
+}
+
+// Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
+// representation.
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
+ Register Dst = MI.getOperand(0).getReg();
+ Register Src = MI.getOperand(1).getReg();
+ const LLT S64 = LLT::scalar(64);
+ const LLT S32 = LLT::scalar(32);
+ const LLT S1 = LLT::scalar(1);
+
+ assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
+
+ // unsigned cul2f(ulong u) {
+ // uint lz = clz(u);
+ // uint e = (u != 0) ? 127U + 63U - lz : 0;
+ // u = (u << lz) & 0x7fffffffffffffffUL;
+ // ulong t = u & 0xffffffffffUL;
+ // uint v = (e << 23) | (uint)(u >> 40);
+ // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
+ // return as_float(v + r);
+ // }
+
+ auto Zero32 = MIRBuilder.buildConstant(S32, 0);
+ auto Zero64 = MIRBuilder.buildConstant(S64, 0);
+
+ auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
+
+ auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
+ auto Sub = MIRBuilder.buildSub(S32, K, LZ);
+
+ auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
+ auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
+
+ auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
+ auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
+
+ auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
+
+ auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
+ auto T = MIRBuilder.buildAnd(S64, U, Mask1);
+
+ auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
+ auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
+ auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
+
+ auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
+ auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
+ auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
+ auto One = MIRBuilder.buildConstant(S32, 1);
+
+ auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
+ auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
+ auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
+ MIRBuilder.buildAdd(Dst, V, R);
+
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
+ Register Dst = MI.getOperand(0).getReg();
+ Register Src = MI.getOperand(1).getReg();
+ LLT DstTy = MRI.getType(Dst);
+ LLT SrcTy = MRI.getType(Src);
+
+ if (SrcTy != LLT::scalar(64))
+ return UnableToLegalize;
+
+ if (DstTy == LLT::scalar(32)) {
+ // TODO: SelectionDAG has several alternative expansions to port which may
+ // be more reasonble depending on the available instructions. If a target
+ // has sitofp, does not have CTLZ, or can efficiently use f64 as an
+ // intermediate type, this is probably worse.
+ return lowerU64ToF32BitOps(MI);
+ }
+
+ return UnableToLegalize;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
+ Register Dst = MI.getOperand(0).getReg();
+ Register Src = MI.getOperand(1).getReg();
+ LLT DstTy = MRI.getType(Dst);
+ LLT SrcTy = MRI.getType(Src);
+
+ const LLT S64 = LLT::scalar(64);
+ const LLT S32 = LLT::scalar(32);
+ const LLT S1 = LLT::scalar(1);
+
+ if (SrcTy != S64)
+ return UnableToLegalize;
+
+ if (DstTy == S32) {
+ // signed cl2f(long l) {
+ // long s = l >> 63;
+ // float r = cul2f((l + s) ^ s);
+ // return s ? -r : r;
+ // }
+ Register L = Src;
+ auto SignBit = MIRBuilder.buildConstant(S64, 63);
+ auto S = MIRBuilder.buildAShr(S64, L, SignBit);
+
+ auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
+ auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
+ auto R = MIRBuilder.buildUITOFP(S32, Xor);
+
+ auto RNeg = MIRBuilder.buildFNeg(S32, R);
+ auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
+ MIRBuilder.buildConstant(S64, 0));
+ MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
+ return Legalized;
+ }
+
+ return UnableToLegalize;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
+ Register Dst = MI.getOperand(0).getReg();
+ Register Src = MI.getOperand(1).getReg();
+ LLT DstTy = MRI.getType(Dst);
+ LLT SrcTy = MRI.getType(Src);
+ const LLT S64 = LLT::scalar(64);
+ const LLT S32 = LLT::scalar(32);
+
+ if (SrcTy != S64 && SrcTy != S32)
+ return UnableToLegalize;
+ if (DstTy != S32 && DstTy != S64)
+ return UnableToLegalize;
+
+ // FPTOSI gives same result as FPTOUI for positive signed integers.
+ // FPTOUI needs to deal with fp values that convert to unsigned integers
+ // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
+
+ APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
+ APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
+ : APFloat::IEEEdouble(),
+ APInt::getNullValue(SrcTy.getSizeInBits()));
+ TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
+
+ MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
+
+ MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
+ // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
+ // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
+ MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
+ MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
+ MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
+ MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
+
+ MachineInstrBuilder FCMP =
+ MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, DstTy, Src, Threshold);
+ MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
+ switch (Opc) {
+ case TargetOpcode::G_SMIN:
+ return CmpInst::ICMP_SLT;
+ case TargetOpcode::G_SMAX:
+ return CmpInst::ICMP_SGT;
+ case TargetOpcode::G_UMIN:
+ return CmpInst::ICMP_ULT;
+ case TargetOpcode::G_UMAX:
+ return CmpInst::ICMP_UGT;
+ default:
+ llvm_unreachable("not in integer min/max");
+ }
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
+ Register Dst = MI.getOperand(0).getReg();
+ Register Src0 = MI.getOperand(1).getReg();
+ Register Src1 = MI.getOperand(2).getReg();
+
+ const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
+ LLT CmpType = MRI.getType(Dst).changeElementSize(1);
+
+ auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
+ MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
+ Register Dst = MI.getOperand(0).getReg();
+ Register Src0 = MI.getOperand(1).getReg();
+ Register Src1 = MI.getOperand(2).getReg();
+
+ const LLT Src0Ty = MRI.getType(Src0);
+ const LLT Src1Ty = MRI.getType(Src1);
+
+ const int Src0Size = Src0Ty.getScalarSizeInBits();
+ const int Src1Size = Src1Ty.getScalarSizeInBits();
+
+ auto SignBitMask = MIRBuilder.buildConstant(
+ Src0Ty, APInt::getSignMask(Src0Size));
+
+ auto NotSignBitMask = MIRBuilder.buildConstant(
+ Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
+
+ auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
+ MachineInstr *Or;
+
+ if (Src0Ty == Src1Ty) {
+ auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask);
+ Or = MIRBuilder.buildOr(Dst, And0, And1);
+ } else if (Src0Size > Src1Size) {
+ auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
+ auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
+ auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
+ auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
+ Or = MIRBuilder.buildOr(Dst, And0, And1);
+ } else {
+ auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
+ auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
+ auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
+ auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
+ Or = MIRBuilder.buildOr(Dst, And0, And1);
+ }
+
+ // Be careful about setting nsz/nnan/ninf on every instruction, since the
+ // constants are a nan and -0.0, but the final result should preserve
+ // everything.
+ if (unsigned Flags = MI.getFlags())
+ Or->setFlags(Flags);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
+ unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
+ TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
+
+ Register Dst = MI.getOperand(0).getReg();
+ Register Src0 = MI.getOperand(1).getReg();
+ Register Src1 = MI.getOperand(2).getReg();
+ LLT Ty = MRI.getType(Dst);
+
+ if (!MI.getFlag(MachineInstr::FmNoNans)) {
+ // Insert canonicalizes if it's possible we need to quiet to get correct
+ // sNaN behavior.
+
+ // Note this must be done here, and not as an optimization combine in the
+ // absence of a dedicate quiet-snan instruction as we're using an
+ // omni-purpose G_FCANONICALIZE.
+ if (!isKnownNeverSNaN(Src0, MRI))
+ Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
+
+ if (!isKnownNeverSNaN(Src1, MRI))
+ Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
+ }
+
+ // If there are no nans, it's safe to simply replace this with the non-IEEE
+ // version.
+ MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
+ // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
+ Register DstReg = MI.getOperand(0).getReg();
+ LLT Ty = MRI.getType(DstReg);
+ unsigned Flags = MI.getFlags();
+
+ auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
+ Flags);
+ MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
+ const unsigned NumDst = MI.getNumOperands() - 1;
+ const Register SrcReg = MI.getOperand(NumDst).getReg();
+ LLT SrcTy = MRI.getType(SrcReg);
+
+ Register Dst0Reg = MI.getOperand(0).getReg();
+ LLT DstTy = MRI.getType(Dst0Reg);
+
+
+ // Expand scalarizing unmerge as bitcast to integer and shift.
+ if (!DstTy.isVector() && SrcTy.isVector() &&
+ SrcTy.getElementType() == DstTy) {
+ LLT IntTy = LLT::scalar(SrcTy.getSizeInBits());
+ Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0);
+
+ MIRBuilder.buildTrunc(Dst0Reg, Cast);
+
+ const unsigned DstSize = DstTy.getSizeInBits();
+ unsigned Offset = DstSize;
+ for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
+ auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
+ auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt);
+ MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
+ }
+
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ return UnableToLegalize;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
+ Register DstReg = MI.getOperand(0).getReg();
+ Register Src0Reg = MI.getOperand(1).getReg();
+ Register Src1Reg = MI.getOperand(2).getReg();
+ LLT Src0Ty = MRI.getType(Src0Reg);
+ LLT DstTy = MRI.getType(DstReg);
+ LLT IdxTy = LLT::scalar(32);
+
+ const Constant *ShufMask = MI.getOperand(3).getShuffleMask();
+
+ SmallVector<int, 32> Mask;
+ ShuffleVectorInst::getShuffleMask(ShufMask, Mask);
+
+ if (DstTy.isScalar()) {
+ if (Src0Ty.isVector())
+ return UnableToLegalize;
+
+ // This is just a SELECT.
+ assert(Mask.size() == 1 && "Expected a single mask element");
+ Register Val;
+ if (Mask[0] < 0 || Mask[0] > 1)
+ Val = MIRBuilder.buildUndef(DstTy).getReg(0);
+ else
+ Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
+ MIRBuilder.buildCopy(DstReg, Val);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ Register Undef;
+ SmallVector<Register, 32> BuildVec;
+ LLT EltTy = DstTy.getElementType();
+
+ for (int Idx : Mask) {
+ if (Idx < 0) {
+ if (!Undef.isValid())
+ Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
+ BuildVec.push_back(Undef);
+ continue;
+ }
+
+ if (Src0Ty.isScalar()) {
+ BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
+ } else {
+ int NumElts = Src0Ty.getNumElements();
+ Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
+ int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
+ auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
+ auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
+ BuildVec.push_back(Extract.getReg(0));
+ }
+ }
+
+ MIRBuilder.buildBuildVector(DstReg, BuildVec);
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
+ Register Dst = MI.getOperand(0).getReg();
+ Register AllocSize = MI.getOperand(1).getReg();
+ unsigned Align = MI.getOperand(2).getImm();
+
+ const auto &MF = *MI.getMF();
+ const auto &TLI = *MF.getSubtarget().getTargetLowering();
+
+ LLT PtrTy = MRI.getType(Dst);
+ LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
+
+ Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
+ auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
+ SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
+
+ // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
+ // have to generate an extra instruction to negate the alloc and then use
+ // G_GEP to add the negative offset.
+ auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
+ if (Align) {
+ APInt AlignMask(IntPtrTy.getSizeInBits(), Align, true);
+ AlignMask.negate();
+ auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
+ Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
+ }
+
+ SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
+ MIRBuilder.buildCopy(SPReg, SPTmp);
+ MIRBuilder.buildCopy(Dst, SPTmp);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerExtract(MachineInstr &MI) {
+ Register Dst = MI.getOperand(0).getReg();
+ Register Src = MI.getOperand(1).getReg();
+ unsigned Offset = MI.getOperand(2).getImm();
+
+ LLT DstTy = MRI.getType(Dst);
+ LLT SrcTy = MRI.getType(Src);
+
+ if (DstTy.isScalar() &&
+ (SrcTy.isScalar() ||
+ (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
+ LLT SrcIntTy = SrcTy;
+ if (!SrcTy.isScalar()) {
+ SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
+ Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
+ }
+
+ if (Offset == 0)
+ MIRBuilder.buildTrunc(Dst, Src);
+ else {
+ auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
+ auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
+ MIRBuilder.buildTrunc(Dst, Shr);
+ }
+
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ return UnableToLegalize;
+}
+
+LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
+ Register Dst = MI.getOperand(0).getReg();
+ Register Src = MI.getOperand(1).getReg();
+ Register InsertSrc = MI.getOperand(2).getReg();
+ uint64_t Offset = MI.getOperand(3).getImm();
+
+ LLT DstTy = MRI.getType(Src);
+ LLT InsertTy = MRI.getType(InsertSrc);
+
+ if (InsertTy.isScalar() &&
+ (DstTy.isScalar() ||
+ (DstTy.isVector() && DstTy.getElementType() == InsertTy))) {
+ LLT IntDstTy = DstTy;
+ if (!DstTy.isScalar()) {
+ IntDstTy = LLT::scalar(DstTy.getSizeInBits());
+ Src = MIRBuilder.buildBitcast(IntDstTy, Src).getReg(0);
+ }
+
+ Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
+ if (Offset != 0) {
+ auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
+ ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
+ }
+
+ APInt MaskVal = ~APInt::getBitsSet(DstTy.getSizeInBits(), Offset,
+ InsertTy.getSizeInBits());
+
+ auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
+ auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
+ auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
+
+ MIRBuilder.buildBitcast(Dst, Or);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ return UnableToLegalize;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
+ Register Dst0 = MI.getOperand(0).getReg();
+ Register Dst1 = MI.getOperand(1).getReg();
+ Register LHS = MI.getOperand(2).getReg();
+ Register RHS = MI.getOperand(3).getReg();
+ const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
+
+ LLT Ty = MRI.getType(Dst0);
+ LLT BoolTy = MRI.getType(Dst1);
+
+ if (IsAdd)
+ MIRBuilder.buildAdd(Dst0, LHS, RHS);
+ else
+ MIRBuilder.buildSub(Dst0, LHS, RHS);
+
+ // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
+
+ auto Zero = MIRBuilder.buildConstant(Ty, 0);
+
+ // For an addition, the result should be less than one of the operands (LHS)
+ // if and only if the other operand (RHS) is negative, otherwise there will
+ // be overflow.
+ // For a subtraction, the result should be less than one of the operands
+ // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
+ // otherwise there will be overflow.
+ auto ResultLowerThanLHS =
+ MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
+ auto ConditionRHS = MIRBuilder.buildICmp(
+ IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
+
+ MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
+ MI.eraseFromParent();
+ return Legalized;
+}
diff --git a/llvm/lib/CodeGen/GlobalISel/LegalizerInfo.cpp b/llvm/lib/CodeGen/GlobalISel/LegalizerInfo.cpp
new file mode 100644
index 000000000000..70045512fae5
--- /dev/null
+++ b/llvm/lib/CodeGen/GlobalISel/LegalizerInfo.cpp
@@ -0,0 +1,748 @@
+//===- lib/CodeGen/GlobalISel/LegalizerInfo.cpp - Legalizer ---------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Implement an interface to specify and query how an illegal operation on a
+// given type should be expanded.
+//
+// Issues to be resolved:
+// + Make it fast.
+// + Support weird types like i3, <7 x i3>, ...
+// + Operations with more than one type (ICMP, CMPXCHG, intrinsics, ...)
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetOpcodes.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/LowLevelTypeImpl.h"
+#include "llvm/Support/MathExtras.h"
+#include <algorithm>
+#include <map>
+
+using namespace llvm;
+using namespace LegalizeActions;
+
+#define DEBUG_TYPE "legalizer-info"
+
+cl::opt<bool> llvm::DisableGISelLegalityCheck(
+ "disable-gisel-legality-check",
+ cl::desc("Don't verify that MIR is fully legal between GlobalISel passes"),
+ cl::Hidden);
+
+raw_ostream &llvm::operator<<(raw_ostream &OS, LegalizeAction Action) {
+ switch (Action) {
+ case Legal:
+ OS << "Legal";
+ break;
+ case NarrowScalar:
+ OS << "NarrowScalar";
+ break;
+ case WidenScalar:
+ OS << "WidenScalar";
+ break;
+ case FewerElements:
+ OS << "FewerElements";
+ break;
+ case MoreElements:
+ OS << "MoreElements";
+ break;
+ case Lower:
+ OS << "Lower";
+ break;
+ case Libcall:
+ OS << "Libcall";
+ break;
+ case Custom:
+ OS << "Custom";
+ break;
+ case Unsupported:
+ OS << "Unsupported";
+ break;
+ case NotFound:
+ OS << "NotFound";
+ break;
+ case UseLegacyRules:
+ OS << "UseLegacyRules";
+ break;
+ }
+ return OS;
+}
+
+raw_ostream &LegalityQuery::print(raw_ostream &OS) const {
+ OS << Opcode << ", Tys={";
+ for (const auto &Type : Types) {
+ OS << Type << ", ";
+ }
+ OS << "}, Opcode=";
+
+ OS << Opcode << ", MMOs={";
+ for (const auto &MMODescr : MMODescrs) {
+ OS << MMODescr.SizeInBits << ", ";
+ }
+ OS << "}";
+
+ return OS;
+}
+
+#ifndef NDEBUG
+// Make sure the rule won't (trivially) loop forever.
+static bool hasNoSimpleLoops(const LegalizeRule &Rule, const LegalityQuery &Q,
+ const std::pair<unsigned, LLT> &Mutation) {
+ switch (Rule.getAction()) {
+ case Custom:
+ case Lower:
+ case MoreElements:
+ case FewerElements:
+ break;
+ default:
+ return Q.Types[Mutation.first] != Mutation.second;
+ }
+ return true;
+}
+
+// Make sure the returned mutation makes sense for the match type.
+static bool mutationIsSane(const LegalizeRule &Rule,
+ const LegalityQuery &Q,
+ std::pair<unsigned, LLT> Mutation) {
+ // If the user wants a custom mutation, then we can't really say much about
+ // it. Return true, and trust that they're doing the right thing.
+ if (Rule.getAction() == Custom)
+ return true;
+
+ const unsigned TypeIdx = Mutation.first;
+ const LLT OldTy = Q.Types[TypeIdx];
+ const LLT NewTy = Mutation.second;
+
+ switch (Rule.getAction()) {
+ case FewerElements:
+ case MoreElements: {
+ if (!OldTy.isVector())
+ return false;
+
+ if (NewTy.isVector()) {
+ if (Rule.getAction() == FewerElements) {
+ // Make sure the element count really decreased.
+ if (NewTy.getNumElements() >= OldTy.getNumElements())
+ return false;
+ } else {
+ // Make sure the element count really increased.
+ if (NewTy.getNumElements() <= OldTy.getNumElements())
+ return false;
+ }
+ }
+
+ // Make sure the element type didn't change.
+ return NewTy.getScalarType() == OldTy.getElementType();
+ }
+ case NarrowScalar:
+ case WidenScalar: {
+ if (OldTy.isVector()) {
+ // Number of elements should not change.
+ if (!NewTy.isVector() || OldTy.getNumElements() != NewTy.getNumElements())
+ return false;
+ } else {
+ // Both types must be vectors
+ if (NewTy.isVector())
+ return false;
+ }
+
+ if (Rule.getAction() == NarrowScalar) {
+ // Make sure the size really decreased.
+ if (NewTy.getScalarSizeInBits() >= OldTy.getScalarSizeInBits())
+ return false;
+ } else {
+ // Make sure the size really increased.
+ if (NewTy.getScalarSizeInBits() <= OldTy.getScalarSizeInBits())
+ return false;
+ }
+
+ return true;
+ }
+ default:
+ return true;
+ }
+}
+#endif
+
+LegalizeActionStep LegalizeRuleSet::apply(const LegalityQuery &Query) const {
+ LLVM_DEBUG(dbgs() << "Applying legalizer ruleset to: "; Query.print(dbgs());
+ dbgs() << "\n");
+ if (Rules.empty()) {
+ LLVM_DEBUG(dbgs() << ".. fallback to legacy rules (no rules defined)\n");
+ return {LegalizeAction::UseLegacyRules, 0, LLT{}};
+ }
+ for (const LegalizeRule &Rule : Rules) {
+ if (Rule.match(Query)) {
+ LLVM_DEBUG(dbgs() << ".. match\n");
+ std::pair<unsigned, LLT> Mutation = Rule.determineMutation(Query);
+ LLVM_DEBUG(dbgs() << ".. .. " << Rule.getAction() << ", "
+ << Mutation.first << ", " << Mutation.second << "\n");
+ assert(mutationIsSane(Rule, Query, Mutation) &&
+ "legality mutation invalid for match");
+ assert(hasNoSimpleLoops(Rule, Query, Mutation) && "Simple loop detected");
+ return {Rule.getAction(), Mutation.first, Mutation.second};
+ } else
+ LLVM_DEBUG(dbgs() << ".. no match\n");
+ }
+ LLVM_DEBUG(dbgs() << ".. unsupported\n");
+ return {LegalizeAction::Unsupported, 0, LLT{}};
+}
+
+bool LegalizeRuleSet::verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const {
+#ifndef NDEBUG
+ if (Rules.empty()) {
+ LLVM_DEBUG(
+ dbgs() << ".. type index coverage check SKIPPED: no rules defined\n");
+ return true;
+ }
+ const int64_t FirstUncovered = TypeIdxsCovered.find_first_unset();
+ if (FirstUncovered < 0) {
+ LLVM_DEBUG(dbgs() << ".. type index coverage check SKIPPED:"
+ " user-defined predicate detected\n");
+ return true;
+ }
+ const bool AllCovered = (FirstUncovered >= NumTypeIdxs);
+ if (NumTypeIdxs > 0)
+ LLVM_DEBUG(dbgs() << ".. the first uncovered type index: " << FirstUncovered
+ << ", " << (AllCovered ? "OK" : "FAIL") << "\n");
+ return AllCovered;
+#else
+ return true;
+#endif
+}
+
+bool LegalizeRuleSet::verifyImmIdxsCoverage(unsigned NumImmIdxs) const {
+#ifndef NDEBUG
+ if (Rules.empty()) {
+ LLVM_DEBUG(
+ dbgs() << ".. imm index coverage check SKIPPED: no rules defined\n");
+ return true;
+ }
+ const int64_t FirstUncovered = ImmIdxsCovered.find_first_unset();
+ if (FirstUncovered < 0) {
+ LLVM_DEBUG(dbgs() << ".. imm index coverage check SKIPPED:"
+ " user-defined predicate detected\n");
+ return true;
+ }
+ const bool AllCovered = (FirstUncovered >= NumImmIdxs);
+ LLVM_DEBUG(dbgs() << ".. the first uncovered imm index: " << FirstUncovered
+ << ", " << (AllCovered ? "OK" : "FAIL") << "\n");
+ return AllCovered;
+#else
+ return true;
+#endif
+}
+
+LegalizerInfo::LegalizerInfo() : TablesInitialized(false) {
+ // Set defaults.
+ // FIXME: these two (G_ANYEXT and G_TRUNC?) can be legalized to the
+ // fundamental load/store Jakob proposed. Once loads & stores are supported.
+ setScalarAction(TargetOpcode::G_ANYEXT, 1, {{1, Legal}});
+ setScalarAction(TargetOpcode::G_ZEXT, 1, {{1, Legal}});
+ setScalarAction(TargetOpcode::G_SEXT, 1, {{1, Legal}});
+ setScalarAction(TargetOpcode::G_TRUNC, 0, {{1, Legal}});
+ setScalarAction(TargetOpcode::G_TRUNC, 1, {{1, Legal}});
+
+ setScalarAction(TargetOpcode::G_INTRINSIC, 0, {{1, Legal}});
+ setScalarAction(TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS, 0, {{1, Legal}});
+
+ setLegalizeScalarToDifferentSizeStrategy(
+ TargetOpcode::G_IMPLICIT_DEF, 0, narrowToSmallerAndUnsupportedIfTooSmall);
+ setLegalizeScalarToDifferentSizeStrategy(
+ TargetOpcode::G_ADD, 0, widenToLargerTypesAndNarrowToLargest);
+ setLegalizeScalarToDifferentSizeStrategy(
+ TargetOpcode::G_OR, 0, widenToLargerTypesAndNarrowToLargest);
+ setLegalizeScalarToDifferentSizeStrategy(
+ TargetOpcode::G_LOAD, 0, narrowToSmallerAndUnsupportedIfTooSmall);
+ setLegalizeScalarToDifferentSizeStrategy(
+ TargetOpcode::G_STORE, 0, narrowToSmallerAndUnsupportedIfTooSmall);
+
+ setLegalizeScalarToDifferentSizeStrategy(
+ TargetOpcode::G_BRCOND, 0, widenToLargerTypesUnsupportedOtherwise);
+ setLegalizeScalarToDifferentSizeStrategy(
+ TargetOpcode::G_INSERT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
+ setLegalizeScalarToDifferentSizeStrategy(
+ TargetOpcode::G_EXTRACT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
+ setLegalizeScalarToDifferentSizeStrategy(
+ TargetOpcode::G_EXTRACT, 1, narrowToSmallerAndUnsupportedIfTooSmall);
+ setScalarAction(TargetOpcode::G_FNEG, 0, {{1, Lower}});
+}
+
+void LegalizerInfo::computeTables() {
+ assert(TablesInitialized == false);
+
+ for (unsigned OpcodeIdx = 0; OpcodeIdx <= LastOp - FirstOp; ++OpcodeIdx) {
+ const unsigned Opcode = FirstOp + OpcodeIdx;
+ for (unsigned TypeIdx = 0; TypeIdx != SpecifiedActions[OpcodeIdx].size();
+ ++TypeIdx) {
+ // 0. Collect information specified through the setAction API, i.e.
