summaryrefslogtreecommitdiff
path: root/llvm/lib/CodeGen/LiveDebugValues.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/CodeGen/LiveDebugValues.cpp')
-rw-r--r--llvm/lib/CodeGen/LiveDebugValues.cpp1448
1 files changed, 1448 insertions, 0 deletions
diff --git a/llvm/lib/CodeGen/LiveDebugValues.cpp b/llvm/lib/CodeGen/LiveDebugValues.cpp
new file mode 100644
index 000000000000..f1b237d83e8c
--- /dev/null
+++ b/llvm/lib/CodeGen/LiveDebugValues.cpp
@@ -0,0 +1,1448 @@
+//===- LiveDebugValues.cpp - Tracking Debug Value MIs ---------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// This pass implements a data flow analysis that propagates debug location
+/// information by inserting additional DBG_VALUE insts into the machine
+/// instruction stream. Before running, each DBG_VALUE inst corresponds to a
+/// source assignment of a variable. Afterwards, a DBG_VALUE inst specifies a
+/// variable location for the current basic block (see SourceLevelDebugging.rst).
+///
+/// This is a separate pass from DbgValueHistoryCalculator to facilitate
+/// testing and improve modularity.
+///
+/// Each variable location is represented by a VarLoc object that identifies the
+/// source variable, its current machine-location, and the DBG_VALUE inst that
+/// specifies the location. Each VarLoc is indexed in the (function-scope)
+/// VarLocMap, giving each VarLoc a unique index. Rather than operate directly
+/// on machine locations, the dataflow analysis in this pass identifies
+/// locations by their index in the VarLocMap, meaning all the variable
+/// locations in a block can be described by a sparse vector of VarLocMap
+/// indexes.
+///
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/SparseBitVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/UniqueVector.h"
+#include "llvm/CodeGen/LexicalScopes.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/CodeGen/TargetFrameLowering.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/DIBuilder.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Module.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <functional>
+#include <queue>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "livedebugvalues"
+
+STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");
+STATISTIC(NumRemoved, "Number of DBG_VALUE instructions removed");
+
+// If @MI is a DBG_VALUE with debug value described by a defined
+// register, returns the number of this register. In the other case, returns 0.
+static Register isDbgValueDescribedByReg(const MachineInstr &MI) {
+ assert(MI.isDebugValue() && "expected a DBG_VALUE");
+ assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
+ // If location of variable is described using a register (directly
+ // or indirectly), this register is always a first operand.
+ return MI.getOperand(0).isReg() ? MI.getOperand(0).getReg() : Register();
+}
+
+namespace {
+
+class LiveDebugValues : public MachineFunctionPass {
+private:
+ const TargetRegisterInfo *TRI;
+ const TargetInstrInfo *TII;
+ const TargetFrameLowering *TFI;
+ BitVector CalleeSavedRegs;
+ LexicalScopes LS;
+
+ enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore };
+
+ /// Keeps track of lexical scopes associated with a user value's source
+ /// location.
+ class UserValueScopes {
+ DebugLoc DL;
+ LexicalScopes &LS;
+ SmallPtrSet<const MachineBasicBlock *, 4> LBlocks;
+
+ public:
+ UserValueScopes(DebugLoc D, LexicalScopes &L) : DL(std::move(D)), LS(L) {}
+
+ /// Return true if current scope dominates at least one machine
+ /// instruction in a given machine basic block.
+ bool dominates(MachineBasicBlock *MBB) {
+ if (LBlocks.empty())
+ LS.getMachineBasicBlocks(DL, LBlocks);
+ return LBlocks.count(MBB) != 0 || LS.dominates(DL, MBB);
+ }
+ };
+
+ using FragmentInfo = DIExpression::FragmentInfo;
+ using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
+
+ /// Storage for identifying a potentially inlined instance of a variable,
+ /// or a fragment thereof.
+ class DebugVariable {
+ const DILocalVariable *Variable;
+ OptFragmentInfo Fragment;
+ const DILocation *InlinedAt;
+
+ /// Fragment that will overlap all other fragments. Used as default when
+ /// caller demands a fragment.
+ static const FragmentInfo DefaultFragment;
+
+ public:
+ DebugVariable(const DILocalVariable *Var, OptFragmentInfo &&FragmentInfo,
+ const DILocation *InlinedAt)
+ : Variable(Var), Fragment(FragmentInfo), InlinedAt(InlinedAt) {}
+
+ DebugVariable(const DILocalVariable *Var, OptFragmentInfo &FragmentInfo,
+ const DILocation *InlinedAt)
+ : Variable(Var), Fragment(FragmentInfo), InlinedAt(InlinedAt) {}
+
+ DebugVariable(const DILocalVariable *Var, const DIExpression *DIExpr,
+ const DILocation *InlinedAt)
+ : DebugVariable(Var, DIExpr->getFragmentInfo(), InlinedAt) {}
+
+ DebugVariable(const MachineInstr &MI)
+ : DebugVariable(MI.getDebugVariable(),
+ MI.getDebugExpression()->getFragmentInfo(),
+ MI.getDebugLoc()->getInlinedAt()) {}
+
+ const DILocalVariable *getVar() const { return Variable; }
+ const OptFragmentInfo &getFragment() const { return Fragment; }
+ const DILocation *getInlinedAt() const { return InlinedAt; }
+
+ const FragmentInfo getFragmentDefault() const {
+ return Fragment.getValueOr(DefaultFragment);
+ }
+
+ static bool isFragmentDefault(FragmentInfo &F) {
+ return F == DefaultFragment;
+ }
+
+ bool operator==(const DebugVariable &Other) const {
+ return std::tie(Variable, Fragment, InlinedAt) ==
+ std::tie(Other.Variable, Other.Fragment, Other.InlinedAt);
+ }
+
+ bool operator<(const DebugVariable &Other) const {
+ return std::tie(Variable, Fragment, InlinedAt) <
+ std::tie(Other.Variable, Other.Fragment, Other.InlinedAt);
+ }
+ };
+
+ friend struct llvm::DenseMapInfo<DebugVariable>;
+
+ /// A pair of debug variable and value location.
+ struct VarLoc {
+ // The location at which a spilled variable resides. It consists of a
+ // register and an offset.
+ struct SpillLoc {
+ unsigned SpillBase;
+ int SpillOffset;
+ bool operator==(const SpillLoc &Other) const {
+ return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset;
+ }
+ };
+
+ /// Identity of the variable at this location.
+ const DebugVariable Var;
+
+ /// The expression applied to this location.
+ const DIExpression *Expr;
+
+ /// DBG_VALUE to clone var/expr information from if this location
+ /// is moved.
+ const MachineInstr &MI;
+
+ mutable UserValueScopes UVS;
+ enum VarLocKind {
+ InvalidKind = 0,
+ RegisterKind,
+ SpillLocKind,
+ ImmediateKind,
+ EntryValueKind
+ } Kind = InvalidKind;
+
+ /// The value location. Stored separately to avoid repeatedly
+ /// extracting it from MI.
+ union {
+ uint64_t RegNo;
+ SpillLoc SpillLocation;
+ uint64_t Hash;
+ int64_t Immediate;
+ const ConstantFP *FPImm;
+ const ConstantInt *CImm;
+ } Loc;
+
+ VarLoc(const MachineInstr &MI, LexicalScopes &LS)
+ : Var(MI), Expr(MI.getDebugExpression()), MI(MI),
+ UVS(MI.getDebugLoc(), LS) {
+ static_assert((sizeof(Loc) == sizeof(uint64_t)),
+ "hash does not cover all members of Loc");
+ assert(MI.isDebugValue() && "not a DBG_VALUE");
+ assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
+ if (int RegNo = isDbgValueDescribedByReg(MI)) {
+ Kind = MI.isDebugEntryValue() ? EntryValueKind : RegisterKind;
+ Loc.RegNo = RegNo;
+ } else if (MI.getOperand(0).isImm()) {
+ Kind = ImmediateKind;
+ Loc.Immediate = MI.getOperand(0).getImm();
+ } else if (MI.getOperand(0).isFPImm()) {
+ Kind = ImmediateKind;
+ Loc.FPImm = MI.getOperand(0).getFPImm();
+ } else if (MI.getOperand(0).isCImm()) {
+ Kind = ImmediateKind;
+ Loc.CImm = MI.getOperand(0).getCImm();
+ }
+ assert((Kind != ImmediateKind || !MI.isDebugEntryValue()) &&
+ "entry values must be register locations");
+ }
+
+ /// Take the variable and machine-location in DBG_VALUE MI, and build an
+ /// entry location using the given expression.
+ static VarLoc CreateEntryLoc(const MachineInstr &MI, LexicalScopes &LS,
+ const DIExpression *EntryExpr) {
+ VarLoc VL(MI, LS);
+ VL.Kind = EntryValueKind;
+ VL.Expr = EntryExpr;
+ return VL;
+ }
+
+ /// Copy the register location in DBG_VALUE MI, updating the register to
+ /// be NewReg.
+ static VarLoc CreateCopyLoc(const MachineInstr &MI, LexicalScopes &LS,
+ unsigned NewReg) {
+ VarLoc VL(MI, LS);
+ assert(VL.Kind == RegisterKind);
+ VL.Loc.RegNo = NewReg;
+ return VL;
+ }
+
+ /// Take the variable described by DBG_VALUE MI, and create a VarLoc
+ /// locating it in the specified spill location.
+ static VarLoc CreateSpillLoc(const MachineInstr &MI, unsigned SpillBase,
+ int SpillOffset, LexicalScopes &LS) {
+ VarLoc VL(MI, LS);
+ assert(VL.Kind == RegisterKind);
+ VL.Kind = SpillLocKind;
+ VL.Loc.SpillLocation = {SpillBase, SpillOffset};
+ return VL;
+ }
+
+ /// Create a DBG_VALUE representing this VarLoc in the given function.
+ /// Copies variable-specific information such as DILocalVariable and
+ /// inlining information from the original DBG_VALUE instruction, which may
+ /// have been several transfers ago.
+ MachineInstr *BuildDbgValue(MachineFunction &MF) const {
+ const DebugLoc &DbgLoc = MI.getDebugLoc();
+ bool Indirect = MI.isIndirectDebugValue();
+ const auto &IID = MI.getDesc();
+ const DILocalVariable *Var = MI.getDebugVariable();
+ const DIExpression *DIExpr = MI.getDebugExpression();
+
+ switch (Kind) {
+ case EntryValueKind:
+ // An entry value is a register location -- but with an updated
+ // expression.
+ return BuildMI(MF, DbgLoc, IID, Indirect, Loc.RegNo, Var, Expr);
+ case RegisterKind:
+ // Register locations are like the source DBG_VALUE, but with the
+ // register number from this VarLoc.
+ return BuildMI(MF, DbgLoc, IID, Indirect, Loc.RegNo, Var, DIExpr);
+ case SpillLocKind: {
+ // Spills are indirect DBG_VALUEs, with a base register and offset.
+ // Use the original DBG_VALUEs expression to build the spilt location
+ // on top of. FIXME: spill locations created before this pass runs
+ // are not recognized, and not handled here.
+ auto *SpillExpr = DIExpression::prepend(
+ DIExpr, DIExpression::ApplyOffset, Loc.SpillLocation.SpillOffset);
+ unsigned Base = Loc.SpillLocation.SpillBase;
+ return BuildMI(MF, DbgLoc, IID, true, Base, Var, SpillExpr);
+ }
+ case ImmediateKind: {
+ MachineOperand MO = MI.getOperand(0);
+ return BuildMI(MF, DbgLoc, IID, Indirect, MO, Var, DIExpr);
+ }
+ case InvalidKind:
+ llvm_unreachable("Tried to produce DBG_VALUE for invalid VarLoc");
+ }
+ llvm_unreachable("Unrecognized LiveDebugValues.VarLoc.Kind enum");
+ }
+
+ /// Is the Loc field a constant or constant object?
+ bool isConstant() const { return Kind == ImmediateKind; }
+
+ /// If this variable is described by a register, return it,
+ /// otherwise return 0.
+ unsigned isDescribedByReg() const {
+ if (Kind == RegisterKind)
+ return Loc.RegNo;
+ return 0;
+ }
+
+ /// Determine whether the lexical scope of this value's debug location
+ /// dominates MBB.
+ bool dominates(MachineBasicBlock &MBB) const { return UVS.dominates(&MBB); }
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+ // TRI can be null.
+ void dump(const TargetRegisterInfo *TRI, raw_ostream &Out = dbgs()) const {
+ dbgs() << "VarLoc(";
+ switch (Kind) {
+ case RegisterKind:
+ case EntryValueKind:
+ dbgs() << printReg(Loc.RegNo, TRI);
+ break;
+ case SpillLocKind:
+ dbgs() << printReg(Loc.SpillLocation.SpillBase, TRI);
+ dbgs() << "[" << Loc.SpillLocation.SpillOffset << "]";
+ break;
+ case ImmediateKind:
+ dbgs() << Loc.Immediate;
+ break;
+ case InvalidKind:
+ llvm_unreachable("Invalid VarLoc in dump method");
+ }
+
+ dbgs() << ", \"" << Var.getVar()->getName() << "\", " << *Expr << ", ";
+ if (Var.getInlinedAt())
+ dbgs() << "!" << Var.getInlinedAt()->getMetadataID() << ")\n";
+ else
+ dbgs() << "(null))\n";
+ }
+#endif
+
+ bool operator==(const VarLoc &Other) const {
+ return Kind == Other.Kind && Var == Other.Var &&
+ Loc.Hash == Other.Loc.Hash && Expr == Other.Expr;
+ }
+
+ /// This operator guarantees that VarLocs are sorted by Variable first.