+ // for specific bit sizes.
+ // For scalar types:
+ SizeAndActionsVec ScalarSpecifiedActions;
+ // For pointer types:
+ std::map<uint16_t, SizeAndActionsVec> AddressSpace2SpecifiedActions;
+ // For vector types:
+ std::map<uint16_t, SizeAndActionsVec> ElemSize2SpecifiedActions;
+ for (auto LLT2Action : SpecifiedActions[OpcodeIdx][TypeIdx]) {
+ const LLT Type = LLT2Action.first;
+ const LegalizeAction Action = LLT2Action.second;
+
+ auto SizeAction = std::make_pair(Type.getSizeInBits(), Action);
+ if (Type.isPointer())
+ AddressSpace2SpecifiedActions[Type.getAddressSpace()].push_back(
+ SizeAction);
+ else if (Type.isVector())
+ ElemSize2SpecifiedActions[Type.getElementType().getSizeInBits()]
+ .push_back(SizeAction);
+ else
+ ScalarSpecifiedActions.push_back(SizeAction);
+ }
+
+ // 1. Handle scalar types
+ {
+ // Decide how to handle bit sizes for which no explicit specification
+ // was given.
+ SizeChangeStrategy S = &unsupportedForDifferentSizes;
+ if (TypeIdx < ScalarSizeChangeStrategies[OpcodeIdx].size() &&
+ ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
+ S = ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx];
+ llvm::sort(ScalarSpecifiedActions);
+ checkPartialSizeAndActionsVector(ScalarSpecifiedActions);
+ setScalarAction(Opcode, TypeIdx, S(ScalarSpecifiedActions));
+ }
+
+ // 2. Handle pointer types
+ for (auto PointerSpecifiedActions : AddressSpace2SpecifiedActions) {
+ llvm::sort(PointerSpecifiedActions.second);
+ checkPartialSizeAndActionsVector(PointerSpecifiedActions.second);
+ // For pointer types, we assume that there isn't a meaningfull way
+ // to change the number of bits used in the pointer.
+ setPointerAction(
+ Opcode, TypeIdx, PointerSpecifiedActions.first,
+ unsupportedForDifferentSizes(PointerSpecifiedActions.second));
+ }
+
+ // 3. Handle vector types
+ SizeAndActionsVec ElementSizesSeen;
+ for (auto VectorSpecifiedActions : ElemSize2SpecifiedActions) {
+ llvm::sort(VectorSpecifiedActions.second);
+ const uint16_t ElementSize = VectorSpecifiedActions.first;
+ ElementSizesSeen.push_back({ElementSize, Legal});
+ checkPartialSizeAndActionsVector(VectorSpecifiedActions.second);
+ // For vector types, we assume that the best way to adapt the number
+ // of elements is to the next larger number of elements type for which
+ // the vector type is legal, unless there is no such type. In that case,
+ // legalize towards a vector type with a smaller number of elements.
+ SizeAndActionsVec NumElementsActions;
+ for (SizeAndAction BitsizeAndAction : VectorSpecifiedActions.second) {
+ assert(BitsizeAndAction.first % ElementSize == 0);
+ const uint16_t NumElements = BitsizeAndAction.first / ElementSize;
+ NumElementsActions.push_back({NumElements, BitsizeAndAction.second});
+ }
+ setVectorNumElementAction(
+ Opcode, TypeIdx, ElementSize,
+ moreToWiderTypesAndLessToWidest(NumElementsActions));
+ }
+ llvm::sort(ElementSizesSeen);
+ SizeChangeStrategy VectorElementSizeChangeStrategy =
+ &unsupportedForDifferentSizes;
+ if (TypeIdx < VectorElementSizeChangeStrategies[OpcodeIdx].size() &&
+ VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
+ VectorElementSizeChangeStrategy =
+ VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx];
+ setScalarInVectorAction(
+ Opcode, TypeIdx, VectorElementSizeChangeStrategy(ElementSizesSeen));
+ }
+ }
+
+ TablesInitialized = true;
+}
+
+// FIXME: inefficient implementation for now. Without ComputeValueVTs we're
+// probably going to need specialized lookup structures for various types before
+// we have any hope of doing well with something like <13 x i3>. Even the common
+// cases should do better than what we have now.
+std::pair<LegalizeAction, LLT>
+LegalizerInfo::getAspectAction(const InstrAspect &Aspect) const {
+ assert(TablesInitialized && "backend forgot to call computeTables");
+ // These *have* to be implemented for now, they're the fundamental basis of
+ // how everything else is transformed.
+ if (Aspect.Type.isScalar() || Aspect.Type.isPointer())
+ return findScalarLegalAction(Aspect);
+ assert(Aspect.Type.isVector());
+ return findVectorLegalAction(Aspect);
+}
+
+/// Helper function to get LLT for the given type index.
+static LLT getTypeFromTypeIdx(const MachineInstr &MI,
+ const MachineRegisterInfo &MRI, unsigned OpIdx,
+ unsigned TypeIdx) {
+ assert(TypeIdx < MI.getNumOperands() && "Unexpected TypeIdx");
+ // G_UNMERGE_VALUES has variable number of operands, but there is only
+ // one source type and one destination type as all destinations must be the
+ // same type. So, get the last operand if TypeIdx == 1.
+ if (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && TypeIdx == 1)
+ return MRI.getType(MI.getOperand(MI.getNumOperands() - 1).getReg());
+ return MRI.getType(MI.getOperand(OpIdx).getReg());
+}
+
+unsigned LegalizerInfo::getOpcodeIdxForOpcode(unsigned Opcode) const {
+ assert(Opcode >= FirstOp && Opcode <= LastOp && "Unsupported opcode");
+ return Opcode - FirstOp;
+}
+
+unsigned LegalizerInfo::getActionDefinitionsIdx(unsigned Opcode) const {
+ unsigned OpcodeIdx = getOpcodeIdxForOpcode(Opcode);
+ if (unsigned Alias = RulesForOpcode[OpcodeIdx].getAlias()) {
+ LLVM_DEBUG(dbgs() << ".. opcode " << Opcode << " is aliased to " << Alias
+ << "\n");
+ OpcodeIdx = getOpcodeIdxForOpcode(Alias);
+ assert(RulesForOpcode[OpcodeIdx].getAlias() == 0 && "Cannot chain aliases");
+ }
+
+ return OpcodeIdx;
+}
+
+const LegalizeRuleSet &
+LegalizerInfo::getActionDefinitions(unsigned Opcode) const {
+ unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode);
+ return RulesForOpcode[OpcodeIdx];
+}
+
+LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(unsigned Opcode) {
+ unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode);
+ auto &Result = RulesForOpcode[OpcodeIdx];
+ assert(!Result.isAliasedByAnother() && "Modifying this opcode will modify aliases");
+ return Result;
+}
+
+LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(
+ std::initializer_list<unsigned> Opcodes) {
+ unsigned Representative = *Opcodes.begin();
+
+ assert(!llvm::empty(Opcodes) && Opcodes.begin() + 1 != Opcodes.end() &&
+ "Initializer list must have at least two opcodes");
+
+ for (auto I = Opcodes.begin() + 1, E = Opcodes.end(); I != E; ++I)
+ aliasActionDefinitions(Representative, *I);
+
+ auto &Return = getActionDefinitionsBuilder(Representative);
+ Return.setIsAliasedByAnother();
+ return Return;
+}
+
+void LegalizerInfo::aliasActionDefinitions(unsigned OpcodeTo,
+ unsigned OpcodeFrom) {
+ assert(OpcodeTo != OpcodeFrom && "Cannot alias to self");
+ assert(OpcodeTo >= FirstOp && OpcodeTo <= LastOp && "Unsupported opcode");
+ const unsigned OpcodeFromIdx = getOpcodeIdxForOpcode(OpcodeFrom);
+ RulesForOpcode[OpcodeFromIdx].aliasTo(OpcodeTo);
+}
+
+LegalizeActionStep
+LegalizerInfo::getAction(const LegalityQuery &Query) const {
+ LegalizeActionStep Step = getActionDefinitions(Query.Opcode).apply(Query);
+ if (Step.Action != LegalizeAction::UseLegacyRules) {
+ return Step;
+ }
+
+ for (unsigned i = 0; i < Query.Types.size(); ++i) {
+ auto Action = getAspectAction({Query.Opcode, i, Query.Types[i]});
+ if (Action.first != Legal) {
+ LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Action="
+ << Action.first << ", " << Action.second << "\n");
+ return {Action.first, i, Action.second};
+ } else
+ LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Legal\n");
+ }
+ LLVM_DEBUG(dbgs() << ".. (legacy) Legal\n");
+ return {Legal, 0, LLT{}};
+}
+
+LegalizeActionStep
+LegalizerInfo::getAction(const MachineInstr &MI,
+ const MachineRegisterInfo &MRI) const {
+ SmallVector<LLT, 2> Types;
+ SmallBitVector SeenTypes(8);
+ const MCOperandInfo *OpInfo = MI.getDesc().OpInfo;
+ // FIXME: probably we'll need to cache the results here somehow?
+ for (unsigned i = 0; i < MI.getDesc().getNumOperands(); ++i) {
+ if (!OpInfo[i].isGenericType())
+ continue;
+
+ // We must only record actions once for each TypeIdx; otherwise we'd
+ // try to legalize operands multiple times down the line.
+ unsigned TypeIdx = OpInfo[i].getGenericTypeIndex();
+ if (SeenTypes[TypeIdx])
+ continue;
+
+ SeenTypes.set(TypeIdx);
+
+ LLT Ty = getTypeFromTypeIdx(MI, MRI, i, TypeIdx);
+ Types.push_back(Ty);
+ }
+
+ SmallVector<LegalityQuery::MemDesc, 2> MemDescrs;
+ for (const auto &MMO : MI.memoperands())
+ MemDescrs.push_back({8 * MMO->getSize() /* in bits */,
+ 8 * MMO->getAlignment(),
+ MMO->getOrdering()});
+
+ return getAction({MI.getOpcode(), Types, MemDescrs});
+}
+
+bool LegalizerInfo::isLegal(const MachineInstr &MI,
+ const MachineRegisterInfo &MRI) const {
+ return getAction(MI, MRI).Action == Legal;
+}
+
+bool LegalizerInfo::isLegalOrCustom(const MachineInstr &MI,
+ const MachineRegisterInfo &MRI) const {
+ auto Action = getAction(MI, MRI).Action;
+ // If the action is custom, it may not necessarily modify the instruction,
+ // so we have to assume it's legal.
+ return Action == Legal || Action == Custom;
+}
+
+bool LegalizerInfo::legalizeCustom(MachineInstr &MI, MachineRegisterInfo &MRI,
+ MachineIRBuilder &MIRBuilder,
+ GISelChangeObserver &Observer) const {
+ return false;
+}
+
+LegalizerInfo::SizeAndActionsVec
+LegalizerInfo::increaseToLargerTypesAndDecreaseToLargest(
+ const SizeAndActionsVec &v, LegalizeAction IncreaseAction,
+ LegalizeAction DecreaseAction) {
+ SizeAndActionsVec result;
+ unsigned LargestSizeSoFar = 0;
+ if (v.size() >= 1 && v[0].first != 1)
+ result.push_back({1, IncreaseAction});
+ for (size_t i = 0; i < v.size(); ++i) {
+ result.push_back(v[i]);
+ LargestSizeSoFar = v[i].first;
+ if (i + 1 < v.size() && v[i + 1].first != v[i].first + 1) {
+ result.push_back({LargestSizeSoFar + 1, IncreaseAction});
+ LargestSizeSoFar = v[i].first + 1;
+ }
+ }
+ result.push_back({LargestSizeSoFar + 1, DecreaseAction});
+ return result;
+}
+
+LegalizerInfo::SizeAndActionsVec
+LegalizerInfo::decreaseToSmallerTypesAndIncreaseToSmallest(
+ const SizeAndActionsVec &v, LegalizeAction DecreaseAction,
+ LegalizeAction IncreaseAction) {
+ SizeAndActionsVec result;
+ if (v.size() == 0 || v[0].first != 1)
+ result.push_back({1, IncreaseAction});
+ for (size_t i = 0; i < v.size(); ++i) {
+ result.push_back(v[i]);
+ if (i + 1 == v.size() || v[i + 1].first != v[i].first + 1) {
+ result.push_back({v[i].first + 1, DecreaseAction});
+ }
+ }
+ return result;
+}
+
+LegalizerInfo::SizeAndAction
+LegalizerInfo::findAction(const SizeAndActionsVec &Vec, const uint32_t Size) {
+ assert(Size >= 1);
+ // Find the last element in Vec that has a bitsize equal to or smaller than
+ // the requested bit size.
+ // That is the element just before the first element that is bigger than Size.
+ auto It = partition_point(
+ Vec, [=](const SizeAndAction &A) { return A.first <= Size; });
+ assert(It != Vec.begin() && "Does Vec not start with size 1?");
+ int VecIdx = It - Vec.begin() - 1;
+
+ LegalizeAction Action = Vec[VecIdx].second;
+ switch (Action) {
+ case Legal:
+ case Lower:
+ case Libcall:
+ case Custom:
+ return {Size, Action};
+ case FewerElements:
+ // FIXME: is this special case still needed and correct?
+ // Special case for scalarization:
+ if (Vec == SizeAndActionsVec({{1, FewerElements}}))
+ return {1, FewerElements};
+ LLVM_FALLTHROUGH;
+ case NarrowScalar: {
+ // The following needs to be a loop, as for now, we do allow needing to
+ // go over "Unsupported" bit sizes before finding a legalizable bit size.
+ // e.g. (s8, WidenScalar), (s9, Unsupported), (s32, Legal). if Size==8,
+ // we need to iterate over s9, and then to s32 to return (s32, Legal).
+ // If we want to get rid of the below loop, we should have stronger asserts
+ // when building the SizeAndActionsVecs, probably not allowing
+ // "Unsupported" unless at the ends of the vector.
+ for (int i = VecIdx - 1; i >= 0; --i)
+ if (!needsLegalizingToDifferentSize(Vec[i].second) &&
+ Vec[i].second != Unsupported)
+ return {Vec[i].first, Action};
+ llvm_unreachable("");
+ }
+ case WidenScalar:
+ case MoreElements: {
+ // See above, the following needs to be a loop, at least for now.
+ for (std::size_t i = VecIdx + 1; i < Vec.size(); ++i)
+ if (!needsLegalizingToDifferentSize(Vec[i].second) &&
+ Vec[i].second != Unsupported)
+ return {Vec[i].first, Action};
+ llvm_unreachable("");
+ }
+ case Unsupported:
+ return {Size, Unsupported};
+ case NotFound:
+ case UseLegacyRules:
+ llvm_unreachable("NotFound");
+ }
+ llvm_unreachable("Action has an unknown enum value");
+}
+
+std::pair<LegalizeAction, LLT>
+LegalizerInfo::findScalarLegalAction(const InstrAspect &Aspect) const {
+ assert(Aspect.Type.isScalar() || Aspect.Type.isPointer());
+ if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
+ return {NotFound, LLT()};
+ const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
+ if (Aspect.Type.isPointer() &&
+ AddrSpace2PointerActions[OpcodeIdx].find(Aspect.Type.getAddressSpace()) ==
+ AddrSpace2PointerActions[OpcodeIdx].end()) {
+ return {NotFound, LLT()};
+ }
+ const SmallVector<SizeAndActionsVec, 1> &Actions =
+ Aspect.Type.isPointer()
+ ? AddrSpace2PointerActions[OpcodeIdx]
+ .find(Aspect.Type.getAddressSpace())
+ ->second
+ : ScalarActions[OpcodeIdx];
+ if (Aspect.Idx >= Actions.size())
+ return {NotFound, LLT()};
+ const SizeAndActionsVec &Vec = Actions[Aspect.Idx];
+ // FIXME: speed up this search, e.g. by using a results cache for repeated
+ // queries?
+ auto SizeAndAction = findAction(Vec, Aspect.Type.getSizeInBits());
+ return {SizeAndAction.second,
+ Aspect.Type.isScalar() ? LLT::scalar(SizeAndAction.first)
+ : LLT::pointer(Aspect.Type.getAddressSpace(),
+ SizeAndAction.first)};
+}
+
+std::pair<LegalizeAction, LLT>
+LegalizerInfo::findVectorLegalAction(const InstrAspect &Aspect) const {
+ assert(Aspect.Type.isVector());
+ // First legalize the vector element size, then legalize the number of
+ // lanes in the vector.
+ if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
+ return {NotFound, Aspect.Type};
+ const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
+ const unsigned TypeIdx = Aspect.Idx;
+ if (TypeIdx >= ScalarInVectorActions[OpcodeIdx].size())
+ return {NotFound, Aspect.Type};
+ const SizeAndActionsVec &ElemSizeVec =
+ ScalarInVectorActions[OpcodeIdx][TypeIdx];
+
+ LLT IntermediateType;
+ auto ElementSizeAndAction =
+ findAction(ElemSizeVec, Aspect.Type.getScalarSizeInBits());
+ IntermediateType =
+ LLT::vector(Aspect.Type.getNumElements(), ElementSizeAndAction.first);
+ if (ElementSizeAndAction.second != Legal)
+ return {ElementSizeAndAction.second, IntermediateType};
+
+ auto i = NumElements2Actions[OpcodeIdx].find(
+ IntermediateType.getScalarSizeInBits());
+ if (i == NumElements2Actions[OpcodeIdx].end()) {
+ return {NotFound, IntermediateType};
+ }
+ const SizeAndActionsVec &NumElementsVec = (*i).second[TypeIdx];
+ auto NumElementsAndAction =
+ findAction(NumElementsVec, IntermediateType.getNumElements());
+ return {NumElementsAndAction.second,
+ LLT::vector(NumElementsAndAction.first,
+ IntermediateType.getScalarSizeInBits())};
+}
+
+bool LegalizerInfo::legalizeIntrinsic(MachineInstr &MI,
+ MachineRegisterInfo &MRI,
+ MachineIRBuilder &MIRBuilder) const {
+ return true;
+}
+
+/// \pre Type indices of every opcode form a dense set starting from 0.
+void LegalizerInfo::verify(const MCInstrInfo &MII) const {
+#ifndef NDEBUG
+ std::vector<unsigned> FailedOpcodes;
+ for (unsigned Opcode = FirstOp; Opcode <= LastOp; ++Opcode) {
+ const MCInstrDesc &MCID = MII.get(Opcode);
+ const unsigned NumTypeIdxs = std::accumulate(
+ MCID.opInfo_begin(), MCID.opInfo_end(), 0U,
+ [](unsigned Acc, const MCOperandInfo &OpInfo) {
+ return OpInfo.isGenericType()
+ ? std::max(OpInfo.getGenericTypeIndex() + 1U, Acc)
+ : Acc;
+ });
+ const unsigned NumImmIdxs = std::accumulate(
+ MCID.opInfo_begin(), MCID.opInfo_end(), 0U,
+ [](unsigned Acc, const MCOperandInfo &OpInfo) {
+ return OpInfo.isGenericImm()
+ ? std::max(OpInfo.getGenericImmIndex() + 1U, Acc)
+ : Acc;
+ });
+ LLVM_DEBUG(dbgs() << MII.getName(Opcode) << " (opcode " << Opcode
+ << "): " << NumTypeIdxs << " type ind"
+ << (NumTypeIdxs == 1 ? "ex" : "ices") << ", "
+ << NumImmIdxs << " imm ind"
+ << (NumImmIdxs == 1 ? "ex" : "ices") << "\n");
+ const LegalizeRuleSet &RuleSet = getActionDefinitions(Opcode);
+ if (!RuleSet.verifyTypeIdxsCoverage(NumTypeIdxs))
+ FailedOpcodes.push_back(Opcode);
+ else if (!RuleSet.verifyImmIdxsCoverage(NumImmIdxs))
+ FailedOpcodes.push_back(Opcode);
+ }
+ if (!FailedOpcodes.empty()) {
+ errs() << "The following opcodes have ill-defined legalization rules:";
+ for (unsigned Opcode : FailedOpcodes)
+ errs() << " " << MII.getName(Opcode);
+ errs() << "\n";
+
+ report_fatal_error("ill-defined LegalizerInfo"
+ ", try -debug-only=legalizer-info for details");
+ }
+#endif
+}
+
+#ifndef NDEBUG
+// FIXME: This should be in the MachineVerifier, but it can't use the
+// LegalizerInfo as it's currently in the separate GlobalISel library.
+// Note that RegBankSelected property already checked in the verifier
+// has the same layering problem, but we only use inline methods so
+// end up not needing to link against the GlobalISel library.
+const MachineInstr *llvm::machineFunctionIsIllegal(const MachineFunction &MF) {
+ if (const LegalizerInfo *MLI = MF.getSubtarget().getLegalizerInfo()) {
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ for (const MachineBasicBlock &MBB : MF)
+ for (const MachineInstr &MI : MBB)
+ if (isPreISelGenericOpcode(MI.getOpcode()) &&
+ !MLI->isLegalOrCustom(MI, MRI))
+ return &MI;
+ }
+ return nullptr;
+}
+#endif
diff --git a/llvm/lib/CodeGen/GlobalISel/Localizer.cpp b/llvm/lib/CodeGen/GlobalISel/Localizer.cpp
new file mode 100644
index 000000000000..f882ecbf5db3
--- /dev/null
+++ b/llvm/lib/CodeGen/GlobalISel/Localizer.cpp
@@ -0,0 +1,225 @@
+//===- Localizer.cpp ---------------------- Localize some instrs -*- C++ -*-==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file implements the Localizer class.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GlobalISel/Localizer.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/Debug.h"
+
+#define DEBUG_TYPE "localizer"
+
+using namespace llvm;
+
+char Localizer::ID = 0;
+INITIALIZE_PASS_BEGIN(Localizer, DEBUG_TYPE,
+ "Move/duplicate certain instructions close to their use",
+ false, false)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_END(Localizer, DEBUG_TYPE,
+ "Move/duplicate certain instructions close to their use",
+ false, false)
+
+Localizer::Localizer() : MachineFunctionPass(ID) { }
+
+void Localizer::init(MachineFunction &MF) {
+ MRI = &MF.getRegInfo();
+ TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(MF.getFunction());
+}
+
+bool Localizer::shouldLocalize(const MachineInstr &MI) {
+ // Assuming a spill and reload of a value has a cost of 1 instruction each,
+ // this helper function computes the maximum number of uses we should consider
+ // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
+ // break even in terms of code size when the original MI has 2 users vs
+ // choosing to potentially spill. Any more than 2 users we we have a net code
+ // size increase. This doesn't take into account register pressure though.
+ auto maxUses = [](unsigned RematCost) {
+ // A cost of 1 means remats are basically free.
+ if (RematCost == 1)
+ return UINT_MAX;
+ if (RematCost == 2)
+ return 2U;
+
+ // Remat is too expensive, only sink if there's one user.
+ if (RematCost > 2)
+ return 1U;
+ llvm_unreachable("Unexpected remat cost");
+ };
+
+ // Helper to walk through uses and terminate if we've reached a limit. Saves
+ // us spending time traversing uses if all we want to know is if it's >= min.
+ auto isUsesAtMost = [&](unsigned Reg, unsigned MaxUses) {
+ unsigned NumUses = 0;
+ auto UI = MRI->use_instr_nodbg_begin(Reg), UE = MRI->use_instr_nodbg_end();
+ for (; UI != UE && NumUses < MaxUses; ++UI) {
+ NumUses++;
+ }
+ // If we haven't reached the end yet then there are more than MaxUses users.
+ return UI == UE;
+ };
+
+ switch (MI.getOpcode()) {
+ default:
+ return false;
+ // Constants-like instructions should be close to their users.
+ // We don't want long live-ranges for them.