+ bool operator<(const VarLoc &Other) const {
+ return std::tie(Var, Kind, Loc.Hash, Expr) <
+ std::tie(Other.Var, Other.Kind, Other.Loc.Hash, Other.Expr);
+ }
+ };
+
+ using DebugParamMap = SmallDenseMap<const DILocalVariable *, MachineInstr *>;
+ using VarLocMap = UniqueVector<VarLoc>;
+ using VarLocSet = SparseBitVector<>;
+ using VarLocInMBB = SmallDenseMap<const MachineBasicBlock *, VarLocSet>;
+ struct TransferDebugPair {
+ MachineInstr *TransferInst; /// Instruction where this transfer occurs.
+ unsigned LocationID; /// Location number for the transfer dest.
+ };
+ using TransferMap = SmallVector<TransferDebugPair, 4>;
+
+ // Types for recording sets of variable fragments that overlap. For a given
+ // local variable, we record all other fragments of that variable that could
+ // overlap it, to reduce search time.
+ using FragmentOfVar =
+ std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
+ using OverlapMap =
+ DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
+
+ // Helper while building OverlapMap, a map of all fragments seen for a given
+ // DILocalVariable.
+ using VarToFragments =
+ DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
+
+ /// This holds the working set of currently open ranges. For fast
+ /// access, this is done both as a set of VarLocIDs, and a map of
+ /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all
+ /// previous open ranges for the same variable.
+ class OpenRangesSet {
+ VarLocSet VarLocs;
+ SmallDenseMap<DebugVariable, unsigned, 8> Vars;
+ OverlapMap &OverlappingFragments;
+
+ public:
+ OpenRangesSet(OverlapMap &_OLapMap) : OverlappingFragments(_OLapMap) {}
+
+ const VarLocSet &getVarLocs() const { return VarLocs; }
+
+ /// Terminate all open ranges for Var by removing it from the set.
+ void erase(DebugVariable Var);
+
+ /// Terminate all open ranges listed in \c KillSet by removing
+ /// them from the set.
+ void erase(const VarLocSet &KillSet, const VarLocMap &VarLocIDs) {
+ VarLocs.intersectWithComplement(KillSet);
+ for (unsigned ID : KillSet)
+ Vars.erase(VarLocIDs[ID].Var);
+ }
+
+ /// Insert a new range into the set.
+ void insert(unsigned VarLocID, DebugVariable Var) {
+ VarLocs.set(VarLocID);
+ Vars.insert({Var, VarLocID});
+ }
+
+ /// Insert a set of ranges.
+ void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map) {
+ for (unsigned Id : ToLoad) {
+ const VarLoc &Var = Map[Id];
+ insert(Id, Var.Var);
+ }
+ }
+
+ /// Empty the set.
+ void clear() {
+ VarLocs.clear();
+ Vars.clear();
+ }
+
+ /// Return whether the set is empty or not.
+ bool empty() const {
+ assert(Vars.empty() == VarLocs.empty() && "open ranges are inconsistent");
+ return VarLocs.empty();
+ }
+ };
+
+ /// Tests whether this instruction is a spill to a stack location.
+ bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
+
+ /// Decide if @MI is a spill instruction and return true if it is. We use 2
+ /// criteria to make this decision:
+ /// - Is this instruction a store to a spill slot?
+ /// - Is there a register operand that is both used and killed?
+ /// TODO: Store optimization can fold spills into other stores (including
+ /// other spills). We do not handle this yet (more than one memory operand).
+ bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
+ unsigned &Reg);
+
+ /// If a given instruction is identified as a spill, return the spill location
+ /// and set \p Reg to the spilled register.
+ Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI,
+ MachineFunction *MF,
+ unsigned &Reg);
+ /// Given a spill instruction, extract the register and offset used to
+ /// address the spill location in a target independent way.
+ VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
+ void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ TransferMap &Transfers, VarLocMap &VarLocIDs,
+ unsigned OldVarID, TransferKind Kind,
+ unsigned NewReg = 0);
+
+ void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs);
+ void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs, TransferMap &Transfers);
+ void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs, TransferMap &Transfers,
+ DebugParamMap &DebugEntryVals,
+ SparseBitVector<> &KillSet);
+ void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs, TransferMap &Transfers);
+ void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs, TransferMap &Transfers,
+ DebugParamMap &DebugEntryVals);
+ bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges,
+ VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs);
+
+ void process(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocInMBB &OutLocs, VarLocMap &VarLocIDs,
+ TransferMap &Transfers, DebugParamMap &DebugEntryVals,
+ OverlapMap &OverlapFragments,
+ VarToFragments &SeenFragments);
+
+ void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments,
+ OverlapMap &OLapMap);
+
+ bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
+ const VarLocMap &VarLocIDs,
+ SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
+ SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks,
+ VarLocInMBB &PendingInLocs);
+
+ /// Create DBG_VALUE insts for inlocs that have been propagated but
+ /// had their instruction creation deferred.
+ void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs);
+
+ bool ExtendRanges(MachineFunction &MF);
+
+public:
+ static char ID;
+
+ /// Default construct and initialize the pass.
+ LiveDebugValues();
+
+ /// Tell the pass manager which passes we depend on and what
+ /// information we preserve.
+ void getAnalysisUsage(AnalysisUsage &AU) const override;
+
+ MachineFunctionProperties getRequiredProperties() const override {
+ return MachineFunctionProperties().set(
+ MachineFunctionProperties::Property::NoVRegs);
+ }
+
+ /// Print to ostream with a message.
+ void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V,
+ const VarLocMap &VarLocIDs, const char *msg,
+ raw_ostream &Out) const;
+
+ /// Calculate the liveness information for the given machine function.
+ bool runOnMachineFunction(MachineFunction &MF) override;
+};
+
+} // end anonymous namespace
+
+namespace llvm {
+
+template <> struct DenseMapInfo<LiveDebugValues::DebugVariable> {
+ using DV = LiveDebugValues::DebugVariable;
+ using OptFragmentInfo = LiveDebugValues::OptFragmentInfo;
+ using FragmentInfo = LiveDebugValues::FragmentInfo;
+
+ // Empty key: no key should be generated that has no DILocalVariable.
+ static inline DV getEmptyKey() {
+ return DV(nullptr, OptFragmentInfo(), nullptr);
+ }
+
+ // Difference in tombstone is that the Optional is meaningful
+ static inline DV getTombstoneKey() {
+ return DV(nullptr, OptFragmentInfo({0, 0}), nullptr);
+ }
+
+ static unsigned getHashValue(const DV &D) {
+ unsigned HV = 0;
+ const OptFragmentInfo &Fragment = D.getFragment();
+ if (Fragment)
+ HV = DenseMapInfo<FragmentInfo>::getHashValue(*Fragment);
+
+ return hash_combine(D.getVar(), HV, D.getInlinedAt());
+ }
+
+ static bool isEqual(const DV &A, const DV &B) { return A == B; }
+};
+
+} // namespace llvm
+
+//===----------------------------------------------------------------------===//
+// Implementation
+//===----------------------------------------------------------------------===//
+
+const DIExpression::FragmentInfo
+ LiveDebugValues::DebugVariable::DefaultFragment = {
+ std::numeric_limits<uint64_t>::max(),
+ std::numeric_limits<uint64_t>::min()};
+
+char LiveDebugValues::ID = 0;
+
+char &llvm::LiveDebugValuesID = LiveDebugValues::ID;
+
+INITIALIZE_PASS(LiveDebugValues, DEBUG_TYPE, "Live DEBUG_VALUE analysis",
+ false, false)
+
+/// Default construct and initialize the pass.
+LiveDebugValues::LiveDebugValues() : MachineFunctionPass(ID) {
+ initializeLiveDebugValuesPass(*PassRegistry::getPassRegistry());
+}
+
+/// Tell the pass manager which passes we depend on and what information we
+/// preserve.
+void LiveDebugValues::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+/// Erase a variable from the set of open ranges, and additionally erase any
+/// fragments that may overlap it.
+void LiveDebugValues::OpenRangesSet::erase(DebugVariable Var) {
+ // Erasure helper.
+ auto DoErase = [this](DebugVariable VarToErase) {
+ auto It = Vars.find(VarToErase);
+ if (It != Vars.end()) {
+ unsigned ID = It->second;
+ VarLocs.reset(ID);
+ Vars.erase(It);
+ }
+ };
+
+ // Erase the variable/fragment that ends here.
+ DoErase(Var);
+
+ // Extract the fragment. Interpret an empty fragment as one that covers all
+ // possible bits.
+ FragmentInfo ThisFragment = Var.getFragmentDefault();
+
+ // There may be fragments that overlap the designated fragment. Look them up
+ // in the pre-computed overlap map, and erase them too.
+ auto MapIt = OverlappingFragments.find({Var.getVar(), ThisFragment});
+ if (MapIt != OverlappingFragments.end()) {
+ for (auto Fragment : MapIt->second) {
+ LiveDebugValues::OptFragmentInfo FragmentHolder;
+ if (!DebugVariable::isFragmentDefault(Fragment))
+ FragmentHolder = LiveDebugValues::OptFragmentInfo(Fragment);
+ DoErase({Var.getVar(), FragmentHolder, Var.getInlinedAt()});
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Debug Range Extension Implementation
+//===----------------------------------------------------------------------===//
+
+#ifndef NDEBUG
+void LiveDebugValues::printVarLocInMBB(const MachineFunction &MF,
+ const VarLocInMBB &V,
+ const VarLocMap &VarLocIDs,
+ const char *msg,
+ raw_ostream &Out) const {
+ Out << '\n' << msg << '\n';
+ for (const MachineBasicBlock &BB : MF) {
+ const VarLocSet &L = V.lookup(&BB);
+ if (L.empty())
+ continue;
+ Out << "MBB: " << BB.getNumber() << ":\n";
+ for (unsigned VLL : L) {
+ const VarLoc &VL = VarLocIDs[VLL];
+ Out << " Var: " << VL.Var.getVar()->getName();
+ Out << " MI: ";
+ VL.dump(TRI, Out);
+ }
+ }
+ Out << "\n";
+}
+#endif
+
+LiveDebugValues::VarLoc::SpillLoc
+LiveDebugValues::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
+ assert(MI.hasOneMemOperand() &&
+ "Spill instruction does not have exactly one memory operand?");
+ auto MMOI = MI.memoperands_begin();
+ const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
+ assert(PVal->kind() == PseudoSourceValue::FixedStack &&
+ "Inconsistent memory operand in spill instruction");
+ int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
+ const MachineBasicBlock *MBB = MI.getParent();
+ unsigned Reg;
+ int Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
+ return {Reg, Offset};
+}
+
+/// End all previous ranges related to @MI and start a new range from @MI
+/// if it is a DBG_VALUE instr.
+void LiveDebugValues::transferDebugValue(const MachineInstr &MI,
+ OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs) {
+ if (!MI.isDebugValue())
+ return;
+ const DILocalVariable *Var = MI.getDebugVariable();
+ const DIExpression *Expr = MI.getDebugExpression();
+ const DILocation *DebugLoc = MI.getDebugLoc();
+ const DILocation *InlinedAt = DebugLoc->getInlinedAt();
+ assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
+ "Expected inlined-at fields to agree");
+
+ // End all previous ranges of Var.
+ DebugVariable V(Var, Expr, InlinedAt);
+ OpenRanges.erase(V);
+
+ // Add the VarLoc to OpenRanges from this DBG_VALUE.
+ unsigned ID;
+ if (isDbgValueDescribedByReg(MI) || MI.getOperand(0).isImm() ||
+ MI.getOperand(0).isFPImm() || MI.getOperand(0).isCImm()) {
+ // Use normal VarLoc constructor for registers and immediates.
+ VarLoc VL(MI, LS);
+ ID = VarLocIDs.insert(VL);
+ OpenRanges.insert(ID, VL.Var);
+ } else if (MI.hasOneMemOperand()) {
+ llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?");
+ } else {
+ // This must be an undefined location. We should leave OpenRanges closed.
+ assert(MI.getOperand(0).isReg() && MI.getOperand(0).getReg() == 0 &&
+ "Unexpected non-undef DBG_VALUE encountered");
+ }
+}
+
+void LiveDebugValues::emitEntryValues(MachineInstr &MI,
+ OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs,
+ TransferMap &Transfers,
+ DebugParamMap &DebugEntryVals,
+ SparseBitVector<> &KillSet) {
+ for (unsigned ID : KillSet) {
+ if (!VarLocIDs[ID].Var.getVar()->isParameter())
+ continue;
+
+ const MachineInstr *CurrDebugInstr = &VarLocIDs[ID].MI;
+
+ // If parameter's DBG_VALUE is not in the map that means we can't
+ // generate parameter's entry value.
+ if (!DebugEntryVals.count(CurrDebugInstr->getDebugVariable()))
+ continue;
+
+ auto ParamDebugInstr = DebugEntryVals[CurrDebugInstr->getDebugVariable()];
+ DIExpression *NewExpr = DIExpression::prepend(
+ ParamDebugInstr->getDebugExpression(), DIExpression::EntryValue);
+
+ VarLoc EntryLoc = VarLoc::CreateEntryLoc(*ParamDebugInstr, LS, NewExpr);
+
+ unsigned EntryValLocID = VarLocIDs.insert(EntryLoc);
+ Transfers.push_back({&MI, EntryValLocID});
+ OpenRanges.insert(EntryValLocID, EntryLoc.Var);
+ }
+}
+
+/// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc
+/// with \p OldVarID should be deleted form \p OpenRanges and replaced with
+/// new VarLoc. If \p NewReg is different than default zero value then the
+/// new location will be register location created by the copy like instruction,
+/// otherwise it is variable's location on the stack.