+ case TargetOpcode::G_CONSTANT:
+ case TargetOpcode::G_FCONSTANT:
+ case TargetOpcode::G_FRAME_INDEX:
+ case TargetOpcode::G_INTTOPTR:
+ return true;
+ case TargetOpcode::G_GLOBAL_VALUE: {
+ unsigned RematCost = TTI->getGISelRematGlobalCost();
+ Register Reg = MI.getOperand(0).getReg();
+ unsigned MaxUses = maxUses(RematCost);
+ if (MaxUses == UINT_MAX)
+ return true; // Remats are "free" so always localize.
+ bool B = isUsesAtMost(Reg, MaxUses);
+ return B;
+ }
+ }
+}
+
+void Localizer::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ getSelectionDAGFallbackAnalysisUsage(AU);
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+bool Localizer::isLocalUse(MachineOperand &MOUse, const MachineInstr &Def,
+ MachineBasicBlock *&InsertMBB) {
+ MachineInstr &MIUse = *MOUse.getParent();
+ InsertMBB = MIUse.getParent();
+ if (MIUse.isPHI())
+ InsertMBB = MIUse.getOperand(MIUse.getOperandNo(&MOUse) + 1).getMBB();
+ return InsertMBB == Def.getParent();
+}
+
+bool Localizer::localizeInterBlock(MachineFunction &MF,
+ LocalizedSetVecT &LocalizedInstrs) {
+ bool Changed = false;
+ DenseMap<std::pair<MachineBasicBlock *, unsigned>, unsigned> MBBWithLocalDef;
+
+ // Since the IRTranslator only emits constants into the entry block, and the
+ // rest of the GISel pipeline generally emits constants close to their users,
+ // we only localize instructions in the entry block here. This might change if
+ // we start doing CSE across blocks.
+ auto &MBB = MF.front();
+ for (auto RI = MBB.rbegin(), RE = MBB.rend(); RI != RE; ++RI) {
+ MachineInstr &MI = *RI;
+ if (!shouldLocalize(MI))
+ continue;
+ LLVM_DEBUG(dbgs() << "Should localize: " << MI);
+ assert(MI.getDesc().getNumDefs() == 1 &&
+ "More than one definition not supported yet");
+ Register Reg = MI.getOperand(0).getReg();
+ // Check if all the users of MI are local.
+ // We are going to invalidation the list of use operands, so we
+ // can't use range iterator.
+ for (auto MOIt = MRI->use_begin(Reg), MOItEnd = MRI->use_end();
+ MOIt != MOItEnd;) {
+ MachineOperand &MOUse = *MOIt++;
+ // Check if the use is already local.
+ MachineBasicBlock *InsertMBB;
+ LLVM_DEBUG(MachineInstr &MIUse = *MOUse.getParent();
+ dbgs() << "Checking use: " << MIUse
+ << " #Opd: " << MIUse.getOperandNo(&MOUse) << '\n');
+ if (isLocalUse(MOUse, MI, InsertMBB))
+ continue;
+ LLVM_DEBUG(dbgs() << "Fixing non-local use\n");
+ Changed = true;
+ auto MBBAndReg = std::make_pair(InsertMBB, Reg);
+ auto NewVRegIt = MBBWithLocalDef.find(MBBAndReg);
+ if (NewVRegIt == MBBWithLocalDef.end()) {
+ // Create the localized instruction.
+ MachineInstr *LocalizedMI = MF.CloneMachineInstr(&MI);
+ LocalizedInstrs.insert(LocalizedMI);
+ MachineInstr &UseMI = *MOUse.getParent();
+ if (MRI->hasOneUse(Reg) && !UseMI.isPHI())
+ InsertMBB->insert(InsertMBB->SkipPHIsAndLabels(UseMI), LocalizedMI);
+ else
+ InsertMBB->insert(InsertMBB->SkipPHIsAndLabels(InsertMBB->begin()),
+ LocalizedMI);
+
+ // Set a new register for the definition.
+ Register NewReg = MRI->createGenericVirtualRegister(MRI->getType(Reg));
+ MRI->setRegClassOrRegBank(NewReg, MRI->getRegClassOrRegBank(Reg));
+ LocalizedMI->getOperand(0).setReg(NewReg);
+ NewVRegIt =
+ MBBWithLocalDef.insert(std::make_pair(MBBAndReg, NewReg)).first;
+ LLVM_DEBUG(dbgs() << "Inserted: " << *LocalizedMI);
+ }
+ LLVM_DEBUG(dbgs() << "Update use with: " << printReg(NewVRegIt->second)
+ << '\n');
+ // Update the user reg.
+ MOUse.setReg(NewVRegIt->second);
+ }
+ }
+ return Changed;
+}
+
+bool Localizer::localizeIntraBlock(LocalizedSetVecT &LocalizedInstrs) {
+ bool Changed = false;
+
+ // For each already-localized instruction which has multiple users, then we
+ // scan the block top down from the current position until we hit one of them.
+
+ // FIXME: Consider doing inst duplication if live ranges are very long due to
+ // many users, but this case may be better served by regalloc improvements.
+
+ for (MachineInstr *MI : LocalizedInstrs) {
+ Register Reg = MI->getOperand(0).getReg();
+ MachineBasicBlock &MBB = *MI->getParent();
+ // All of the user MIs of this reg.
+ SmallPtrSet<MachineInstr *, 32> Users;
+ for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
+ if (!UseMI.isPHI())
+ Users.insert(&UseMI);
+ }
+ // If all the users were PHIs then they're not going to be in our block,
+ // don't try to move this instruction.
+ if (Users.empty())
+ continue;
+
+ MachineBasicBlock::iterator II(MI);
+ ++II;
+ while (II != MBB.end() && !Users.count(&*II))
+ ++II;
+
+ LLVM_DEBUG(dbgs() << "Intra-block: moving " << *MI << " before " << *&*II
+ << "\n");
+ assert(II != MBB.end() && "Didn't find the user in the MBB");
+ MI->removeFromParent();
+ MBB.insert(II, MI);
+ Changed = true;
+ }
+ return Changed;
+}
+
+bool Localizer::runOnMachineFunction(MachineFunction &MF) {
+ // If the ISel pipeline failed, do not bother running that pass.
+ if (MF.getProperties().hasProperty(
+ MachineFunctionProperties::Property::FailedISel))
+ return false;
+
+ LLVM_DEBUG(dbgs() << "Localize instructions for: " << MF.getName() << '\n');
+
+ init(MF);
+
+ // Keep track of the instructions we localized. We'll do a second pass of
+ // intra-block localization to further reduce live ranges.
+ LocalizedSetVecT LocalizedInstrs;
+
+ bool Changed = localizeInterBlock(MF, LocalizedInstrs);
+ Changed |= localizeIntraBlock(LocalizedInstrs);
+ return Changed;
+}
diff --git a/llvm/lib/CodeGen/GlobalISel/MachineIRBuilder.cpp b/llvm/lib/CodeGen/GlobalISel/MachineIRBuilder.cpp
new file mode 100644
index 000000000000..df770f6664ca
--- /dev/null
+++ b/llvm/lib/CodeGen/GlobalISel/MachineIRBuilder.cpp
@@ -0,0 +1,1180 @@
+//===-- llvm/CodeGen/GlobalISel/MachineIRBuilder.cpp - MIBuilder--*- C++ -*-==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file implements the MachineIRBuidler class.
+//===----------------------------------------------------------------------===//
+#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
+#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
+
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetOpcodes.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/IR/DebugInfo.h"
+
+using namespace llvm;
+
+void MachineIRBuilder::setMF(MachineFunction &MF) {
+ State.MF = &MF;
+ State.MBB = nullptr;
+ State.MRI = &MF.getRegInfo();
+ State.TII = MF.getSubtarget().getInstrInfo();
+ State.DL = DebugLoc();
+ State.II = MachineBasicBlock::iterator();
+ State.Observer = nullptr;
+}
+
+void MachineIRBuilder::setMBB(MachineBasicBlock &MBB) {
+ State.MBB = &MBB;
+ State.II = MBB.end();
+ assert(&getMF() == MBB.getParent() &&
+ "Basic block is in a different function");
+}
+
+void MachineIRBuilder::setInstr(MachineInstr &MI) {
+ assert(MI.getParent() && "Instruction is not part of a basic block");
+ setMBB(*MI.getParent());
+ State.II = MI.getIterator();
+}
+
+void MachineIRBuilder::setCSEInfo(GISelCSEInfo *Info) { State.CSEInfo = Info; }
+
+void MachineIRBuilder::setInsertPt(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator II) {
+ assert(MBB.getParent() == &getMF() &&
+ "Basic block is in a different function");
+ State.MBB = &MBB;
+ State.II = II;
+}
+
+void MachineIRBuilder::recordInsertion(MachineInstr *InsertedInstr) const {
+ if (State.Observer)
+ State.Observer->createdInstr(*InsertedInstr);
+}
+
+void MachineIRBuilder::setChangeObserver(GISelChangeObserver &Observer) {
+ State.Observer = &Observer;
+}
+
+void MachineIRBuilder::stopObservingChanges() { State.Observer = nullptr; }
+
+//------------------------------------------------------------------------------
+// Build instruction variants.
+//------------------------------------------------------------------------------
+
+MachineInstrBuilder MachineIRBuilder::buildInstr(unsigned Opcode) {
+ return insertInstr(buildInstrNoInsert(Opcode));
+}
+
+MachineInstrBuilder MachineIRBuilder::buildInstrNoInsert(unsigned Opcode) {
+ MachineInstrBuilder MIB = BuildMI(getMF(), getDL(), getTII().get(Opcode));
+ return MIB;
+}
+
+MachineInstrBuilder MachineIRBuilder::insertInstr(MachineInstrBuilder MIB) {
+ getMBB().insert(getInsertPt(), MIB);
+ recordInsertion(MIB);
+ return MIB;
+}
+
+MachineInstrBuilder
+MachineIRBuilder::buildDirectDbgValue(Register Reg, const MDNode *Variable,
+ const MDNode *Expr) {
+ assert(isa<DILocalVariable>(Variable) && "not a variable");
+ assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
+ assert(
+ cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(getDL()) &&
+ "Expected inlined-at fields to agree");
+ return insertInstr(BuildMI(getMF(), getDL(),
+ getTII().get(TargetOpcode::DBG_VALUE),
+ /*IsIndirect*/ false, Reg, Variable, Expr));
+}
+
+MachineInstrBuilder
+MachineIRBuilder::buildIndirectDbgValue(Register Reg, const MDNode *Variable,
+ const MDNode *Expr) {
+ assert(isa<DILocalVariable>(Variable) && "not a variable");
+ assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
+ assert(
+ cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(getDL()) &&
+ "Expected inlined-at fields to agree");
+ // DBG_VALUE insts now carry IR-level indirection in their DIExpression
+ // rather than encoding it in the instruction itself.
+ const DIExpression *DIExpr = cast<DIExpression>(Expr);
+ DIExpr = DIExpression::append(DIExpr, {dwarf::DW_OP_deref});
+ return insertInstr(BuildMI(getMF(), getDL(),
+ getTII().get(TargetOpcode::DBG_VALUE),
+ /*IsIndirect*/ false, Reg, Variable, DIExpr));
+}
+
+MachineInstrBuilder MachineIRBuilder::buildFIDbgValue(int FI,
+ const MDNode *Variable,
+ const MDNode *Expr) {
+ assert(isa<DILocalVariable>(Variable) && "not a variable");
+ assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
+ assert(
+ cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(getDL()) &&
+ "Expected inlined-at fields to agree");
+ // DBG_VALUE insts now carry IR-level indirection in their DIExpression
+ // rather than encoding it in the instruction itself.
+ const DIExpression *DIExpr = cast<DIExpression>(Expr);
+ DIExpr = DIExpression::append(DIExpr, {dwarf::DW_OP_deref});
+ return buildInstr(TargetOpcode::DBG_VALUE)
+ .addFrameIndex(FI)
+ .addReg(0)
+ .addMetadata(Variable)
+ .addMetadata(DIExpr);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildConstDbgValue(const Constant &C,
+ const MDNode *Variable,
+ const MDNode *Expr) {
+ assert(isa<DILocalVariable>(Variable) && "not a variable");
+ assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
+ assert(
+ cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(getDL()) &&
+ "Expected inlined-at fields to agree");
+ auto MIB = buildInstr(TargetOpcode::DBG_VALUE);
+ if (auto *CI = dyn_cast<ConstantInt>(&C)) {
+ if (CI->getBitWidth() > 64)
+ MIB.addCImm(CI);
+ else
+ MIB.addImm(CI->getZExtValue());
+ } else if (auto *CFP = dyn_cast<ConstantFP>(&C)) {
+ MIB.addFPImm(CFP);
+ } else {
+ // Insert %noreg if we didn't find a usable constant and had to drop it.
+ MIB.addReg(0U);
+ }
+
+ return MIB.addReg(0).addMetadata(Variable).addMetadata(Expr);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildDbgLabel(const MDNode *Label) {
+ assert(isa<DILabel>(Label) && "not a label");
+ assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(State.DL) &&
+ "Expected inlined-at fields to agree");
+ auto MIB = buildInstr(TargetOpcode::DBG_LABEL);
+
+ return MIB.addMetadata(Label);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildDynStackAlloc(const DstOp &Res,
+ const SrcOp &Size,
+ unsigned Align) {
+ assert(Res.getLLTTy(*getMRI()).isPointer() && "expected ptr dst type");
+ auto MIB = buildInstr(TargetOpcode::G_DYN_STACKALLOC);
+ Res.addDefToMIB(*getMRI(), MIB);
+ Size.addSrcToMIB(MIB);
+ MIB.addImm(Align);
+ return MIB;
+}
+
+MachineInstrBuilder MachineIRBuilder::buildFrameIndex(const DstOp &Res,
+ int Idx) {
+ assert(Res.getLLTTy(*getMRI()).isPointer() && "invalid operand type");
+ auto MIB = buildInstr(TargetOpcode::G_FRAME_INDEX);
+ Res.addDefToMIB(*getMRI(), MIB);
+ MIB.addFrameIndex(Idx);
+ return MIB;
+}
+
+MachineInstrBuilder MachineIRBuilder::buildGlobalValue(const DstOp &Res,
+ const GlobalValue *GV) {
+ assert(Res.getLLTTy(*getMRI()).isPointer() && "invalid operand type");
+ assert(Res.getLLTTy(*getMRI()).getAddressSpace() ==
+ GV->getType()->getAddressSpace() &&
+ "address space mismatch");
+
+ auto MIB = buildInstr(TargetOpcode::G_GLOBAL_VALUE);
+ Res.addDefToMIB(*getMRI(), MIB);
+ MIB.addGlobalAddress(GV);
+ return MIB;
+}
+
+MachineInstrBuilder MachineIRBuilder::buildJumpTable(const LLT PtrTy,
+ unsigned JTI) {
+ return buildInstr(TargetOpcode::G_JUMP_TABLE, {PtrTy}, {})
+ .addJumpTableIndex(JTI);
+}
+
+void MachineIRBuilder::validateBinaryOp(const LLT &Res, const LLT &Op0,
+ const LLT &Op1) {
+ assert((Res.isScalar() || Res.isVector()) && "invalid operand type");
+ assert((Res == Op0 && Res == Op1) && "type mismatch");
+}
+
+void MachineIRBuilder::validateShiftOp(const LLT &Res, const LLT &Op0,
+ const LLT &Op1) {
+ assert((Res.isScalar() || Res.isVector()) && "invalid operand type");
+ assert((Res == Op0) && "type mismatch");
+}
+
+MachineInstrBuilder MachineIRBuilder::buildGEP(const DstOp &Res,
+ const SrcOp &Op0,
+ const SrcOp &Op1) {
+ assert(Res.getLLTTy(*getMRI()).isPointer() &&
+ Res.getLLTTy(*getMRI()) == Op0.getLLTTy(*getMRI()) && "type mismatch");
+ assert(Op1.getLLTTy(*getMRI()).isScalar() && "invalid offset type");
+
+ return buildInstr(TargetOpcode::G_GEP, {Res}, {Op0, Op1});
+}
+
+Optional<MachineInstrBuilder>
+MachineIRBuilder::materializeGEP(Register &Res, Register Op0,
+ const LLT &ValueTy, uint64_t Value) {
+ assert(Res == 0 && "Res is a result argument");
+ assert(ValueTy.isScalar() && "invalid offset type");
+
+ if (Value == 0) {
+ Res = Op0;
+ return None;
+ }
+
+ Res = getMRI()->createGenericVirtualRegister(getMRI()->getType(Op0));
+ auto Cst = buildConstant(ValueTy, Value);
+ return buildGEP(Res, Op0, Cst.getReg(0));
+}
+
+MachineInstrBuilder MachineIRBuilder::buildPtrMask(const DstOp &Res,
+ const SrcOp &Op0,
+ uint32_t NumBits) {
+ assert(Res.getLLTTy(*getMRI()).isPointer() &&
+ Res.getLLTTy(*getMRI()) == Op0.getLLTTy(*getMRI()) && "type mismatch");
+
+ auto MIB = buildInstr(TargetOpcode::G_PTR_MASK);
+ Res.addDefToMIB(*getMRI(), MIB);
+ Op0.addSrcToMIB(MIB);
+ MIB.addImm(NumBits);
+ return MIB;
+}
+
+MachineInstrBuilder MachineIRBuilder::buildBr(MachineBasicBlock &Dest) {
+ return buildInstr(TargetOpcode::G_BR).addMBB(&Dest);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildBrIndirect(Register Tgt) {
+ assert(getMRI()->getType(Tgt).isPointer() && "invalid branch destination");
+ return buildInstr(TargetOpcode::G_BRINDIRECT).addUse(Tgt);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildBrJT(Register TablePtr,
+ unsigned JTI,
+ Register IndexReg) {
+ assert(getMRI()->getType(TablePtr).isPointer() &&
+ "Table reg must be a pointer");
+ return buildInstr(TargetOpcode::G_BRJT)
+ .addUse(TablePtr)
+ .addJumpTableIndex(JTI)
+ .addUse(IndexReg);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildCopy(const DstOp &Res,
+ const SrcOp &Op) {
+ return buildInstr(TargetOpcode::COPY, Res, Op);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildConstant(const DstOp &Res,
+ const ConstantInt &Val) {
+ LLT Ty = Res.getLLTTy(*getMRI());
+ LLT EltTy = Ty.getScalarType();
+ assert(EltTy.getScalarSizeInBits() == Val.getBitWidth() &&
+ "creating constant with the wrong size");
+
+ if (Ty.isVector()) {
+ auto Const = buildInstr(TargetOpcode::G_CONSTANT)
+ .addDef(getMRI()->createGenericVirtualRegister(EltTy))
+ .addCImm(&Val);
+ return buildSplatVector(Res, Const);
+ }
+
+ auto Const = buildInstr(TargetOpcode::G_CONSTANT);
+ Res.addDefToMIB(*getMRI(), Const);
+ Const.addCImm(&Val);
+ return Const;
+}
+
+MachineInstrBuilder MachineIRBuilder::buildConstant(const DstOp &Res,
+ int64_t Val) {
+ auto IntN = IntegerType::get(getMF().getFunction().getContext(),
+ Res.getLLTTy(*getMRI()).getScalarSizeInBits());
+ ConstantInt *CI = ConstantInt::get(IntN, Val, true);
+ return buildConstant(Res, *CI);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildFConstant(const DstOp &Res,
+ const ConstantFP &Val) {
+ LLT Ty = Res.getLLTTy(*getMRI());
+ LLT EltTy = Ty.getScalarType();
+
+ assert(APFloat::getSizeInBits(Val.getValueAPF().getSemantics())
+ == EltTy.getSizeInBits() &&
+ "creating fconstant with the wrong size");
+
+ assert(!Ty.isPointer() && "invalid operand type");
+
+ if (Ty.isVector()) {
+ auto Const = buildInstr(TargetOpcode::G_FCONSTANT)
+ .addDef(getMRI()->createGenericVirtualRegister(EltTy))
+ .addFPImm(&Val);
+
+ return buildSplatVector(Res, Const);
+ }
+
+ auto Const = buildInstr(TargetOpcode::G_FCONSTANT);
+ Res.addDefToMIB(*getMRI(), Const);
+ Const.addFPImm(&Val);
+ return Const;
+}
+
+MachineInstrBuilder MachineIRBuilder::buildConstant(const DstOp &Res,
+ const APInt &Val) {
+ ConstantInt *CI = ConstantInt::get(getMF().getFunction().getContext(), Val);
+ return buildConstant(Res, *CI);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildFConstant(const DstOp &Res,
+ double Val) {
+ LLT DstTy = Res.getLLTTy(*getMRI());
+ auto &Ctx = getMF().getFunction().getContext();
+ auto *CFP =
+ ConstantFP::get(Ctx, getAPFloatFromSize(Val, DstTy.getScalarSizeInBits()));
+ return buildFConstant(Res, *CFP);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildFConstant(const DstOp &Res,
+ const APFloat &Val) {
+ auto &Ctx = getMF().getFunction().getContext();
+ auto *CFP = ConstantFP::get(Ctx, Val);
+ return buildFConstant(Res, *CFP);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildBrCond(Register Tst,
+ MachineBasicBlock &Dest) {
+ assert(getMRI()->getType(Tst).isScalar() && "invalid operand type");
+
+ return buildInstr(TargetOpcode::G_BRCOND).addUse(Tst).addMBB(&Dest);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildLoad(const DstOp &Res,
+ const SrcOp &Addr,
+ MachineMemOperand &MMO) {
+ return buildLoadInstr(TargetOpcode::G_LOAD, Res, Addr, MMO);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildLoadInstr(unsigned Opcode,
+ const DstOp &Res,
+ const SrcOp &Addr,
+ MachineMemOperand &MMO) {
+ assert(Res.getLLTTy(*getMRI()).isValid() && "invalid operand type");
+ assert(Addr.getLLTTy(*getMRI()).isPointer() && "invalid operand type");
+
+ auto MIB = buildInstr(Opcode);
+ Res.addDefToMIB(*getMRI(), MIB);
+ Addr.addSrcToMIB(MIB);
+ MIB.addMemOperand(&MMO);
+ return MIB;
+}
+
+MachineInstrBuilder MachineIRBuilder::buildStore(const SrcOp &Val,
+ const SrcOp &Addr,
+ MachineMemOperand &MMO) {
+ assert(Val.getLLTTy(*getMRI()).isValid() && "invalid operand type");
+ assert(Addr.getLLTTy(*getMRI()).isPointer() && "invalid operand type");
+
+ auto MIB = buildInstr(TargetOpcode::G_STORE);
+ Val.addSrcToMIB(MIB);
+ Addr.addSrcToMIB(MIB);
+ MIB.addMemOperand(&MMO);
+ return MIB;
+}
+
+MachineInstrBuilder MachineIRBuilder::buildUAddo(const DstOp &Res,
+ const DstOp &CarryOut,
+ const SrcOp &Op0,
+ const SrcOp &Op1) {
+ return buildInstr(TargetOpcode::G_UADDO, {Res, CarryOut}, {Op0, Op1});
+}
+
+MachineInstrBuilder MachineIRBuilder::buildUAdde(const DstOp &Res,
+ const DstOp &CarryOut,
+ const SrcOp &Op0,
+ const SrcOp &Op1,
+ const SrcOp &CarryIn) {
+ return buildInstr(TargetOpcode::G_UADDE, {Res, CarryOut},
+ {Op0, Op1, CarryIn});
+}
+
+MachineInstrBuilder MachineIRBuilder::buildAnyExt(const DstOp &Res,
+ const SrcOp &Op) {
+ return buildInstr(TargetOpcode::G_ANYEXT, Res, Op);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildSExt(const DstOp &Res,
+ const SrcOp &Op) {
+ return buildInstr(TargetOpcode::G_SEXT, Res, Op);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildZExt(const DstOp &Res,
+ const SrcOp &Op) {
+ return buildInstr(TargetOpcode::G_ZEXT, Res, Op);
+}
+
+unsigned MachineIRBuilder::getBoolExtOp(bool IsVec, bool IsFP) const {
+ const auto *TLI = getMF().getSubtarget().getTargetLowering();
+ switch (TLI->getBooleanContents(IsVec, IsFP)) {
+ case TargetLoweringBase::ZeroOrNegativeOneBooleanContent:
+ return TargetOpcode::G_SEXT;
+ case TargetLoweringBase::ZeroOrOneBooleanContent:
+ return TargetOpcode::G_ZEXT;
+ default:
+ return TargetOpcode::G_ANYEXT;
+ }
+}
+
+MachineInstrBuilder MachineIRBuilder::buildBoolExt(const DstOp &Res,
+ const SrcOp &Op,
+ bool IsFP) {
+ unsigned ExtOp = getBoolExtOp(getMRI()->getType(Op.getReg()).isVector(), IsFP);
+ return buildInstr(ExtOp, Res, Op);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildExtOrTrunc(unsigned ExtOpc,
+ const DstOp &Res,
+ const SrcOp &Op) {
+ assert((TargetOpcode::G_ANYEXT == ExtOpc || TargetOpcode::G_ZEXT == ExtOpc ||
+ TargetOpcode::G_SEXT == ExtOpc) &&
+ "Expecting Extending Opc");
+ assert(Res.getLLTTy(*getMRI()).isScalar() ||
+ Res.getLLTTy(*getMRI()).isVector());
+ assert(Res.getLLTTy(*getMRI()).isScalar() ==
+ Op.getLLTTy(*getMRI()).isScalar());
+
+ unsigned Opcode = TargetOpcode::COPY;
+ if (Res.getLLTTy(*getMRI()).getSizeInBits() >
+ Op.getLLTTy(*getMRI()).getSizeInBits())
+ Opcode = ExtOpc;
+ else if (Res.getLLTTy(*getMRI()).getSizeInBits() <
+ Op.getLLTTy(*getMRI()).getSizeInBits())
+ Opcode = TargetOpcode::G_TRUNC;
+ else
+ assert(Res.getLLTTy(*getMRI()) == Op.getLLTTy(*getMRI()));
+
+ return buildInstr(Opcode, Res, Op);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildSExtOrTrunc(const DstOp &Res,
+ const SrcOp &Op) {
+ return buildExtOrTrunc(TargetOpcode::G_SEXT, Res, Op);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildZExtOrTrunc(const DstOp &Res,
+ const SrcOp &Op) {
+ return buildExtOrTrunc(TargetOpcode::G_ZEXT, Res, Op);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildAnyExtOrTrunc(const DstOp &Res,
+ const SrcOp &Op) {
+ return buildExtOrTrunc(TargetOpcode::G_ANYEXT, Res, Op);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildCast(const DstOp &Dst,
+ const SrcOp &Src) {
+ LLT SrcTy = Src.getLLTTy(*getMRI());
+ LLT DstTy = Dst.getLLTTy(*getMRI());
+ if (SrcTy == DstTy)
+ return buildCopy(Dst, Src);
+
+ unsigned Opcode;
+ if (SrcTy.isPointer() && DstTy.isScalar())
+ Opcode = TargetOpcode::G_PTRTOINT;
+ else if (DstTy.isPointer() && SrcTy.isScalar())
+ Opcode = TargetOpcode::G_INTTOPTR;
+ else {
+ assert(!SrcTy.isPointer() && !DstTy.isPointer() && "n G_ADDRCAST yet");
+ Opcode = TargetOpcode::G_BITCAST;
+ }
+
+ return buildInstr(Opcode, Dst, Src);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildExtract(const DstOp &Dst,
+ const SrcOp &Src,
+ uint64_t Index) {
+ LLT SrcTy = Src.getLLTTy(*getMRI());
+ LLT DstTy = Dst.getLLTTy(*getMRI());
+
+#ifndef NDEBUG
+ assert(SrcTy.isValid() && "invalid operand type");
+ assert(DstTy.isValid() && "invalid operand type");
+ assert(Index + DstTy.getSizeInBits() <= SrcTy.getSizeInBits() &&
+ "extracting off end of register");
+#endif
+
+ if (DstTy.getSizeInBits() == SrcTy.getSizeInBits()) {
+ assert(Index == 0 && "insertion past the end of a register");
+ return buildCast(Dst, Src);
+ }
+
+ auto Extract = buildInstr(TargetOpcode::G_EXTRACT);
+ Dst.addDefToMIB(*getMRI(), Extract);
+ Src.addSrcToMIB(Extract);
+ Extract.addImm(Index);
+ return Extract;
+}
+
+void MachineIRBuilder::buildSequence(Register Res, ArrayRef<Register> Ops,
+ ArrayRef<uint64_t> Indices) {
+#ifndef NDEBUG
+ assert(Ops.size() == Indices.size() && "incompatible args");
+ assert(!Ops.empty() && "invalid trivial sequence");
+ assert(std::is_sorted(Indices.begin(), Indices.end()) &&
+ "sequence offsets must be in ascending order");
+
+ assert(getMRI()->getType(Res).isValid() && "invalid operand type");
+ for (auto Op : Ops)
+ assert(getMRI()->getType(Op).isValid() && "invalid operand type");
+#endif
+
+ LLT ResTy = getMRI()->getType(Res);
+ LLT OpTy = getMRI()->getType(Ops[0]);
+ unsigned OpSize = OpTy.getSizeInBits();
+ bool MaybeMerge = true;
+ for (unsigned i = 0; i < Ops.size(); ++i) {
+ if (getMRI()->getType(Ops[i]) != OpTy || Indices[i] != i * OpSize) {
+ MaybeMerge = false;
+ break;
+ }
+ }
+
+ if (MaybeMerge && Ops.size() * OpSize == ResTy.getSizeInBits()) {
+ buildMerge(Res, Ops);
+ return;
+ }
+
+ Register ResIn = getMRI()->createGenericVirtualRegister(ResTy);
+ buildUndef(ResIn);
+
+ for (unsigned i = 0; i < Ops.size(); ++i) {
+ Register ResOut = i + 1 == Ops.size()
+ ? Res
+ : getMRI()->createGenericVirtualRegister(ResTy);
+ buildInsert(ResOut, ResIn, Ops[i], Indices[i]);
+ ResIn = ResOut;
+ }
+}
+
+MachineInstrBuilder MachineIRBuilder::buildUndef(const DstOp &Res) {
+ return buildInstr(TargetOpcode::G_IMPLICIT_DEF, {Res}, {});
+}
+
+MachineInstrBuilder MachineIRBuilder::buildMerge(const DstOp &Res,
+ ArrayRef<Register> Ops) {
+ // Unfortunately to convert from ArrayRef<LLT> to ArrayRef<SrcOp>,
+ // we need some temporary storage for the DstOp objects. Here we use a
+ // sufficiently large SmallVector to not go through the heap.