+void LiveDebugValues::insertTransferDebugPair(
+ MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers,
+ VarLocMap &VarLocIDs, unsigned OldVarID, TransferKind Kind,
+ unsigned NewReg) {
+ const MachineInstr *DebugInstr = &VarLocIDs[OldVarID].MI;
+
+ auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &DebugInstr,
+ &VarLocIDs](VarLoc &VL) {
+ unsigned LocId = VarLocIDs.insert(VL);
+
+ // Close this variable's previous location range.
+ DebugVariable V(*DebugInstr);
+ OpenRanges.erase(V);
+
+ // Record the new location as an open range, and a postponed transfer
+ // inserting a DBG_VALUE for this location.
+ OpenRanges.insert(LocId, VL.Var);
+ TransferDebugPair MIP = {&MI, LocId};
+ Transfers.push_back(MIP);
+ };
+
+ // End all previous ranges of Var.
+ OpenRanges.erase(VarLocIDs[OldVarID].Var);
+ switch (Kind) {
+ case TransferKind::TransferCopy: {
+ assert(NewReg &&
+ "No register supplied when handling a copy of a debug value");
+ // Create a DBG_VALUE instruction to describe the Var in its new
+ // register location.
+ VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg);
+ ProcessVarLoc(VL);
+ LLVM_DEBUG({
+ dbgs() << "Creating VarLoc for register copy:";
+ VL.dump(TRI);
+ });
+ return;
+ }
+ case TransferKind::TransferSpill: {
+ // Create a DBG_VALUE instruction to describe the Var in its spilled
+ // location.
+ VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI);
+ VarLoc VL = VarLoc::CreateSpillLoc(*DebugInstr, SpillLocation.SpillBase,
+ SpillLocation.SpillOffset, LS);
+ ProcessVarLoc(VL);
+ LLVM_DEBUG({
+ dbgs() << "Creating VarLoc for spill:";
+ VL.dump(TRI);
+ });
+ return;
+ }
+ case TransferKind::TransferRestore: {
+ assert(NewReg &&
+ "No register supplied when handling a restore of a debug value");
+ MachineFunction *MF = MI.getMF();
+ DIBuilder DIB(*const_cast<Function &>(MF->getFunction()).getParent());
+ // DebugInstr refers to the pre-spill location, therefore we can reuse
+ // its expression.
+ VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg);
+ ProcessVarLoc(VL);
+ LLVM_DEBUG({
+ dbgs() << "Creating VarLoc for restore:";
+ VL.dump(TRI);
+ });
+ return;
+ }
+ }
+ llvm_unreachable("Invalid transfer kind");
+}
+
+/// A definition of a register may mark the end of a range.
+void LiveDebugValues::transferRegisterDef(
+ MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs,
+ TransferMap &Transfers, DebugParamMap &DebugEntryVals) {
+ MachineFunction *MF = MI.getMF();
+ const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
+ unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
+ SparseBitVector<> KillSet;
+ for (const MachineOperand &MO : MI.operands()) {
+ // Determine whether the operand is a register def. Assume that call
+ // instructions never clobber SP, because some backends (e.g., AArch64)
+ // never list SP in the regmask.
+ if (MO.isReg() && MO.isDef() && MO.getReg() &&
+ Register::isPhysicalRegister(MO.getReg()) &&
+ !(MI.isCall() && MO.getReg() == SP)) {
+ // Remove ranges of all aliased registers.
+ for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
+ for (unsigned ID : OpenRanges.getVarLocs())
+ if (VarLocIDs[ID].isDescribedByReg() == *RAI)
+ KillSet.set(ID);
+ } else if (MO.isRegMask()) {
+ // Remove ranges of all clobbered registers. Register masks don't usually
+ // list SP as preserved. While the debug info may be off for an
+ // instruction or two around callee-cleanup calls, transferring the
+ // DEBUG_VALUE across the call is still a better user experience.
+ for (unsigned ID : OpenRanges.getVarLocs()) {
+ unsigned Reg = VarLocIDs[ID].isDescribedByReg();
+ if (Reg && Reg != SP && MO.clobbersPhysReg(Reg))
+ KillSet.set(ID);
+ }
+ }
+ }
+ OpenRanges.erase(KillSet, VarLocIDs);
+
+ if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
+ auto &TM = TPC->getTM<TargetMachine>();
+ if (TM.Options.EnableDebugEntryValues)
+ emitEntryValues(MI, OpenRanges, VarLocIDs, Transfers, DebugEntryVals,
+ KillSet);
+ }
+}
+
+bool LiveDebugValues::isSpillInstruction(const MachineInstr &MI,
+ MachineFunction *MF) {
+ // TODO: Handle multiple stores folded into one.
+ if (!MI.hasOneMemOperand())
+ return false;
+
+ if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
+ return false; // This is not a spill instruction, since no valid size was
+ // returned from either function.
+
+ return true;
+}
+
+bool LiveDebugValues::isLocationSpill(const MachineInstr &MI,
+ MachineFunction *MF, unsigned &Reg) {
+ if (!isSpillInstruction(MI, MF))
+ return false;
+
+ auto isKilledReg = [&](const MachineOperand MO, unsigned &Reg) {
+ if (!MO.isReg() || !MO.isUse()) {
+ Reg = 0;
+ return false;
+ }
+ Reg = MO.getReg();
+ return MO.isKill();
+ };
+
+ for (const MachineOperand &MO : MI.operands()) {
+ // In a spill instruction generated by the InlineSpiller the spilled
+ // register has its kill flag set.
+ if (isKilledReg(MO, Reg))
+ return true;
+ if (Reg != 0) {
+ // Check whether next instruction kills the spilled register.
+ // FIXME: Current solution does not cover search for killed register in
+ // bundles and instructions further down the chain.
+ auto NextI = std::next(MI.getIterator());
+ // Skip next instruction that points to basic block end iterator.
+ if (MI.getParent()->end() == NextI)
+ continue;
+ unsigned RegNext;
+ for (const MachineOperand &MONext : NextI->operands()) {
+ // Return true if we came across the register from the
+ // previous spill instruction that is killed in NextI.
+ if (isKilledReg(MONext, RegNext) && RegNext == Reg)
+ return true;
+ }
+ }
+ }
+ // Return false if we didn't find spilled register.
+ return false;
+}
+
+Optional<LiveDebugValues::VarLoc::SpillLoc>
+LiveDebugValues::isRestoreInstruction(const MachineInstr &MI,
+ MachineFunction *MF, unsigned &Reg) {
+ if (!MI.hasOneMemOperand())
+ return None;
+
+ // FIXME: Handle folded restore instructions with more than one memory
+ // operand.
+ if (MI.getRestoreSize(TII)) {
+ Reg = MI.getOperand(0).getReg();
+ return extractSpillBaseRegAndOffset(MI);
+ }
+ return None;
+}
+
+/// A spilled register may indicate that we have to end the current range of
+/// a variable and create a new one for the spill location.
+/// A restored register may indicate the reverse situation.
+/// We don't want to insert any instructions in process(), so we just create
+/// the DBG_VALUE without inserting it and keep track of it in \p Transfers.