+ SmallVector<SrcOp, 8> TmpVec(Ops.begin(), Ops.end());
+ assert(TmpVec.size() > 1);
+ return buildInstr(TargetOpcode::G_MERGE_VALUES, Res, TmpVec);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildUnmerge(ArrayRef<LLT> Res,
+ const SrcOp &Op) {
+ // Unfortunately to convert from ArrayRef<LLT> to ArrayRef<DstOp>,
+ // we need some temporary storage for the DstOp objects. Here we use a
+ // sufficiently large SmallVector to not go through the heap.
+ SmallVector<DstOp, 8> TmpVec(Res.begin(), Res.end());
+ assert(TmpVec.size() > 1);
+ return buildInstr(TargetOpcode::G_UNMERGE_VALUES, TmpVec, Op);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildUnmerge(LLT Res,
+ const SrcOp &Op) {
+ unsigned NumReg = Op.getLLTTy(*getMRI()).getSizeInBits() / Res.getSizeInBits();
+ SmallVector<Register, 8> TmpVec;
+ for (unsigned I = 0; I != NumReg; ++I)
+ TmpVec.push_back(getMRI()->createGenericVirtualRegister(Res));
+ return buildUnmerge(TmpVec, Op);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildUnmerge(ArrayRef<Register> Res,
+ const SrcOp &Op) {
+ // Unfortunately to convert from ArrayRef<Register> to ArrayRef<DstOp>,
+ // we need some temporary storage for the DstOp objects. Here we use a
+ // sufficiently large SmallVector to not go through the heap.
+ SmallVector<DstOp, 8> TmpVec(Res.begin(), Res.end());
+ assert(TmpVec.size() > 1);
+ return buildInstr(TargetOpcode::G_UNMERGE_VALUES, TmpVec, Op);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildBuildVector(const DstOp &Res,
+ ArrayRef<Register> Ops) {
+ // Unfortunately to convert from ArrayRef<Register> to ArrayRef<SrcOp>,
+ // we need some temporary storage for the DstOp objects. Here we use a
+ // sufficiently large SmallVector to not go through the heap.
+ SmallVector<SrcOp, 8> TmpVec(Ops.begin(), Ops.end());
+ return buildInstr(TargetOpcode::G_BUILD_VECTOR, Res, TmpVec);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildSplatVector(const DstOp &Res,
+ const SrcOp &Src) {
+ SmallVector<SrcOp, 8> TmpVec(Res.getLLTTy(*getMRI()).getNumElements(), Src);
+ return buildInstr(TargetOpcode::G_BUILD_VECTOR, Res, TmpVec);
+}
+
+MachineInstrBuilder
+MachineIRBuilder::buildBuildVectorTrunc(const DstOp &Res,
+ ArrayRef<Register> Ops) {
+ // Unfortunately to convert from ArrayRef<Register> to ArrayRef<SrcOp>,
+ // we need some temporary storage for the DstOp objects. Here we use a
+ // sufficiently large SmallVector to not go through the heap.
+ SmallVector<SrcOp, 8> TmpVec(Ops.begin(), Ops.end());
+ return buildInstr(TargetOpcode::G_BUILD_VECTOR_TRUNC, Res, TmpVec);
+}
+
+MachineInstrBuilder
+MachineIRBuilder::buildConcatVectors(const DstOp &Res, ArrayRef<Register> Ops) {
+ // Unfortunately to convert from ArrayRef<Register> to ArrayRef<SrcOp>,
+ // we need some temporary storage for the DstOp objects. Here we use a
+ // sufficiently large SmallVector to not go through the heap.
+ SmallVector<SrcOp, 8> TmpVec(Ops.begin(), Ops.end());
+ return buildInstr(TargetOpcode::G_CONCAT_VECTORS, Res, TmpVec);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildInsert(Register Res, Register Src,
+ Register Op, unsigned Index) {
+ assert(Index + getMRI()->getType(Op).getSizeInBits() <=
+ getMRI()->getType(Res).getSizeInBits() &&
+ "insertion past the end of a register");
+
+ if (getMRI()->getType(Res).getSizeInBits() ==
+ getMRI()->getType(Op).getSizeInBits()) {
+ return buildCast(Res, Op);
+ }
+
+ return buildInstr(TargetOpcode::G_INSERT)
+ .addDef(Res)
+ .addUse(Src)
+ .addUse(Op)
+ .addImm(Index);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildIntrinsic(Intrinsic::ID ID,
+ ArrayRef<Register> ResultRegs,
+ bool HasSideEffects) {
+ auto MIB =
+ buildInstr(HasSideEffects ? TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS
+ : TargetOpcode::G_INTRINSIC);
+ for (unsigned ResultReg : ResultRegs)
+ MIB.addDef(ResultReg);
+ MIB.addIntrinsicID(ID);
+ return MIB;
+}
+
+MachineInstrBuilder MachineIRBuilder::buildIntrinsic(Intrinsic::ID ID,
+ ArrayRef<DstOp> Results,
+ bool HasSideEffects) {
+ auto MIB =
+ buildInstr(HasSideEffects ? TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS
+ : TargetOpcode::G_INTRINSIC);
+ for (DstOp Result : Results)
+ Result.addDefToMIB(*getMRI(), MIB);
+ MIB.addIntrinsicID(ID);
+ return MIB;
+}
+
+MachineInstrBuilder MachineIRBuilder::buildTrunc(const DstOp &Res,
+ const SrcOp &Op) {
+ return buildInstr(TargetOpcode::G_TRUNC, Res, Op);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildFPTrunc(const DstOp &Res,
+ const SrcOp &Op) {
+ return buildInstr(TargetOpcode::G_FPTRUNC, Res, Op);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildICmp(CmpInst::Predicate Pred,
+ const DstOp &Res,
+ const SrcOp &Op0,
+ const SrcOp &Op1) {
+ return buildInstr(TargetOpcode::G_ICMP, Res, {Pred, Op0, Op1});
+}
+
+MachineInstrBuilder MachineIRBuilder::buildFCmp(CmpInst::Predicate Pred,
+ const DstOp &Res,
+ const SrcOp &Op0,
+ const SrcOp &Op1,
+ Optional<unsigned> Flags) {
+
+ return buildInstr(TargetOpcode::G_FCMP, Res, {Pred, Op0, Op1}, Flags);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildSelect(const DstOp &Res,
+ const SrcOp &Tst,
+ const SrcOp &Op0,
+ const SrcOp &Op1,
+ Optional<unsigned> Flags) {
+
+ return buildInstr(TargetOpcode::G_SELECT, {Res}, {Tst, Op0, Op1}, Flags);
+}
+
+MachineInstrBuilder
+MachineIRBuilder::buildInsertVectorElement(const DstOp &Res, const SrcOp &Val,
+ const SrcOp &Elt, const SrcOp &Idx) {
+ return buildInstr(TargetOpcode::G_INSERT_VECTOR_ELT, Res, {Val, Elt, Idx});
+}
+
+MachineInstrBuilder
+MachineIRBuilder::buildExtractVectorElement(const DstOp &Res, const SrcOp &Val,
+ const SrcOp &Idx) {
+ return buildInstr(TargetOpcode::G_EXTRACT_VECTOR_ELT, Res, {Val, Idx});
+}
+
+MachineInstrBuilder MachineIRBuilder::buildAtomicCmpXchgWithSuccess(
+ Register OldValRes, Register SuccessRes, Register Addr, Register CmpVal,
+ Register NewVal, MachineMemOperand &MMO) {
+#ifndef NDEBUG
+ LLT OldValResTy = getMRI()->getType(OldValRes);
+ LLT SuccessResTy = getMRI()->getType(SuccessRes);
+ LLT AddrTy = getMRI()->getType(Addr);
+ LLT CmpValTy = getMRI()->getType(CmpVal);
+ LLT NewValTy = getMRI()->getType(NewVal);
+ assert(OldValResTy.isScalar() && "invalid operand type");
+ assert(SuccessResTy.isScalar() && "invalid operand type");
+ assert(AddrTy.isPointer() && "invalid operand type");
+ assert(CmpValTy.isValid() && "invalid operand type");
+ assert(NewValTy.isValid() && "invalid operand type");
+ assert(OldValResTy == CmpValTy && "type mismatch");
+ assert(OldValResTy == NewValTy && "type mismatch");
+#endif
+
+ return buildInstr(TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS)
+ .addDef(OldValRes)
+ .addDef(SuccessRes)
+ .addUse(Addr)
+ .addUse(CmpVal)
+ .addUse(NewVal)
+ .addMemOperand(&MMO);
+}
+
+MachineInstrBuilder
+MachineIRBuilder::buildAtomicCmpXchg(Register OldValRes, Register Addr,
+ Register CmpVal, Register NewVal,
+ MachineMemOperand &MMO) {
+#ifndef NDEBUG
+ LLT OldValResTy = getMRI()->getType(OldValRes);
+ LLT AddrTy = getMRI()->getType(Addr);
+ LLT CmpValTy = getMRI()->getType(CmpVal);
+ LLT NewValTy = getMRI()->getType(NewVal);
+ assert(OldValResTy.isScalar() && "invalid operand type");
+ assert(AddrTy.isPointer() && "invalid operand type");
+ assert(CmpValTy.isValid() && "invalid operand type");
+ assert(NewValTy.isValid() && "invalid operand type");
+ assert(OldValResTy == CmpValTy && "type mismatch");
+ assert(OldValResTy == NewValTy && "type mismatch");
+#endif
+
+ return buildInstr(TargetOpcode::G_ATOMIC_CMPXCHG)
+ .addDef(OldValRes)
+ .addUse(Addr)
+ .addUse(CmpVal)
+ .addUse(NewVal)
+ .addMemOperand(&MMO);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildAtomicRMW(
+ unsigned Opcode, const DstOp &OldValRes,
+ const SrcOp &Addr, const SrcOp &Val,
+ MachineMemOperand &MMO) {
+
+#ifndef NDEBUG
+ LLT OldValResTy = OldValRes.getLLTTy(*getMRI());
+ LLT AddrTy = Addr.getLLTTy(*getMRI());
+ LLT ValTy = Val.getLLTTy(*getMRI());
+ assert(OldValResTy.isScalar() && "invalid operand type");
+ assert(AddrTy.isPointer() && "invalid operand type");
+ assert(ValTy.isValid() && "invalid operand type");
+ assert(OldValResTy == ValTy && "type mismatch");
+ assert(MMO.isAtomic() && "not atomic mem operand");
+#endif
+
+ auto MIB = buildInstr(Opcode);
+ OldValRes.addDefToMIB(*getMRI(), MIB);
+ Addr.addSrcToMIB(MIB);
+ Val.addSrcToMIB(MIB);
+ MIB.addMemOperand(&MMO);
+ return MIB;
+}
+
+MachineInstrBuilder
+MachineIRBuilder::buildAtomicRMWXchg(Register OldValRes, Register Addr,
+ Register Val, MachineMemOperand &MMO) {
+ return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_XCHG, OldValRes, Addr, Val,
+ MMO);
+}
+MachineInstrBuilder
+MachineIRBuilder::buildAtomicRMWAdd(Register OldValRes, Register Addr,
+ Register Val, MachineMemOperand &MMO) {
+ return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_ADD, OldValRes, Addr, Val,
+ MMO);
+}
+MachineInstrBuilder
+MachineIRBuilder::buildAtomicRMWSub(Register OldValRes, Register Addr,
+ Register Val, MachineMemOperand &MMO) {
+ return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_SUB, OldValRes, Addr, Val,
+ MMO);
+}
+MachineInstrBuilder
+MachineIRBuilder::buildAtomicRMWAnd(Register OldValRes, Register Addr,
+ Register Val, MachineMemOperand &MMO) {
+ return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_AND, OldValRes, Addr, Val,
+ MMO);
+}
+MachineInstrBuilder
+MachineIRBuilder::buildAtomicRMWNand(Register OldValRes, Register Addr,
+ Register Val, MachineMemOperand &MMO) {
+ return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_NAND, OldValRes, Addr, Val,
+ MMO);
+}
+MachineInstrBuilder MachineIRBuilder::buildAtomicRMWOr(Register OldValRes,
+ Register Addr,
+ Register Val,
+ MachineMemOperand &MMO) {
+ return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_OR, OldValRes, Addr, Val,
+ MMO);
+}
+MachineInstrBuilder
+MachineIRBuilder::buildAtomicRMWXor(Register OldValRes, Register Addr,
+ Register Val, MachineMemOperand &MMO) {
+ return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_XOR, OldValRes, Addr, Val,
+ MMO);
+}
+MachineInstrBuilder
+MachineIRBuilder::buildAtomicRMWMax(Register OldValRes, Register Addr,
+ Register Val, MachineMemOperand &MMO) {
+ return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_MAX, OldValRes, Addr, Val,
+ MMO);
+}
+MachineInstrBuilder
+MachineIRBuilder::buildAtomicRMWMin(Register OldValRes, Register Addr,
+ Register Val, MachineMemOperand &MMO) {
+ return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_MIN, OldValRes, Addr, Val,
+ MMO);
+}
+MachineInstrBuilder
+MachineIRBuilder::buildAtomicRMWUmax(Register OldValRes, Register Addr,
+ Register Val, MachineMemOperand &MMO) {
+ return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_UMAX, OldValRes, Addr, Val,
+ MMO);
+}
+MachineInstrBuilder
+MachineIRBuilder::buildAtomicRMWUmin(Register OldValRes, Register Addr,
+ Register Val, MachineMemOperand &MMO) {
+ return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_UMIN, OldValRes, Addr, Val,
+ MMO);
+}
+
+MachineInstrBuilder
+MachineIRBuilder::buildAtomicRMWFAdd(
+ const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val,
+ MachineMemOperand &MMO) {
+ return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_FADD, OldValRes, Addr, Val,
+ MMO);
+}
+
+MachineInstrBuilder
+MachineIRBuilder::buildAtomicRMWFSub(const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val,
+ MachineMemOperand &MMO) {
+ return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_FSUB, OldValRes, Addr, Val,
+ MMO);
+}
+
+MachineInstrBuilder
+MachineIRBuilder::buildFence(unsigned Ordering, unsigned Scope) {
+ return buildInstr(TargetOpcode::G_FENCE)
+ .addImm(Ordering)
+ .addImm(Scope);
+}
+
+MachineInstrBuilder
+MachineIRBuilder::buildBlockAddress(Register Res, const BlockAddress *BA) {
+#ifndef NDEBUG
+ assert(getMRI()->getType(Res).isPointer() && "invalid res type");
+#endif
+
+ return buildInstr(TargetOpcode::G_BLOCK_ADDR).addDef(Res).addBlockAddress(BA);
+}
+
+void MachineIRBuilder::validateTruncExt(const LLT &DstTy, const LLT &SrcTy,
+ bool IsExtend) {
+#ifndef NDEBUG
+ if (DstTy.isVector()) {
+ assert(SrcTy.isVector() && "mismatched cast between vector and non-vector");
+ assert(SrcTy.getNumElements() == DstTy.getNumElements() &&
+ "different number of elements in a trunc/ext");
+ } else
+ assert(DstTy.isScalar() && SrcTy.isScalar() && "invalid extend/trunc");
+
+ if (IsExtend)
+ assert(DstTy.getSizeInBits() > SrcTy.getSizeInBits() &&
+ "invalid narrowing extend");
+ else
+ assert(DstTy.getSizeInBits() < SrcTy.getSizeInBits() &&
+ "invalid widening trunc");
+#endif
+}
+
+void MachineIRBuilder::validateSelectOp(const LLT &ResTy, const LLT &TstTy,
+ const LLT &Op0Ty, const LLT &Op1Ty) {
+#ifndef NDEBUG
+ assert((ResTy.isScalar() || ResTy.isVector() || ResTy.isPointer()) &&
+ "invalid operand type");
+ assert((ResTy == Op0Ty && ResTy == Op1Ty) && "type mismatch");
+ if (ResTy.isScalar() || ResTy.isPointer())
+ assert(TstTy.isScalar() && "type mismatch");
+ else
+ assert((TstTy.isScalar() ||
+ (TstTy.isVector() &&
+ TstTy.getNumElements() == Op0Ty.getNumElements())) &&
+ "type mismatch");
+#endif
+}
+
+MachineInstrBuilder MachineIRBuilder::buildInstr(unsigned Opc,
+ ArrayRef<DstOp> DstOps,
+ ArrayRef<SrcOp> SrcOps,
+ Optional<unsigned> Flags) {
+ switch (Opc) {
+ default:
+ break;
+ case TargetOpcode::G_SELECT: {
+ assert(DstOps.size() == 1 && "Invalid select");
+ assert(SrcOps.size() == 3 && "Invalid select");
+ validateSelectOp(
+ DstOps[0].getLLTTy(*getMRI()), SrcOps[0].getLLTTy(*getMRI()),
+ SrcOps[1].getLLTTy(*getMRI()), SrcOps[2].getLLTTy(*getMRI()));
+ break;
+ }
+ case TargetOpcode::G_ADD:
+ case TargetOpcode::G_AND:
+ case TargetOpcode::G_MUL:
+ case TargetOpcode::G_OR:
+ case TargetOpcode::G_SUB:
+ case TargetOpcode::G_XOR:
+ case TargetOpcode::G_UDIV:
+ case TargetOpcode::G_SDIV:
+ case TargetOpcode::G_UREM:
+ case TargetOpcode::G_SREM:
+ case TargetOpcode::G_SMIN:
+ case TargetOpcode::G_SMAX:
+ case TargetOpcode::G_UMIN:
+ case TargetOpcode::G_UMAX: {
+ // All these are binary ops.
+ assert(DstOps.size() == 1 && "Invalid Dst");
+ assert(SrcOps.size() == 2 && "Invalid Srcs");
+ validateBinaryOp(DstOps[0].getLLTTy(*getMRI()),
+ SrcOps[0].getLLTTy(*getMRI()),
+ SrcOps[1].getLLTTy(*getMRI()));
+ break;
+ }
+ case TargetOpcode::G_SHL:
+ case TargetOpcode::G_ASHR:
+ case TargetOpcode::G_LSHR: {
+ assert(DstOps.size() == 1 && "Invalid Dst");
+ assert(SrcOps.size() == 2 && "Invalid Srcs");
+ validateShiftOp(DstOps[0].getLLTTy(*getMRI()),
+ SrcOps[0].getLLTTy(*getMRI()),
+ SrcOps[1].getLLTTy(*getMRI()));
+ break;
+ }
+ case TargetOpcode::G_SEXT:
+ case TargetOpcode::G_ZEXT:
+ case TargetOpcode::G_ANYEXT:
+ assert(DstOps.size() == 1 && "Invalid Dst");
+ assert(SrcOps.size() == 1 && "Invalid Srcs");
+ validateTruncExt(DstOps[0].getLLTTy(*getMRI()),
+ SrcOps[0].getLLTTy(*getMRI()), true);
+ break;
+ case TargetOpcode::G_TRUNC:
+ case TargetOpcode::G_FPTRUNC: {
+ assert(DstOps.size() == 1 && "Invalid Dst");
+ assert(SrcOps.size() == 1 && "Invalid Srcs");
+ validateTruncExt(DstOps[0].getLLTTy(*getMRI()),
+ SrcOps[0].getLLTTy(*getMRI()), false);
+ break;
+ }
+ case TargetOpcode::COPY:
+ assert(DstOps.size() == 1 && "Invalid Dst");
+ // If the caller wants to add a subreg source it has to be done separately
+ // so we may not have any SrcOps at this point yet.
+ break;
+ case TargetOpcode::G_FCMP:
+ case TargetOpcode::G_ICMP: {
+ assert(DstOps.size() == 1 && "Invalid Dst Operands");
+ assert(SrcOps.size() == 3 && "Invalid Src Operands");
+ // For F/ICMP, the first src operand is the predicate, followed by
+ // the two comparands.
+ assert(SrcOps[0].getSrcOpKind() == SrcOp::SrcType::Ty_Predicate &&
+ "Expecting predicate");
+ assert([&]() -> bool {
+ CmpInst::Predicate Pred = SrcOps[0].getPredicate();
+ return Opc == TargetOpcode::G_ICMP ? CmpInst::isIntPredicate(Pred)
+ : CmpInst::isFPPredicate(Pred);
+ }() && "Invalid predicate");
+ assert(SrcOps[1].getLLTTy(*getMRI()) == SrcOps[2].getLLTTy(*getMRI()) &&
+ "Type mismatch");
+ assert([&]() -> bool {
+ LLT Op0Ty = SrcOps[1].getLLTTy(*getMRI());
+ LLT DstTy = DstOps[0].getLLTTy(*getMRI());
+ if (Op0Ty.isScalar() || Op0Ty.isPointer())
+ return DstTy.isScalar();
+ else
+ return DstTy.isVector() &&
+ DstTy.getNumElements() == Op0Ty.getNumElements();
+ }() && "Type Mismatch");
+ break;
+ }
+ case TargetOpcode::G_UNMERGE_VALUES: {
+ assert(!DstOps.empty() && "Invalid trivial sequence");
+ assert(SrcOps.size() == 1 && "Invalid src for Unmerge");
+ assert(std::all_of(DstOps.begin(), DstOps.end(),
+ [&, this](const DstOp &Op) {
+ return Op.getLLTTy(*getMRI()) ==
+ DstOps[0].getLLTTy(*getMRI());
+ }) &&
+ "type mismatch in output list");
+ assert(DstOps.size() * DstOps[0].getLLTTy(*getMRI()).getSizeInBits() ==
+ SrcOps[0].getLLTTy(*getMRI()).getSizeInBits() &&
+ "input operands do not cover output register");
+ break;
+ }
+ case TargetOpcode::G_MERGE_VALUES: {
+ assert(!SrcOps.empty() && "invalid trivial sequence");
+ assert(DstOps.size() == 1 && "Invalid Dst");
+ assert(std::all_of(SrcOps.begin(), SrcOps.end(),
+ [&, this](const SrcOp &Op) {
+ return Op.getLLTTy(*getMRI()) ==
+ SrcOps[0].getLLTTy(*getMRI());
+ }) &&
+ "type mismatch in input list");
+ assert(SrcOps.size() * SrcOps[0].getLLTTy(*getMRI()).getSizeInBits() ==
+ DstOps[0].getLLTTy(*getMRI()).getSizeInBits() &&
+ "input operands do not cover output register");
+ if (SrcOps.size() == 1)
+ return buildCast(DstOps[0], SrcOps[0]);
+ if (DstOps[0].getLLTTy(*getMRI()).isVector()) {
+ if (SrcOps[0].getLLTTy(*getMRI()).isVector())
+ return buildInstr(TargetOpcode::G_CONCAT_VECTORS, DstOps, SrcOps);
+ return buildInstr(TargetOpcode::G_BUILD_VECTOR, DstOps, SrcOps);
+ }
+ break;
+ }
+ case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
+ assert(DstOps.size() == 1 && "Invalid Dst size");
+ assert(SrcOps.size() == 2 && "Invalid Src size");
+ assert(SrcOps[0].getLLTTy(*getMRI()).isVector() && "Invalid operand type");
+ assert((DstOps[0].getLLTTy(*getMRI()).isScalar() ||
+ DstOps[0].getLLTTy(*getMRI()).isPointer()) &&
+ "Invalid operand type");
+ assert(SrcOps[1].getLLTTy(*getMRI()).isScalar() && "Invalid operand type");
+ assert(SrcOps[0].getLLTTy(*getMRI()).getElementType() ==
+ DstOps[0].getLLTTy(*getMRI()) &&
+ "Type mismatch");
+ break;
+ }
+ case TargetOpcode::G_INSERT_VECTOR_ELT: {
+ assert(DstOps.size() == 1 && "Invalid dst size");
+ assert(SrcOps.size() == 3 && "Invalid src size");
+ assert(DstOps[0].getLLTTy(*getMRI()).isVector() &&
+ SrcOps[0].getLLTTy(*getMRI()).isVector() && "Invalid operand type");
+ assert(DstOps[0].getLLTTy(*getMRI()).getElementType() ==
+ SrcOps[1].getLLTTy(*getMRI()) &&
+ "Type mismatch");
+ assert(SrcOps[2].getLLTTy(*getMRI()).isScalar() && "Invalid index");
+ assert(DstOps[0].getLLTTy(*getMRI()).getNumElements() ==
+ SrcOps[0].getLLTTy(*getMRI()).getNumElements() &&
+ "Type mismatch");
+ break;
+ }
+ case TargetOpcode::G_BUILD_VECTOR: {
+ assert((!SrcOps.empty() || SrcOps.size() < 2) &&
+ "Must have at least 2 operands");
+ assert(DstOps.size() == 1 && "Invalid DstOps");
+ assert(DstOps[0].getLLTTy(*getMRI()).isVector() &&
+ "Res type must be a vector");
+ assert(std::all_of(SrcOps.begin(), SrcOps.end(),
+ [&, this](const SrcOp &Op) {
+ return Op.getLLTTy(*getMRI()) ==
+ SrcOps[0].getLLTTy(*getMRI());
+ }) &&
+ "type mismatch in input list");
+ assert(SrcOps.size() * SrcOps[0].getLLTTy(*getMRI()).getSizeInBits() ==
+ DstOps[0].getLLTTy(*getMRI()).getSizeInBits() &&
+ "input scalars do not exactly cover the output vector register");
+ break;
+ }
+ case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
+ assert((!SrcOps.empty() || SrcOps.size() < 2) &&
+ "Must have at least 2 operands");
+ assert(DstOps.size() == 1 && "Invalid DstOps");
+ assert(DstOps[0].getLLTTy(*getMRI()).isVector() &&
+ "Res type must be a vector");
+ assert(std::all_of(SrcOps.begin(), SrcOps.end(),
+ [&, this](const SrcOp &Op) {
+ return Op.getLLTTy(*getMRI()) ==
+ SrcOps[0].getLLTTy(*getMRI());
+ }) &&
+ "type mismatch in input list");
+ if (SrcOps[0].getLLTTy(*getMRI()).getSizeInBits() ==
+ DstOps[0].getLLTTy(*getMRI()).getElementType().getSizeInBits())
+ return buildInstr(TargetOpcode::G_BUILD_VECTOR, DstOps, SrcOps);
+ break;
+ }
+ case TargetOpcode::G_CONCAT_VECTORS: {
+ assert(DstOps.size() == 1 && "Invalid DstOps");
+ assert((!SrcOps.empty() || SrcOps.size() < 2) &&
+ "Must have at least 2 operands");
+ assert(std::all_of(SrcOps.begin(), SrcOps.end(),
+ [&, this](const SrcOp &Op) {
+ return (Op.getLLTTy(*getMRI()).isVector() &&
+ Op.getLLTTy(*getMRI()) ==
+ SrcOps[0].getLLTTy(*getMRI()));
+ }) &&
+ "type mismatch in input list");
+ assert(SrcOps.size() * SrcOps[0].getLLTTy(*getMRI()).getSizeInBits() ==
+ DstOps[0].getLLTTy(*getMRI()).getSizeInBits() &&
+ "input vectors do not exactly cover the output vector register");
+ break;
+ }
+ case TargetOpcode::G_UADDE: {
+ assert(DstOps.size() == 2 && "Invalid no of dst operands");
+ assert(SrcOps.size() == 3 && "Invalid no of src operands");
+ assert(DstOps[0].getLLTTy(*getMRI()).isScalar() && "Invalid operand");
+ assert((DstOps[0].getLLTTy(*getMRI()) == SrcOps[0].getLLTTy(*getMRI())) &&
+ (DstOps[0].getLLTTy(*getMRI()) == SrcOps[1].getLLTTy(*getMRI())) &&
+ "Invalid operand");
+ assert(DstOps[1].getLLTTy(*getMRI()).isScalar() && "Invalid operand");
+ assert(DstOps[1].getLLTTy(*getMRI()) == SrcOps[2].getLLTTy(*getMRI()) &&
+ "type mismatch");
+ break;
+ }
+ }
+
+ auto MIB = buildInstr(Opc);
+ for (const DstOp &Op : DstOps)
+ Op.addDefToMIB(*getMRI(), MIB);
+ for (const SrcOp &Op : SrcOps)
+ Op.addSrcToMIB(MIB);
+ if (Flags)
+ MIB->setFlags(*Flags);
+ return MIB;
+}
diff --git a/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp b/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp
new file mode 100644
index 000000000000..f0e35c65c53b
--- /dev/null
+++ b/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp
@@ -0,0 +1,1073 @@
+//==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file implements the RegBankSelect class.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
+#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
+#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
+#include "llvm/CodeGen/GlobalISel/Utils.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
+#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetOpcodes.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/BlockFrequency.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <limits>
+#include <memory>
+#include <utility>
+
+#define DEBUG_TYPE "regbankselect"
+
+using namespace llvm;
+
+static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
+ cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
+ cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
+ "Run the Fast mode (default mapping)"),
+ clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
+ "Use the Greedy mode (best local mapping)")));
+
+char RegBankSelect::ID = 0;
+
+INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
+ "Assign register bank of generic virtual registers",
+ false, false);
+INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
+INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
+INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
+INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
+ "Assign register bank of generic virtual registers", false,
+ false)
+
+RegBankSelect::RegBankSelect(Mode RunningMode)
+ : MachineFunctionPass(ID), OptMode(RunningMode) {
+ if (RegBankSelectMode.getNumOccurrences() != 0) {
+ OptMode = RegBankSelectMode;
+ if (RegBankSelectMode != RunningMode)
+ LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
+ }
+}
+
+void RegBankSelect::init(MachineFunction &MF) {
+ RBI = MF.getSubtarget().getRegBankInfo();
+ assert(RBI && "Cannot work without RegisterBankInfo");
+ MRI = &MF.getRegInfo();
+ TRI = MF.getSubtarget().getRegisterInfo();
+ TPC = &getAnalysis<TargetPassConfig>();
+ if (OptMode != Mode::Fast) {
+ MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
+ MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
+ } else {
+ MBFI = nullptr;
+ MBPI = nullptr;
+ }
+ MIRBuilder.setMF(MF);
+ MORE = std::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI);
+}
+
+void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
+ if (OptMode != Mode::Fast) {
+ // We could preserve the information from these two analysis but
+ // the APIs do not allow to do so yet.
+ AU.addRequired<MachineBlockFrequencyInfo>();
+ AU.addRequired<MachineBranchProbabilityInfo>();
+ }
+ AU.addRequired<TargetPassConfig>();
+ getSelectionDAGFallbackAnalysisUsage(AU);
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+bool RegBankSelect::assignmentMatch(
+ Register Reg, const RegisterBankInfo::ValueMapping &ValMapping,
+ bool &OnlyAssign) const {
+ // By default we assume we will have to repair something.
+ OnlyAssign = false;
+ // Each part of a break down needs to end up in a different register.
+ // In other word, Reg assignment does not match.
+ if (ValMapping.NumBreakDowns != 1)
+ return false;
+
+ const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
+ const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
+ // Reg is free of assignment, a simple assignment will make the
+ // register bank to match.
+ OnlyAssign = CurRegBank == nullptr;
+ LLVM_DEBUG(dbgs() << "Does assignment already match: ";
+ if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
+ dbgs() << " against ";
+ assert(DesiredRegBrank && "The mapping must be valid");
+ dbgs() << *DesiredRegBrank << '\n';);
+ return CurRegBank == DesiredRegBrank;
+}
+
+bool RegBankSelect::repairReg(
+ MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
+ RegBankSelect::RepairingPlacement &RepairPt,
+ const iterator_range<SmallVectorImpl<Register>::const_iterator> &NewVRegs) {
+
+ assert(ValMapping.NumBreakDowns == (unsigned)size(NewVRegs) &&
+ "need new vreg for each breakdown");
+
+ // An empty range of new register means no repairing.
+ assert(!NewVRegs.empty() && "We should not have to repair");
+
+ MachineInstr *MI;
+ if (ValMapping.NumBreakDowns == 1) {
+ // Assume we are repairing a use and thus, the original reg will be
+ // the source of the repairing.
+ Register Src = MO.getReg();
+ Register Dst = *NewVRegs.begin();
+
+ // If we repair a definition, swap the source and destination for
+ // the repairing.
+ if (MO.isDef())
+ std::swap(Src, Dst);
+
+ assert((RepairPt.getNumInsertPoints() == 1 ||
+ Register::isPhysicalRegister(Dst)) &&
+ "We are about to create several defs for Dst");
+
+ // Build the instruction used to repair, then clone it at the right
+ // places. Avoiding buildCopy bypasses the check that Src and Dst have the
+ // same types because the type is a placeholder when this function is called.
+ MI = MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY)
+ .addDef(Dst)
+ .addUse(Src);
+ LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst)
+ << '\n');
+ } else {
+ // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT
+ // sequence.
+ assert(ValMapping.partsAllUniform() && "irregular breakdowns not supported");
+
+ LLT RegTy = MRI->getType(MO.getReg());
+ if (MO.isDef()) {
+ unsigned MergeOp;
+ if (RegTy.isVector()) {
+ if (ValMapping.NumBreakDowns == RegTy.getNumElements())
+ MergeOp = TargetOpcode::G_BUILD_VECTOR;
+ else {
+ assert(
+ (ValMapping.BreakDown[0].Length * ValMapping.NumBreakDowns ==
+ RegTy.getSizeInBits()) &&
+ (ValMapping.BreakDown[0].Length % RegTy.getScalarSizeInBits() ==
+ 0) &&
+ "don't understand this value breakdown");
+
+ MergeOp = TargetOpcode::G_CONCAT_VECTORS;
+ }
+ } else
+ MergeOp = TargetOpcode::G_MERGE_VALUES;
+
+ auto MergeBuilder =
+ MIRBuilder.buildInstrNoInsert(MergeOp)
+ .addDef(MO.getReg());
+
+ for (Register SrcReg : NewVRegs)
+ MergeBuilder.addUse(SrcReg);
+
+ MI = MergeBuilder;
+ } else {
+ MachineInstrBuilder UnMergeBuilder =
+ MIRBuilder.buildInstrNoInsert(TargetOpcode::G_UNMERGE_VALUES);
+ for (Register DefReg : NewVRegs)
+ UnMergeBuilder.addDef(DefReg);
+
+ UnMergeBuilder.addUse(MO.getReg());
+ MI = UnMergeBuilder;
+ }
+ }
+
+ if (RepairPt.getNumInsertPoints() != 1)
+ report_fatal_error("need testcase to support multiple insertion points");
+
+ // TODO:
+ // Check if MI is legal. if not, we need to legalize all the
+ // instructions we are going to insert.
+ std::unique_ptr<MachineInstr *[]> NewInstrs(
+ new MachineInstr *[RepairPt.getNumInsertPoints()]);
+ bool IsFirst = true;
+ unsigned Idx = 0;
+ for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
+ MachineInstr *CurMI;
+ if (IsFirst)
+ CurMI = MI;
+ else
+ CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
+ InsertPt->insert(*CurMI);
+ NewInstrs[Idx++] = CurMI;
+ IsFirst = false;
+ }
+ // TODO:
+ // Legalize NewInstrs if need be.
+ return true;
+}
+
+uint64_t RegBankSelect::getRepairCost(
+ const MachineOperand &MO,
+ const RegisterBankInfo::ValueMapping &ValMapping) const {
+ assert(MO.isReg() && "We should only repair register operand");
+ assert(ValMapping.NumBreakDowns && "Nothing to map??");
+
+ bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
+ const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
+ // If MO does not have a register bank, we should have just been
+ // able to set one unless we have to break the value down.
+ assert(CurRegBank || MO.isDef());
+
+ // Def: Val <- NewDefs
+ // Same number of values: copy
+ // Different number: Val = build_sequence Defs1, Defs2, ...
+ // Use: NewSources <- Val.
+ // Same number of values: copy.
+ // Different number: Src1, Src2, ... =
+ // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
+ // We should remember that this value is available somewhere else to
+ // coalesce the value.
+
+ if (ValMapping.NumBreakDowns != 1)
+ return RBI->getBreakDownCost(ValMapping, CurRegBank);
+
+ if (IsSameNumOfValues) {
+ const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
+ // If we repair a definition, swap the source and destination for
+ // the repairing.
+ if (MO.isDef())
+ std::swap(CurRegBank, DesiredRegBrank);
+ // TODO: It may be possible to actually avoid the copy.
+ // If we repair something where the source is defined by a copy
+ // and the source of that copy is on the right bank, we can reuse
+ // it for free.
+ // E.g.,
+ // RegToRepair<BankA> = copy AlternativeSrc<BankB>
+ // = op RegToRepair<BankA>
+ // We can simply propagate AlternativeSrc instead of copying RegToRepair
+ // into a new virtual register.
+ // We would also need to propagate this information in the
+ // repairing placement.
+ unsigned Cost = RBI->copyCost(*DesiredRegBrank, *CurRegBank,
+ RBI->getSizeInBits(MO.getReg(), *MRI, *TRI));
+ // TODO: use a dedicated constant for ImpossibleCost.
+ if (Cost != std::numeric_limits<unsigned>::max())
+ return Cost;
+ // Return the legalization cost of that repairing.
+ }
+ return std::numeric_limits<unsigned>::max();
+}
+
+const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
+ MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
+ SmallVectorImpl<RepairingPlacement> &RepairPts) {
+ assert(!PossibleMappings.empty() &&
+ "Do not know how to map this instruction");
+
+ const RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
+ MappingCost Cost = MappingCost::ImpossibleCost();
+ SmallVector<RepairingPlacement, 4> LocalRepairPts;
+ for (const RegisterBankInfo::InstructionMapping *CurMapping :
+ PossibleMappings) {
+ MappingCost CurCost =
+ computeMapping(MI, *CurMapping, LocalRepairPts, &Cost);
+ if (CurCost < Cost) {
+ LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n');
+ Cost = CurCost;
+ BestMapping = CurMapping;
+ RepairPts.clear();
+ for (RepairingPlacement &RepairPt : LocalRepairPts)
+ RepairPts.emplace_back(std::move(RepairPt));
+ }
+ }
+ if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
+ // If none of the mapping worked that means they are all impossible.
+ // Thus, pick the first one and set an impossible repairing point.
+ // It will trigger the failed isel mode.
+ BestMapping = *PossibleMappings.begin();
+ RepairPts.emplace_back(
+ RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
+ } else
+ assert(BestMapping && "No suitable mapping for instruction");
+ return *BestMapping;
+}
+
+void RegBankSelect::tryAvoidingSplit(
+ RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
+ const RegisterBankInfo::ValueMapping &ValMapping) const {
+ const MachineInstr &MI = *MO.getParent();
+ assert(RepairPt.hasSplit() && "We should not have to adjust for split");
+ // Splitting should only occur for PHIs or between terminators,
+ // because we only do local repairing.
+ assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
+
+ assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
+ "Repairing placement does not match operand");
+
+ // If we need splitting for phis, that means it is because we
+ // could not find an insertion point before the terminators of
+ // the predecessor block for this argument. In other words,
+ // the input value is defined by one of the terminators.
+ assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
+
+ // We split to repair the use of a phi or a terminator.
+ if (!MO.isDef()) {
+ if (MI.isTerminator()) {
+ assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
+ "Need to split for the first terminator?!");
+ } else {
+ // For the PHI case, the split may not be actually required.
+ // In the copy case, a phi is already a copy on the incoming edge,
+ // therefore there is no need to split.
+ if (ValMapping.NumBreakDowns == 1)
+ // This is a already a copy, there is nothing to do.
+ RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
+ }
+ return;
+ }
+
+ // At this point, we need to repair a defintion of a terminator.
+
+ // Technically we need to fix the def of MI on all outgoing
+ // edges of MI to keep the repairing local. In other words, we
+ // will create several definitions of the same register. This
+ // does not work for SSA unless that definition is a physical
+ // register.
+ // However, there are other cases where we can get away with
+ // that while still keeping the repairing local.
+ assert(MI.isTerminator() && MO.isDef() &&
+ "This code is for the def of a terminator");
+
+ // Since we use RPO traversal, if we need to repair a definition
+ // this means this definition could be:
+ // 1. Used by PHIs (i.e., this VReg has been visited as part of the
+ // uses of a phi.), or
+ // 2. Part of a target specific instruction (i.e., the target applied
+ // some register class constraints when creating the instruction.)
+ // If the constraints come for #2, the target said that another mapping
+ // is supported so we may just drop them. Indeed, if we do not change
+ // the number of registers holding that value, the uses will get fixed
+ // when we get to them.
+ // Uses in PHIs may have already been proceeded though.
+ // If the constraints come for #1, then, those are weak constraints and
+ // no actual uses may rely on them. However, the problem remains mainly
+ // the same as for #2. If the value stays in one register, we could
+ // just switch the register bank of the definition, but we would need to
+ // account for a repairing cost for each phi we silently change.
+ //
+ // In any case, if the value needs to be broken down into several
+ // registers, the repairing is not local anymore as we need to patch
+ // every uses to rebuild the value in just one register.
+ //
+ // To summarize:
+ // - If the value is in a physical register, we can do the split and
+ // fix locally.
+ // Otherwise if the value is in a virtual register:
+ // - If the value remains in one register, we do not have to split
+ // just switching the register bank would do, but we need to account
+ // in the repairing cost all the phi we changed.
+ // - If the value spans several registers, then we cannot do a local
+ // repairing.
+
+ // Check if this is a physical or virtual register.
+ Register Reg = MO.getReg();
+ if (Register::isPhysicalRegister(Reg)) {
+ // We are going to split every outgoing edges.
+ // Check that this is possible.
+ // FIXME: The machine representation is currently broken
+ // since it also several terminators in one basic block.
+ // Because of that we would technically need a way to get
+ // the targets of just one terminator to know which edges
+ // we have to split.
+ // Assert that we do not hit the ill-formed representation.
+
+ // If there are other terminators before that one, some of
+ // the outgoing edges may not be dominated by this definition.
+ assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
+ "Do not know which outgoing edges are relevant");
+ const MachineInstr *Next = MI.getNextNode();
+ assert((!Next || Next->isUnconditionalBranch()) &&
+ "Do not know where each terminator ends up");
+ if (Next)
+ // If the next terminator uses Reg, this means we have
+ // to split right after MI and thus we need a way to ask
+ // which outgoing edges are affected.
+ assert(!Next->readsRegister(Reg) && "Need to split between terminators");
+ // We will split all the edges and repair there.
+ } else {
+ // This is a virtual register defined by a terminator.
+ if (ValMapping.NumBreakDowns == 1) {
+ // There is nothing to repair, but we may actually lie on
+ // the repairing cost because of the PHIs already proceeded
+ // as already stated.
+ // Though the code will be correct.
+ assert(false && "Repairing cost may not be accurate");
+ } else {
+ // We need to do non-local repairing. Basically, patch all
+ // the uses (i.e., phis) that we already proceeded.