+/// It will be inserted into the BB when we're done iterating over the
+/// instructions.
+void LiveDebugValues::transferSpillOrRestoreInst(MachineInstr &MI,
+ OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs,
+ TransferMap &Transfers) {
+ MachineFunction *MF = MI.getMF();
+ TransferKind TKind;
+ unsigned Reg;
+ Optional<VarLoc::SpillLoc> Loc;
+
+ LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
+
+ // First, if there are any DBG_VALUEs pointing at a spill slot that is
+ // written to, then close the variable location. The value in memory
+ // will have changed.
+ VarLocSet KillSet;
+ if (isSpillInstruction(MI, MF)) {
+ Loc = extractSpillBaseRegAndOffset(MI);
+ for (unsigned ID : OpenRanges.getVarLocs()) {
+ const VarLoc &VL = VarLocIDs[ID];
+ if (VL.Kind == VarLoc::SpillLocKind && VL.Loc.SpillLocation == *Loc) {
+ // This location is overwritten by the current instruction -- terminate
+ // the open range, and insert an explicit DBG_VALUE $noreg.
+ //
+ // Doing this at a later stage would require re-interpreting all
+ // DBG_VALUes and DIExpressions to identify whether they point at
+ // memory, and then analysing all memory writes to see if they
+ // overwrite that memory, which is expensive.
+ //
+ // At this stage, we already know which DBG_VALUEs are for spills and
+ // where they are located; it's best to fix handle overwrites now.
+ KillSet.set(ID);
+ VarLoc UndefVL = VarLoc::CreateCopyLoc(VL.MI, LS, 0);
+ unsigned UndefLocID = VarLocIDs.insert(UndefVL);
+ Transfers.push_back({&MI, UndefLocID});
+ }
+ }
+ OpenRanges.erase(KillSet, VarLocIDs);
+ }
+
+ // Try to recognise spill and restore instructions that may create a new
+ // variable location.
+ if (isLocationSpill(MI, MF, Reg)) {
+ TKind = TransferKind::TransferSpill;
+ LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump(););
+ LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
+ << "\n");
+ } else {
+ if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
+ return;
+ TKind = TransferKind::TransferRestore;
+ LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump(););
+ LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
+ << "\n");
+ }
+ // Check if the register or spill location is the location of a debug value.
+ for (unsigned ID : OpenRanges.getVarLocs()) {
+ if (TKind == TransferKind::TransferSpill &&
+ VarLocIDs[ID].isDescribedByReg() == Reg) {
+ LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '('
+ << VarLocIDs[ID].Var.getVar()->getName() << ")\n");
+ } else if (TKind == TransferKind::TransferRestore &&
+ VarLocIDs[ID].Kind == VarLoc::SpillLocKind &&
+ VarLocIDs[ID].Loc.SpillLocation == *Loc) {
+ LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '('
+ << VarLocIDs[ID].Var.getVar()->getName() << ")\n");
+ } else
+ continue;
+ insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, ID, TKind,
+ Reg);
+ return;
+ }
+}
+
+/// If \p MI is a register copy instruction, that copies a previously tracked
+/// value from one register to another register that is callee saved, we
+/// create new DBG_VALUE instruction described with copy destination register.
+void LiveDebugValues::transferRegisterCopy(MachineInstr &MI,
+ OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs,
+ TransferMap &Transfers) {
+ const MachineOperand *SrcRegOp, *DestRegOp;
+
+ if (!TII->isCopyInstr(MI, SrcRegOp, DestRegOp) || !SrcRegOp->isKill() ||
+ !DestRegOp->isDef())
+ return;
+
+ auto isCalleSavedReg = [&](unsigned Reg) {
+ for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
+ if (CalleeSavedRegs.test(*RAI))
+ return true;
+ return false;
+ };
+
+ Register SrcReg = SrcRegOp->getReg();
+ Register DestReg = DestRegOp->getReg();
+
+ // We want to recognize instructions where destination register is callee
+ // saved register. If register that could be clobbered by the call is
+ // included, there would be a great chance that it is going to be clobbered
+ // soon. It is more likely that previous register location, which is callee
+ // saved, is going to stay unclobbered longer, even if it is killed.
+ if (!isCalleSavedReg(DestReg))
+ return;
+
+ for (unsigned ID : OpenRanges.getVarLocs()) {
+ if (VarLocIDs[ID].isDescribedByReg() == SrcReg) {
+ insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, ID,
+ TransferKind::TransferCopy, DestReg);
+ return;
+ }
+ }
+}
+
+/// Terminate all open ranges at the end of the current basic block.
+bool LiveDebugValues::transferTerminator(MachineBasicBlock *CurMBB,
+ OpenRangesSet &OpenRanges,
+ VarLocInMBB &OutLocs,
+ const VarLocMap &VarLocIDs) {
+ bool Changed = false;
+
+ LLVM_DEBUG(for (unsigned ID
+ : OpenRanges.getVarLocs()) {
+ // Copy OpenRanges to OutLocs, if not already present.
+ dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": ";
+ VarLocIDs[ID].dump(TRI);
+ });
+ VarLocSet &VLS = OutLocs[CurMBB];
+ Changed = VLS != OpenRanges.getVarLocs();
+ // New OutLocs set may be different due to spill, restore or register
+ // copy instruction processing.
+ if (Changed)
+ VLS = OpenRanges.getVarLocs();
+ OpenRanges.clear();
+ return Changed;
+}
+
+/// Accumulate a mapping between each DILocalVariable fragment and other
+/// fragments of that DILocalVariable which overlap. This reduces work during
+/// the data-flow stage from "Find any overlapping fragments" to "Check if the
+/// known-to-overlap fragments are present".
+/// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
+/// fragment usage.
+/// \param SeenFragments Map from DILocalVariable to all fragments of that
+/// Variable which are known to exist.
+/// \param OverlappingFragments The overlap map being constructed, from one
+/// Var/Fragment pair to a vector of fragments known to overlap.
+void LiveDebugValues::accumulateFragmentMap(MachineInstr &MI,
+ VarToFragments &SeenFragments,
+ OverlapMap &OverlappingFragments) {
+ DebugVariable MIVar(MI);
+ FragmentInfo ThisFragment = MIVar.getFragmentDefault();
+
+ // If this is the first sighting of this variable, then we are guaranteed
+ // there are currently no overlapping fragments either. Initialize the set
+ // of seen fragments, record no overlaps for the current one, and return.
+ auto SeenIt = SeenFragments.find(MIVar.getVar());
+ if (SeenIt == SeenFragments.end()) {
+ SmallSet<FragmentInfo, 4> OneFragment;
+ OneFragment.insert(ThisFragment);
+ SeenFragments.insert({MIVar.getVar(), OneFragment});
+
+ OverlappingFragments.insert({{MIVar.getVar(), ThisFragment}, {}});
+ return;
+ }
+
+ // If this particular Variable/Fragment pair already exists in the overlap
+ // map, it has already been accounted for.