+ // For now, just say this mapping is not possible.
+ RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
+ }
+ }
+}
+
+RegBankSelect::MappingCost RegBankSelect::computeMapping(
+ MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
+ SmallVectorImpl<RepairingPlacement> &RepairPts,
+ const RegBankSelect::MappingCost *BestCost) {
+ assert((MBFI || !BestCost) && "Costs comparison require MBFI");
+
+ if (!InstrMapping.isValid())
+ return MappingCost::ImpossibleCost();
+
+ // If mapped with InstrMapping, MI will have the recorded cost.
+ MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
+ bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
+ assert(!Saturated && "Possible mapping saturated the cost");
+ LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
+ LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n');
+ RepairPts.clear();
+ if (BestCost && Cost > *BestCost) {
+ LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
+ return Cost;
+ }
+
+ // Moreover, to realize this mapping, the register bank of each operand must
+ // match this mapping. In other words, we may need to locally reassign the
+ // register banks. Account for that repairing cost as well.
+ // In this context, local means in the surrounding of MI.
+ for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
+ OpIdx != EndOpIdx; ++OpIdx) {
+ const MachineOperand &MO = MI.getOperand(OpIdx);
+ if (!MO.isReg())
+ continue;
+ Register Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n');
+ const RegisterBankInfo::ValueMapping &ValMapping =
+ InstrMapping.getOperandMapping(OpIdx);
+ // If Reg is already properly mapped, this is free.
+ bool Assign;
+ if (assignmentMatch(Reg, ValMapping, Assign)) {
+ LLVM_DEBUG(dbgs() << "=> is free (match).\n");
+ continue;
+ }
+ if (Assign) {
+ LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
+ RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
+ RepairingPlacement::Reassign));
+ continue;
+ }
+
+ // Find the insertion point for the repairing code.
+ RepairPts.emplace_back(
+ RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
+ RepairingPlacement &RepairPt = RepairPts.back();
+
+ // If we need to split a basic block to materialize this insertion point,
+ // we may give a higher cost to this mapping.
+ // Nevertheless, we may get away with the split, so try that first.
+ if (RepairPt.hasSplit())
+ tryAvoidingSplit(RepairPt, MO, ValMapping);
+
+ // Check that the materialization of the repairing is possible.
+ if (!RepairPt.canMaterialize()) {
+ LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
+ return MappingCost::ImpossibleCost();
+ }
+
+ // Account for the split cost and repair cost.
+ // Unless the cost is already saturated or we do not care about the cost.
+ if (!BestCost || Saturated)
+ continue;
+
+ // To get accurate information we need MBFI and MBPI.
+ // Thus, if we end up here this information should be here.
+ assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
+
+ // FIXME: We will have to rework the repairing cost model.
+ // The repairing cost depends on the register bank that MO has.
+ // However, when we break down the value into different values,
+ // MO may not have a register bank while still needing repairing.
+ // For the fast mode, we don't compute the cost so that is fine,
+ // but still for the repairing code, we will have to make a choice.
+ // For the greedy mode, we should choose greedily what is the best
+ // choice based on the next use of MO.
+
+ // Sums up the repairing cost of MO at each insertion point.
+ uint64_t RepairCost = getRepairCost(MO, ValMapping);
+
+ // This is an impossible to repair cost.
+ if (RepairCost == std::numeric_limits<unsigned>::max())
+ return MappingCost::ImpossibleCost();
+
+ // Bias used for splitting: 5%.
+ const uint64_t PercentageForBias = 5;
+ uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
+ // We should not need more than a couple of instructions to repair
+ // an assignment. In other words, the computation should not
+ // overflow because the repairing cost is free of basic block
+ // frequency.
+ assert(((RepairCost < RepairCost * PercentageForBias) &&
+ (RepairCost * PercentageForBias <
+ RepairCost * PercentageForBias + 99)) &&
+ "Repairing involves more than a billion of instructions?!");
+ for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
+ assert(InsertPt->canMaterialize() && "We should not have made it here");
+ // We will applied some basic block frequency and those uses uint64_t.
+ if (!InsertPt->isSplit())
+ Saturated = Cost.addLocalCost(RepairCost);
+ else {
+ uint64_t CostForInsertPt = RepairCost;
+ // Again we shouldn't overflow here givent that
+ // CostForInsertPt is frequency free at this point.
+ assert(CostForInsertPt + Bias > CostForInsertPt &&
+ "Repairing + split bias overflows");
+ CostForInsertPt += Bias;
+ uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
+ // Check if we just overflowed.
+ if ((Saturated = PtCost < CostForInsertPt))
+ Cost.saturate();
+ else
+ Saturated = Cost.addNonLocalCost(PtCost);
+ }
+
+ // Stop looking into what it takes to repair, this is already
+ // too expensive.
+ if (BestCost && Cost > *BestCost) {
+ LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
+ return Cost;
+ }
+
+ // No need to accumulate more cost information.
+ // We need to still gather the repairing information though.
+ if (Saturated)
+ break;
+ }
+ }
+ LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n");
+ return Cost;
+}
+
+bool RegBankSelect::applyMapping(
+ MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
+ SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
+ // OpdMapper will hold all the information needed for the rewriting.
+ RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
+
+ // First, place the repairing code.
+ for (RepairingPlacement &RepairPt : RepairPts) {
+ if (!RepairPt.canMaterialize() ||
+ RepairPt.getKind() == RepairingPlacement::Impossible)
+ return false;
+ assert(RepairPt.getKind() != RepairingPlacement::None &&
+ "This should not make its way in the list");
+ unsigned OpIdx = RepairPt.getOpIdx();
+ MachineOperand &MO = MI.getOperand(OpIdx);
+ const RegisterBankInfo::ValueMapping &ValMapping =
+ InstrMapping.getOperandMapping(OpIdx);
+ Register Reg = MO.getReg();
+
+ switch (RepairPt.getKind()) {
+ case RepairingPlacement::Reassign:
+ assert(ValMapping.NumBreakDowns == 1 &&
+ "Reassignment should only be for simple mapping");
+ MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
+ break;
+ case RepairingPlacement::Insert:
+ OpdMapper.createVRegs(OpIdx);
+ if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
+ return false;
+ break;
+ default:
+ llvm_unreachable("Other kind should not happen");
+ }
+ }
+
+ // Second, rewrite the instruction.
+ LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
+ RBI->applyMapping(OpdMapper);
+
+ return true;
+}
+
+bool RegBankSelect::assignInstr(MachineInstr &MI) {
+ LLVM_DEBUG(dbgs() << "Assign: " << MI);
+ // Remember the repairing placement for all the operands.
+ SmallVector<RepairingPlacement, 4> RepairPts;
+
+ const RegisterBankInfo::InstructionMapping *BestMapping;
+ if (OptMode == RegBankSelect::Mode::Fast) {
+ BestMapping = &RBI->getInstrMapping(MI);
+ MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts);
+ (void)DefaultCost;
+ if (DefaultCost == MappingCost::ImpossibleCost())
+ return false;
+ } else {
+ RegisterBankInfo::InstructionMappings PossibleMappings =
+ RBI->getInstrPossibleMappings(MI);
+ if (PossibleMappings.empty())
+ return false;
+ BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts);
+ }
+ // Make sure the mapping is valid for MI.
+ assert(BestMapping->verify(MI) && "Invalid instruction mapping");
+
+ LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n');
+
+ // After this call, MI may not be valid anymore.
+ // Do not use it.
+ return applyMapping(MI, *BestMapping, RepairPts);
+}
+
+bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
+ // If the ISel pipeline failed, do not bother running that pass.
+ if (MF.getProperties().hasProperty(
+ MachineFunctionProperties::Property::FailedISel))
+ return false;
+
+ LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
+ const Function &F = MF.getFunction();
+ Mode SaveOptMode = OptMode;
+ if (F.hasOptNone())
+ OptMode = Mode::Fast;
+ init(MF);
+
+#ifndef NDEBUG
+ // Check that our input is fully legal: we require the function to have the
+ // Legalized property, so it should be.
+ // FIXME: This should be in the MachineVerifier.
+ if (!DisableGISelLegalityCheck)
+ if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) {
+ reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
+ "instruction is not legal", *MI);
+ return false;
+ }
+#endif
+
+ // Walk the function and assign register banks to all operands.
+ // Use a RPOT to make sure all registers are assigned before we choose
+ // the best mapping of the current instruction.
+ ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
+ for (MachineBasicBlock *MBB : RPOT) {
+ // Set a sensible insertion point so that subsequent calls to
+ // MIRBuilder.
+ MIRBuilder.setMBB(*MBB);
+ for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end();
+ MII != End;) {
+ // MI might be invalidated by the assignment, so move the
+ // iterator before hand.
+ MachineInstr &MI = *MII++;
+
+ // Ignore target-specific post-isel instructions: they should use proper
+ // regclasses.
+ if (isTargetSpecificOpcode(MI.getOpcode()) && !MI.isPreISelOpcode())
+ continue;
+
+ if (!assignInstr(MI)) {
+ reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
+ "unable to map instruction", MI);
+ return false;
+ }
+
+ // It's possible the mapping changed control flow, and moved the following
+ // instruction to a new block, so figure out the new parent.
+ if (MII != End) {
+ MachineBasicBlock *NextInstBB = MII->getParent();
+ if (NextInstBB != MBB) {
+ LLVM_DEBUG(dbgs() << "Instruction mapping changed control flow\n");
+ MBB = NextInstBB;
+ MIRBuilder.setMBB(*MBB);
+ End = MBB->end();
+ }
+ }
+ }
+ }
+
+ OptMode = SaveOptMode;
+ return false;
+}
+
+//------------------------------------------------------------------------------
+// Helper Classes Implementation
+//------------------------------------------------------------------------------
+RegBankSelect::RepairingPlacement::RepairingPlacement(
+ MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
+ RepairingPlacement::RepairingKind Kind)
+ // Default is, we are going to insert code to repair OpIdx.
+ : Kind(Kind), OpIdx(OpIdx),
+ CanMaterialize(Kind != RepairingKind::Impossible), P(P) {
+ const MachineOperand &MO = MI.getOperand(OpIdx);
+ assert(MO.isReg() && "Trying to repair a non-reg operand");
+
+ if (Kind != RepairingKind::Insert)
+ return;
+
+ // Repairings for definitions happen after MI, uses happen before.
+ bool Before = !MO.isDef();
+
+ // Check if we are done with MI.
+ if (!MI.isPHI() && !MI.isTerminator()) {
+ addInsertPoint(MI, Before);
+ // We are done with the initialization.
+ return;
+ }
+
+ // Now, look for the special cases.
+ if (MI.isPHI()) {
+ // - PHI must be the first instructions:
+ // * Before, we have to split the related incoming edge.
+ // * After, move the insertion point past the last phi.
+ if (!Before) {
+ MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
+ if (It != MI.getParent()->end())
+ addInsertPoint(*It, /*Before*/ true);
+ else
+ addInsertPoint(*(--It), /*Before*/ false);
+ return;
+ }
+ // We repair a use of a phi, we may need to split the related edge.
+ MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
+ // Check if we can move the insertion point prior to the
+ // terminators of the predecessor.
+ Register Reg = MO.getReg();
+ MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
+ for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
+ if (It->modifiesRegister(Reg, &TRI)) {
+ // We cannot hoist the repairing code in the predecessor.
+ // Split the edge.
+ addInsertPoint(Pred, *MI.getParent());
+ return;
+ }
+ // At this point, we can insert in Pred.
+
+ // - If It is invalid, Pred is empty and we can insert in Pred
+ // wherever we want.
+ // - If It is valid, It is the first non-terminator, insert after It.
+ if (It == Pred.end())
+ addInsertPoint(Pred, /*Beginning*/ false);
+ else
+ addInsertPoint(*It, /*Before*/ false);
+ } else {
+ // - Terminators must be the last instructions:
+ // * Before, move the insert point before the first terminator.
+ // * After, we have to split the outcoming edges.
+ if (Before) {
+ // Check whether Reg is defined by any terminator.
+ MachineBasicBlock::reverse_iterator It = MI;
+ auto REnd = MI.getParent()->rend();
+
+ for (; It != REnd && It->isTerminator(); ++It) {
+ assert(!It->modifiesRegister(MO.getReg(), &TRI) &&
+ "copy insertion in middle of terminators not handled");
+ }
+
+ if (It == REnd) {
+ addInsertPoint(*MI.getParent()->begin(), true);
+ return;
+ }
+
+ // We are sure to be right before the first terminator.
+ addInsertPoint(*It, /*Before*/ false);
+ return;
+ }
+ // Make sure Reg is not redefined by other terminators, otherwise
+ // we do not know how to split.
+ for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
+ ++It != End;)
+ // The machine verifier should reject this kind of code.
+ assert(It->modifiesRegister(MO.getReg(), &TRI) &&
+ "Do not know where to split");
+ // Split each outcoming edges.
+ MachineBasicBlock &Src = *MI.getParent();
+ for (auto &Succ : Src.successors())
+ addInsertPoint(Src, Succ);
+ }
+}
+
+void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
+ bool Before) {
+ addInsertPoint(*new InstrInsertPoint(MI, Before));
+}
+
+void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
+ bool Beginning) {
+ addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
+}
+
+void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
+ MachineBasicBlock &Dst) {
+ addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
+}
+
+void RegBankSelect::RepairingPlacement::addInsertPoint(
+ RegBankSelect::InsertPoint &Point) {
+ CanMaterialize &= Point.canMaterialize();
+ HasSplit |= Point.isSplit();
+ InsertPoints.emplace_back(&Point);
+}
+
+RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
+ bool Before)
+ : InsertPoint(), Instr(Instr), Before(Before) {
+ // Since we do not support splitting, we do not need to update
+ // liveness and such, so do not do anything with P.
+ assert((!Before || !Instr.isPHI()) &&
+ "Splitting before phis requires more points");
+ assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
+ "Splitting between phis does not make sense");
+}
+
+void RegBankSelect::InstrInsertPoint::materialize() {
+ if (isSplit()) {
+ // Slice and return the beginning of the new block.
+ // If we need to split between the terminators, we theoritically
+ // need to know where the first and second set of terminators end
+ // to update the successors properly.
+ // Now, in pratice, we should have a maximum of 2 branch
+ // instructions; one conditional and one unconditional. Therefore
+ // we know how to update the successor by looking at the target of
+ // the unconditional branch.
+ // If we end up splitting at some point, then, we should update
+ // the liveness information and such. I.e., we would need to
+ // access P here.
+ // The machine verifier should actually make sure such cases
+ // cannot happen.
+ llvm_unreachable("Not yet implemented");
+ }
+ // Otherwise the insertion point is just the current or next
+ // instruction depending on Before. I.e., there is nothing to do
+ // here.
+}
+
+bool RegBankSelect::InstrInsertPoint::isSplit() const {
+ // If the insertion point is after a terminator, we need to split.
+ if (!Before)
+ return Instr.isTerminator();
+ // If we insert before an instruction that is after a terminator,
+ // we are still after a terminator.
+ return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
+}
+
+uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
+ // Even if we need to split, because we insert between terminators,
+ // this split has actually the same frequency as the instruction.
+ const MachineBlockFrequencyInfo *MBFI =
+ P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
+ if (!MBFI)
+ return 1;
+ return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
+}
+
+uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
+ const MachineBlockFrequencyInfo *MBFI =
+ P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
+ if (!MBFI)
+ return 1;
+ return MBFI->getBlockFreq(&MBB).getFrequency();
+}
+
+void RegBankSelect::EdgeInsertPoint::materialize() {
+ // If we end up repairing twice at the same place before materializing the
+ // insertion point, we may think we have to split an edge twice.
+ // We should have a factory for the insert point such that identical points
+ // are the same instance.
+ assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
+ "This point has already been split");
+ MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
+ assert(NewBB && "Invalid call to materialize");
+ // We reuse the destination block to hold the information of the new block.
+ DstOrSplit = NewBB;
+}
+
+uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
+ const MachineBlockFrequencyInfo *MBFI =
+ P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
+ if (!MBFI)
+ return 1;
+ if (WasMaterialized)
+ return MBFI->getBlockFreq(DstOrSplit).getFrequency();
+
+ const MachineBranchProbabilityInfo *MBPI =
+ P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
+ if (!MBPI)
+ return 1;
+ // The basic block will be on the edge.
+ return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
+ .getFrequency();
+}
+
+bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
+ // If this is not a critical edge, we should not have used this insert
+ // point. Indeed, either the successor or the predecessor should
+ // have do.
+ assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
+ "Edge is not critical");
+ return Src.canSplitCriticalEdge(DstOrSplit);
+}
+
+RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
+ : LocalFreq(LocalFreq.getFrequency()) {}
+
+bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
+ // Check if this overflows.
+ if (LocalCost + Cost < LocalCost) {
+ saturate();
+ return true;
+ }
+ LocalCost += Cost;
+ return isSaturated();
+}
+
+bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
+ // Check if this overflows.
+ if (NonLocalCost + Cost < NonLocalCost) {
+ saturate();
+ return true;
+ }
+ NonLocalCost += Cost;
+ return isSaturated();
+}
+
+bool RegBankSelect::MappingCost::isSaturated() const {
+ return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
+ LocalFreq == UINT64_MAX;
+}
+
+void RegBankSelect::MappingCost::saturate() {
+ *this = ImpossibleCost();
+ --LocalCost;
+}
+
+RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
+ return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
+}
+
+bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
+ // Sort out the easy cases.
+ if (*this == Cost)
+ return false;
+ // If one is impossible to realize the other is cheaper unless it is
+ // impossible as well.
+ if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
+ return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
+ // If one is saturated the other is cheaper, unless it is saturated
+ // as well.
+ if (isSaturated() || Cost.isSaturated())
+ return isSaturated() < Cost.isSaturated();
+ // At this point we know both costs hold sensible values.
+
+ // If both values have a different base frequency, there is no much
+ // we can do but to scale everything.
+ // However, if they have the same base frequency we can avoid making
+ // complicated computation.
+ uint64_t ThisLocalAdjust;
+ uint64_t OtherLocalAdjust;
+ if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
+
+ // At this point, we know the local costs are comparable.
+ // Do the case that do not involve potential overflow first.
+ if (NonLocalCost == Cost.NonLocalCost)
+ // Since the non-local costs do not discriminate on the result,
+ // just compare the local costs.
+ return LocalCost < Cost.LocalCost;
+
+ // The base costs are comparable so we may only keep the relative
+ // value to increase our chances of avoiding overflows.
+ ThisLocalAdjust = 0;
+ OtherLocalAdjust = 0;
+ if (LocalCost < Cost.LocalCost)
+ OtherLocalAdjust = Cost.LocalCost - LocalCost;
+ else
+ ThisLocalAdjust = LocalCost - Cost.LocalCost;
+ } else {
+ ThisLocalAdjust = LocalCost;
+ OtherLocalAdjust = Cost.LocalCost;
+ }
+
+ // The non-local costs are comparable, just keep the relative value.
+ uint64_t ThisNonLocalAdjust = 0;
+ uint64_t OtherNonLocalAdjust = 0;
+ if (NonLocalCost < Cost.NonLocalCost)
+ OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
+ else
+ ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
+ // Scale everything to make them comparable.
+ uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
+ // Check for overflow on that operation.
+ bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
+ ThisScaledCost < LocalFreq);
+ uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
+ // Check for overflow on the last operation.
+ bool OtherOverflows =
+ OtherLocalAdjust &&
+ (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
+ // Add the non-local costs.
+ ThisOverflows |= ThisNonLocalAdjust &&
+ ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
+ ThisScaledCost += ThisNonLocalAdjust;
+ OtherOverflows |= OtherNonLocalAdjust &&
+ OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
+ OtherScaledCost += OtherNonLocalAdjust;
+ // If both overflows, we cannot compare without additional
+ // precision, e.g., APInt. Just give up on that case.
+ if (ThisOverflows && OtherOverflows)
+ return false;
+ // If one overflows but not the other, we can still compare.
+ if (ThisOverflows || OtherOverflows)
+ return ThisOverflows < OtherOverflows;
+ // Otherwise, just compare the values.
+ return ThisScaledCost < OtherScaledCost;
+}
+
+bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
+ return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
+ LocalFreq == Cost.LocalFreq;
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const {
+ print(dbgs());
+ dbgs() << '\n';
+}
+#endif
+
+void RegBankSelect::MappingCost::print(raw_ostream &OS) const {
+ if (*this == ImpossibleCost()) {
+ OS << "impossible";
+ return;
+ }
+ if (isSaturated()) {
+ OS << "saturated";
+ return;
+ }
+ OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;
+}
diff --git a/llvm/lib/CodeGen/GlobalISel/RegisterBank.cpp b/llvm/lib/CodeGen/GlobalISel/RegisterBank.cpp
new file mode 100644
index 000000000000..fc9c802693ab
--- /dev/null
+++ b/llvm/lib/CodeGen/GlobalISel/RegisterBank.cpp
@@ -0,0 +1,114 @@
+//===- llvm/CodeGen/GlobalISel/RegisterBank.cpp - Register Bank --*- C++ -*-==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file implements the RegisterBank class.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/Support/Debug.h"
+
+#define DEBUG_TYPE "registerbank"
+
+using namespace llvm;
+
+const unsigned RegisterBank::InvalidID = UINT_MAX;
+
+RegisterBank::RegisterBank(
+ unsigned ID, const char *Name, unsigned Size,
+ const uint32_t *CoveredClasses, unsigned NumRegClasses)
+ : ID(ID), Name(Name), Size(Size) {
+ ContainedRegClasses.resize(NumRegClasses);
+ ContainedRegClasses.setBitsInMask(CoveredClasses);
+}
+
+bool RegisterBank::verify(const TargetRegisterInfo &TRI) const {
+ assert(isValid() && "Invalid register bank");
+ for (unsigned RCId = 0, End = TRI.getNumRegClasses(); RCId != End; ++RCId) {
+ const TargetRegisterClass &RC = *TRI.getRegClass(RCId);
+
+ if (!covers(RC))
+ continue;
+ // Verify that the register bank covers all the sub classes of the
+ // classes it covers.
+
+ // Use a different (slow in that case) method than
+ // RegisterBankInfo to find the subclasses of RC, to make sure
+ // both agree on the covers.
+ for (unsigned SubRCId = 0; SubRCId != End; ++SubRCId) {
+ const TargetRegisterClass &SubRC = *TRI.getRegClass(RCId);
+
+ if (!RC.hasSubClassEq(&SubRC))
+ continue;
+
+ // Verify that the Size of the register bank is big enough to cover
+ // all the register classes it covers.
+ assert(getSize() >= TRI.getRegSizeInBits(SubRC) &&
+ "Size is not big enough for all the subclasses!");
+ assert(covers(SubRC) && "Not all subclasses are covered");
+ }
+ }
+ return true;
+}
+
+bool RegisterBank::covers(const TargetRegisterClass &RC) const {
+ assert(isValid() && "RB hasn't been initialized yet");
+ return ContainedRegClasses.test(RC.getID());
+}
+
+bool RegisterBank::isValid() const {
+ return ID != InvalidID && Name != nullptr && Size != 0 &&
+ // A register bank that does not cover anything is useless.
+ !ContainedRegClasses.empty();
+}
+
+bool RegisterBank::operator==(const RegisterBank &OtherRB) const {
+ // There must be only one instance of a given register bank alive
+ // for the whole compilation.
+ // The RegisterBankInfo is supposed to enforce that.
+ assert((OtherRB.getID() != getID() || &OtherRB == this) &&
+ "ID does not uniquely identify a RegisterBank");
+ return &OtherRB == this;
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void RegisterBank::dump(const TargetRegisterInfo *TRI) const {
+ print(dbgs(), /* IsForDebug */ true, TRI);
+}
+#endif
+
+void RegisterBank::print(raw_ostream &OS, bool IsForDebug,
+ const TargetRegisterInfo *TRI) const {
+ OS << getName();
+ if (!IsForDebug)
+ return;
+ OS << "(ID:" << getID() << ", Size:" << getSize() << ")\n"
+ << "isValid:" << isValid() << '\n'
+ << "Number of Covered register classes: " << ContainedRegClasses.count()
+ << '\n';
+ // Print all the subclasses if we can.
+ // This register classes may not be properly initialized yet.
+ if (!TRI || ContainedRegClasses.empty())
+ return;
+ assert(ContainedRegClasses.size() == TRI->getNumRegClasses() &&
+ "TRI does not match the initialization process?");
+ bool IsFirst = true;
+ OS << "Covered register classes:\n";
+ for (unsigned RCId = 0, End = TRI->getNumRegClasses(); RCId != End; ++RCId) {
+ const TargetRegisterClass &RC = *TRI->getRegClass(RCId);
+
+ if (!covers(RC))
+ continue;
+
+ if (!IsFirst)
+ OS << ", ";
+ OS << TRI->getRegClassName(&RC);
+ IsFirst = false;
+ }
+}
diff --git a/llvm/lib/CodeGen/GlobalISel/RegisterBankInfo.cpp b/llvm/lib/CodeGen/GlobalISel/RegisterBankInfo.cpp
new file mode 100644
index 000000000000..3fcc55286beb
--- /dev/null
+++ b/llvm/lib/CodeGen/GlobalISel/RegisterBankInfo.cpp
@@ -0,0 +1,800 @@
+//===- llvm/CodeGen/GlobalISel/RegisterBankInfo.cpp --------------*- C++ -*-==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file implements the RegisterBankInfo class.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetOpcodes.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+#include <algorithm> // For std::max.
+
+#define DEBUG_TYPE "registerbankinfo"
+
+using namespace llvm;
+
+STATISTIC(NumPartialMappingsCreated,
+ "Number of partial mappings dynamically created");
+STATISTIC(NumPartialMappingsAccessed,
+ "Number of partial mappings dynamically accessed");
+STATISTIC(NumValueMappingsCreated,
+ "Number of value mappings dynamically created");
+STATISTIC(NumValueMappingsAccessed,
+ "Number of value mappings dynamically accessed");
+STATISTIC(NumOperandsMappingsCreated,
+ "Number of operands mappings dynamically created");
+STATISTIC(NumOperandsMappingsAccessed,
+ "Number of operands mappings dynamically accessed");
+STATISTIC(NumInstructionMappingsCreated,
+ "Number of instruction mappings dynamically created");
+STATISTIC(NumInstructionMappingsAccessed,
+ "Number of instruction mappings dynamically accessed");
+
+const unsigned RegisterBankInfo::DefaultMappingID = UINT_MAX;
+const unsigned RegisterBankInfo::InvalidMappingID = UINT_MAX - 1;
+
+//------------------------------------------------------------------------------
+// RegisterBankInfo implementation.
+//------------------------------------------------------------------------------
+RegisterBankInfo::RegisterBankInfo(RegisterBank **RegBanks,
+ unsigned NumRegBanks)
+ : RegBanks(RegBanks), NumRegBanks(NumRegBanks) {
+#ifndef NDEBUG
+ for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) {
+ assert(RegBanks[Idx] != nullptr && "Invalid RegisterBank");
+ assert(RegBanks[Idx]->isValid() && "RegisterBank should be valid");
+ }
+#endif // NDEBUG
+}
+
+bool RegisterBankInfo::verify(const TargetRegisterInfo &TRI) const {
+#ifndef NDEBUG
+ for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) {
+ const RegisterBank &RegBank = getRegBank(Idx);
+ assert(Idx == RegBank.getID() &&
+ "ID does not match the index in the array");
+ LLVM_DEBUG(dbgs() << "Verify " << RegBank << '\n');
+ assert(RegBank.verify(TRI) && "RegBank is invalid");
+ }
+#endif // NDEBUG
+ return true;
+}
+
+const RegisterBank *
+RegisterBankInfo::getRegBank(Register Reg, const MachineRegisterInfo &MRI,
+ const TargetRegisterInfo &TRI) const {
+ if (Register::isPhysicalRegister(Reg))
+ return &getRegBankFromRegClass(getMinimalPhysRegClass(Reg, TRI));
+
+ assert(Reg && "NoRegister does not have a register bank");
+ const RegClassOrRegBank &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
+ if (auto *RB = RegClassOrBank.dyn_cast<const RegisterBank *>())
+ return RB;
+ if (auto *RC = RegClassOrBank.dyn_cast<const TargetRegisterClass *>())
+ return &getRegBankFromRegClass(*RC);
+ return nullptr;
+}
+
+const TargetRegisterClass &
+RegisterBankInfo::getMinimalPhysRegClass(Register Reg,
+ const TargetRegisterInfo &TRI) const {
+ assert(Register::isPhysicalRegister(Reg) && "Reg must be a physreg");
+ const auto &RegRCIt = PhysRegMinimalRCs.find(Reg);
+ if (RegRCIt != PhysRegMinimalRCs.end())
+ return *RegRCIt->second;
+ const TargetRegisterClass *PhysRC = TRI.getMinimalPhysRegClass(Reg);
+ PhysRegMinimalRCs[Reg] = PhysRC;
+ return *PhysRC;
+}
+
+const RegisterBank *RegisterBankInfo::getRegBankFromConstraints(
+ const MachineInstr &MI, unsigned OpIdx, const TargetInstrInfo &TII,
+ const TargetRegisterInfo &TRI) const {
+ // The mapping of the registers may be available via the
+ // register class constraints.
+ const TargetRegisterClass *RC = MI.getRegClassConstraint(OpIdx, &TII, &TRI);
+
+ if (!RC)
+ return nullptr;
+
+ const RegisterBank &RegBank = getRegBankFromRegClass(*RC);
+ // Sanity check that the target properly implemented getRegBankFromRegClass.
+ assert(RegBank.covers(*RC) &&
+ "The mapping of the register bank does not make sense");
+ return &RegBank;
+}
+
+const TargetRegisterClass *RegisterBankInfo::constrainGenericRegister(
+ Register Reg, const TargetRegisterClass &RC, MachineRegisterInfo &MRI) {
+
+ // If the register already has a class, fallback to MRI::constrainRegClass.
+ auto &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
+ if (RegClassOrBank.is<const TargetRegisterClass *>())
+ return MRI.constrainRegClass(Reg, &RC);
+
+ const RegisterBank *RB = RegClassOrBank.get<const RegisterBank *>();
+ // Otherwise, all we can do is ensure the bank covers the class, and set it.
+ if (RB && !RB->covers(RC))
+ return nullptr;
+
+ // If nothing was set or the class is simply compatible, set it.
+ MRI.setRegClass(Reg, &RC);
+ return &RC;
+}
+
+/// Check whether or not \p MI should be treated like a copy
+/// for the mappings.
+/// Copy like instruction are special for mapping because
+/// they don't have actual register constraints. Moreover,
+/// they sometimes have register classes assigned and we can
+/// just use that instead of failing to provide a generic mapping.
+static bool isCopyLike(const MachineInstr &MI) {
+ return MI.isCopy() || MI.isPHI() ||
+ MI.getOpcode() == TargetOpcode::REG_SEQUENCE;
+}
+
+const RegisterBankInfo::InstructionMapping &
+RegisterBankInfo::getInstrMappingImpl(const MachineInstr &MI) const {
+ // For copies we want to walk over the operands and try to find one
+ // that has a register bank since the instruction itself will not get
+ // us any constraint.
+ bool IsCopyLike = isCopyLike(MI);
+ // For copy like instruction, only the mapping of the definition
+ // is important. The rest is not constrained.
+ unsigned NumOperandsForMapping = IsCopyLike ? 1 : MI.getNumOperands();
+
+ const MachineFunction &MF = *MI.getMF();
+ const TargetSubtargetInfo &STI = MF.getSubtarget();
+ const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ // We may need to query the instruction encoding to guess the mapping.
+ const TargetInstrInfo &TII = *STI.getInstrInfo();
+
+ // Before doing anything complicated check if the mapping is not
+ // directly available.
+ bool CompleteMapping = true;
+
+ SmallVector<const ValueMapping *, 8> OperandsMapping(NumOperandsForMapping);
+ for (unsigned OpIdx = 0, EndIdx = MI.getNumOperands(); OpIdx != EndIdx;
+ ++OpIdx) {
+ const MachineOperand &MO = MI.getOperand(OpIdx);
+ if (!MO.isReg())
+ continue;
+ Register Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ // The register bank of Reg is just a side effect of the current
+ // excution and in particular, there is no reason to believe this
+ // is the best default mapping for the current instruction. Keep
+ // it as an alternative register bank if we cannot figure out
+ // something.
+ const RegisterBank *AltRegBank = getRegBank(Reg, MRI, TRI);
+ // For copy-like instruction, we want to reuse the register bank
+ // that is already set on Reg, if any, since those instructions do
+ // not have any constraints.
+ const RegisterBank *CurRegBank = IsCopyLike ? AltRegBank : nullptr;
+ if (!CurRegBank) {
+ // If this is a target specific instruction, we can deduce
+ // the register bank from the encoding constraints.
+ CurRegBank = getRegBankFromConstraints(MI, OpIdx, TII, TRI);
+ if (!CurRegBank) {
+ // All our attempts failed, give up.
+ CompleteMapping = false;
+
+ if (!IsCopyLike)
+ // MI does not carry enough information to guess the mapping.
+ return getInvalidInstructionMapping();
+ continue;
+ }
+ }
+
+ unsigned Size = getSizeInBits(Reg, MRI, TRI);
+ const ValueMapping *ValMapping = &getValueMapping(0, Size, *CurRegBank);
+ if (IsCopyLike) {
+ if (!OperandsMapping[0]) {
+ if (MI.isRegSequence()) {
+ // For reg_sequence, the result size does not match the input.
+ unsigned ResultSize = getSizeInBits(MI.getOperand(0).getReg(),
+ MRI, TRI);
+ OperandsMapping[0] = &getValueMapping(0, ResultSize, *CurRegBank);
+ } else {
+ OperandsMapping[0] = ValMapping;
+ }
+ }
+
+ // The default handling assumes any register bank can be copied to any
+ // other. If this isn't the case, the target should specially deal with
+ // reg_sequence/phi. There may also be unsatisfiable copies.
+ for (; OpIdx != EndIdx; ++OpIdx) {
+ const MachineOperand &MO = MI.getOperand(OpIdx);
+ if (!MO.isReg())
+ continue;
+ Register Reg = MO.getReg();
+ if (!Reg)
+ continue;
+
+ const RegisterBank *AltRegBank = getRegBank(Reg, MRI, TRI);
+ if (AltRegBank &&
+ cannotCopy(*CurRegBank, *AltRegBank, getSizeInBits(Reg, MRI, TRI)))
+ return getInvalidInstructionMapping();
+ }
+
+ CompleteMapping = true;
+ break;
+ }
+
+ OperandsMapping[OpIdx] = ValMapping;
+ }
+
+ if (IsCopyLike && !CompleteMapping) {
+ // No way to deduce the type from what we have.
+ return getInvalidInstructionMapping();
+ }
+
+ assert(CompleteMapping && "Setting an uncomplete mapping");
+ return getInstructionMapping(
+ DefaultMappingID, /*Cost*/ 1,
+ /*OperandsMapping*/ getOperandsMapping(OperandsMapping),
+ NumOperandsForMapping);
+}
+
+/// Hashing function for PartialMapping.
+static hash_code hashPartialMapping(unsigned StartIdx, unsigned Length,
+ const RegisterBank *RegBank) {
+ return hash_combine(StartIdx, Length, RegBank ? RegBank->getID() : 0);
+}
+
+/// Overloaded version of hash_value for a PartialMapping.
+hash_code
+llvm::hash_value(const RegisterBankInfo::PartialMapping &PartMapping) {
+ return hashPartialMapping(PartMapping.StartIdx, PartMapping.Length,
+ PartMapping.RegBank);
+}
+
+const RegisterBankInfo::PartialMapping &
+RegisterBankInfo::getPartialMapping(unsigned StartIdx, unsigned Length,
+ const RegisterBank &RegBank) const {
+ ++NumPartialMappingsAccessed;
+
+ hash_code Hash = hashPartialMapping(StartIdx, Length, &RegBank);
+ const auto &It = MapOfPartialMappings.find(Hash);
+ if (It != MapOfPartialMappings.end())
+ return *It->second;
+
+ ++NumPartialMappingsCreated;
+
+ auto &PartMapping = MapOfPartialMappings[Hash];
+ PartMapping = std::make_unique<PartialMapping>(StartIdx, Length, RegBank);
+ return *PartMapping;
+}
+
+const RegisterBankInfo::ValueMapping &
+RegisterBankInfo::getValueMapping(unsigned StartIdx, unsigned Length,
+ const RegisterBank &RegBank) const {
+ return getValueMapping(&getPartialMapping(StartIdx, Length, RegBank), 1);
+}
+
+static hash_code
+hashValueMapping(const RegisterBankInfo::PartialMapping *BreakDown,
+ unsigned NumBreakDowns) {
+ if (LLVM_LIKELY(NumBreakDowns == 1))
+ return hash_value(*BreakDown);
+ SmallVector<size_t, 8> Hashes(NumBreakDowns);
+ for (unsigned Idx = 0; Idx != NumBreakDowns; ++Idx)
+ Hashes.push_back(hash_value(BreakDown[Idx]));
+ return hash_combine_range(Hashes.begin(), Hashes.end());
+}
+
+const RegisterBankInfo::ValueMapping &
+RegisterBankInfo::getValueMapping(const PartialMapping *BreakDown,
+ unsigned NumBreakDowns) const {
+ ++NumValueMappingsAccessed;
+
+ hash_code Hash = hashValueMapping(BreakDown, NumBreakDowns);
+ const auto &It = MapOfValueMappings.find(Hash);
+ if (It != MapOfValueMappings.end())
+ return *It->second;
+
+ ++NumValueMappingsCreated;
+
+ auto &ValMapping = MapOfValueMappings[Hash];
+ ValMapping = std::make_unique<ValueMapping>(BreakDown, NumBreakDowns);
+ return *ValMapping;
+}
+
+template <typename Iterator>
+const RegisterBankInfo::ValueMapping *
+RegisterBankInfo::getOperandsMapping(Iterator Begin, Iterator End) const {
+
+ ++NumOperandsMappingsAccessed;
+
+ // The addresses of the value mapping are unique.
+ // Therefore, we can use them directly to hash the operand mapping.
+ hash_code Hash = hash_combine_range(Begin, End);
+ auto &Res = MapOfOperandsMappings[Hash];
+ if (Res)
+ return Res.get();
+
+ ++NumOperandsMappingsCreated;
+
+ // Create the array of ValueMapping.
+ // Note: this array will not hash to this instance of operands
+ // mapping, because we use the pointer of the ValueMapping
+ // to hash and we expect them to uniquely identify an instance
+ // of value mapping.
+ Res = std::make_unique<ValueMapping[]>(std::distance(Begin, End));
+ unsigned Idx = 0;
+ for (Iterator It = Begin; It != End; ++It, ++Idx) {
+ const ValueMapping *ValMap = *It;
+ if (!ValMap)
+ continue;
+ Res[Idx] = *ValMap;
+ }
+ return Res.get();
+}
+
+const RegisterBankInfo::ValueMapping *RegisterBankInfo::getOperandsMapping(
+ const SmallVectorImpl<const RegisterBankInfo::ValueMapping *> &OpdsMapping)
+ const {
+ return getOperandsMapping(OpdsMapping.begin(), OpdsMapping.end());
+}
+
+const RegisterBankInfo::ValueMapping *RegisterBankInfo::getOperandsMapping(
+ std::initializer_list<const RegisterBankInfo::ValueMapping *> OpdsMapping)
+ const {
+ return getOperandsMapping(OpdsMapping.begin(), OpdsMapping.end());
+}
+
+static hash_code
+hashInstructionMapping(unsigned ID, unsigned Cost,
+ const RegisterBankInfo::ValueMapping *OperandsMapping,
+ unsigned NumOperands) {
+ return hash_combine(ID, Cost, OperandsMapping, NumOperands);
+}
+
+const RegisterBankInfo::InstructionMapping &
+RegisterBankInfo::getInstructionMappingImpl(
+ bool IsInvalid, unsigned ID, unsigned Cost,
+ const RegisterBankInfo::ValueMapping *OperandsMapping,
+ unsigned NumOperands) const {
+ assert(((IsInvalid && ID == InvalidMappingID && Cost == 0 &&
+ OperandsMapping == nullptr && NumOperands == 0) ||
+ !IsInvalid) &&
+ "Mismatch argument for invalid input");
+ ++NumInstructionMappingsAccessed;
+
+ hash_code Hash =
+ hashInstructionMapping(ID, Cost, OperandsMapping, NumOperands);
+ const auto &It = MapOfInstructionMappings.find(Hash);
+ if (It != MapOfInstructionMappings.end())
+ return *It->second;
+
+ ++NumInstructionMappingsCreated;
+
+ auto &InstrMapping = MapOfInstructionMappings[Hash];
+ InstrMapping = std::make_unique<InstructionMapping>(
+ ID, Cost, OperandsMapping, NumOperands);
+ return *InstrMapping;
+}
+
+const RegisterBankInfo::InstructionMapping &
+RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
+ const RegisterBankInfo::InstructionMapping &Mapping = getInstrMappingImpl(MI);
+ if (Mapping.isValid())
+ return Mapping;
+ llvm_unreachable("The target must implement this");
+}
+
+RegisterBankInfo::InstructionMappings
+RegisterBankInfo::getInstrPossibleMappings(const MachineInstr &MI) const {
+ InstructionMappings PossibleMappings;
+ const auto &Mapping = getInstrMapping(MI);
+ if (Mapping.isValid()) {
+ // Put the default mapping first.
+ PossibleMappings.push_back(&Mapping);
+ }
+
+ // Then the alternative mapping, if any.
+ InstructionMappings AltMappings = getInstrAlternativeMappings(MI);
+ for (const InstructionMapping *AltMapping : AltMappings)
+ PossibleMappings.push_back(AltMapping);
+#ifndef NDEBUG
+ for (const InstructionMapping *Mapping : PossibleMappings)
+ assert(Mapping->verify(MI) && "Mapping is invalid");
+#endif
+ return PossibleMappings;
+}
+
+RegisterBankInfo::InstructionMappings
+RegisterBankInfo::getInstrAlternativeMappings(const MachineInstr &MI) const {
+ // No alternative for MI.
+ return InstructionMappings();
+}
+
+void RegisterBankInfo::applyDefaultMapping(const OperandsMapper &OpdMapper) {
+ MachineInstr &MI = OpdMapper.getMI();
+ MachineRegisterInfo &MRI = OpdMapper.getMRI();
+ LLVM_DEBUG(dbgs() << "Applying default-like mapping\n");
+ for (unsigned OpIdx = 0,
+ EndIdx = OpdMapper.getInstrMapping().getNumOperands();
+ OpIdx != EndIdx; ++OpIdx) {
+ LLVM_DEBUG(dbgs() << "OpIdx " << OpIdx);
+ MachineOperand &MO = MI.getOperand(OpIdx);
+ if (!MO.isReg()) {
+ LLVM_DEBUG(dbgs() << " is not a register, nothing to be done\n");
+ continue;
+ }
+ if (!MO.getReg()) {
+ LLVM_DEBUG(dbgs() << " is %%noreg, nothing to be done\n");
+ continue;
+ }
+ assert(OpdMapper.getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns !=
+ 0 &&
+ "Invalid mapping");
+ assert(OpdMapper.getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns ==
+ 1 &&
+ "This mapping is too complex for this function");
+ iterator_range<SmallVectorImpl<Register>::const_iterator> NewRegs =
+ OpdMapper.getVRegs(OpIdx);
+ if (NewRegs.empty()) {
+ LLVM_DEBUG(dbgs() << " has not been repaired, nothing to be done\n");
+ continue;
+ }
+ Register OrigReg = MO.getReg();
+ Register NewReg = *NewRegs.begin();
+ LLVM_DEBUG(dbgs() << " changed, replace " << printReg(OrigReg, nullptr));
+ MO.setReg(NewReg);
+ LLVM_DEBUG(dbgs() << " with " << printReg(NewReg, nullptr));
+
+ // The OperandsMapper creates plain scalar, we may have to fix that.
+ // Check if the types match and if not, fix that.
+ LLT OrigTy = MRI.getType(OrigReg);
+ LLT NewTy = MRI.getType(NewReg);
+ if (OrigTy != NewTy) {
+ // The default mapping is not supposed to change the size of
+ // the storage. However, right now we don't necessarily bump all
+ // the types to storage size. For instance, we can consider
+ // s16 G_AND legal whereas the storage size is going to be 32.
+ assert(OrigTy.getSizeInBits() <= NewTy.getSizeInBits() &&
+ "Types with difference size cannot be handled by the default "
+ "mapping");
+ LLVM_DEBUG(dbgs() << "\nChange type of new opd from " << NewTy << " to "
+ << OrigTy);
+ MRI.setType(NewReg, OrigTy);
+ }
+ LLVM_DEBUG(dbgs() << '\n');
+ }
+}
+
+unsigned RegisterBankInfo::getSizeInBits(Register Reg,
+ const MachineRegisterInfo &MRI,
+ const TargetRegisterInfo &TRI) const {
+ if (Register::isPhysicalRegister(Reg)) {
+ // The size is not directly available for physical registers.
+ // Instead, we need to access a register class that contains Reg and
+ // get the size of that register class.
+ // Because this is expensive, we'll cache the register class by calling
+ auto *RC = &getMinimalPhysRegClass(Reg, TRI);
+ assert(RC && "Expecting Register class");
+ return TRI.getRegSizeInBits(*RC);
+ }
+ return TRI.getRegSizeInBits(Reg, MRI);
+}
+
+//------------------------------------------------------------------------------
+// Helper classes implementation.
+//------------------------------------------------------------------------------
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void RegisterBankInfo::PartialMapping::dump() const {
+ print(dbgs());
+ dbgs() << '\n';
+}
+#endif
+
+bool RegisterBankInfo::PartialMapping::verify() const {
+ assert(RegBank && "Register bank not set");
+ assert(Length && "Empty mapping");
+ assert((StartIdx <= getHighBitIdx()) && "Overflow, switch to APInt?");
+ // Check if the minimum width fits into RegBank.
+ assert(RegBank->getSize() >= Length && "Register bank too small for Mask");
+ return true;
+}
+
+void RegisterBankInfo::PartialMapping::print(raw_ostream &OS) const {
+ OS << "[" << StartIdx << ", " << getHighBitIdx() << "], RegBank = ";
+ if (RegBank)
+ OS << *RegBank;
+ else
+ OS << "nullptr";
+}
+
+bool RegisterBankInfo::ValueMapping::partsAllUniform() const {
+ if (NumBreakDowns < 2)
+ return true;
+
+ const PartialMapping *First = begin();
+ for (const PartialMapping *Part = First + 1; Part != end(); ++Part) {
+ if (Part->Length != First->Length || Part->RegBank != First->RegBank)
+ return false;
+ }
+
+ return true;
+}
+
+bool RegisterBankInfo::ValueMapping::verify(unsigned MeaningfulBitWidth) const {
+ assert(NumBreakDowns && "Value mapped nowhere?!");
+ unsigned OrigValueBitWidth = 0;
+ for (const RegisterBankInfo::PartialMapping &PartMap : *this) {
+ // Check that each register bank is big enough to hold the partial value:
+ // this check is done by PartialMapping::verify
+ assert(PartMap.verify() && "Partial mapping is invalid");
+ // The original value should completely be mapped.
+ // Thus the maximum accessed index + 1 is the size of the original value.
+ OrigValueBitWidth =
+ std::max(OrigValueBitWidth, PartMap.getHighBitIdx() + 1);
+ }
+ assert(OrigValueBitWidth >= MeaningfulBitWidth &&
+ "Meaningful bits not covered by the mapping");
+ APInt ValueMask(OrigValueBitWidth, 0);
+ for (const RegisterBankInfo::PartialMapping &PartMap : *this) {
+ // Check that the union of the partial mappings covers the whole value,
+ // without overlaps.
+ // The high bit is exclusive in the APInt API, thus getHighBitIdx + 1.
+ APInt PartMapMask = APInt::getBitsSet(OrigValueBitWidth, PartMap.StartIdx,
+ PartMap.getHighBitIdx() + 1);
+ ValueMask ^= PartMapMask;
+ assert((ValueMask & PartMapMask) == PartMapMask &&
+ "Some partial mappings overlap");
+ }
+ assert(ValueMask.isAllOnesValue() && "Value is not fully mapped");
+ return true;
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void RegisterBankInfo::ValueMapping::dump() const {
+ print(dbgs());
+ dbgs() << '\n';
+}
+#endif
+
+void RegisterBankInfo::ValueMapping::print(raw_ostream &OS) const {
+ OS << "#BreakDown: " << NumBreakDowns << " ";
+ bool IsFirst = true;
+ for (const PartialMapping &PartMap : *this) {
+ if (!IsFirst)
+ OS << ", ";
+ OS << '[' << PartMap << ']';
+ IsFirst = false;
+ }
+}
+
+bool RegisterBankInfo::InstructionMapping::verify(
+ const MachineInstr &MI) const {
+ // Check that all the register operands are properly mapped.