+ auto IsInOLapMap =
+ OverlappingFragments.insert({{MIVar.getVar(), ThisFragment}, {}});
+ if (!IsInOLapMap.second)
+ return;
+
+ auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
+ auto &AllSeenFragments = SeenIt->second;
+
+ // Otherwise, examine all other seen fragments for this variable, with "this"
+ // fragment being a previously unseen fragment. Record any pair of
+ // overlapping fragments.
+ for (auto &ASeenFragment : AllSeenFragments) {
+ // Does this previously seen fragment overlap?
+ if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
+ // Yes: Mark the current fragment as being overlapped.
+ ThisFragmentsOverlaps.push_back(ASeenFragment);
+ // Mark the previously seen fragment as being overlapped by the current
+ // one.
+ auto ASeenFragmentsOverlaps =
+ OverlappingFragments.find({MIVar.getVar(), ASeenFragment});
+ assert(ASeenFragmentsOverlaps != OverlappingFragments.end() &&
+ "Previously seen var fragment has no vector of overlaps");
+ ASeenFragmentsOverlaps->second.push_back(ThisFragment);
+ }
+ }
+
+ AllSeenFragments.insert(ThisFragment);
+}
+
+/// This routine creates OpenRanges and OutLocs.
+void LiveDebugValues::process(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocInMBB &OutLocs, VarLocMap &VarLocIDs,
+ TransferMap &Transfers,
+ DebugParamMap &DebugEntryVals,
+ OverlapMap &OverlapFragments,
+ VarToFragments &SeenFragments) {
+ transferDebugValue(MI, OpenRanges, VarLocIDs);
+ transferRegisterDef(MI, OpenRanges, VarLocIDs, Transfers,
+ DebugEntryVals);
+ transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers);
+ transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers);
+}
+
+/// This routine joins the analysis results of all incoming edges in @MBB by
+/// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
+/// source variable in all the predecessors of @MBB reside in the same location.
+bool LiveDebugValues::join(
+ MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
+ const VarLocMap &VarLocIDs,
+ SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
+ SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks,
+ VarLocInMBB &PendingInLocs) {
+ LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
+ bool Changed = false;
+
+ VarLocSet InLocsT; // Temporary incoming locations.
+
+ // For all predecessors of this MBB, find the set of VarLocs that
+ // can be joined.
+ int NumVisited = 0;
+ for (auto p : MBB.predecessors()) {
+ // Ignore backedges if we have not visited the predecessor yet. As the
+ // predecessor hasn't yet had locations propagated into it, most locations
+ // will not yet be valid, so treat them as all being uninitialized and
+ // potentially valid. If a location guessed to be correct here is
+ // invalidated later, we will remove it when we revisit this block.
+ if (!Visited.count(p)) {
+ LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber()
+ << "\n");
+ continue;
+ }
+ auto OL = OutLocs.find(p);
+ // Join is null in case of empty OutLocs from any of the pred.
+ if (OL == OutLocs.end())
+ return false;
+
+ // Just copy over the Out locs to incoming locs for the first visited
+ // predecessor, and for all other predecessors join the Out locs.
+ if (!NumVisited)
+ InLocsT = OL->second;
+ else
+ InLocsT &= OL->second;
+
+ LLVM_DEBUG({
+ if (!InLocsT.empty()) {
+ for (auto ID : InLocsT)
+ dbgs() << " gathered candidate incoming var: "
+ << VarLocIDs[ID].Var.getVar()->getName() << "\n";
+ }
+ });
+
+ NumVisited++;
+ }
+
+ // Filter out DBG_VALUES that are out of scope.
+ VarLocSet KillSet;
+ bool IsArtificial = ArtificialBlocks.count(&MBB);
+ if (!IsArtificial) {
+ for (auto ID : InLocsT) {
+ if (!VarLocIDs[ID].dominates(MBB)) {
+ KillSet.set(ID);
+ LLVM_DEBUG({
+ auto Name = VarLocIDs[ID].Var.getVar()->getName();
+ dbgs() << " killing " << Name << ", it doesn't dominate MBB\n";
+ });
+ }
+ }
+ }
+ InLocsT.intersectWithComplement(KillSet);
+
+ // As we are processing blocks in reverse post-order we
+ // should have processed at least one predecessor, unless it
+ // is the entry block which has no predecessor.
+ assert((NumVisited || MBB.pred_empty()) &&
+ "Should have processed at least one predecessor");
+
+ VarLocSet &ILS = InLocs[&MBB];
+ VarLocSet &Pending = PendingInLocs[&MBB];
+
+ // New locations will have DBG_VALUE insts inserted at the start of the
+ // block, after location propagation has finished. Record the insertions
+ // that we need to perform in the Pending set.
+ VarLocSet Diff = InLocsT;
+ Diff.intersectWithComplement(ILS);
+ for (auto ID : Diff) {
+ Pending.set(ID);
+ ILS.set(ID);
+ ++NumInserted;
+ Changed = true;
+ }
+
+ // We may have lost locations by learning about a predecessor that either
+ // loses or moves a variable. Find any locations in ILS that are not in the
+ // new in-locations, and delete those.
+ VarLocSet Removed = ILS;
+ Removed.intersectWithComplement(InLocsT);
+ for (auto ID : Removed) {
+ Pending.reset(ID);
+ ILS.reset(ID);
+ ++NumRemoved;
+ Changed = true;
+ }
+
+ return Changed;
+}
+
+void LiveDebugValues::flushPendingLocs(VarLocInMBB &PendingInLocs,
+ VarLocMap &VarLocIDs) {
+ // PendingInLocs records all locations propagated into blocks, which have
+ // not had DBG_VALUE insts created. Go through and create those insts now.
+ for (auto &Iter : PendingInLocs) {
+ // Map is keyed on a constant pointer, unwrap it so we can insert insts.
+ auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first);
+ VarLocSet &Pending = Iter.second;
+
+ for (unsigned ID : Pending) {
+ // The ID location is live-in to MBB -- work out what kind of machine
+ // location it is and create a DBG_VALUE.
+ const VarLoc &DiffIt = VarLocIDs[ID];
+ MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent());
+ MBB.insert(MBB.instr_begin(), MI);
+
+ (void)MI;
+ LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump(););
+ }
+ }
+}
+
+/// Calculate the liveness information for the given machine function and
+/// extend ranges across basic blocks.
+bool LiveDebugValues::ExtendRanges(MachineFunction &MF) {
+ LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
+
+ bool Changed = false;
+ bool OLChanged = false;
+ bool MBBJoined = false;
+
+ VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors.
+ OverlapMap OverlapFragments; // Map of overlapping variable fragments
+ OpenRangesSet OpenRanges(OverlapFragments);
+ // Ranges that are open until end of bb.
+ VarLocInMBB OutLocs; // Ranges that exist beyond bb.
+ VarLocInMBB InLocs; // Ranges that are incoming after joining.