+ // Check the constructor invariant.
+ // For PHI, we only care about mapping the definition.
+ assert(NumOperands == (isCopyLike(MI) ? 1 : MI.getNumOperands()) &&
+ "NumOperands must match, see constructor");
+ assert(MI.getParent() && MI.getMF() &&
+ "MI must be connected to a MachineFunction");
+ const MachineFunction &MF = *MI.getMF();
+ const RegisterBankInfo *RBI = MF.getSubtarget().getRegBankInfo();
+ (void)RBI;
+
+ for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
+ const MachineOperand &MO = MI.getOperand(Idx);
+ if (!MO.isReg()) {
+ assert(!getOperandMapping(Idx).isValid() &&
+ "We should not care about non-reg mapping");
+ continue;
+ }
+ Register Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ assert(getOperandMapping(Idx).isValid() &&
+ "We must have a mapping for reg operands");
+ const RegisterBankInfo::ValueMapping &MOMapping = getOperandMapping(Idx);
+ (void)MOMapping;
+ // Register size in bits.
+ // This size must match what the mapping expects.
+ assert(MOMapping.verify(RBI->getSizeInBits(
+ Reg, MF.getRegInfo(), *MF.getSubtarget().getRegisterInfo())) &&
+ "Value mapping is invalid");
+ }
+ return true;
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void RegisterBankInfo::InstructionMapping::dump() const {
+ print(dbgs());
+ dbgs() << '\n';
+}
+#endif
+
+void RegisterBankInfo::InstructionMapping::print(raw_ostream &OS) const {
+ OS << "ID: " << getID() << " Cost: " << getCost() << " Mapping: ";
+
+ for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
+ const ValueMapping &ValMapping = getOperandMapping(OpIdx);
+ if (OpIdx)
+ OS << ", ";
+ OS << "{ Idx: " << OpIdx << " Map: " << ValMapping << '}';
+ }
+}
+
+const int RegisterBankInfo::OperandsMapper::DontKnowIdx = -1;
+
+RegisterBankInfo::OperandsMapper::OperandsMapper(
+ MachineInstr &MI, const InstructionMapping &InstrMapping,
+ MachineRegisterInfo &MRI)
+ : MRI(MRI), MI(MI), InstrMapping(InstrMapping) {
+ unsigned NumOpds = InstrMapping.getNumOperands();
+ OpToNewVRegIdx.resize(NumOpds, OperandsMapper::DontKnowIdx);
+ assert(InstrMapping.verify(MI) && "Invalid mapping for MI");
+}
+
+iterator_range<SmallVectorImpl<Register>::iterator>
+RegisterBankInfo::OperandsMapper::getVRegsMem(unsigned OpIdx) {
+ assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
+ unsigned NumPartialVal =
+ getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns;
+ int StartIdx = OpToNewVRegIdx[OpIdx];
+
+ if (StartIdx == OperandsMapper::DontKnowIdx) {
+ // This is the first time we try to access OpIdx.
+ // Create the cells that will hold all the partial values at the
+ // end of the list of NewVReg.
+ StartIdx = NewVRegs.size();
+ OpToNewVRegIdx[OpIdx] = StartIdx;
+ for (unsigned i = 0; i < NumPartialVal; ++i)
+ NewVRegs.push_back(0);
+ }
+ SmallVectorImpl<Register>::iterator End =
+ getNewVRegsEnd(StartIdx, NumPartialVal);
+
+ return make_range(&NewVRegs[StartIdx], End);
+}
+
+SmallVectorImpl<Register>::const_iterator
+RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx,
+ unsigned NumVal) const {
+ return const_cast<OperandsMapper *>(this)->getNewVRegsEnd(StartIdx, NumVal);
+}
+SmallVectorImpl<Register>::iterator
+RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx,
+ unsigned NumVal) {
+ assert((NewVRegs.size() == StartIdx + NumVal ||
+ NewVRegs.size() > StartIdx + NumVal) &&
+ "NewVRegs too small to contain all the partial mapping");
+ return NewVRegs.size() <= StartIdx + NumVal ? NewVRegs.end()
+ : &NewVRegs[StartIdx + NumVal];
+}
+
+void RegisterBankInfo::OperandsMapper::createVRegs(unsigned OpIdx) {
+ assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
+ iterator_range<SmallVectorImpl<Register>::iterator> NewVRegsForOpIdx =
+ getVRegsMem(OpIdx);
+ const ValueMapping &ValMapping = getInstrMapping().getOperandMapping(OpIdx);
+ const PartialMapping *PartMap = ValMapping.begin();
+ for (Register &NewVReg : NewVRegsForOpIdx) {
+ assert(PartMap != ValMapping.end() && "Out-of-bound access");
+ assert(NewVReg == 0 && "Register has already been created");
+ // The new registers are always bound to scalar with the right size.
+ // The actual type has to be set when the target does the mapping
+ // of the instruction.
+ // The rationale is that this generic code cannot guess how the
+ // target plans to split the input type.
+ NewVReg = MRI.createGenericVirtualRegister(LLT::scalar(PartMap->Length));
+ MRI.setRegBank(NewVReg, *PartMap->RegBank);
+ ++PartMap;
+ }
+}
+
+void RegisterBankInfo::OperandsMapper::setVRegs(unsigned OpIdx,
+ unsigned PartialMapIdx,
+ Register NewVReg) {
+ assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
+ assert(getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns >
+ PartialMapIdx &&
+ "Out-of-bound access for partial mapping");
+ // Make sure the memory is initialized for that operand.
+ (void)getVRegsMem(OpIdx);
+ assert(NewVRegs[OpToNewVRegIdx[OpIdx] + PartialMapIdx] == 0 &&
+ "This value is already set");
+ NewVRegs[OpToNewVRegIdx[OpIdx] + PartialMapIdx] = NewVReg;
+}
+
+iterator_range<SmallVectorImpl<Register>::const_iterator>
+RegisterBankInfo::OperandsMapper::getVRegs(unsigned OpIdx,
+ bool ForDebug) const {
+ (void)ForDebug;
+ assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
+ int StartIdx = OpToNewVRegIdx[OpIdx];
+
+ if (StartIdx == OperandsMapper::DontKnowIdx)
+ return make_range(NewVRegs.end(), NewVRegs.end());
+
+ unsigned PartMapSize =
+ getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns;
+ SmallVectorImpl<Register>::const_iterator End =
+ getNewVRegsEnd(StartIdx, PartMapSize);
+ iterator_range<SmallVectorImpl<Register>::const_iterator> Res =
+ make_range(&NewVRegs[StartIdx], End);
+#ifndef NDEBUG
+ for (Register VReg : Res)
+ assert((VReg || ForDebug) && "Some registers are uninitialized");
+#endif
+ return Res;
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void RegisterBankInfo::OperandsMapper::dump() const {
+ print(dbgs(), true);
+ dbgs() << '\n';
+}
+#endif
+
+void RegisterBankInfo::OperandsMapper::print(raw_ostream &OS,
+ bool ForDebug) const {
+ unsigned NumOpds = getInstrMapping().getNumOperands();
+ if (ForDebug) {
+ OS << "Mapping for " << getMI() << "\nwith " << getInstrMapping() << '\n';
+ // Print out the internal state of the index table.
+ OS << "Populated indices (CellNumber, IndexInNewVRegs): ";
+ bool IsFirst = true;
+ for (unsigned Idx = 0; Idx != NumOpds; ++Idx) {
+ if (OpToNewVRegIdx[Idx] != DontKnowIdx) {
+ if (!IsFirst)
+ OS << ", ";
+ OS << '(' << Idx << ", " << OpToNewVRegIdx[Idx] << ')';
+ IsFirst = false;
+ }
+ }
+ OS << '\n';
+ } else
+ OS << "Mapping ID: " << getInstrMapping().getID() << ' ';
+
+ OS << "Operand Mapping: ";
+ // If we have a function, we can pretty print the name of the registers.
+ // Otherwise we will print the raw numbers.
+ const TargetRegisterInfo *TRI =
+ getMI().getParent() && getMI().getMF()
+ ? getMI().getMF()->getSubtarget().getRegisterInfo()
+ : nullptr;
+ bool IsFirst = true;
+ for (unsigned Idx = 0; Idx != NumOpds; ++Idx) {
+ if (OpToNewVRegIdx[Idx] == DontKnowIdx)
+ continue;
+ if (!IsFirst)
+ OS << ", ";
+ IsFirst = false;
+ OS << '(' << printReg(getMI().getOperand(Idx).getReg(), TRI) << ", [";
+ bool IsFirstNewVReg = true;
+ for (Register VReg : getVRegs(Idx)) {
+ if (!IsFirstNewVReg)
+ OS << ", ";
+ IsFirstNewVReg = false;
+ OS << printReg(VReg, TRI);
+ }
+ OS << "])";
+ }
+}
diff --git a/llvm/lib/CodeGen/GlobalISel/Utils.cpp b/llvm/lib/CodeGen/GlobalISel/Utils.cpp
new file mode 100644
index 000000000000..45618d7992ad
--- /dev/null
+++ b/llvm/lib/CodeGen/GlobalISel/Utils.cpp
@@ -0,0 +1,450 @@
+//===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \file This file implements the utility functions used by the GlobalISel
+/// pipeline.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GlobalISel/Utils.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/StackProtector.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/IR/Constants.h"
+
+#define DEBUG_TYPE "globalisel-utils"
+
+using namespace llvm;
+
+unsigned llvm::constrainRegToClass(MachineRegisterInfo &MRI,
+ const TargetInstrInfo &TII,
+ const RegisterBankInfo &RBI, unsigned Reg,
+ const TargetRegisterClass &RegClass) {
+ if (!RBI.constrainGenericRegister(Reg, RegClass, MRI))
+ return MRI.createVirtualRegister(&RegClass);
+
+ return Reg;
+}
+
+unsigned llvm::constrainOperandRegClass(
+ const MachineFunction &MF, const TargetRegisterInfo &TRI,
+ MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
+ const RegisterBankInfo &RBI, MachineInstr &InsertPt,
+ const TargetRegisterClass &RegClass, const MachineOperand &RegMO,
+ unsigned OpIdx) {
+ Register Reg = RegMO.getReg();
+ // Assume physical registers are properly constrained.
+ assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented");
+
+ unsigned ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass);
+ // If we created a new virtual register because the class is not compatible
+ // then create a copy between the new and the old register.
+ if (ConstrainedReg != Reg) {
+ MachineBasicBlock::iterator InsertIt(&InsertPt);
+ MachineBasicBlock &MBB = *InsertPt.getParent();
+ if (RegMO.isUse()) {
+ BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(),
+ TII.get(TargetOpcode::COPY), ConstrainedReg)
+ .addReg(Reg);
+ } else {
+ assert(RegMO.isDef() && "Must be a definition");
+ BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(),
+ TII.get(TargetOpcode::COPY), Reg)
+ .addReg(ConstrainedReg);
+ }
+ }
+ return ConstrainedReg;
+}
+
+unsigned llvm::constrainOperandRegClass(
+ const MachineFunction &MF, const TargetRegisterInfo &TRI,
+ MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
+ const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II,
+ const MachineOperand &RegMO, unsigned OpIdx) {
+ Register Reg = RegMO.getReg();
+ // Assume physical registers are properly constrained.
+ assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented");
+
+ const TargetRegisterClass *RegClass = TII.getRegClass(II, OpIdx, &TRI, MF);
+ // Some of the target independent instructions, like COPY, may not impose any
+ // register class constraints on some of their operands: If it's a use, we can
+ // skip constraining as the instruction defining the register would constrain
+ // it.
+
+ // We can't constrain unallocatable register classes, because we can't create
+ // virtual registers for these classes, so we need to let targets handled this
+ // case.
+ if (RegClass && !RegClass->isAllocatable())
+ RegClass = TRI.getConstrainedRegClassForOperand(RegMO, MRI);
+
+ if (!RegClass) {
+ assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) &&
+ "Register class constraint is required unless either the "
+ "instruction is target independent or the operand is a use");
+ // FIXME: Just bailing out like this here could be not enough, unless we
+ // expect the users of this function to do the right thing for PHIs and
+ // COPY:
+ // v1 = COPY v0
+ // v2 = COPY v1
+ // v1 here may end up not being constrained at all. Please notice that to
+ // reproduce the issue we likely need a destination pattern of a selection
+ // rule producing such extra copies, not just an input GMIR with them as
+ // every existing target using selectImpl handles copies before calling it
+ // and they never reach this function.
+ return Reg;
+ }
+ return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *RegClass,
+ RegMO, OpIdx);
+}
+
+bool llvm::constrainSelectedInstRegOperands(MachineInstr &I,
+ const TargetInstrInfo &TII,
+ const TargetRegisterInfo &TRI,
+ const RegisterBankInfo &RBI) {
+ assert(!isPreISelGenericOpcode(I.getOpcode()) &&
+ "A selected instruction is expected");
+ MachineBasicBlock &MBB = *I.getParent();
+ MachineFunction &MF = *MBB.getParent();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) {
+ MachineOperand &MO = I.getOperand(OpI);
+
+ // There's nothing to be done on non-register operands.
+ if (!MO.isReg())
+ continue;
+
+ LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n');
+ assert(MO.isReg() && "Unsupported non-reg operand");
+
+ Register Reg = MO.getReg();
+ // Physical registers don't need to be constrained.
+ if (Register::isPhysicalRegister(Reg))
+ continue;
+
+ // Register operands with a value of 0 (e.g. predicate operands) don't need
+ // to be constrained.
+ if (Reg == 0)
+ continue;
+
+ // If the operand is a vreg, we should constrain its regclass, and only
+ // insert COPYs if that's impossible.
+ // constrainOperandRegClass does that for us.
+ MO.setReg(constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(),
+ MO, OpI));
+
+ // Tie uses to defs as indicated in MCInstrDesc if this hasn't already been
+ // done.
+ if (MO.isUse()) {
+ int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO);
+ if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx))
+ I.tieOperands(DefIdx, OpI);
+ }
+ }
+ return true;
+}
+
+bool llvm::isTriviallyDead(const MachineInstr &MI,
+ const MachineRegisterInfo &MRI) {
+ // If we can move an instruction, we can remove it. Otherwise, it has
+ // a side-effect of some sort.
+ bool SawStore = false;
+ if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore) && !MI.isPHI())
+ return false;
+
+ // Instructions without side-effects are dead iff they only define dead vregs.
+ for (auto &MO : MI.operands()) {
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+
+ Register Reg = MO.getReg();
+ if (Register::isPhysicalRegister(Reg) || !MRI.use_nodbg_empty(Reg))
+ return false;
+ }
+ return true;
+}
+
+void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
+ MachineOptimizationRemarkEmitter &MORE,
+ MachineOptimizationRemarkMissed &R) {
+ MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
+
+ // Print the function name explicitly if we don't have a debug location (which
+ // makes the diagnostic less useful) or if we're going to emit a raw error.
+ if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
+ R << (" (in function: " + MF.getName() + ")").str();
+
+ if (TPC.isGlobalISelAbortEnabled())
+ report_fatal_error(R.getMsg());
+ else
+ MORE.emit(R);
+}
+
+void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
+ MachineOptimizationRemarkEmitter &MORE,
+ const char *PassName, StringRef Msg,
+ const MachineInstr &MI) {
+ MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ",
+ MI.getDebugLoc(), MI.getParent());
+ R << Msg;
+ // Printing MI is expensive; only do it if expensive remarks are enabled.
+ if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName))
+ R << ": " << ore::MNV("Inst", MI);
+ reportGISelFailure(MF, TPC, MORE, R);
+}
+
+Optional<int64_t> llvm::getConstantVRegVal(unsigned VReg,
+ const MachineRegisterInfo &MRI) {
+ Optional<ValueAndVReg> ValAndVReg =
+ getConstantVRegValWithLookThrough(VReg, MRI, /*LookThroughInstrs*/ false);
+ assert((!ValAndVReg || ValAndVReg->VReg == VReg) &&
+ "Value found while looking through instrs");
+ if (!ValAndVReg)
+ return None;
+ return ValAndVReg->Value;
+}
+
+Optional<ValueAndVReg> llvm::getConstantVRegValWithLookThrough(
+ unsigned VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs,
+ bool HandleFConstant) {
+ SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes;
+ MachineInstr *MI;
+ auto IsConstantOpcode = [HandleFConstant](unsigned Opcode) {
+ return Opcode == TargetOpcode::G_CONSTANT ||
+ (HandleFConstant && Opcode == TargetOpcode::G_FCONSTANT);
+ };
+ auto GetImmediateValue = [HandleFConstant,
+ &MRI](const MachineInstr &MI) -> Optional<APInt> {
+ const MachineOperand &CstVal = MI.getOperand(1);
+ if (!CstVal.isImm() && !CstVal.isCImm() &&
+ (!HandleFConstant || !CstVal.isFPImm()))
+ return None;
+ if (!CstVal.isFPImm()) {
+ unsigned BitWidth =
+ MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
+ APInt Val = CstVal.isImm() ? APInt(BitWidth, CstVal.getImm())
+ : CstVal.getCImm()->getValue();
+ assert(Val.getBitWidth() == BitWidth &&
+ "Value bitwidth doesn't match definition type");
+ return Val;
+ }
+ return CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
+ };
+ while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI->getOpcode()) &&
+ LookThroughInstrs) {
+ switch (MI->getOpcode()) {
+ case TargetOpcode::G_TRUNC:
+ case TargetOpcode::G_SEXT:
+ case TargetOpcode::G_ZEXT:
+ SeenOpcodes.push_back(std::make_pair(
+ MI->getOpcode(),
+ MRI.getType(MI->getOperand(0).getReg()).getSizeInBits()));
+ VReg = MI->getOperand(1).getReg();
+ break;
+ case TargetOpcode::COPY:
+ VReg = MI->getOperand(1).getReg();
+ if (Register::isPhysicalRegister(VReg))
+ return None;
+ break;
+ case TargetOpcode::G_INTTOPTR:
+ VReg = MI->getOperand(1).getReg();
+ break;
+ default:
+ return None;
+ }
+ }
+ if (!MI || !IsConstantOpcode(MI->getOpcode()))
+ return None;
+
+ Optional<APInt> MaybeVal = GetImmediateValue(*MI);
+ if (!MaybeVal)
+ return None;
+ APInt &Val = *MaybeVal;
+ while (!SeenOpcodes.empty()) {
+ std::pair<unsigned, unsigned> OpcodeAndSize = SeenOpcodes.pop_back_val();
+ switch (OpcodeAndSize.first) {
+ case TargetOpcode::G_TRUNC:
+ Val = Val.trunc(OpcodeAndSize.second);
+ break;
+ case TargetOpcode::G_SEXT:
+ Val = Val.sext(OpcodeAndSize.second);
+ break;
+ case TargetOpcode::G_ZEXT:
+ Val = Val.zext(OpcodeAndSize.second);
+ break;
+ }
+ }
+
+ if (Val.getBitWidth() > 64)
+ return None;
+
+ return ValueAndVReg{Val.getSExtValue(), VReg};
+}
+
+const llvm::ConstantFP* llvm::getConstantFPVRegVal(unsigned VReg,
+ const MachineRegisterInfo &MRI) {
+ MachineInstr *MI = MRI.getVRegDef(VReg);
+ if (TargetOpcode::G_FCONSTANT != MI->getOpcode())
+ return nullptr;
+ return MI->getOperand(1).getFPImm();
+}
+
+llvm::MachineInstr *llvm::getDefIgnoringCopies(Register Reg,
+ const MachineRegisterInfo &MRI) {
+ auto *DefMI = MRI.getVRegDef(Reg);
+ auto DstTy = MRI.getType(DefMI->getOperand(0).getReg());
+ if (!DstTy.isValid())
+ return nullptr;
+ while (DefMI->getOpcode() == TargetOpcode::COPY) {
+ Register SrcReg = DefMI->getOperand(1).getReg();
+ auto SrcTy = MRI.getType(SrcReg);
+ if (!SrcTy.isValid() || SrcTy != DstTy)
+ break;
+ DefMI = MRI.getVRegDef(SrcReg);
+ }
+ return DefMI;
+}
+
+llvm::MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg,
+ const MachineRegisterInfo &MRI) {
+ MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI);
+ return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr;
+}
+
+APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) {
+ if (Size == 32)
+ return APFloat(float(Val));
+ if (Size == 64)
+ return APFloat(Val);
+ if (Size != 16)
+ llvm_unreachable("Unsupported FPConstant size");
+ bool Ignored;
+ APFloat APF(Val);
+ APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
+ return APF;
+}
+
+Optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode, const unsigned Op1,
+ const unsigned Op2,
+ const MachineRegisterInfo &MRI) {
+ auto MaybeOp1Cst = getConstantVRegVal(Op1, MRI);
+ auto MaybeOp2Cst = getConstantVRegVal(Op2, MRI);
+ if (MaybeOp1Cst && MaybeOp2Cst) {
+ LLT Ty = MRI.getType(Op1);
+ APInt C1(Ty.getSizeInBits(), *MaybeOp1Cst, true);
+ APInt C2(Ty.getSizeInBits(), *MaybeOp2Cst, true);
+ switch (Opcode) {
+ default:
+ break;
+ case TargetOpcode::G_ADD:
+ return C1 + C2;
+ case TargetOpcode::G_AND:
+ return C1 & C2;
+ case TargetOpcode::G_ASHR:
+ return C1.ashr(C2);
+ case TargetOpcode::G_LSHR:
+ return C1.lshr(C2);
+ case TargetOpcode::G_MUL:
+ return C1 * C2;
+ case TargetOpcode::G_OR:
+ return C1 | C2;
+ case TargetOpcode::G_SHL:
+ return C1 << C2;
+ case TargetOpcode::G_SUB:
+ return C1 - C2;
+ case TargetOpcode::G_XOR:
+ return C1 ^ C2;
+ case TargetOpcode::G_UDIV:
+ if (!C2.getBoolValue())
+ break;
+ return C1.udiv(C2);
+ case TargetOpcode::G_SDIV:
+ if (!C2.getBoolValue())
+ break;
+ return C1.sdiv(C2);
+ case TargetOpcode::G_UREM:
+ if (!C2.getBoolValue())
+ break;
+ return C1.urem(C2);
+ case TargetOpcode::G_SREM:
+ if (!C2.getBoolValue())
+ break;
+ return C1.srem(C2);
+ }
+ }
+ return None;
+}
+
+bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI,
+ bool SNaN) {
+ const MachineInstr *DefMI = MRI.getVRegDef(Val);
+ if (!DefMI)
+ return false;
+
+ if (DefMI->getFlag(MachineInstr::FmNoNans))
+ return true;
+
+ if (SNaN) {
+ // FP operations quiet. For now, just handle the ones inserted during
+ // legalization.
+ switch (DefMI->getOpcode()) {
+ case TargetOpcode::G_FPEXT:
+ case TargetOpcode::G_FPTRUNC:
+ case TargetOpcode::G_FCANONICALIZE:
+ return true;
+ default:
+ return false;
+ }
+ }
+
+ return false;
+}
+
+Optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode, const unsigned Op1,
+ uint64_t Imm,
+ const MachineRegisterInfo &MRI) {
+ auto MaybeOp1Cst = getConstantVRegVal(Op1, MRI);
+ if (MaybeOp1Cst) {
+ LLT Ty = MRI.getType(Op1);
+ APInt C1(Ty.getSizeInBits(), *MaybeOp1Cst, true);
+ switch (Opcode) {
+ default:
+ break;
+ case TargetOpcode::G_SEXT_INREG:
+ return C1.trunc(Imm).sext(C1.getBitWidth());
+ }
+ }
+ return None;
+}
+
+void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) {
+ AU.addPreserved<StackProtector>();
+}
+
+MVT llvm::getMVTForLLT(LLT Ty) {
+ if (!Ty.isVector())
+ return MVT::getIntegerVT(Ty.getSizeInBits());
+
+ return MVT::getVectorVT(
+ MVT::getIntegerVT(Ty.getElementType().getSizeInBits()),
+ Ty.getNumElements());
+}
+
+LLT llvm::getLLTForMVT(MVT Ty) {
+ if (!Ty.isVector())
+ return LLT::scalar(Ty.getSizeInBits());
+
+ return LLT::vector(Ty.getVectorNumElements(),
+ Ty.getVectorElementType().getSizeInBits());
+}