+ TransferMap Transfers; // DBG_VALUEs associated with spills.
+ VarLocInMBB PendingInLocs; // Ranges that are incoming after joining, but
+ // that we have deferred creating DBG_VALUE insts
+ // for immediately.
+
+ VarToFragments SeenFragments;
+
+ // Blocks which are artificial, i.e. blocks which exclusively contain
+ // instructions without locations, or with line 0 locations.
+ SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
+
+ DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
+ DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
+ std::priority_queue<unsigned int, std::vector<unsigned int>,
+ std::greater<unsigned int>>
+ Worklist;
+ std::priority_queue<unsigned int, std::vector<unsigned int>,
+ std::greater<unsigned int>>
+ Pending;
+
+ // Besides parameter's modification, check whether a DBG_VALUE is inlined
+ // in order to deduce whether the variable that it tracks comes from
+ // a different function. If that is the case we can't track its entry value.
+ auto IsUnmodifiedFuncParam = [&](const MachineInstr &MI) {
+ auto *DIVar = MI.getDebugVariable();
+ return DIVar->isParameter() && DIVar->isNotModified() &&
+ !MI.getDebugLoc()->getInlinedAt();
+ };
+
+ const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
+ unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
+ Register FP = TRI->getFrameRegister(MF);
+ auto IsRegOtherThanSPAndFP = [&](const MachineOperand &Op) -> bool {
+ return Op.isReg() && Op.getReg() != SP && Op.getReg() != FP;
+ };
+
+ // Working set of currently collected debug variables mapped to DBG_VALUEs
+ // representing candidates for production of debug entry values.
+ DebugParamMap DebugEntryVals;
+
+ MachineBasicBlock &First_MBB = *(MF.begin());
+ // Only in the case of entry MBB collect DBG_VALUEs representing
+ // function parameters in order to generate debug entry values for them.
+ // Currently, we generate debug entry values only for parameters that are
+ // unmodified throughout the function and located in a register.
+ // TODO: Add support for parameters that are described as fragments.
+ // TODO: Add support for modified arguments that can be expressed
+ // by using its entry value.
+ // TODO: Add support for local variables that are expressed in terms of
+ // parameters entry values.
+ for (auto &MI : First_MBB)
+ if (MI.isDebugValue() && IsUnmodifiedFuncParam(MI) &&
+ !MI.isIndirectDebugValue() && IsRegOtherThanSPAndFP(MI.getOperand(0)) &&
+ !DebugEntryVals.count(MI.getDebugVariable()) &&
+ !MI.getDebugExpression()->isFragment())
+ DebugEntryVals[MI.getDebugVariable()] = &MI;
+
+ // Initialize per-block structures and scan for fragment overlaps.
+ for (auto &MBB : MF) {
+ PendingInLocs[&MBB] = VarLocSet();
+
+ for (auto &MI : MBB) {
+ if (MI.isDebugValue())
+ accumulateFragmentMap(MI, SeenFragments, OverlapFragments);
+ }
+ }
+
+ auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
+ if (const DebugLoc &DL = MI.getDebugLoc())
+ return DL.getLine() != 0;
+ return false;
+ };
+ for (auto &MBB : MF)
+ if (none_of(MBB.instrs(), hasNonArtificialLocation))
+ ArtificialBlocks.insert(&MBB);
+
+ LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
+ "OutLocs after initialization", dbgs()));
+
+ ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
+ unsigned int RPONumber = 0;
+ for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
+ OrderToBB[RPONumber] = *RI;
+ BBToOrder[*RI] = RPONumber;
+ Worklist.push(RPONumber);
+ ++RPONumber;
+ }
+ // This is a standard "union of predecessor outs" dataflow problem.
+ // To solve it, we perform join() and process() using the two worklist method
+ // until the ranges converge.
+ // Ranges have converged when both worklists are empty.
+ SmallPtrSet<const MachineBasicBlock *, 16> Visited;
+ while (!Worklist.empty() || !Pending.empty()) {
+ // We track what is on the pending worklist to avoid inserting the same
+ // thing twice. We could avoid this with a custom priority queue, but this
+ // is probably not worth it.
+ SmallPtrSet<MachineBasicBlock *, 16> OnPending;
+ LLVM_DEBUG(dbgs() << "Processing Worklist\n");
+ while (!Worklist.empty()) {
+ MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
+ Worklist.pop();
+ MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited,
+ ArtificialBlocks, PendingInLocs);
+ MBBJoined |= Visited.insert(MBB).second;
+ if (MBBJoined) {
+ MBBJoined = false;
+ Changed = true;
+ // Now that we have started to extend ranges across BBs we need to
+ // examine spill instructions to see whether they spill registers that
+ // correspond to user variables.
+ // First load any pending inlocs.
+ OpenRanges.insertFromLocSet(PendingInLocs[MBB], VarLocIDs);
+ for (auto &MI : *MBB)
+ process(MI, OpenRanges, OutLocs, VarLocIDs, Transfers,
+ DebugEntryVals, OverlapFragments, SeenFragments);
+ OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs);
+
+ LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
+ "OutLocs after propagating", dbgs()));
+ LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs,
+ "InLocs after propagating", dbgs()));
+
+ if (OLChanged) {
+ OLChanged = false;
+ for (auto s : MBB->successors())
+ if (OnPending.insert(s).second) {
+ Pending.push(BBToOrder[s]);
+ }
+ }
+ }
+ }
+ Worklist.swap(Pending);
+ // At this point, pending must be empty, since it was just the empty
+ // worklist
+ assert(Pending.empty() && "Pending should be empty");
+ }
+
+ // Add any DBG_VALUE instructions created by location transfers.
+ for (auto &TR : Transfers) {
+ MachineBasicBlock *MBB = TR.TransferInst->getParent();
+ const VarLoc &VL = VarLocIDs[TR.LocationID];
+ MachineInstr *MI = VL.BuildDbgValue(MF);
+ MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI);
+ }
+ Transfers.clear();
+
+ // Deferred inlocs will not have had any DBG_VALUE insts created; do
+ // that now.
+ flushPendingLocs(PendingInLocs, VarLocIDs);
+
+ LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs()));
+ LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs()));
+ return Changed;
+}
+
+bool LiveDebugValues::runOnMachineFunction(MachineFunction &MF) {
+ if (!MF.getFunction().getSubprogram())
+ // LiveDebugValues will already have removed all DBG_VALUEs.
+ return false;
+
+ // Skip functions from NoDebug compilation units.
+ if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() ==
+ DICompileUnit::NoDebug)
+ return false;
+
+ TRI = MF.getSubtarget().getRegisterInfo();
+ TII = MF.getSubtarget().getInstrInfo();
+ TFI = MF.getSubtarget().getFrameLowering();
+ TFI->determineCalleeSaves(MF, CalleeSavedRegs,
+ std::make_unique<RegScavenger>().get());
+ LS.initialize(MF);
+
+ bool Changed = ExtendRanges(MF);
+ return Changed;
+}